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Dear Reviewer, thank you for taking time to review our manuscript. We would like to
take the opportunity to discuss your arguments and to give some information which will
also clarify and improve the manuscript.

1 - the authors should indicate clearly what is new in this manuscript with respect to
these previous works Reply: We emphasize in line 32 (Âń This work discusses several
statistical assumptions Âż . . .) that previous works has applied the FBm and the Levy
Alpha stable distributions without or very few justifications about the underlining pro-
cesses in the GNSS time series. For example, when can we use a family of distribution
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such as the Levy family with infinite variance and heavy tails? What does that imply for
the kind of stochastic processes defining the GNSS time series ? So far the literature
on geodetic time series analysis is missing this discussion (see Line 37 “ Therefore this
work aims at understanding when the Levy processes can be applied to model geode-
tic time series. ” ). Now, our methodology to investigate the use of these models, is
based on the assumption of a third random variable to model the residual stochastic
processes due to e.g. small transient signals, small jumps ( coseismic offsets ..) . . .
This third random variable is defined a Levy process. The definition of this Levy pro-
cess falls in three specific cases Levy Gaussian, Fractional Levy and stable Levy. We
then develop a N-step method which is based on the estimation of the stochastic mod-
els when varying the length of the time series. 2- “ the authors do not introduced ade-
quately the topic: what is GNSS data, why does it have non-stationary and stochastic
components? ” Reply: Section 2 is here to describe step-by-step what we call a geode-
tic time series and the specificities of GNSS data. In Line “50”, “GNSS time series are
generally regarded as a sum of geophysical signals (i.e. seasonal signal, tectonic rate)
and stochastic processes (. . .)”. With our experience in previous publications, we have
summarized the modelling and processing of GNSS time series. We discuss some
of the fundamental hypothesis such as the Gauss-Markov assumption and the WSS
hypothesis of the coloured noise. This coloured noise is a power-law noise (P(f) =
1/fˆbeta). In Section 2.2, we underline the relationship between this power-law noise,
the fBm and the FARIMA. Therefore, the stochastic noise of the GNSS time series in-
cludes short and long memory processes. This topic is large and can be discussed
comprehensively, but due to space limitation and clarity of the manuscript, we needed
to restrain our introduction to GNSS time series, their stochastic properties and associ-
ated models. We refer to Montillet and Bos 2019, Chapter 2 for a longer discussion of
the stochastic properties of the GNSS time series. Note that various references to pre-
vious works in mathematical geodesy are included, but the paper requires a minimum
knowledge of geodetic time series to grasp this whole discussion. We will add some
sentences at the beginning of Section 2 such as: “Geodetic time series consists out of
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a set of observations at each epoch, containing noise which can be described as a set
of multivariate random variables. The time series are modeled as a sum of a stochastic
and functional (or trajectory) models. The functional model describes the geophysical
processes intrinsic to the local and regional geodynamics of the area where the station
is installed. The stochasticity originates from the unmodelled transient signals and the
measurement errors (Williams et al., 2004; Bos et al., 2013; Montillet and Bos, 2019).”

3 – “the structure of the manuscript is very confusing, with many different models pro-
posed from time to time, with no justification from the data.” Reply: We think that there
are two different issues in this comment. First, it seems that there is a confusion based
on the definition of the GNSS time series. Therefore, we will clarify section 2 (including
the few sentences written in the previous comment. Now, there are various stochastic
noise models in GNSS time series analysis, because of the small geophysical signals
(transients) and small offsets (due to local geodynamics or far away large magnitude
Earthquake). We discuss that when formulating the assumptions about the Levy pro-
cesses in Section 3.1 (see the assumptions behind Levy Gaussian, Fractional Levy and
Stable Levy). In a nutshell, it has been formulated that the stochastic noise models of
the GNSS time series are a sum of two random variables (r.v.) (also called stochastic
processes as suggested by R1), modelling the white noise and coloured noise. The
white noise is Gaussian distributed and the coloured noise is either a Flicker noise or
a Power-law noise. Both are modeled via their covariance function as explained in
Section 2 – eq. 2. Recently, it has been discussed the use of a third r.v. such as
the random-walk (see discussions in He et al. 2017 and He et al. 2019). That is to
model various transient signals (coseismic offsets, post-seismic relaxations . . .) which
can or cannot be geophysically related. Note that one needs also to take into account
the processing of GNSS time series which can generate outliers and spurious signals.
However, the definition of this third r.v. is generally related to the local geophysical
activity (e.g. postseimic events and small tremors generating a random-walk in sta-
tions located in Cascadia mountains – He et al. 2019, Montillet et al. 2018). Here, we
propose to define this third r.v. using the family of Levy processes. The family of Levy
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processes can model short and long memory processes and random jumps (Levy jump
processes). However, it is not easy to model every time series with 3 r.v., because each
time series is a unique sum of geophysical and stochastic processes. Therefore, we
need to separate (as much as we can) the known geophysical signals (tectonic rate,
seasonal signal) to the stochastic processes. Therefore, we have created this N-steps
algorithm. By iterating the estimation of the stochastic and functional model, we can
formulate the assumptions to characterize this 3 r.v. as defined in Table 1. In each
step, we produce a residual time series which is the GNSS time series Âĺminus” the
estimated geophysical signals (e.g. tectonic rates and seasonal signal). Also between
two steps, we increase the length of the time series. Note that the maximum increase
in length is 1 year, because over a much longer time period we can introduce more
small amplitude transient signals. For example, if there is no change (or negligible
changes) in the estimated parameters of the stochastic noise models after N iterations,
then the 3 r.v. is assumed to be a Gaussian Levy process following the properties of a
pure Brownian motion. The processes are then assumed as short memory processes
and are modeled as a Gaussian white noise. Thus, in this case we have a sum of
two white Gaussian noises and a low-amplitude coloured noise. We postulate that the
ARMA model should model the stochastic processes. The second case is when we
have a noticeable change in the stochastic noise and functional models. That is when
we have long-memory processes and high-amplitude coloured noise. The third r.v. is
then chosen as a Fractional Levy process. In this case, the high-amplitude coloured
noise produces long-memory processes and the FARIMA model should be used to
model the stochastic processes. The last case is a special case when we have a large
variance due to outliers or unmodelled signals of large amplitude, therefore there is
anxiety in the chosen functional and stochastic models. We define the third r.v. as a
stable Levy process which is directly related to the alpha stable Levy distribution.

