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Abstract. Recently, various models have been developed, including the fractional Brownian motion (fBm), to analyse the

stochastic properties of geodetic time series, together with the extraction of geophysical signals. The noise spectrum of these

time series is generally modelled as a mixed spectrum, with a sum of white and coloured noise. Here, we are interested in

modelling the residual time series, after deterministically subtracting geophysical signals from the observations. This residual

time series is then assumed to be a sum of three random variables (r.v.), with the last r.v. belonging to the family of Levy5

processes. This stochastic term models the remaining residual signals and other correlated processes. Via simulations and

real time series, we identify three classes of Levy processes: Gaussian, fractional and stable. In the first case, residuals are

predominantly constituted of short-memory processes. Fractional Levy process can be an alternative model to the fBm in the

presence of long-term correlations and self-similarity property. Stable process is characterized by a large variance, which can

be satisfied in the case of heavy-tailed distributions. The application to geodetic time series implies potential anxiety in the10

functional model selection where missing geophysical information can generate such residual time series.

1 Introduction

Among the geodetic data, time series of daily position of Global Navigation Satellite System (GNSS) receiver have been of

particular interest for the study of geophysical phenomenon at regional and global scales (e.g., study of the crustal deformation

due to large Earthquakes, sea-level rise -(Bock and Melgare , 2016; Herring et al. , 2016; He et al. , 2017). However, these15

time series contain white noise and long-memory processes (i.e. coloured noise). The scientific community agrees with the

existence of a trade-off in estimating both the stochastic and functional models (He et al. , 2017). More precisely, the choice

of the stochastic model directly influences the estimation of the geophysical signals included in the functional model (i.e.,

tectonic rate, seasonal variations, slow-slip events - (Bock and Melgare , 2016; He et al. , 2017)). To name a few, it includes the

First Order Gauss-Markov (FOGM) model, the white noise with power-law noise (Williams , 2003; Williams et al. , 2004), the20

Generalized Gauss Markov noise model (GGM), or the Band-pass noise (Langbein , 2008; Langbein and Svarc , 2019). The

optimal selection of the stochastic model in GNSS time series analysis remains a hot topic in the scientific community (Bock

and Melgare , 2016; Herring et al. , 2016; He et al. , 2017, 2019).
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It is widely accepted in the geodesy community (Montillet and Bos , 2019) that most GNSS time series contain flicker

noise which is non-stationary. In addition, recent studies (Langbein and Svarc , 2019; He et al. , 2019) have also advocated the25

introduction of a random-walk to model small jumps and residual transient signals which is also a non-stationary stochastic

processes. Thus, several studies, e.g., Montillet and Yu (2015), proposed the use of the fBm, first developed by Mandelbrodt et

al. (1968), in order to model long-memory processes. Botai et al. (2011) and Montillet and Yu (2015) focused on modelling

(residual) geodetic time series using the family of Levy α-stable distributions (Nolan , 2009). The application of this family of

distribution was supported by the ability to model long-memory processes and the existence of impulsive signals/noise bursts30

in the data sets suggesting deviations from Gaussian distribution (Botai et al. , 2011).

This work discusses several statistical assumptions (i.e. stationary properties, presence of long-term correlations, Gaussian-

ity of the increments) on the underlying processes in the GNSS time series, justifying the application of the fractional Brownian

motion (fBm) and the family of Levy α-stable distributions introduced in Montillet and Yu (2015). A significant difference

between Gaussian and Levy stable distributions is that the latter have heavy tails and their variance is infinite. This means that35

much larger jumps or flights are possible for Levy stable distributions, which causes their variance to diverge. Many natural

processes follow Levy stable distributions. Therefore this work aims at understanding when the Levy processes can be applied

to model geodetic time series.

The next section starts with the definition of the residual geodetic time series, the fBm and the relationship with the Frac-

tional Autoregressive Integrated Moving Average (FARIMA) model. From financial analysis, we introduce the family of Levy40

processes (Panas , 2001) and the assumptions in order to relate to other models (i.e. FARIMA, fBm). Section 3 presents the

assumptions on the use of the Levy processes in the model of the residual time series. To do so, we model the residual geodetic

time series as a sum of three random variables (r.v.), with the hypothesis that the third one is a Levy process. It involves some

justifications compared with established models in the scientific community developed in Section 3.1. In Section 3.2, we de-

velop a N steps method based on the variations of the stochastic and functional models when varying the time series’ length.45

Section 3.3 is an application to simulated and real time series. Finally, Section 3.4 discusses the limits of modelling geodetic

time series with Levy processes.

2 The Stochastic Properties of the Residual Time Series and the Definition of Levy Processes

2.1 Model of Residual GNSS Time Series

GNSS time series are generally regarded as a sum of geophysical signals (i.e. seasonal signal, tectonic rate) and stochastic50

processes (e.g., white noise, coloured noise) (Williams et al. , 2004; Davis et al. , 2012). Modelling the stochastic processes

within the geodetic time series is crucial in order to estimate the geophysical signal parameters with reliable uncertainties

((Montillet and Bos , 2019) Chapter 1 and 2, (He et al. , 2017)).

