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Abstract. Dynamical models of various centres have shown in recent years seasonal prediction skill of the North Atlantic

Oscillation (NAO). By filtering the ensemble members on the basis of statistical predictors, known as subsampling, it is possible

to achieve even higher prediction skill. In this study the aim is to design a generalisation of the subsampling approach and

establish it as a post-processing procedure.

Instead of selecting discrete ensemble members for each year, as the subsampling approach does, the distributions of ensem-5

bles and statistical predictors are combined to create a probabilistic prediction of the winter NAO. By comparing the combined

statistical-dynamical prediction with the predictions of its single components, it can be shown that it achieves similar results

to the statistical prediction. At the same time it can be shown, that unlike the statistical prediction the combined prediction has

less years where it performs worse than the dynamical prediction.

By applying the gained distributions to other meteorological variables, like geopotential height, precipitation and surface10

temperature it can be shown that evaluating prediction skill depends highly on the chosen metric. Besides the common anomaly

correlation (ACC) this study also presents scores basing on the Earth Mover’s Distance (EMD) and the Integrated Quadratic

Distance (IQD), which are designed to evaluate skill of probabilistic predictions. It shows that by evaluating the predictions

for each year separately compared to applying a metric on all years at the same time, like correlation based metrics, leads to

different interpretations of the analysis.15

Copyright statement. TEXT

1 Introduction

Seasonal prediction of the North Atlantic Oscillation (NAO) is a challenge. During the year the NAO describes a high portion

of the explained variability of the pressure field over the North Atlantic region and with it has a high influence on European

weather. While the Winter-NAO (WNAO) is a dominant factor for changes in the storm tracks over the North Atlantic (Hurrell,20

1995), the Summer-NAO (SNAO) is associated with precipitation and temperature differences between Scandinavia and the

Mediterranean (Folland et al., 2009).
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Predicting the WNAO on the seasonal scale is a longstanding aim of the community (Doblas-Reyes et al., 2003; Müller et al.,

2005; Scaife et al., 2014) and various current seasonal prediction systems have demonstrated limited significant correlation skill

for the WNAO (Butler et al., 2016). Dobrynin et al. (2018) has shown that by combining statistical with dynamical prediction,25

a much higher significant corellation skill is achievable. This paper applies an ensemble subsampling algorithm, which bases

selection of ensemble members on their closeness to statistical predictors. The selected ensembles are then used to create a new

sub-selected ensemble mean, which has for the NAO index, but also for many other variables and regions, a better prediction

skill than the ensemble mean of all ensemble members.

Statistical-dynamical predictions basing on different strategies are common in many fields in geoscience. Gleeson (1970)30

developed a framework for the dynamical evolution of statistical distributions in phase space with applications to meteorolog-

ical fields. Vecchi et al. (2011) apply a combined statistical-dynamical approach by using an emulator basing on dynamical

forecasts to create seasonal hurricane prediction. Roulston and Smith (2003) developed a "best member" concept, which use

verification statistics to dress a dynamical ensemble prediction. Statistical post-processing procedures to enhance forecast skill

by dynamical models are applied in various ways in atmospheric science (Williams et al., 2014). Especially Bayesian Model35

Averaging (Raftery et al., 2005), which creates weights for ensemble members basing on their performance in a training period

has been well established.

The focus of this paper is to implement the subsampling algorithm as a probabilistic post-processing procedure, demon-

strated for the seasonal prediction of the WNAO. In contrast to Dobrynin et al. (2018), which worked with deterministic

ensemble members, it interprets ensemble members and the statistical predictors as values with uncertainties. The combination40

of statistical and dynamical model does not happen by selecting the ensemble members directly, but by combinations of prob-

ability density functions to create a new probabilistic forecast. This approach allows us to evaluate a prediction skill not only

for a long time series, but for each individual year. We use for this two newly developed skill scores, the 1D-continuous-EMD

and the 1D-continuous-IQD score, basing on the Earth Mover’s Distance (EMD) and the Integrated Quadratic Distance (IQD).

The WNAO has a severe influence on various meteorological fields over the European continent. Therefore, we also use the45

probabilistic information of the prediction to create a weighted mean of the ensemble members, which creates a better hindcast

skill for important meteorological variables like surface temperature and precipitation.

