Response to anonymous reviewer comments
Dear Reviewer,
We first thank you for your positive and constructive comments. Below we
attempt to address the your comments through a more detailed discussion. We
will also make adjustments to the manuscript where necessary.

Many thanks,

Courtney Quinn, Terence O’Kane, and Vassili Kitsios

General comments

This manuscript is exploring the use of covariant Lyapunov vectors (CLVs)
to build the error covariance matrix in ensemble Kalman filtring methods. The
set of vectors is selected based on the computation of a local Kaplan-Yorke
dimension based on the finite time Lyapunov exponents. This approach is im-
plemented in the context of a multi-scale system mimicking the (coupled) dy-
namics of a coupled tropical ocean-atmosphere system and the extra-tropical
atmosphere. Different strategies of observation are then evaluated. It is found
that observation within the atmosphere is essential,and that the variable num-
ber of CLVs to be used in building the error covariance matrix is a successful
strategy for strongly coupled data assimilation. Very interesting results are also
obtained with the observation sampling of a shadowing trajectory, leading to
measurement correlations.

This is an interesting manuscript exploring many aspects of the strongly
coupled data assimilation and I would in principle recommend publication of
this work.

We thank the reviewer for the positive evaluation.

I have however an important concern on the use of the local Kaplan Yorke
dimension and the CLVs that should be addressed before publication. It seems
to me that the use of both is inconsistent. Let me clarify my point. When
computing the FTLEs, one can use either the QR (associated with the back-
ward Lyapunov vectors) decomposition,the Forward Lyapunov vectors obtained
with backward integration in time, or the local amplification along the CLVs.
Although all these are giving the appropriate asymptotic Lyapunov exponents,
they are not providing similar variability of these quantities as illustrated for
instance in Vannitsem and Lucarini (2016) you quoted. So if you use the QR
decomposition and then select the CLVs on that basis this is probably not op-
timal.



We have considered the reviewer’s concern and are in agreement that the use
of the two quantities could produce inconsistencies. To clarify, we use the QR
decomposition method to calculate the FTLEs, which would give amplification
rates for the backward Lyapunov vectors rather than the CLVs. However, in
this case we argue that the way in which we utilise the FTLEs does not create an
inconsistency with the CLVs in that we are not assigning any particular FTLE
to a CLV. Rather, the backward FTLEs are used only to produce an adequate
estimate of the number of CLVs to retain in constructing the covariance matrix.
The true local dimension of the system may be different from the quantity com-
puted, but the Kaplan-Yorke dimension calculated from the backward FTLEs
still produces a sufficient upper bound. We expand on this point further below.

Figure 1 shows the finite-time Kaplan-Yorke dimension of a segment of the
example model run from Sections 2 and 3 in the manuscript (compare to Figure
5 in manuscript). The top panel is the dimension measure, while the bottom
is the ceiling of the dimension measure which is used to select the number
of CLVs for constructing the covariance matrix. We compare the two different
methods for calculating the CLVs that the reviewer mentions: growth rate along
CLVs (FTCLEs) and QR decomposition (FTBLEs). We observe that for our
particular nonlinear system, the QR decomposition method consistently gives
a larger estimate for the Kaplan-Yorke measure than the amplification along
CLVs, and therefore implies retaining more CLVs in the analysis. We maintain
that a higher number of retained CLVs will not harm the DA, while too few CLVs
potentially could. Specifically, where the positive CLVs are closely aligned, the
DA requires the inclusion of most of the additional neutral and stable CLVs
to avoid ensemble collapse (further discussion of this point on the following
page). Thus, Kaplan-Yorke is an effective choice to determine the rank of the
background covariance matrix despite the any inaccuracies due to degeneracy
in the unstable directions. Additionally, we mention that in order to obtain
the growth rate of the CLVs, one needs the accurate forward model. Since
we are calculating the CLVs from the ensemble mean trajectory within the
DA experiments, we do not have an accurate future trajectory and therefore
no forward model (due to the state dependence of the Jacobian). For these
reasons we maintain that the FTLEs from the QR method are a sufficient for
our analysis at hand.
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Figure 1: Comparison of finite-time Kaplan-Yorke dimension calculated using
the growth rates of CLVs (FTCLEs) and the QR method (FTBLEs).
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Figure 2: Comparison of variance of the individual FTLEs calculated using the
growth rates of CLVs (FTCLEs) and the QR method (FTBLESs).



