
Dear Editor,

With this letter we would like to resubmit our manuscript entitled “Detecting dynamical anomalies
in time series  from different  palaeoclimate proxy archives using windowed recurrence network
analysis” for publication in Nonlinear Processes in Geophysics.

In  the  revision,  we  implemented  all  changes  that  we  mentioned  in  our  comments  during  the
discussion phase. In the following, we reproduce our answers to the Referee’s comments to our
manuscript (corresponding to the answers provided during the discussion phase) and highlight the
associated  changes  in  the  revised  manuscript.  A  difference  of  the  originally  submitted  and
resubmitted manuscript can be found at the end of this document.

Yours sincerely,
Jaqueline Lekscha and Reik Donner

Answers to Referee 1

Overall:
In this manuscript the authors test the suitability of the earlier developed windowed 
recurrence network analysis (wRNA) for detecting dynamical anomalies in paleoclimate 
proxy times series. The method skills are tested on the suite of stationary and nonstationary 
timeseries of forward modelled pseudoproxies with known dynamical properties. This work is
a natural continuation/extension of the earlier studies of the group on the application of 
networks to the analysis of (paleo)climatic data

The paper is clearly written and results are well presented. I therefore consider the 
manuscript deserves to be published after some very minor modifications /additions to the 
content if the authors/editor finds them relevant.

We thank the Referee for this positive assessment of our work. Our replies to the suggested 
modifications and additions are given below.

Minor comments
Page 3 Line 59: “for estimating embedding delay...autocorrelation function” is it a global or a
windowed estimate? Please be specific

It is a global estimate. We have specified this in the revised version of the manuscript (line 64). 

Page 3 Line 66: why namely the maximum norm is used? Is it possible to justify the choice? 
Did the authors check the sensitivity of the results to the use of other norms?

We use the maximum norm because there is a direct analytical relationship between the network 
transitivity and the dimensionality of the dynamics of the system for it, as shown in Donner et al., 
EPJB, 2011. Thus, using the maximum norm is particularly useful when assessing the network 
transitivity to study the system’s dynamics. Moreover, due to its specific form, the calculation of the
maximum norm of a given vector in Euclidean space is particularly simple. This is also why this 
specific norm has been particularly widely used in previous works on recurrence network analysis 
and other recurrence plot based techniques. We have clarified this in the revised manuscript (lines 
72/73 and 83/84).



In our present work, we did not explicitly check the sensitivity of the results with respect to the use 
of other norms for the sake of conciseness. However, we performed similar sensitivity tests for 
other (similar) time series and typically found the results to be qualitatively robust when, for 
example, using the Euclidean norm instead of the maximum norm. We expect this to also hold for 
the present work. 

Page 3 Line 71: “...such that a fraction \rho of all possible links in the network is realized”: is
the threshold global or window-based?

For each window, we construct a recurrence network and thus, set the threshold \epsilon for every 
window separately. That is, in each window, a fraction \rho of all possible links are realized. We 
have clarified this in the revised manuscript (lines 76/77). 

Page 3 Eq. 4 please indicate that |i-j|=|v-i|=1

In this equation, the summation is performed over all i, j and v and not only over neighboring 
indices. In fact, the network transitivity as given by Eq. 4 can be interpreted as the probability that 
two random neighbors of a randomly chosen node are mutually connected. Assuming that the 
randomly chosen node has index v, the denominator of Eq. 4 counts how many combinations of all i
and j are neighbors of v. By summing over all possible v, the denominator equals the number of all 
possible triangles in the network. The nominator then counts how many of the possible triangles are
actually realised. 

Page 5-6: forward proxy model for tree rings. One should not that the juvenile growth is not
modelled/accounted for in the model used. Hence an effect of its subtraction, which can be
substantial, depending on the species used, technique applied and the entire age structure of 
the tree-ring network (archive) is also discarded. It is worth mentioning in a context of results
demonstrated for tree rings.