Here, the residual time series are defined as the remaining time series after subtracting deterministically modelled tectonic

rate and seasonal components (i.e. the functional model), from the GNSS observations. The functional model of those signals55
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is based on the polynomial trigonometric method (Li et al. , 2000; Williams , 2003; Tregoning and Watson , 2009)

s0(t) = at+ b+
N∑

j=1

(cj cos(djt) + ej sin(djt)) (1)

with s0(t) the sum of the tectonic rate (with coefficient a and b in Eq. (1)) and the seasonal signal (sum of cos and sin functions

in Eq. (1)) at the epoch t. Note that dj is equal to 2πj/N , and N can be equal up to 7 (He et al. , 2017). If x(t) is the residual

time series after subtracting the GNSS time series (s(t)) with the functional model (s0(t)) of the geophysical processes (e.g.,60

seasonal signal, tectonic rate), it is generally formulated the hypothesis that the residual time series is a sum of a residual signal

and a noise. Following (Williams , 2003; He et al. , 2017; Montillet and Bos , 2019), the stochastic noise model is described

with the variance:

E{n†n}= σ2
n0I +σ2

n1J (2)

where the vector n = [n(t1),n(t2), ...,n(tL)] is a multivariate noise with ti the time at the i-th epoch. Note that n(ti) =65

n0(ti) +n1(ti), with n0(ti) and n1(ti) the white noise and the coloured noise sample respectively at the i-th epoch. † is the

transpose operator, I the identity matrix, J is the variance-covariance matrix of the coloured noise. Finally, σ2
n0

and σ2
n1

are the

variance of the white noise and coloured noise respectively. Therefore, this type of time series belongs to the family of mixed

spectra, where the mixed spectrum results from the sum of the spectra corresponding to the two kinds of noise (Li , 2013).

Note that the length of the time series L is much larger than the number of frequencies N defining s0(t).70

In the modelling of GNSS time series, a strong assumption is the so-called Gauss-Markov hypothesis ((Montillet and Bos ,

2019) Chapter 2) which states that the noise is Gaussian distributed and wide sense stationary (WSS). Therefore, we assume

the white noise to be zero-mean and Gaussian, whereas the coloured noise with a mean equal to µC(t), slowly varying with

time and satisfying the WSS hypothesis (Kasdin , 1995; Haykin , 2002). The distribution of the coloured noise is one of the

key objective of this study, making various assumptions on the type of processes generating this noise.75

Finally, the residual signal is considered to be the remaining geophysical signals (i.e. seasonal component and tectonic rate)

not completely estimated due to the mismodelling of the stochastic properties of the time series and other small amplitude (i.e.

sub millimeter) short time duration transient signals (i.e. local signals, subsidence, ... ) (Bos et al. , 2013; Montillet et al. , 2015;

Herring et al. , 2016; He et al. , 2017).

2.2 Relationship between the Power-law Noise, fBm and FARIMA80

The error spectrum of the GNSS time series is best characterised by a stochastic process following a power-law with index

β. A power-law noise model means that the frequency spectrum is not flat but is governed by long-range dependencies. If the

probability density function of the noise is Gaussian or has a different density function with a finite value of variance, its fractal

properties can be described by the Hurst parameter (H). Montillet et al. (2013) has proposed to use the fractional Brownian

motion (fBm) model in order to model the statistical properties of the residual time series. The essential features of this process85

are its self-similar behaviour - meaning that magnified and rescaled versions of the process appear statistically identical to the
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original - together with its nonstationarity, implying a never-ending growth of variance with time (Mandelbrodt et al. , 1968).

It is worth mentioning that a damped version of the fBm exists and known as the Matérn process, defined having a sloped

spectrum that matches fBm at high frequencies and taking on a constant value in the vicinity of zero frequency (Lilly et al. ,

2017).90

Following the definition of the fBm from Mandelbrodt et al. (1968), if H < 0.5, the process behaves as a Gaussian variable

(anti-persistent); if H > 0.5 the process exhibits long-range dependence (persistent); while the case of H equal to 0.5 corre-

sponds to a pure Brownian motion (white noise). Previous studies (Mandelbrodt et al. , 1968; Montillet et al. , 2013) showed

that H is directly connected with β by the relation:

β = 2H − 1 (3)95

With this definition, flicker noise corresponds to β equal to 1 or H equal to 1, random walk to β equal to 2 or H equal to

1.5, and white noise to β equal to 0 (H equal to 0.5). Thus, the random walk and the flicker noise are classified as long-term

dependency phenomena (Montillet et al. , 2013). Based on the Hurst exponent, one can favour similar approaches as in financial

analysis to deal with modelling stochastic processes.

Long-memory processes are modelled with a specific class of ARIMA models called FARIMA by allowing for non-integer100

differentiating. A comprehensive literature on the application of FARIMA can be found in financial analysis (Granger and

Joyeux , 1980; Panas , 2001). This model can generate long-memory processes based on the value of the different values

of the fractional index d (Granger and Joyeux , 1980). When d equal to 0 it is an ARMA process exhibiting short memory;

when−0.5≤ d < 0 the FARIMA process is said to exhibit intermediate memory or anti-persistence. This is very similar to the

description of the Hurst parameter in the fBm. There is a relationship between d and H such as H = d+ 0.5, well-known in105

financial time series analysis in the presence of aggregation processes (Panas , 2001).

2.3 α Stable Random Variable and the Levy α-Stable Distributions

In financial analysis, several models are used, including the fBm and the fractional Levy distribution Panas (2001); Wooldridge

(2010). The fractional Levy distribution models the Levy processes and in particular the general family of α stable Levy

processes which can be self similar and stationary. Let us recall the definition of a stable random variable.110

Definition (Nolan , 2009), chap. 1, definition, 1.6 A random variableX is stable if and only ifX d= aZ+b, where 0< α≤ 2,

−1≤ k ≤ 1, a 6= 0, b ∈ R andZ is a random variable with characteristic function φ(u) = E{exp(iuZ)}=
∫∞
−∞ exp(iuz)F (z)

dz. F (z) is the distribution function of Z. E{.} is the expectation operator. The characteristic function is:

φ(u) =





exp(−|u|α[1− ik tan πα
2 (sign(u))]) if α 6= 1

exp(−|u|[1 + ik 2
π sign(u)]), ifα= 1

(4)

Where sign is the signum function, α is the characteristic exponent which measures the thickness of the tails of these distribu-115

tions (the smaller the values of α, the thicker the tails of distribution are), k ∈ [−1,1] is the symmetry parameter which set the

skewness of the distribution. In general, no closed-form expression exists for these distributions, except for the Gaussian (α
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equal to 2), Pearson (α equal to 0.5, k equal to−1) and Cauchy (α equal to 1, k equal to 0) distributions. Note that the distribu-

tion is called a symmetric α-stable if k = 0 (Nolan , 2009; Wang et al. , 2008; Montillet and Yu , 2015). Various methods exist

to estimate the parameters (Koutrouvelis , 1980; Nolan , 2009). In the remainder of this paper, we use the maximum-likelihood120

method of Nikias and Shao (1995).