2 Data and Model

To demonstrate the procedure we use the seasonal prediction system based on the MPI-ESM (Dobrynin et al., 2018) with a

model resolution of T63/L95 (200 km / 1.875◦, 95 vertical layers) in the atmosphere and T0.4/L40 (40 km / 0.4◦, 40 vertical50

layers) in the ocean (also known as mixed resolution, MR). As described by Baehr et al. (2015), we initialise in each November

between 1982 and 2017 a 30 ensemble member hindcast from an assimilation run based on assimilated reanalysis/observations

in the atmospheric, oceanic and sea-ice component. As observational reference we use the ERA interim reanalysis (Dee et al.,

2011).
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For the observations and the hindcasts the NAO is calculated by an EOF analysis (Glowienka-Hense, 1990). For the WNAO55

we calculate the mean sea level pressure field for December, January and February and calculate the EOF of the North Atlantic

sector limited by 20◦−80◦N and 70◦W−40◦E.

3 Methodology

3.1 Seasonal prediction of the WNAO

The seasonal prediction of the WNAO for the period of 1982 to 2017 is shown in Figure 1. Every dot represents one WNAO60

value of one ensemble member, which has also available the full meteorological and oceanographical fields during the asso-

ciated winter period. These hindcast predictions for the WNAO have a large spread, covering the range of the observations

given by the reanalysis, but do not give indication for a specific NAO value 2 to 4 month ahead. As a general skill measure

the community applies correlation skills. Those measures have indicated in recent years significant hindcast skill for several

different prediction systems (Butler et al., 2016).65

3.2 Statistical-dynamical prediction

Our approach will be applied to every single year independently. As an example we choose the year 2010, which shows an

extreme negative WNAO value. The first step is to generate one probability density function (pdf) for each ensemble member

prediction (ei) of the WNAO value, which is generated by a 2000 member bootstrap of the EOF fields (Wang et al., 2014). In

the bootstrap the first EOF field is recalculated by resampling the mean sea level pressure fields from each year. To create from70

these predictions a pdf for all ensemble members (E), mixture modelling (Schölzel and Hense, 2011) at discrete NAO index

values is applied:

E(v) =
∑
i∈I

ei(v) (1)

Here, v corresponds to each value of the discretised NAO values, and I to the indices of the ensemble members. The chosen

resolution for the discretised NAO values is 0.01 and after creating the sum of all single member pdfs, the overall pdf E is75

normalised. For 2010 the results are shown in Figure 2. As expected from Figure 1, the dynamical model prediction has a very

broad pdf equating to a low signal.

To sharpen the prediction we introduce literature backed physical statistical predictors. As predictors (pi) we use those

defined by Dobrynin et al. (2018): sea-surface temperature in the northern hemisphere, Arctic sea-ice volume, Siberian snow

cover and stratospheric temperature in 100 hPa. All predictors and their influence on the WNAO have been discussed in the80

paper. For the physical validity of a prediction the selection of the correct predictors is essential and have to be adapted to any

newly analysed phenomena individually. Each predictor makes a prediction from the climatic state taken from the ERA interim

reanalysis (Dee et al., 2011) before the initialisation of the dynamical model for a WNAO value in the following winter. For

the predictors a normalised index over the hindcast period is calculated by forming the mean over the significantly correlated
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areas between the physical field and the WNAO index. It has been shown by a real forecast test in Dobrynin et al. (2018) that85

this approach is usable also in cases where the predictor is only formed with past information instead of the whole hindcast

period.

We treat the predictors pi like the ensemble members before and apply an empirical mixture modelling. For the year 2010

the results are shown in Figure 3. Due to the limited number of predictors compared to the ensemble members, and in the

shown case also due to their alignment, the resulting statistical prediction pdf (P) is much sharper than the dynamical model90

prediction.