We thank the Referee for drawing our attention to this important point. Indeed, the model does not 
take into account juvenile growth and it would be very interesting to compare the results to those of 
a model that does account for this effect in future work. We have added a corresponding comment 
in the revised manuscript (lines 149-151 and 412/413). 

Page 8 table 2: Please check if the amount of measured foraminifera is correct (number of
species? Sample weight?) please indicate units

For this model, we used the default values for the amount of measured foraminifera, mixed layer 
thickness, and abundance of species of the TURBO2 model which are unitless (compare Trauth, 
Comp. Geosci., 2013). Of course, it would be very interesting to compare the results for varying 
values of these parameters. Unfortunately, such a systematic study on the effects of different model 
parameter settings was beyond the scope of our present manuscript and is thus left as a topic for 
future work. Generally, we expect here more quantitative rather than qualitative changes if the 
mentioned parameters are varied within some reasonable ranges.

Page 11: Use of nonstationary Røssler system: How realistic this model actually is for climate
applications? Are there any larger-scale climatic processes that can potentially be associated 
with this model?

Unlike the Lorenz system, which has been originally introduced as a simplified toy model for 
atmospheric convection processes, the Rössler system has no such close climatological 
interpretation to the best of our knowledge. One of the main motivations for introducing this model 



(inspired by chemical reaction kinetics in Rössler's (Phys. Lett. A, 1976) original work) was to 
provide a chaotic dynamical system model with somewhat simpler behavior than the Lorenz system
(i.e., without a double-scroll structure). This simpler type of attractor topology, along with the still 
non-trivial and rich cascade of bifurcations, was the main motivation for us to use the Rössler 
system as a generator for complex input dynamics to our proxy system models. Notably, we expect 
that this well studied model is known to a vast majority of the readership of Nonlinear Processes in 
Geophysics. By contrast, we did not attempt here to reach any dedicated level of realism in making 
the input variable particularly similar to real world climate dynamics. We have clarified this point in
our revised manuscript (lines 262/263 and 268).
 

Page 12 Line 309: “...respond to temperature rather than to precipitation...” mind that 
compared with a temperature, precipitation is not reproduced in the models that well, though 
for this particular case (boreal forest), temperature indeed will be a stronger limiting factor.

As we chose the model parameters for the tree ring width model to simulate tree growth in Eastern 
Canada, we were indeed expecting that the temperature and not the precipitation will be the limiting
factor for the model in this case. However, we fully agree with this comment, and added a brief 
explicit statement on this fact in the revised supplement (lines 9-13).

Page 13 Line 322: “...closely follow the respective temperature input”, note my comment on 
the used forward proxy model for tree rings. Such a good concistency can partly be attributed
to a lack of juvenile growth effect in the model.

We agree with the Referee that the good correspondence between the temperature input and the tree 
ring width model output can partly be attributed to the lack of correction for juvenile growth in the 
tree ring width model. We have commented on this in the revised manuscript (lines 149-151 and 
412/413). 

Page 17 Line 368: “....lower-dimensional dynamics during the MCA.....higher-dimensional...
during the LIA” Can the authors elaborate a bit more on this result? What are the actual 
features in the analyzed timeseries manifested in wRNA as lower and higher network \Tau?