Now, if a stochastic process is self-similar, then one can model it with the fBm (see (Cont and Tankov , 2004), Definition

7.1). Following (Weron et al. , 2005), the most commonly used extension of the fBm to the α-stable case is the fractional Levy

stable motion (fLsm). This process is defined by the integral representation (see appendices). The fLsm is H-self-similar and

has stationary increments, withH the Hurst parameter described before. Note that this definition of the Fractional Levy process125

is different from Benassi et al. (2004) which is not a self-similar process. In the remainder, we use the fLsm definition from

((Weron et al. , 2005), Eq. (6)- recall in the appendices).

Moreover, the relationship between the fLsm and the fBm is obtained from their definition when α= 2 (see appendices).

If H = 1/α, we obtain the Levy α-stable motion which is an extension of the Brownian motion to the α-stable case. The

Gaussian case (Brownian motion) is then obtained with α= 2 (see Weron et al. (2005) for a comprehensive definition of the130

fLsm). Further definitions such as the fractional stable noise can be established with the fLsm, but there are out of the scope of

this work.

Finally, the family of Levy α-stable distributions is of a particular interest in this work as the α index is equal to the inverse of

the Hurst parameter, therefore in the particular case of the fLsm. Panas (2001) stated that for 1/α <H , positive increments tend

to be followed by positive increments and long-range dependence (persistence); whereas for 0<H < 1/α positive increments135

tend to be followed by negative increments (anti-persistence). As a consequence, this family of distributions should be suited

when modelling the residual time series with a large amplitude coloured noise with long-memory processes. With the previous

definition of the FARIMA and the relationship toH , one can assume that the FARIMA model is then favoured over the ARMA

process in the case of large coloured noise within the time series. If the white noise is predominant (or H = 1/2), the time

series should be fitted with a Gaussian distribution following our assumptions in Section 2.1, and the ARMA model is favoured140

over the FARIMA.

3 Levy Processes Applied to Geodetic Time Series Analysis

This section models the residual GNSS time series as a sum of three r.v. together with the statistical assumptions. We then

develop a N -steps method to verify our assumptions on simulated and real time series.

3.1 Assumptions on the Residual Time Series and the Three Types of Levy Processes145

The residual time series is here modelled as a sum of three random variables (r.v.). Namely, it is the sum of a white noise,

a coloured noise and a third r.v. It is a similar approach used in previous works looking at the presence of a random-walk

component in the stochastic model(Langbein , 2008; Davis et al. , 2012; Langbein and Svarc , 2019; He et al. , 2019). The

stochastic properties of the third r.v. should tell us how well is the choice of our initial models (i.e. functional and stochastic).
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To recall the definition of the Levy processes in Section 2.3, we postulate that the third r.v. belongs to the Levy processes.150

We then list the type of Levy processes (Wooldridge , 2010; Cont and Tankov , 2004) depending on the assumptions on the

underlying stochastic process:

1- (Levy Gaussian) The Levy process is a Gaussian Levy process if the r.v. follows the properties of a pure Brownian

motion also called a Wiener process (identity variance-covariance matrix, zero-mean, stationary process - (Haykin ,

2002; Wooldridge , 2010)). That is the special case of the fLsm and fBm with H = 1/2. The residual time series is155

assumed to contain mostly short-term correlations modelled with an ARMA process. The residual time series should be

modelled with a Gaussian distribution.

2- (Fractional Levy) The residual time series exhibits self-similarity with possibly long-term correlations. The Fractional

Levy process is described by the model of the fLsm for the specific case reduced to the fBm (see previous section). The

long-term correlation process is mostly due to the presence of coloured noise (He et al. , 2017). As explained in Montillet160

and Yu (2015), the ratio of the amplitude of the coloured over white noise determines which stochastic model of the

residual time series should be the most suitable between the FARIMA and ARMA processes. The residual time series

should be modelled with a Gaussian distribution following the Gauss-Markov assumption.

3- (Stable Levy) The Levy process is a Levy α-stable motion. That is to generalize important misfit between the selected

(stochastic and functional) model (s0(t)) and the observations. If small jumps (or Markov jumps), outliers or other165

unknown processes are presents, it results in a distribution of the residual time series potentially (severely) skewed, not

symmetric, with possibly heavy tails, hence modelling with a Levy α-stable distribution. With the relationship between

the Levy α-stable motion, the fBm and the FARIMA, we assume that the stochastic properties of the residual time series

should be described with the FARIMA, especially in the presence of high amplitude coloured noise.

The assumption of modelling jumps as Markov jumps in the residual GNSS time series may not be intuitive, because the general170

model is a Heaviside step function (Herring et al. , 2016; He et al. , 2017). Those jumps result from equipment changes (i.e.

antenna, radom) to the receiver, sudden events (bumps to the antenna), geophysical nature (co-seismic offsets) and variations in

the environment of the receiver occasioning multipath (e.g., growing trees, buildings) (Montillet and Bos , 2019). In financial

time series, the jumps are often resulting from the randomness of the stock prices and modelled as random-walk. In addition,

the presence of temporal aggregation processes can affect the persistence in the time series, and sometimes changing suddenly175

the mean depending on the amplitude of the processes (Working , 1960). That is why in order to assume a Levy α-stable

motion as the underlying stochastic model in geodetic time series, we restrict our assumption to small undetectable offsets,

modelling them potentially as random-walk. For a complete discussion about this topic, we invite readers to refer to Gazeaux

et al. (2013) and He et al. (2017).