To create a combined prediction the two pdfs (E and P) are after normalisation multiplied at each of the discretised NAO

values:

M(v) = E(v) · P(v). (2)

After another normalisation the final combined predictionM creates the statistical-dynamical prediction for the seasonal NAO95

prediction in the specific year. The pdf of the observations (O) are determined by the same bootstrapping mechanism as the

one applied for the hindcasts. The result for the year 2010 is shown in Figure 4. The pdf of the combined prediction is close

to the one of the statistical predictions, but shows differences where there is additional information from the dynamical model

prediction. Therefore, the combined prediction shows a clearer signal than the dynamical model prediction, which does not

give any indication of a specific NAO value at all.100

3.3 NAO evaluation

To evaluate the performance of the three different predictions (E , P andM) and compare the predictions with the observation,

we use two different scores, basing on the same formulation. The first bases on the Earth Mover’s Distance (Rubner et al.,

2001). The one-dimensional EMD (Düsterhus and Hense, 2012) can be derived by

DEMD(f,g) =
1

nb

nb∑
i=1

|F (vi)−G(vi)| , (3)105

where f and g are two pdfs and F and G the associated cdfs. nb describe in this case the number of discretised values vi of the

CDFs.

The second is the Integrated Quadratic Distance (IQD), which is defined in its discrete formulation as (Thorarinsdottir et al.,

2013)

DIQD(f,g) =
1

nb

nb∑
i=1

(F (vi)−G(vi))
2. (4)110

It is to mention that IQD is similar to the Continuous Ranked Probability Score (CRPS), but defined for non-deterministic ob-

servations. As a consequence, while CRPS needs to have a point observation, the IQD can take into account the full uncertainty

distribution of an observation.

We define the scores for both metrics by comparing the pdfs of the model prediction (M), the observations (O) and the
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climatology (C). It is calculated for any prediction A by:115

q(A,O) = 1− D(A,O)
D(C,O)

. (5)

When D is DEMD we call the score 1D-continuous-EMD-score, when we apply DIQD it is the 1D-continuous-IQD-score.

In case of a perfect prediction the score becomes 1, a model prediction equal to a climatology 0 and negative for a worse

prediction than the climatology. Since the NAO index is normalised for mean and standard deviation, we use as climatology

a standard normal distribution N (0,1). Important to note here is that Thorarinsdottir et al. (2013) compared the two metrics120

(EMD as area validation metric). While EMD is a metric measuring the distance between the pdfs it is in contrast to IQD not

a proper divergence measure. As a consequence, the EMD prefers, unlike the IQD, underdispersed model simulations. In the

following we will demonstrate the effect that the choice of the two different metrics have on the evaluation.

To estimate uncertainties, we use 500 randomly selected uniformly distributed weightings of the ensemble members between

1 and 0 and create with those a pdf for the scores.125

3.4 Variable field evaluation

To estimate the post-processed variable field, we calculate a weighted mean of the meteorological variable fields, where the

field of each individual member is weighted by a coefficient ci. The weighting coefficients ci are estimated by weighting the

predictions A (each of E ,M and P) with each of the pdfs of the ensemble members (ei):

cA,i =
∑
v

ei(v) · A(v) (6)130

By weighting each ensemble member with its associated coefficient cA,i and calculating the weighted mean of the atmospheric

fields of the individual ensembles then generates the model prediction for the specified field and prediction.

For evaluating the meteorological variable fields we apply three different strategies. The first is the Anomaly Correlation

Coefficient (ACC), a common measure of skill in seasonal predictions. The second and third approach are using the 1D-

continuous-EMD and 1D-continuous-IQD score at every grid point. As a climatology all observational values for the investi-135

gated time frame are chosen. The observation in each year is a single value with 100% as a weight. In case of the weights for

the ensemble member, each value of the variable at the grid point gets weighted with the relative weight cA,i given by the three

different prediction. With this approach it is possible to calculate the 1D-continuous-EMD and 1D-continuous-IQD scores for

each of the three different predictions. In section 4.2.2 the relative positioning between two predictions is shown. Significances

are here determined by DelSole and Tippett (2016), which determines the skill significances by comparisons to random walks.140

4 Results

4.1 Evaluating the seasonal NAO prediction

In a next step we evaluate the yearly performance of the WNAO prediction of the three different predictions (E , P andM)

with the 1D-continuous-EMD and 1D-continuous-IQD score. Figure 5 shows that the results of the combined (M) and the
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Table 1. Count of years of relative positioning of the three different predictions using the median of the 1D-continuous-EMD score.