Alternatively, if you use an estimate of the FTLE using the amplification
along the CLVs then the “dimension” of the subspace of instabilities is not the
same and one can wonder what is the signification of this quantity. This is
related to your comment at line 14 of page 8 indicating that higher dimension is
associated with more important alignment of CLVs. Imagine for instance that
several CLVs are pointing in almost the same direction with large amplifica-
tions, then the dimension would be large but intuitively (as they point all in
the same direction) we would expect a low dimension. The specific way you
compute the FTLEs and the local dimension should therefore be clarified, and
probably I would not call it “dimension”. Furthermore, if the KY dimension is
computed with the local amplification rates of the backward Lyapunov expo-
nents, a comparison should be made with the use of the backward Lyapunov
vectors in building the error covariance matrix. It would have been my first
choice in view of the fact this is much less costly than the CLVs.

The reviewer is correct in that the finite-time Kaplan-Yorke measure is not
necessarily the true local dimension. However, this measure is giving an indi-
cation of local dimension combined with alignment. We explain this through
an examination of two difference time steps in the benchmark DA experiment
(Section 5.2 in the manuscript) where a high Kaplan-Yorke measure is recorded
and the FTLE behaviour is similar. The alignment of the CLVs and the FTLEs
(computed using the QR decomposition method) are shown in Figure 3. In
both cases we see that there are 2 equally strong leading unstable FTLEs, 3
positive but near zero FTLEs, and one weakly stable FTLE. In the first column
(t = 306.24) we see that the 5 leading CLVs are strongly aligned as well as
the two most stable (8 and 9). The dimension based on alignment would then
intuitively be around 4, and one would need to select the set of CLVs that are
not aligned. In our method since dimgy > 7 we would retain 8 CLVs, therefore
accounting for the strong alignment of the leading CLVs and retaining all nec-
essary directions. In the second column (¢ = 705.04) the case is quite different
in that the leading CLVs are not strongly aligned, but there is strong align-
ment of CLVs 4-6 and pairs 3,7 and 8,9. This would give an alignment-based
dimension around 5, but again we need to retain up to the 8th CLV to span
the local manifold. While one could create a method based on alignment for
selecting directions, we point out that the actual criteria for “strong alignment”
is arbitrary and one could risk excluding a significant direction.

With regards to using the backwards Lyapunov vectors (BLVs), if one is
using the QR method then the backwards Lyapunov vectors computed are or-
thogonal by construction. We therefore do not see the same behaviour of align-
ment of the vectors. We ran the benchmark DA experiment (Section 5.2 in the
manuscript) using a variable number of BLVs based on the Kaplan-Yorke mea-
sure computed using the QR decomposition method (statistics shown in Table
2 of next section). We see that the variable BLVs and variable CLVs perform
comparably. While all experiments could be run with the BLVs as suggested
by the reviewer, we aim to show the functionality of using the CLVs as they
provide additional information about the phase-space dynamics which can be
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Figure 3: We compare the alignment of the CLVs at two time steps of the
benchmark DA experiment (section 5.2 in the manuscript). The two time steps
have similar Kaplan-Yorke measure and distribution of leading FTBLEs, shown
in the bottom panels. We observe that the behaviour of the alignment can be
vastly different for similar FTBLE behaviour, however the method of retaining
CLVs based on the Kaplan-Yorke measure gives a reliable way to reflect the true
local dimension regardless of alignment.

analysed a posteriori.

We have made the following additions to the manuscript to address all the
above concerns and clarify our methods:

e We have added a paragraph and figure to Section 3 of the manuscript to
discuss the differences in calculating the FTLEs.

e We have added Figure 3 along with a discussion of alignment, dimension,
and relevance to ensemble DA in Section 4.2.

e We have added the statistics for using BLVs with variable Kaplan-Yorke
measure in the benchmark DA case of Section 5.2.



Specific comments:

1. Figure 3, you mentioned 2 neutral Lyapunov exponents. I am wondering

why you have two such exponents. Is there any specific symmetries allow-
ing for that? Isn’t it a numerical artifact?