Beyond that, there is the selection of the optimal noise model. This is another hot topic.
Here, we have restricted the choice between the FL+WN and the PL+WN models. The
choice is based on the maximization of the Akaike criterion. It is a pre-processing step
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before the N-step algorithm. We justify our strategy based on the results in He et al.
2017 and He et al. 2019. A comprehensive discussion is in Montillet and Bos 2019 –
Chapter 1 and 2. It will be confusing to integrate a full discussion on the optimal choice
of the stochastic noise model, therefore for a matter of clarity we have restricted this
part to line 220-225 (The optimal choice of the stochastic model . . .).

4 –“But no data is shown to justify this / Then show some plots of such data, with power
spectrum and pdf. ” Reply: Below (see Figure 1), we attach the GNSS time series of
ASCO station, together with their power spectrum. These figures will be added in the
annexes of the paper.

5- “explain how to estimate the parameters. ” Reply: The stochastic noise model of the
residual time series (ARMA, FARIMA, power-law + white noise . . . ) are estimated via
maximum-likelihood using Hector software as discussed in Line 225-230. We have not
emphasized the technique here, because it is also a long topic described in Montillet
and Bos, 2019 ( see the first 6 chapters). The best estimator (maximum likelihood,
Monte Carlo Markov Chain . . .) or the statistical “strategy” is out of the scope of this
paper. Note that we have also discussed this point in the previous discussion during
Review 1 (see point 4). In the final version of the manuscript, we will add a short
appendix to discuss the estimation of the stochastic model jointly with the geophysical
model using the log-likelihood.

6 – “when discussing Levy stable processes, a reference to a web page (Nolan) is not
the correct citation. There are many works that can be cited, such as Samorodnitsky
and Taqqu, Stable non-Gaussian random processes, 1994. ” Reply: Thank you for this
remark. We will add this reference in the final version.

7- “the authors mention FARIMA models, but these models are discrete. When dis-
cussing stochastic processes possessing scaling properties, no need to go to the dis-
crete models. ” Reply: The discrete models have been used in geodetic time series
analysis (GNSS time series, tide gauges, see Chapter 2 in Montillet and Bos 2019). In
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our present work, we use them to formulate assumptions on the stochastic noise prop-
erties of the GNSS time series (short vs long range dependencies, ..).The FARIMA
model is interesting for our time series (and more widely for geodetic time series), be-
cause it has the ability to mode long-range dependencies due to the relation between
the fractional index (d) and the Hurst parameter (H) (see Line 100-105). We discuss
this ability over the less complex ARMA model in the case of high amplitude coloured
noise (see discussion Line 135-140). Note that we will include this reference “Pipiras
and Taqqu 2017”

8 – “equation 3 is not correct, the good relation is beta=1+2H.
” Reply: It depends on how you define beta, following
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3947294/) If the definition is based on
fractional Gaussian noise, beta =2H-1; if it is based on the fBm, it is based on beta
=2H+1. Now, I use the definition from the geodetic community which is based on
fractional Gaussian noise – see He et al. 2017 However, it is a good point to precise in
the manuscript. We will add a sentence to indicate which definition we follow. Thank
you.

Interactive comment on Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-
2019-48, 2019.
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Fig. 1. : ASCO time series (with functional model on top - red) for two stochastic noise models
(PL+WN, FN+WN); Power spectrum (East (0), North (1), Up (2)); histogram of the residual time
series.
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