rank EMD IQD

dynamical statistical combination dynamical statistical combination

1 5 17 14 13 16 7

2 5 10 21 7 12 17

3 26 9 1 16 8 12

statistical (P) prediction are clearly better performing than the the dynamical model results (E). In most years, the combined145

and the statistical prediction demonstrates skill for the 1D-continuous-EMD score compared to a climatological prediction

over the whole uncertainty range. The dynamical model prediction has less variability over the years in skill than the other two

predictions and only in a few years is able to reach the average skill of the combined prediction. The median and interquartile

range of the summed up prediction skill for all evaluated years for the combined prediction (0.39 [0.21;0.60]), is higher

compared to the dynamical (0.12 [0.01;0.22]) and statistical (0.37 [0.17;0.56]) prediction. There is only one year (2003), with150

a strong discrepancy of the combined and statistical prediction and a clearly negative score. For the 1D-continuous-IQD the

results are less clear. In this case the the median of the combined prediction is much closer to the dynamical prediction than the

statistical prediction. Also the uncertainty range for the combined and statistical prediction increases relative to the dynamical

prediction, which can be explained by their sharpness. To better evaluate the performance of each prediction with respect to

the other predictions, we determine the relative ranking of the median of each prediction in each year for both scores. The155

rankings are counted for the whole hindcast period and the results displayed in Table 1. For the 1D-continuous-EMD score

the dynamical prediction has only in a few years a better prediction skill than the other two predictions. In the majority of the

years its prediction skill is lower than both other predictions. Looking at the best prediction for each year, the statistical and

combined prediction is on equal terms. Nevertheless, the combined prediction is much more unlikely to be the worst of the

three predictions in a year, while the statistical prediction takes much more often the third rank. These results show that the160

combined prediction is closer to the statistical rather than the dynamical prediction. In case the combined prediction is not the

best one, it is in almost all cases better as one of the two. As such it offers a smoothing of the prediction skill, preventing many

worse predictions. In case of the 1D-continuous-IQD score the result differs clearly. Here the dynamical prediction is much

more competitive. It shares almost equally with the statistical prediction the first place, while the statistical prediction hardly

changes its statistics of positions. As a consequence the combined prediction is much more often on the last place. Still, it is165

the prediction with the most middle places of the three predictions, stressing the argument that the combined prediction is a

mixture of the two other.
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4.2 Analysis of atmospheric variable fields

4.2.1 Climatological analysis170

In the following we investigate three different atmospheric variable fields: surface temperature, total precipitation and 500 hPa

geopotential height. In figure 6 the results are shown for the winter (DJF) season with the Anomaly Correlation Coefficient

(ACC).

For the winter surface temperature, the main areas of significant hindcast skill of the combined prediction can be found over

large parts of the North Atlantic and in a band reaching from Northern France to Eastern Europe, sparing North Scandinavia175

and the Mediterranean. These results are comparable to those shown by Dobrynin et al. (2018). Comparing it to the dynamical

prediction shows that the main significant increase in skill can be found over Western Europe with a general non-significant

increase over the whole continent. Also some significant increase of prediction skill can be found in the Labrador Sea, while a

significant decrease is located over Greenland. The comparison to the statistical prediction shows only small differences. The

areas shown as significant have to be assumed as random and an artefact of the bootstrapping approach.180

The total precipitation has significant positive hindcast skill North of the British Isles, east of the Baltic Sea, in the Mediter-

ranean and between the Canaries and the Azores. Compared to the dynamical prediction the area east of the Baltic sea and

the Mediterranean has significantly increased skill, while again compared to the statistical prediction not much change is

detectable. Finally for the geopotential height, the hindcast skill for the combined prediction is found in areas over Iberian

peninsula, between the Canaries and the Azores and between the British Islands and Greenland. Compared to the dynamical185

prediction, some increase of hindcast skill can be found over southern Scandinavia and east of Greenland. In the comparison

to the statistical prediction the combined prediction shows significantly lower hindcast skill at areas over Greenland and the

British Isles. This can be explained by the conditioning of the statistical on the NAO directly, while the dynamic component of

the statistical dynamical prediction decreases the skill in the main influence areas of the NAO.

The analysis shows that there exist changes between the dynamical and the combined prediction. Generally, the hindcast190

skill of the combined prediction is very close to the one of the statistical prediction.