The MCA has often be attributed to more stable climate conditions while the LIA has often been 
attributed to more variable climate conditions even though this imprint has varied locally and has 
been mainly discussed for Europe. As described, for the LMR data from Eastern Canada, we do not 
find any significant periods in the model output data meaning that we cannot detect any dynamical 
anomalies in the model output. Still, for the tree ring width model output, we observe higher values 
of the network transitivity roughly coinciding with the MCA and lower values of the network 
transitivity during the LIA. As the network transitivity (\mathcal{T}) has been shown to be related 
to some proxy for the dimensionality of the system’s dynamics (m) via the relation m=\log(\
mathcal{T}) / \log(3/4) (cf. Donner et al., EPJB, 2011), we tentatively conclude that the higher 
values of the network transitivity during the MCA and the lower values of the network transitivity 
during the LIA reflect a lower/higher dimensional dynamics of the system at this particular location 
(in terms of complexity of temporal variations rather than just a change in variance). In terms of the 
time series properties for the different periods, we indeed additionally observe an increase in 
variance of the time series from the MCA to the LIA, which is very likely also reflected in the 
different recurrence networks and, thus, the resulting network transitivity. We note that this non-
stationarity in variance along with the MCA-LIA transition in the European/North Atlantic sector 
has also been reported as being reflected in other nonlinear characteristics, which have been 
previously interpreted as a hallmark of some dynamical anomaly (Schleussner et al., Clim. Dyn., 
2015; Franke & Donner, Clim. Change, 2017).



We have added a corresponding more detailed discussion of the results to the revised manuscript 
(lines 355-366). 

Page 19 Lines 403-404: Did the authors consider block shuffling of surrogates (same as in 
block bootstrapping) as a possible method to tackle this problem?

We did not consider block shuffling of surrogates in this work, but rather addressed this issue by 
using iterative amplitude adjusted Fourier transform surrogates (that is, surrogates that exactly 
preserve the probability distribution and linear correlation structure of the data) for the areawise 
significance test.

We thank the Referee for suggesting using block shuffling as a possibly less computationally 
demanding alternative and will keep this option in mind for further work on significance tests. For 
the present work, we think that adding an additional type of surrogate data would primarily increase
the already large amount of material presented without providing topically relevant results markedly
deviating from those reported. Still, we agree that this is a very important topic, and suggest that 
apart from block shuffling surrogates, also other surrogate routines should be studied more 
systematically for time series with different autocorrelation properties. 

References

Donner, R. V., Heitzig, J., Donges, J. F., Zou, Y., Marwan, N., and Kurths, J.: The geometry of 
chaotic dynamics — a complex network perspective, The European Physical Journal B, 84, 653–
672, 2011.

Franke, J. G., Donner, R. V.: Dynamical anomalies in terrestrial proxies of North Atlantic climate 
variability during the last 2ka, Climatic Change, 143(1-2), 87-100, 2017. 

Rössler, O.: An equation for continuous chaos, Physics Letters A, 57, 397 – 398, 1976.

Schleussner, C.-F., Divine, D., Donges, J. F., Miettinen, A., Donner, R. V.: Indications for a North 
Atlantic ocean circulation regime shift at the onset of the Little Ice Age, Climate Dynamics, 45, 
3623-3633, 2015. 

Trauth, M. H.: TURBO2: A MATLAB simulation to study the effects of bioturbation on 
paleoceanographic time series, Computers & Geosciences, 61, 1 – 10,  2013.

Answers to Referee 2

The purpose of the manuscript is to apply a method developed and documented by the
authors elsewhere (the windowed recurrence network analysis (wRNA)) on artificial
time series simulating the output of speleothem, lake, tree archives and isotopic water
concentration in ice cores. The purpose is to test to what extent the ‘proxy process’
(transformation of the climate signal by the natural archive) could mask anomalies that
would have been otherwise detected in the original time series. Different time series
have been tested, including Gaussian white noise, an autoregressive process of order
1, output non-linear dynamical system model, and data from the reanalysis project of
Hakim et al.

The main diagnostic is ‘network transitivity’, and the application of the method to the



different input datasets generates Figures 2 to 6. The reader is invited to concentrate
on the ‘area-wise’ significance test, which is supposed to indicate a signal of significant
change in network transitivity, to be interpreted as a change in the effective dimension-
ality of the system.
Some results appear a bit disconcerting, especially the test on the AR(1) signal, be-
cause it shows, on the one hand, a large patch of area-wise significant anomalies in
network transitivity which was — if I understood correctly — a priori not expected in
this signal. In addition, this large patch disappears in the natural archives simulated
with this model, while another patch emerges in the speleothem simulation. Simula-
tions with other inputs tend to confirm that the speleothem model is prone to create
or destroy areas of significant network transitivity anomalies seen in the original time
series.