3.2 The N Steps Process180

Let us describe the functional model and the stochastic noise model described in Equation (1) and (2) as a functional in-

terpretation called F(θ1) and G(θ2). The functional model described in Equation (1) is then equal in functional form as
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s0 = [s0(t1),s0(t2), ...,s0(tL)] = F(θ1), whereas the stochastic noise model described using the variance-covariance matrix

in Equation (2) is equal to G(θ2). We define θ1 = [a,b,(cj ,dj)j={1,N}] and θ2 = [awh, bcl,β], the vector parameters for the

functional and stochastic noise model respectively. For simplification, we have not included in the functional model the estima-185

tion of possible offsets in the time series (see Appendix B for the model). Also, awh and bcl are the amplitude of the white and

coloured noise respectively. The stochastic noise model is here based on the sum of a white and power-law noise (PL+WN ).

Here, our method is based on varying the length of the time series resulting in the variations of the stochastic and functional

models, which they allow classifying the type of Levy process. The variations of the length of the time series should take190

into account that the coloured noise is a non-stationary signal, and thus the properties (i.e. bcl, β) vary non-linearly. However,

varying the length of the time series over several years is not realistic taking into account that real time series can record

undetectable transient signals, undocumented offsets and other non-deterministic signals unlikely to be modelled precisely

(Montillet et al. , 2015). That is why we restrain the variations of the time series length to 1 year.

Let us call the geodetic time series s = [s(t1), ...,s(tL)] and s = [s(t1), ...,s(tL+N )] at the first and N -th variations respec-195

tively. The method can be described as:

ŝ = F(θ̂1) +G(θ̂2) (estimated model)

1ststep : s = [s(t1), ...,s(tL)]

∆1s = s− [F(θ̂1)]1 (residual T.S.− 1st step)

' [G( ˆθ2)]1 + res1200

N thstep : s = [s(t1), ...,s(tL+N )]

∆Ns = s− [F(θ̂1)]N (residual T.S.− Nth step)

' [G( ˆθ2)]N + resN (5)

where .̂ corresponds to the estimated vector or observations. [.]j means the j-th iteration of the estimated quantity. ∆1s and

∆Ns are the residual time series after the first and N -th variation of the length of the time series. res1 and resN are the205

unmodelled signals and stochastic processes after the first and N -th step respectively.

To recall the assumptions in Section 3.1, the residual time series ∆Ns is modelled as a sum of three r.v. corresponding to

the white noise, coloured noise and a Levy process. Using N iterations and the definition of the various Levy processes in the

previous section (i.e., Levy Gaussian, Fractional Levy and Stable Levy) in the previous section, we make several assumptions

on the estimated parameters and selected stochastic models in order to characterize this third r.v. Table 1 summarises the210

assumptions for these three cases. We use specific mathematical symbols to differentiate between them. , means the equality

in terms of distribution. ', ∼ and 6= are related to the variations of the estimated parameters of the stochastic model associated

with the first and the N -th iteration. This variation is calculated using the sum of the difference in absolute value between the

parameters between the first and the N -th iteration. Then, a percentage is deduced based on the initial value of the parameters

(at first iteration). Now specifically, the symbol ' means that there are little differences (less than 3%) between the estimated215
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parameters of the stochastic model associated with the first and the N -th iteration. The symbol ∼ means that we allow bigger

differences up to 20% . With much larger values, we use the symbol 6=.

Moreover, the estimation of the model parameters is carried out using the Hector software (Bos et al. , 2013). We have

restrained our processing to the stochastic model corresponding to the flicker noise (with white noise - FN+WN ) and power-

law (with white noise PL+WN ). The optimal choice of the stochastic model is a current research topic in GNSS time series220

analysis including recent studies such as He et al. (2017), He et al. (2019) and Montillet and Bos (2019). To simplify our

study, we have preliminarily applied the method based on the Akaike information criterion developed in He et al. (2019) on

the real time series to select the stochastic noise model. Therefore we have selected real time series with stochastic models

FN +WN and PL+WN . We are not going to develop further this selection process in this study, but readers can refer to

He et al. (2019).225

Furthermore, the fitting of the ARMA(p,q) and FARIMA(p,d,q) model to the residual time series is carried out by maximum

likelihood following Sowell (1991), varying the lags p and q within the interval [0,5]. Note that the fractional parameter d

is an output of the software Hector (Bos et al. , 2013) when fitting the stochastic model during the N iterations. Also, the

ARMA/FARIMA model which best fits the residual time series, is selected in order to minimize the Bayesian Information

Criterion (BIC) following Montillet and Yu (2015). Finally, one can wonder if the anxiety in the model selection (ARMA,230

FARIMA) in presence of heavy-tails can modify the performance of the BIC. This topic is currently debated in the statistical

community (see Panahi (2016)). Large tails should be detected in the fitting of the Levy α-stable distribution via the maximum-

likelihood method of Nikias and Shao (1995). Due to the direct relationship between the index α and H , we assume that the

FARIMA should be chosen defacto over the ARMA model.