4.2.2 Analysing single years

In a next step, the same atmospheric fields are compared with the 1D-continuous-EMD score (Fig. 7). To prevent influences

of biases and trends, the data is gridpoint-wise normalised and de-trended. Again the analysis shows the relative positioning

of two predictions. For the surface temperature in Winter the difference between the dynamical and combined prediction is195

only significant in small patches distributed over the North Atlantic. Generally, no clear patterns can be identified. Especially

the large significant areas determined by the ACC before do not show any significance with this score. The significant area

in the ACC over western Europe has some increased values in favour of the combined predictions, but is not significant. In

the comparison between the statistical and the dynamical prediction the increases and decreases are consistent with what has

been seen for the dynamical compared to the combined prediction. This consistency shows that the statistical model plays a200
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dominating role in the combination. Better hindcast skill for the combined prediction compared to the statistical prediction can

be identified in the west of the Mediterranean.

For the total precipitation the only significant change is a stretch north of Scandinavia. Also for the other comparisons for this

variable the changes are small and do not show a consistent pattern. This is different for the geopotential height, where large

areas in the North-East Atlantic and north of Scandinavia are significantly better represented in the combined prediction rather205

than the dynamical prediction. Both areas are not identified in the equivalent comparison with the anomaly correlation. The

comparison of the statistical prediction compared to the dynamical prediction shows very similar patterns. The last comparison

shows that the combination has areas between the Canaries and the Azores where it is significantly higher, while in large areas

of Western Europe it has consistently better skill, but does not show significantly better skill.

This analysis shows that the three predictions do not have in all cases a clear relative ranking towards each other. Generally210

the results are very patchy and apart from north of Scandinavia no consistency can be seen.

In case of the analysis of the 1D-continuous-IQD score (Fig. 8) the comparison between the statistical and the combined

model shows, in terms of significant areas, comparable results to the one seen in Fig. 7. When the two predictions are compared

to the dynamic prediction the latter performs much better with this score than with the 1D-continuous-EMD score. While the

general pattern of the areas stays the same, the dynamic prediction is in most areas the best prediction. Comparing the combined215

and the statistical model shows remarkably similar results as the 1D-continuous-EMD score. All these results are consistent

with the results we have seen in section 4.1 for the single time series.

5 Discussion and Conclusion

This paper shows a post-processing procedure, generalising the newly established subsampling procedure by Dobrynin et al.

(2018). By selecting not only single ensemble members, but utilising their uncertainty ranges, a much better understanding on220

the reason for its success is possible. As seen in section 3.2 the better prediction skill for the NAO by the combination of the

statistical and dynamical model compared to the unprocessed dynamical prediction results from the sharper prediction of the

statistical prediction. As by construction the different statistical predictions are highly connected towards the target value, in

this case NAO, the predictor driven predictions result in higher skill. Furthermore, advantages of using this post-processing

approach compared to the pure subsampling is the availability of non-parametric uncertainties for the predictions and the225

possibility of weighting the different ensemble members for the analysis of variable fields with unequal weights. As such

especially outliers can therefore be much better handled, without giving them too high of a weight within the analysis.

Compared to the statistical prediction, the combined prediction achieves similar results for the NAO prediction. In a three-

way comparison together with the dynamical prediction we have shown that it is not generally showing more skill than the

statistical prediction, but it observes less negative outliers in skill. Nevertheless, in case of the atmospheric variable predictions,230

the prediction basing on predictors is not entirely a statistical prediction. The construction of weighting the ensemble members,

leads to a statistical-dynamical prediction as well, where the weight of the dynamical model is less pronounced. As such, the

skill between the two dynamical-statistical predictions is more similar in this case than the NAO prediction itself. We have
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seen that the two categories of scores show the hindcast skill of the different forecasts from a different perspective. The

1D-continuous-EMD and 1D-continuous-IQD score allow to effectively evaluate the skill of two probabilistic results, like235

observations and predictions. The scores have similar characteristics like the RMSE in cases of undetected trends, different

variability of different forecasts or a bias. In case of this study it is noted that the combined prediction is sharper than the

dyanamical prediction for each years prediction, but also varies more from year to year. Also compared to the correlation, the

two presented scores can decompose the skill in a consistent way for every single year.