Indeed, the AR(1) signal shows a patch of areawise significant anomalies that is a priori not 
expected. As argued in the manuscript (original manuscript, lines 398-400), such artefacts appearing
in single realisations of the stochastic input time series should be excluded in future work by 
considering ensembles of realisations of the processes. Unfortunately, this was not possible within 
the scope of the original manuscript. 

With respect to the results of the different proxy model output time series, we generally found that 
the tree ring and the lake sediment model tend to miss, while the speleothem model both misses and
creates additional areawise significant patches of the network transitivity, which is in agreement 
with the above observations. We have further disentangled the description of these results in the 
revised manuscript in order to make these points clearer (lines 313-366).

The study is quite systematic in its approach, to the point of being slightly repetitive,
and yet, one might argue that it falls short convincing the reader about the robustness
of the conclusions. Basically, up to p. 12 the manuscript consists in an exposition of the
methods, which for their greatest part have been described elsewhere (the significant
area test is in press, and the proxy models have been published elsewhere). The out-
put of the wRNA analysis follows a show-and-tell description running until p. 18, and
even though some main conclusions are correctly outlined, the discussion does not
really help identify mechanisms or key conclusions that would actually help to ‘improve
the interpretation of windowed recurrence network analysis’ as announced in the ab-
stract. For example, the authors have observed that the speleothem model modifies
the significant patches, but we do not really which process, in the speleothem model,
is responsible for this behaviour. Do we expect this to be an idiosyncrasy of the par-
ticular speleothem model used here, or do we expect it to be a general result? Which
aspects of the ‘nonlinear filtering’ should be incriminated? The presence of a large
significant area patch on the AR(1) time series, along with its the quasi-absence of
significant changes in network transitivity in the last-millennium reanalysis data is also
disconcerting, because we no longer know how to reasonably interpret the output of
the wRNA for understanding climate dynamics. Is the last millennium actually the right
test bed for this study?

We thank the Referee for pointing out the weaknesses of the presentation of the material and have 
worked on the mentioned points in the revised manuscript. This particularly concerns the 
presentation of the results and the corresponding discussion and conclusions (lines 313-366 and 
387-424). We also decided to move the description of the time series properties of the model output 
time series to the supplementary information document. For the (admittedly long) description of the
methods and proxy system models, we consider it useful to be included in the manuscript to provide



a complete picture and make the contribution self-consistent. Still, we shortened the detailed 
description of the areawise significance test (lines 109-112). 

Also, we want to stress that this study has been meant to improve the interpretation of wRNA 
results in terms of highlighting not only the potentials, but also the limitations of the method when 
applied to palaeoclimate data. That is, in particular for the speleothem model, our results show the 
need of further studying the effects of different filtering mechanisms on the results of the wRNA in 
order to draw reliable conclusions when analysing real-world data. (Note that there have been quite 
a few papers reporting the results of windowed recurrence analyses of real-world speleothem data, 
e.g., Donges et al., Clim. Past, 2015; Eroglu et al., Nat. Comm., 2016.) In this regard, we argue that 
the last millennium is a good test bed because for this period, highly resolved proxy data are 
available from various different archives. We have clarified the direct conclusions from the obtained
results with respect to the interpretation of the wRNA and outline further work that will help to 
increase the robustness of the conclusions (lines 397-403). For the speleothem model results, for 
example, we expect the conclusions to hold, independently of the actual model used, but potentially 
depend on the choice of the model parameters. 