Table 1. Assumptions on the functional model and the stochastic parameters estimated via N iterations (see,N -Step method) to characterize

the type of Levy processes within the geodetic time series. The symbols and notations are explained in Section 3.2

Type of Process Levy Gaussian Fractional Levy Stable Levy

Mathematical [G( ˆθ2)]1 ' [G( ˆθ2)]N [G( ˆθ2)]1 ∼ [G( ˆθ2)]N [G( ˆθ2)]1 6= [G( ˆθ2)]N

Assumptions [F(θ̂1)]1 ' [F(θ̂1)]N [F(θ̂1)]1 ∼ [F(θ̂1)]N [F(θ̂1)]1 6= [F(θ̂1)]N

(Distribution) ∆1s , Gaussian Gaussian Levy α-stable

Model To Characterize ARMA(p,q) ARMA(p,q) or FARIMA(p,d,q)

Processes FARIMA(p,d,q)

3.3 Application to Simulated and Real Time Series235

3.3.1 Simulated Time Series

The definition of the Levy processes together with the assumptions in Table 1 are applied to the residual of simulated geodetic

time series. The simulations of the geodetic time series follow Williams et al. (2004) and the routines associated with Hector

(Bos et al. , 2013). The estimations of the ARMA and FARIMA models follow Section 3.2.
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Figure 1. Percentage of variations of the estimated parameters included in the stochastic and functional models when varying the length of

the time series. (A), (B) and (C) refer to the various scenarios with different coloured noise amplitude.

We simulate 10 years long time series fixing awh to 1.6 mm, a varying between [1− 3] mm/yr, b equal 0, and (c1,d1)240

equal to (0.4,0.2) mm/yr. According to Table 1, we vary the amplitude of coloured noise bcl following three scenarios: (A)

from low value (i.e. bcl < 0.1 mm/yrβ/4); (B) intermediate (i.e. 1mm/yrβ/4 > bcl > 0.1 mm/yrβ/4); and (C) high value (i.e.

1mm/yrβ/4 < bcl < 4mm/yrβ/4). In the case of the large amplitude of the coloured noise, the process is unlikely zero-mean

stationary. Also, β is equal to 1 (flicker noise) or 1.5 (power-law noise) in the simulations.

Figure 1a, 1b and 1c display the results when averaging over 50 time series. The variations are in steps of [0,0.3,0.5,0.7,0.8,1]245

year (see X-axis). Each figure corresponds to the different coloured noise amplitude following the three scenarios described

above. We show both the variations of the stochastic and functional models. On the Y-axis, these variations are basically the

statistics (mean and standard deviation) over the percentage estimated between the parameters of either the stochastic or func-

tional model between the first and N -th iteration. For each run, this percentage is calculated using the sum of the differences

in absolute value of the various parameters described in Section 3.2.250

In Hector, we use the PL+WN model (Bos et al. , 2013). The first result which is common to all three figures, is that the

variations in the functional model starts earlier than for the stochastic model. Previous studies have shown that there is some

part of the noise amplitude absorbed in the functional model (Williams , 2003; Montillet et al. , 2015). In our scenario, the

estimation of the linear trend may fit partially into the power-law noise, hence reducing the variations of the stochastic model.
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This effect can be amplified with higher spectral indexes. Now, Figure 1 shows that over 1 year the variations of the stochastic255

and functional model are less than 4% (mean value) for small amplitude coloured noise, whereas when increasing the coloured

noise the variations increase quickly (e.g., more than 20% for the large coloured noise amplitude for the functional model

(c)) . Knowing that Hector assumes only stationary signals (Bos et al. , 2013), it means that part of the large variations of the

coloured noise is wrongly included in the estimation of the functional model.

Table 2. Statistics on the Error when fitting the ARMA and FARIMA model to the residual time series following the three scenarios

Error (mm) case A case B case C

β bcl < 0.1 mm/yrβ/4 1mm/yrβ/4 > bcl > 0.1 mm/yrβ/4 1mm/yrβ/4 < bcl < 3mm/yrβ/4

ARMA 1.1 1.44 ± 0.01 1.74 ± 0.01 1.89 ± 0.04

1.5 1.46 ± 0.01 1.76 ± 0.04 1.95 ± 0.05

FARIMA 1.1 1.91 ± 0.02 1.85 ± 0.02 1.46 ± 0.02

1.5 1.89 ± 0.01 1.75 ± 0.03 1.59 ± 0.05

Table 3. Correlation between the distribution of the residuals and the Normal (Corr. Normal) and the Levy α-stable distribution (Corr.

Levy) following the three scenarios

Corr. [0− 1] case A case B case C

β bcl < 0.1 mm/yrβ/4 1mm/yrβ/4 > bcl > 0.1 mm/yrβ/4 1mm/yrβ/4 < bcl < 3mm/yrβ/4

Corr. Normal 1.1 0.93 ± 0.14 0.92 ± 0.21 0.89 ± 0.50

1.5 0.92 ± 0.14 0.91 ± 0.22 0.85 ± 0.31

Corr. Levy 1.1 0.92 ± 0.11 0.94 ± 0.14 0.96 ± 0.18

1.5 0.93 ± 0.13 0.94 ± 0.16 0.95 ± 0.18

Now, Table 2 shows the standard deviation of the difference (Mean Square Error) between the ARMA /FARIMA model260

and the residuals (i.e. resi in Equation (5)). We do not display any mean, because the fit of the models are done on the zero-

mean residuals. Note that the value is averaged over the 50 simulations, together with the variations of the length of the time

series following the same processing as before. The table also displays the averaged correlation between the distribution of the

residuals and the Normal or Levy α-stable distribution. In agreement with the theory, we can see that the ARMA model fits

well residuals with small amplitude coloured noise, whereas with the increase of bcl the FARIMA model fits better than the265

ARMA model. Looking at Table 3 in terms of correlation, the Levy α-stable distribution fits as good as the Normal distribution

as long as the distribution of the residuals is Gaussian without large tails or asymmetry. In Section 2.3, we emphasized that

the family of Levy α-stable distributions includes the Normal distribution with specific values of its driving parameters (see

Equation 4). Thus, the results show that for the amplitude of coloured noise, not very large (i.e. Intermediate - case B - in