As each year is compared to the climatology, a value close to the climatology can have a huge influence by creating substan-240

tive negative scores. To prevent this, the application of other references, like uniform distributions over the whole measurement

range, can be an appropriate alternative. Comparing the results of the 1D-continuous-EMD and 1D-continuous-IQD scores

shows that the latter infers a much harder penalty for miss-predictions. While the EMD metric uses a linear distance measure,

the IQD divergence increases the distance by the square in equation 4. A discussion and comparison of the properties of two

measures have been done by Thorarinsdottir et al. (2013). In the practical implementation done in this paper we have seen that245

the IQD tends to prefer a non-informative prediction over a wrong sharp prediction, while the EMD is more tolerant to wrong

prediction in order to achieve a better score.

By evaluating the skill on a yearly basis and taking a look at the relative positioning the approach allows for a paradigm

change as also described by DelSole and Tippett (2016). By counting the years in which one prediction is better than another, a

single outlier cannot drive the whole verification result as it can do for correlations or RMSE. It also answers a typical question250

in forecast verification in a much more appropriate way: How sure can we be that a single prediction is better than another?

The evaluation procedure presented here is able to quantify this answer for non-parametric predictions.

The anomaly correlation (ACC) is well used in literature and its main disadvantage are parametric assumptions in the

interpretation of its results. We have seen that there are considerable differences when all years are evaluated at the same time,

like it is done in a correlation based score, or the evaluation bases on evaluating single years. Correlations can be misleading255

and show skill where there is not necessary a good argument for it as it is prone to outliers. These discussions are well known

when correlation-like measures are compared with distance-like measures, like the RMSE. Further progress in the creation of

appropriate skill evaluation is therefore necessary. It is noted, that while we show in this analysis only the results for the winter

season, the results for the summer season are comparable.

The methodology and verification techniques shown in this analysis are widely applicable within predictions of many dif-260

ferent phenomena. This is especially valid in case of non-parametric datasets like in the analysis of extremes. The statistical-

dynamical approach as illustrated here delivers consistent improved results compared to one of its components. Seen as a

post-processing step, it forms a useful step to condition predictions on a physical basis in order to reduce noise and intensify

the signal. Using non-parametric approaches in the analysis offers a more appropriate path to verify predictions in general.

Data availability. All data are stored at the DKRZ in archive and can be made accessible upon request (https://www.dkrz.de/up).265
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Figure 1. Seasonal prediction of the WNAO. Single dynamical models (black) initialised in November predicting the DJF-NAO (red).
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Figure 2. Dynamical prediction of the WNAO for 2010. Single models (grey) as pdf of their bootstrapped uncertainties. From this the overall

model prediction (black) is created by empirical mixture modelling.
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Figure 3. Statistical prediction of the WNAO for 2010. Single predictors (light blue) as pdf of their bootstrapped uncertainties. From this the

statistical prediction (pink) is created by empirical mixture modelling.
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Figure 4. Sequence of post-processing procedure for the WNAO in 2010. Combining dynamical (black) and statistical (pink) to a combined

prediction (blue) and comparing it to the observations (red).
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Figure 5. Yearly comparison of the WNAO scores for dynamical (black), statistical (pink) and combined prediction (blue). Each vertical bar

represents the 5% to 95% bootstrapped 1D-continuous-EMD score (above) and 1D-continuous-IQD score (below). The filled part of these

bars are the 25th to 75th quartiles and the small vertical lines the associated median. The long vertical lines are the averaged yearly scores

for the different predictions.
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Figure 6. ACC results for the WNAO for three different atmospheric variables: surface temperature (first row), total precipitation (second

row) and geopotential height (third row). Shown are the combined prediction (first column), the difference between the combined and the

dynamical prediction (second column) and the difference between the combined and the statistical prediction (third column). Black dots

indicate significances estimated by a 500 sample-bootstrap.
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Figure 7. Relative positioning of the predictions of the variable fields on the basis of the 1D-continuous-EMD score. Shown is the number

of years in which the first named prediction has a better score than the second named. Compared are the combined with the model predic-

tion (first column), statistical with the dynamical prediction (second column) and combined with the statistical prediction (third column).

Significances are determined by a comparison towards a random walk at a confidence level of 0.05. Variables are positioned as in figure 6.
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Figure 8. Relative positioning of the predictions of the variable fields on the basis of the 1D-continuous-IQD score. As 7 but calculated with

the 1D-continuous-IQD.
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