For clarification, the model has a neutral and a near-neutral Lyapunov
exponent. The near-neutral exponent comes from the weak coupling to
the extratropical subsystem (c. = 0.08). If one were to set ¢, = 0, the
extratropical subsystem would be completely uncoupled from the tropi-
cal and ocean subsystems, and it would retain its symmetry [z, Ye, z¢] =
[—Ze, —Ye, ze]. This implies an additional neutral Lyapunov exponent.
However, we retain that the near-neutral exponent is important to con-
sider within the neutral subspace in this study as the timescales of the
neutral and near-neutral exponents are indistinguishable and changes in
both can significantly affect the local Kaplan-Yorke measure. To improve
and assess numerical precision, we have computed the Lyapunov expo-
nents over a longer window (500,000 time steps) and show the results for
the original parameter values as well as different combinations of coupling
strengths set to zero in Table 1.

A1 Ao A3 A4 A5 A6 A7 g Ag
as in manuscript | 0.9043 | 0.3052 | 0.0007 | -0.0032 | -0.4829 | -0.8008 | -1.8149 | -12.2359 | -14.5726
ce=0 0.9083 | 0.3029 | 0.0001 | -0.0006 | -0.4814 | -0.7962 | -1.8172 | -12.2415 | -14.5744
c=0 0.9042 | 0.3491 | 0.0597 | -0.0002 | -0.0151 | -0.3186 | -1.6222 | -13.4793 | -14.5777
c,=0 0.9081 | -0.0004 | -0.0723 | -0.0728 | -0.1283 | -0.1289 | -1.1599 | -13.4702 | -14.5753
c=c,=0 0.9069 | 0.8886 | 0.0902 | 0.0001 | -0.0004 | -0.0741 | -1.4569 | -14.4801 | -14.5743
ce=c=0 0.9083 | 0.3581 | 0.0692 | -0.0006 | -0.0007 | -0.3227 | -1.6360 | -13.5012 | -14.5744
ce=c=c,=0 0.9083 | 0.9083 | 0.0902 | 0.0001 | -0.0006 | -0.0006 | -1.4569 | -14.5744 | -14.5744

Table 1: Asymptotic Lyapunov exponents of coupled Lorenz model for different
coupling coefficients set to 0. Lyapunov exponents computed over 5000 time
units using a QR decomposition method, time step of 0.01, and orthogonaliza-

tion step of 0.25.

2. Table 2. The RMSE for the extratropics are very close to each other what-

ever the experiments. Are the differences significant?

We preface this response with pointing out that the statistics of Table
2 have slightly changed on fixing a numerical error in the code (see fol-
lowing section for revised statistics). In order to discuss significance of
differences in the average RMSE we have to compute error bounds on
the means. To do this, we perform a bootstrapping of the time series of
extratropical RMSE for each of the five experiments listed in Table 2 of
the next section. We resample the data (with replacement) 10,000 times
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Figure 4: Histograms for the means of the resampled time-dependent extrat-
ropical RMSEs for each respective experiment. The black lines show the means
of the histograms, which are approximately the values of extratropical average
RMSE in Table 2 of the manuscript.

and then compute the average RMSE for each resample. This produces
a distribution of average RMSE for each experiment, shown in Figure 4.
Each distribution has standard deviation ¢ ~ 0.004, and we see that the
mean of the distributions shift by less than o between experiments with
the exception of the variable CLVs experiment. The mean of the variable
CLVs experiment still lies within 20 of all the experiment distributions.
In this sense we can conclude that the values listed in Table 2 are not sig-
nificantly different. Additionally, we note that in the sense of quantifying
the DA performance, all five methods constrain the extratropical system
to a similar degree.

3. Also in Table 2. An average dimension is computed. This average is based
on the QR decomposition or some estimate with the CLVs? This is related
to my main point. Please clarify how it is computed.

The average dimension comes from the FTLEs which are calculated using
the QR decomposition. We have clarified this in the manuscript.

4. FTLEs are computed for 4 time units. What is happening to your analy-
sis when this window is changed? And why choosing this specific window?