Table 2 and 3) compared with the white noise, the two distributions show similar results. However, the scenario with large270

coloured noise amplitude (C), which can generate some aggregation processes thus introducing an asymmetry or large tails
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in the distribution of the residuals, emphasizes that the family of Levy α-stable distributions perform the best in modelling

the residuals’ distribution. Note that the asymmetry in the residuals’ distribution is relatively limited. Much Larger coloured

noise amplitude could produce greater asymmetry in the distribution as seen in financial time series with aggregation processes

of high amplitude (Wooldridge , 2010). Finally, those three scenarios support ideally the theory where in the case of small275

amplitude coloured noise, the stochastic noise properties are dominated by the Gaussian noise, hence supporting a third r.v.

defined as a Gaussian Levy. However, the increase of the coloured noise amplitude shows that it is much more difficult to

discriminate between the fractional Levy and the stable Levy. The results point out that the third r.v. can be modelled as a

stable Levy process when mostly the FARIMA fits the residuals due to large amplitude long-memory processes, hence creating

a heavy-tail distribution. This result is restrictive for the application to geodetic time series.280

3.3.2 Real Time Series

We process the daily position time series of three GNSS stations namely DRAO, ASCO and ALBH retrieved from the

UNAVCO website (UNAVCO , 2009). The functional model includes the tectonic rate, the first and second harmonic of the

seasonal signal, and the occurrence time of the offsets. This occurrence time is obtained from the log file of each station.

However, ALBH is known to record slow-slip events from the Cascadia subduction zone (Melbourne et al. , 2005). Thus,285

we include the offsets provided by the Pacific Northwest Geodetic Array (Miller et al. , 1998). In this scenario we do not

know which stochastic model could fit the best the observations. Thus, we use two models: the PL+WN together with the

FN +WN .

Similar to the previous section, Figure 2 displays the percentage of variations of the stochastic and functional models av-

eraged over the East and North coordinates of each station. Note that the average over the three coordinates is displayed in290

the appendices (see Figure A1). Because the Up coordinate contains much more noise than the East and North coordinates

(Williams et al. , 2004; Montillet et al. , 2013), it amplifies the variation of both stochastic and functional models to several

order of magnitude, hence overshadowing the results over the East and North coordinates.

Looking at Figure 2, the first result is that for all the stations, there is a strong dependence with the selected noise model.

When selecting the power-law noise over the flicker noise model, there is an additional variable to estimate (i.e. the power-law295

noise exponent β in Equation (3) ) within the stochastic noise model. Even though our results show a relationship between

modelling the residuals and the choice of the stochastic model, our current work does not deal with this issue. Readers interested

in this topic can refer to He et al. (2017, 2019).

The second result is the large variations of the functional model compared with the stochastic model. As explained in the

simulations, the functional model partially absorbs the variations of the noise, i.e. the tectonic rate partially fits into the power-300

law noise. In addition, to some extend at ASCO, the sudden increase in the functional model variations at 0.5 year may be

explained due to the absorption of some of the noise with the second harmonic of the seasonal signal.

When comparing the variations of the stochastic and functional models with amplitude below 20% for the stations DRAO

and ASCO, the results agree with the definition of the fractional Levy process defined in Table 1 as third r.v. modelling the

residuals of the East and North components. The variations of the functional model associated with ALBH are much larger305
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Figure 2. Percentage of variations of the estimated parameters included in the stochastic and functional models when varying the length of

the daily position GNSS time series corresponding to the stations DRAO, ASCO and ALBH . The statistics are estimated over the East

and North Coordinates

than the other two stations, especially for the PL+WN model with variations up to 50%. Those large variations can be

explained due to the slow slip events and the difficulty to model the post-seismic relaxations between two consecutive events.

In He et al. (2019), the authors justified the selection in the stochastic noise model of a random-walk component together with

a FN +WN in order to model the mismatch between the functional model and the observations.

Now Table 4 displays the statistics on the error when fitting the ARMA and FARIMA models to the residuals estimated with310

the PL+WN stochastic noise model. Note that Table A1 displays in the Appendices the results when using the FN +WN

stochastic noise model. The FARIMA and ARMA models perform closely for the whole three stations. The large value for

the Up coordinate is due to the amplitude of the noise much larger for this coordinate than for the East and North components

(Montillet et al. , 2013). In terms of correlating the distribution of the residuals with the Normal and the Levy α-stable dis-

tribution, the correlation value is relatively the same for all stations which indicates that the distribution of the residuals are315

Gaussian with the absence of large tails. Those results further support the selection of the fractional Levy process as the third

r.v. However, the study of real time series also underlines the difficulty to characterize statistically this third r.v.
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Table 4. Statistics on the Error when fitting the ARMA and FARIMA model to the residual time series for each coordinate of the stations

ALBH , DRAO and ASCO based on the PL+WN stochastic noise model. Correlation between the distribution of the residuals and the

Normal (Corr. Normal) and the Levy α-stable distribution (Corr. Levy)

DRAO (PL+WN) (err. in mm) ARMA (err. in mm) FARIMA Corr. Normal Corr. Levy

East 1.07 ± 0.01 1.10 ± 0.07 0.92 ± 0.05 0.94 ± 0.05

North 1.02 ± 0.02 1.01 ± 0.01 0.93 ± 0.07 0.94 ± 0.06

Up 2.32 ± 0.21 2.15 ± 0.30 0.94 ± 0.04 0.94 ± 0.05

ASCO (PL+WN)

East 0.77 ± 0.01 0.77 ± 0.06 0.95 ± 0.03 0.96 ± 0.05

North 0.84 ± 0.03 0.73 ± 0.03 0.97 ± 0.02 0.96 ± 0.03

Up 2.71 ± 0.12 2.34 ± 0.17 0.93 ± 0.03 0.94 ± 0.01

ALBH (PL+WN)

East 0.97 ± 0.06 0.87 ± 0.06 0.94 ± 0.01 0.94 ± 0.01

North 1.54 ± 0.03 1.06 ± 0.14 0.90 ± 0.02 0.91 ± 0.04

Up 4.36 ± 0.17 4.08 ± 0.25 0.92 ± 0.05 0.94 ± 0.01

3.4 Discussion on the Limits of Modelling with Levy Processes

As discussed in the previous sections, the stable Levy process is characterized by a very large (or infinite) variance. In Montillet

and Yu (2015), it was assumed that the infinite variance of the residual time series comes from large tails of the distribution320

(also called heavy tails -(Wooldridge , 2010)), generated by a large amplitude of coloured noise, outliers and other remaining

geophysical signals. The same study implied that the values of the noise variance should be bounded, excluding extreme values.