To sound hopefully a bit more constructive, I would suggest the authors to seek for
more general aspects of the filtering process which may destroy or generate spurious
changes in network transitivity. Is this caused by non-linearity in the instantaneous
response (what would an ‘exp(x)’ filtering generate?) Is this the temporal smoothing
process? Is it the amount of noise? What would this analysis tell us about how to
find proxies that would preserve the wRNA signal, beyond the particular example cho-
sen here? Which are the desirable characteristics for such proxies? Answering these
questions would provide some more general and perhaps valuable hints for the inter-
pretation of the wRNA, which could then be summarised in the abstract.

We thank the Referee for these suggestions and fully agree that including the results for a set of 
general filtering functions and noises on the wRNA results will help interpreting the obtained results
by providing insights into the mechanisms that are responsible for them in the different proxy 
system models. We have performed some further analyses and briefly elaborated on these more 
general aspects in the revised version of the manuscript (lines 304-312).  

Perhaps the reader will also better appreciate the interest of the wRNA if more clues
are given about how to interpret it: can one get a more or less adequate intuition of
what a change in wRNA implies about the dynamics of climate. What, physically, does
an increase or a decrease in network transitivity mean? Would this be associated with
a form of ‘global synchronisation’ ? Are we expecting it when we approach a form of
bifurcation (a “tipping point”)? What is the wRNA telling us that is not obvious from
visual inspection of the time series?

We agree with the Referee that including a paragraph on the interpretation of wRNA with respect to 
the climate system is a very good idea. Still, general statements will hardly be possible as climate-
related interpretations vary depending on the location and thus, local boundary conditions have to 
be taken into account. Also, the network transitivity calculated from a single time series cannot be 
associated with a ‘global synchronisation’ as only information from a single location is taken into 
account. Instead, the network transitivity has rather been related to the dynamical regularity of the 
variations in the analysed time series (e.g., Donges et al., PNAS, 2011) with higher values of the 
network transitivity corresponding to less irregular variability and vice versa. This is in accordance 
with the interpretation of the network transitivity as an indicator of the dimensionality of the 
system’s dynamics. In this regard, detected anomalies in the network transitivity could be related to 
some tipping point, but do not have to be. We have attempted to provide a more concise description 



of possible interpretations of the wRNA results in the (palaeo)climate context in the revised version 
of the manuscript (lines 404-410).  

Finally, the choice of an embedding dimension m = 3 was, to this reader, difficult
to reconcile the quote that “The embedding theorem of Takens guarantees that, when
choosing the embedding dimension larger than twice the box-counting dimension of the
original attractor, the reconstructed and the original system’s attractor are related by a
smooth one-to-one coordinate transformation with smooth inverse, independent of the
choice of the delay”. Wouldn’t we have expected, on this basis, a much larger embed-
ding dimension? This may invite some discussion, perhaps available in Lekscha and
Donner, (in press). In 1984 (Nature, vol. 311, p. 311), Nicolis and Nicolis published an
estimate of the ‘climate attractor dimension’ but subsequent authors (including Grass-
berger, 1986, Nature, 1996, vol. 323, p. 609, and Vautard and Ghil, 1989, Physica
D, vol. 35, p.395) pointed the difficulty of actually getting a meaningful estimate of “a
climate dimension” from a 1-dimensional, finite record. Could the authors clarify their
position in this respect?

We are well aware of the problem of choosing an appropriate embedding dimension when the 
available data are univariate, finite, and subject to noise. The embedding theorem of Takens is a 
sufficient condition and not a necessary one; thus, embedding dimensions smaller than twice the 
box-counting dimension of the original system’s attractor may lead (at least approximately) to an 
appropriate embedding, which might possibly, at least partly, reconcile the quote and the choice of 
the embedding dimension m = 3. Also, it should be noted that the theorem is strictly valid only for 
perfect data. Thus, for finite and noisy data, the estimation of the embedding dimension has to rely 
on some more or less heuristic approaches. Many of these approaches however either have 
problems of distinguishing deterministic chaos and noise or systematically underestimate the 
embedding dimension. 