The window of 4 time units was chosen in order to capture dimension
changes related to the ENSO-like excursions in the ocean subsystem (oc-
curring anywhere between approximately 6.5 and 27 time units). The
window should therefore be long enough to filter out the intrinsic oscilla-



tory behaviour of the ocean subsystem but short enough to capture the
transition to the excursion state. The period of intrinsic variability is ap-
proximately 3 time units, therefore any window between 3 and 6.5 time
units should perform comparably. Decreasing and increasing the window
leads to higher and lower temporal variability of the FTLESs, respectively.

. At page 12, in the two first paragraphs of Section 5, you present how the
experiment is done. As far as I understood, the CLVs are computed during
a limited period of time during the assimilation period. Am I right? At
first reading it was not very clear to me and it would be nice to improve
the presentation of that part. In particular, a sketch of the whole process
in a figure would be really useful.

We have clarified the paragraph where we explain the computation of
the CLVs within the DA framework.

. In the partially observed CDA, you also compute a local dimension. I am
wondering how the CLVs are computed there since the trajectory of the
model is probably very far from reality. Moreover, it was not clear to me
whether you are using the CLVs of the reality or of the model integration.
Would you please clarify how you do this? It can maybe be incorporated
in the general description of the experiments mentioned at point 5 above.

The CLVs are calculated from the ensemble mean trajectory. In the cases
where the full system is constrained (atmosphere-only observations), the
ensemble mean remains close enough to the truth such that the CLVs can
still be calculated to a sufficient accuracy. On the other hand, this is not
the case when some of the subsystems are unconstrained (i.e. ENSO and
extratropical-only observations). In such cases we cannot use the variable
dimension method, and instead we use all 9 computed CLVs. This is valid
since the forecast error covariance matrix has rank 9 in this set-up and we
are projecting onto a basis of equivalent rank, regardless of the accuracy of
the computed CLVs. The local dimension we are calculating comes from
the QR decomposition as mentioned in the response to the main comment.
While the CLVs (or BLVs) may be quite inaccurate at a given point in
time, the average dimension can give an idea of variance in the unobserved
subsystems. In cases where an unobserved subsystem is unconstrained, it
is common to observe variance collapse in the ensemble mean of that sub-
system and we subsequently record a lower average local dimension. We
therefore explore methods to maintain the variance in the unobserved sub-
systems (i.e. increase the average local dimension), with the caveat that
the instantaneous dimension will not necessarily be reflective of the true
dynamics of the system. We have provided additional clarification in the
manuscript about the calculation of the dynamical properties within the
DA experiments.



Minor points:

1. Line 7, page 11. Please modify the notation on the brackets. It looks like
a vertical rectangle.

We have changed the text to read “...and the subscript *,n denotes
taking ...”.

2. Line 20, page 11. I suppose that X\ should be larger than 1.

We have added a condition to Equation 19 specifying A > 1.

3. Line 22, page 11. Please do not use the terminology “model error”. It is
confusing as model error is used when there is structural uncertainty in
the model.

We have removed the term “model” as we agree that the usage is con-
fusing in this instance.

Minor corrections to DA experiments

After submission we discovered a small error in the orthogonalisation step of
the CLV calculation within the DA experiments. In correcting we found that us-
ing the CLV without orthogonalisation to the backwards subspaces (Algorithm
2.1 in [1]) was more appropriate due to the lack of an accurate forward model
within the DA implementation. This has minor impact on the results of the
experiments, however we include the tables with the updated statistics below
which we will also update in the new manuscript.
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Method Observations (RMSE) (RMSE? (RMSE) | (RMSE) | (dimgy)
[error variance] || extratropical | tropica ocean full

CLVs -9 e, Yty Y 0.3142 0.1598 0.4948 0.4027 5.8928
(full rank) 1,1, 25

CLVs -5 e Yt, ¥ 0.3123 0.1843 0.5920 0.4550 5.8870
(unstable/neutral subspace + 1) 1,1,25]

CLVs - 6 e, Yty Y 0.3156 0.1674 0.5513 0.4310 5.8892
(global dimension) 1,1, 25]

CLVs - variable e Yt, ¥ 0.3215 0.1688 0.5346 0.4272 5.8863
(local dimension) 1,1,25]

BLVs - variable e, Yty Y 0.3149 0.1658 0.5122 0.4141 5.8895
(local dimension) 1,1, 25]

Table 2: Summary metrics of DA experiments using right-transform matrix
(ETKF) and benchmark observations (y., y¢,Y). The angle brackets (-) denote

average over analysis steps. Compare to results in [2].

window 0.08, inflation factor 1%, 10 ensemble members.