This is an important assumption to decide whether or not (symmetric) α-stable distributions can be used to model any geodetic

time series. Here, we are investigating how the variance due to residual tectonic rate or seasonal signal evolves with the length

of the residual time series (i.e. L epochs).325

To recall Section 2.1 and the assumption on the noise properties, let us estimate the mean and variance of the residual time

series. Here, we call the residual time series after the first iteration s1 = [s1(t1), ...,s1(tL)] = ∆1s as defined in the previous

section. The mean < s1(L)> and variance σ2(L) are computed over L epochs (i.e. considering the L-th epoch defined as tL

= Ldt, with the sampling time dt equal 1 for simplification and without taking into account any missing epoch in order to

have a continuous time series). Based on Papoulis and Unnikrishna Pillai (2002), one can estimate the mean over L epochs330
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< s1(L)> in the cases of remaining linear trend, such as:

s1(ti) = arti + br +n(ti)

< s1(L)> =
1
L

L∑

i=1

(arti + br +n(ti))

< s1(L)> = br + ar
(L+ 1)

2
+µC

< s1(L)> ' ar
L

2
+µC (6)335

where ar and br are the amplitude and the intersect of the residual trend (i.e. remaining tectonic rate). Note that the subscript r

designates residual in the remaining section. ' is the approximation for L >> 1. For a time series with L epochs, the variance

σ2(L) is:

σ2(L) =
1
L

L∑

i=1

(s1(ti)−< s1(L)>)2

σ2(L) = a2
r

(L+ 1)(2L+ 1)
6

− a2
r

(L+ 1)2

4
+ b2r +

2ar
L
Cross+σ2

n(L)−µC(µC + ar(L+ 1))340

σ2(L) ' a2
rL

2

12
+σ2

n(L) + b2r −µCarL (7)

Note that Cross is the cross term between arti and the noise term n(ti). Now, if we assume that the remaining seasonal

signal Sr(t) is a pseudo periodic function at frequencies similar to the seasonal signal in Equation (1), hence taking the form

Sr(t) =
∑N
j=1 cr,j cos(djt) + er,j sin(djt). Thus, we can do the same estimation as above in the case of a remaining pseudo

periodic component in the residual time series, such as:345

s1(ti) = Sr(ti) +n(ti)

< s1(L)> =
1
L

L∑

i=1

(Sr(ti) +n(ti))

< s1(L)> ' δ+µC (8)

where δ is the average of the remaining seasonal signal. It is assumed to be independent of L and bounded such as a periodic

function. The variance is equal to:350

σ2(L) =
1
L

L∑

i=1

N∑

j=1

c2r,j cos(djt)
2 + e2r,j sin(djt)

2 +σ2
n(L)

+
2
L
Cross−< s1(L)>2

σ2(L) ' σ2
n(L) +

N∑

j=1

c2r,j + e2r,j − (δ+µC)2 (9)

with Cross is the cross term between Sr(t) and n(t). In the Eq. (6) to (9), the deterministic signals and the noise are assumed

completely uncorrelated, which is valid only with white Gaussian noise (i.e. Wiener process) in signal processing (Papoulis355
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and Unnikrishna Pillai , 2002). As previously discussed in Section 2.1, coloured noise can generate long- memory processes,

hence producing non-zero covariance with residual signals. Due to the varying amplitude of the coloured noise in geodetic

time series with mixed spectra, the uncorrelated assumption is currently debated within the community (Herring et al. , 2016;

He et al. , 2017). Therefore, recent works have introduced a random component together with a deterministic signal: nonlinear

rate (Wang et al. , 2016; Dmitrieva et al. , 2017), non-deterministic seasonal signal (Davis et al. , 2012; Chen et al. , 2015; Klos360

et al. , 2018). Thus, strictly speaking, σ2 should be seen as an upper bound.

The closed-form solution of the variance σ2(L) shows that the variance is unbounded in the case of a residual linear trend. To

recall the discussion in Section 3.1, if this residual trend originates from various sources not well-described in the functional and

stochastic model (i.e. undetected jumps, small amplitude random-walk component) of the geodetic time series, the amplitude of

this trend should be rather small (a < 1 mm/yr) considering the length of GNSS time series available until now (L < 30 years).365

Unless this nonlinear residual trend has a large amplitude, a correction of the functional model must be done a posteriori due to

possible anxiety between the models and the observations. The same remarks can be applied to the variance of the remaining

seasonal signal where a large amplitude would imply a misfit with the functional model. Thus, we expect rather small amplitude

of the coefficients cr,j and er,j ∼ 0.1 to ∼ 0.001 mm. Also, in the Appendix B, we have developed a similar formula to take

into account undetected offsets, where we show that the variance is also bounded. In this case, a large value would mean that370

one or several large offsets have not been included in the functional model.

4 Conclusions

We have investigated the statistical assumptions behind using the fBm and the family of α-stable distributions in order to model

the stochastic processes within the residual GNSS time series. We model the residual time series as a sum of three random

variables (r.v.). The first two are defined from the stochastic model and assumptions on the noise properties of the geodetic375

time series. The third r.v. is assumed to belong to the Levy processes. We then distinguish three cases. In the case of a residual

time series containing only short-term processes, the r.v. is a Gaussian Levy process. In the presence of long-term correlations

and exhibiting self-similarity property, fractional Levy processes can be seen as an alternative model of using the fBm. Due to

the linear relationship between the Hurst parameter and the fractional parameter of the FARIMA, it is likely that the FARIMA

can fit the residual time series under specific conditions (i.e. amplitude of the coloured noise). The third case is the stable Levy380

process, with the presence of long-term correlation processes, high amplitude aggregation processes or random-walk.