Parameters: analysis

Method Observations (RMSE) (RMSEf (RMSE) | (RMSE) | (dimgy)
[error variance] || extratropical | tropica ocean full
CLVs -9 yf, Ze, Yty 2t 0.1734 0.1332 0.5782 0.4515 5.8672
) ) ) 1
CLVs - 6 yr, Zes Yty 2t 0.1715 0.1386 0.5807 0.4524 5.8718
CLVs - variable yf, Ze, Yty 2t 0.1697 0.1383 0.5659 0.4433 5.8681
) Y ) 1

Table 3: Summary metrics of DA experiments using right-transform matrix
(ETKF) and atmosphere observations (ye, ze, Yt, 2¢). Parameters: analysis win-
dow 0.08, inflation factor 1%, 10 ensemble members.

Method Observations (RMSE) <RMSE? (RMSE) | (RMSE) | (dimgy)
[error variance] extratropical | tropica ocean full

CLVs-9 Yt, 2t, Y, 2 7.0467 0.1571 0.3675 4.7182 4.5449

[1,1,25,25]
CLVs-9 Y, 2, Y, 2 5.5203 0.0480 0.1764 3.6860 5.4052
[0.01,0.01, 25, 25]

CLVs-9 Yt, 2t, Y, 2 7.1308 0.1386 0.0873 4.7566 4.4959
[1,1,0.25,0.25]

CLVs -9 Y, 28, Y, L 5.1697 0.0431 0.0822 3.42478 5.4899

[0.01,0.01,0.25,0.25]

Table 4: Summary metrics of DA experiments using right-transform matrix
(ETKF) and ENSO observations (yi, 2¢, Y, Z). Parameters: analysis window
0.08, inflation factor 1%, 10 ensemble members.
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Method Observations (RNSE] T {RVISE) [ (RMSE] [ (RMSE) | {dinnscy)
[error variance] || extratropical | tropica ocean full
CLVs -9 Ue, Ut, Y 0.5200 0.1635 0.4255 0.4552 5.9576
3% inflation 1,1, 25]
CLVs - variable Ue, Ut, Y 0.4848 0.1568 0.4095 0.4263 5.9371
3% inflation ? , 1,25
CLVs -9 Yes Zes Uty 2t 0.4258 0.1342 0.4300 0.4687 5.9237
3% inflation f ,1,1,1]
CLVs - variable Yes Zes Uty 2t 0.4337 0.1373 0.4027 0.4649 5.9191
3% inflation f ,1,1,1]
CLVs -9 Ut, 2t, Y , 2 6.8613 0.1431 0.3025 4.5961 4.5309
4% inflation 1,1,25,25]
CIVs - variable | 4.2,V .2 6.8722 0.1463 | 0.3370 | 4.6054 | 4.5541
4% inflation 1,1,25,25]

Table 5: Summary metrics of DA experiments using right-transform matrix
(ETKF) and shadowed trajectory as observations. We set the observation error
covariances to the standard values as in [2]. Parameters: analysis window 0.08,

11 ensemble members, inflation as noted in table.

Method Observations (RMSE) <RMSE% (RMSE) | (RMSE) | (dimgy)
[error variance] || extratropical | tropica ocean full
CLVs -9 x[el, yle,lz]'e 0.0640 8.4752 | 36.3662 | 21.7108 | 4.1332
CLVs -9 Te, Ye, Ze 0.0032 0.7241 3.5757 2.1504 5.9991
adaptive gain 1,

Table 6: Summary metrics of DA experiments using left-transform matrix
(ESRF) and the full extratropical subsystem as observations (Ze,ye, z.). We
use perfect observations (no random error added to the control run) with the
observation error covariances set to the standard values as in [2]. Parameters:
analysis window 0.02, inflation factor 1%, 10 ensemble members.
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