In order to check our model, we have simulated mixed spectra time series with various levels of coloured noise. We have then

developed aN steps methodology based on varying the length of the time series (limited to 1 year) to study the variations of the

stochastic and functional models and to model the distribution of the residuals. The results emphasize the difficulty to separate

the fractional Levy process and the stable Levy process mainly due to the absorption of the variations of stochastic processes385

by the functional model, unless the distribution of the residuals exhibits heavy-tails. Another difficulty is the dependence of

the results with the stochastic noise model. The use of real GNSS time series supports the results based on simulated ones.

However, the discussion on the limits of modelling the stochastic properties of the residuals with the stable Levy process
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underlines that the infinite variance property can only be satisfied in the case of heavy-tailed distributions. This condition is

generally satisfied if there is a large amplitude random-walk (e.g., temporal aggregation in financial time series) or an important390

misfit between the models (i.e. functional and stochastic) and the observations, which means that there is anxiety in the choice

of the functional model (e.g., unmodelled large jumps, large outliers). Finally, with longer and longer time series, one may be

able to statistically characterize more precisely the third r.v.
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Appendix A

Appendix: fBm and fLsm: integral representation

The fractional Brownian motion (fBm) {BH(t)}t≥0 has the integral representation:

BH(t) =

∞∫

−∞

(
(t−u)H−

1
2

+ − (−u)H−
1
2

+

)
dB(u) (1)400

where x+ =max(x,0) and B(u) is a Brownian motion (Bm). It is H-self-similar with stationary increments and it is the only

Gaussian process with such properties for 0<H < 1 (Samorodnitsky and Taqqu , 1994).

From Weron et al. (2005), the fractional Levy stable motion (fLsm) can be defined with the process {ZHα (t)} (with t in R)

by the following integral representation:

ZHα =

∞∫

−∞

(
(t−u)H−

1
α

+ − (−u)H−
1
α

+

)
dZα(u) (2)405

where Zα(u) is a symmetric Levy α -stable motion (Lsm). The integral is well defined for 0<H < 1 and 0< α≤ 2 as a

weighted average of the Levy stable motion Zα(u). The process {ZHα (t)} is H-self-similar and has stationary increments.

Comparing the definition of fBm and fLsm, we can observe that fLsm is similar to fBm for the case α= 2.

Appendix B
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Appendix: Estimation of the Variance in the Presence of Offsets410

We model here the offsets in the time series as Heaviside step functions according to He et al. (2017). Following Section 3.4,

the residual time series in presence of remaining offsets can be written such as

s1(ti) =
ng∑

k=1

gkH(ti−Tk) +n(ti) (1)

WhereH is the Heaviside step function. One can estimate the mean over L epochs:

< s1(L)> =
1
L

L∑

i=1

(
ng∑

k=1

gkH(ti−Tk)) +µC415

< s1(L)> =
1
L

ng∑

k=1

gkH(tL−Tk) +µC (2)

The variance is equal to

σ2(L) =
1
L

L∑

i=1

(
ng∑

k=1

gkH(ti−Tk) +n(ti)−< s1(L)>)2

σ2(L) ' σ2
n(L) +

1
L

(
ng∑

k=1

gkH(tL−Tk))2−< s1(L)>2 (3)

In the presence of small (undetectable) offsets ( gk < 1 mm), we can further assume that< s1(L)>∼ µC and σ2(L)∼ σ2
n(L)−420

µ2
C . For multiple large uncorrected offsets (i.e. noticeable above the noise floor), the variance can be large, but the distribution

of the residual time series should look like various Gaussian distributions overlapping each other corresponding to the segments

of the time series defined by those noticeable offsets. This case is not taken into account in our assumptions summarized in

Table 1, because it supposes that there is a large anxiety about the chosen functional model - obviously missing some large

offsets.425
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Appendix C

Appendix: Additional Results

Figure A1. Percentage of variations of the estimated parameters included in the stochastic and functional models when varying the length of

the daily position GNSS time series corresponding to the stations DRAO, ASCO and ALBH . The statistics are estimated over the East,

North and Up Coordinates
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Table A1. Statistics on the Error when fitting the ARMA and FARIMA model to the residual time series for each coordinate of the stations

ALBH , DRAO and ASCO based on the FN +WN stochastic noise model. Correlation between the distribution of the residuals and the

Normal (Corr. Normal) and the Levy α-stable distribution (Corr. Levy)

DRAO (FN +WN ) (err. in mm) ARMA (err. in mm) FARIMA Corr. Normal Corr. Levy

East 1.07 ± 0.01 1.00 ± 0.02 0.92 ± 0.03 0.94 ± 0.05

North 1.02 ± 0.02 1.32 ± 0.07 0.92 ± 0.05 0.94 ± 0.04

Up 2.33 ± 0.18 2.20 ± 0.32 0.94 ± 0.08 0.94 ± 0.05

ASCO (FN +WN )

East 0.77 ± 0.01 0.75 ± 0.07 0.95 ± 0.02 0.96 ± 0.01

North 0.85 ± 0.03 0.74 ± 0.05 0.94 ± 0.01 0.96 ± 0.01

Up 2.18 ± 0.14 2.51 ± 0.21 0.93 ± 0.03 0.94 ± 0.03

ALBH (FN +WN )

East 0.97 ± 0.04 0.86 ± 0.06 0.93 ± 0.01 0.94 ± 0.01

North 1.52 ± 0.08 1.08 ± 0.10 0.91 ± 0.02 0.91 ± 0.04

Up 3.83 ± 0.21 3.32 ± 0.15 0.93 ± 0.03 0.94 ± 0.01
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