In this spirit, we fully agree with the critiques of the cited papers that it is difficult to get a 
meaningful estimate of an embedding dimension from univariate, finite and noisy data. For the 
particular case of a ‘climate attractor dimension’, we agree that the climate system is not a low-
dimensional dynamical system. Still, we think that lower dimensional embeddings can be used to 
obtain meaningful information about a system. Furthermore, in the palaeoclimate context where 
available time series are often rather short, we do not think that high-dimensional embeddings are 
useful as the limited amount of data points will in most cases not be sufficient to sample the 
attractor in a high-dimensional embedding space. 

In the majority of the paper, we do not directly analyse climate data but rather synthetic data 
representing different kinds of underlying processes. For convenience, comparability, and with 
respect to the time series length and the increasing computational effort for larger embedding 
dimensions, we chose m = 3 for all analysed time series, thus, also for the last millennium 
reanalysis data which indeed represents more closely the actual dynamics of the climate system. In 
general, when analysing real-world data, we think that the problem of choosing an appropriate 
embedding dimension is best tackled by employing one of the estimation methods that can 
distinguish deterministic and stochastic signals and do not require too many subjective parameter 
choices (such as the one presented in Cao (1997), Physica D, 110, 43-50), and additionally slightly 
varying the obtained embedding dimension when analysing the data to check the robustness of the 
results. In the revised manuscript, we added a more detailed comment on our choice of m = 3 (lines 
55-64).
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Abstract. Analysing palaeoclimate proxy time series using windowed recurrence network analysis (wRNA) has been shown

to provide valuable information on past climate variability. In turn, it has also been found that the robustness of the obtained

results differs among proxies from different palaeoclimate archives. To systematically test the suitability of wRNA for studying

different types of palaeoclimate proxy time series, we use the framework of forward proxy modelling. For this, we create

artificial input time series with different properties and , in a first step, compare the time series properties
::::::
compare

:::
the

::::::::
areawise5

::::::::
significant

:::::::::
anomalies

:::::::
detected

:::::
using

::::::
wRNA

:
of the input and the model output time series. In a second step, we compare the

areawise significant anomalies detected using wRNA. For
::::
Also,

::::::
taking

::::
into

::::::
account

::::::
results

:::
for

:::::::
general

:::::::
filtering

::
of

::::::::
different

::::
time

:::::
series,

:::
we

::::
find

:::
that

:::
the

:::::::::
variability

::
of

:::
the

:::::::
network

:::::::::
transitivity

::
is
::::::
altered

:::
for

:::::::::
stochastic

::::
input

::::
time

::::::
series

:::::
while

:::::
being

:::::
rather

:::::
robust

:::
for

:::::::::::
deterministic

:::::
input.

:::
In

:::::
terms

::
of

:::::::::
significant

:::::::::
anomalies

::
of

:::
the

:::::::
network

::::::::::
transitivity,

:::
we

:::::::
observe

:::
that

:::::
these

:::::::::
anomalies

:::
may

:::
be

::::::
missed

:::
by proxies from tree and lake archives , we find that significant anomalies present in the input time series are10

sometimes missed in the input time series after the nonlinear
:::
after

:::
the

:::::::::
non-linear

:
filtering by the corresponding

:::::
proxy

::::::
system

models. For proxies from speleothems, we
:::::::::
additionally

:
observe falsely identified significant anomalies that are not present in

the input time series. Finally, for proxies from ice cores, the wRNA results show the best correspondence with those for the

input data. Our results contribute to improve the interpretation of windowed recurrence network analysis results obtained from

real-world palaeoclimate time series.15

1 Introduction

Palaeoclimate proxy time series from archives such as trees, lakes, speleothems, or ice cores play an important role in past

climate reconstructions (Bradley, 2015). Apart from information on climatic boundary conditions such as local and global

mean temperatures and precipitation sums, the analysis of the proxy time series using non-linear methods offers the possibility

to study dynamical anomalies in past climate variability (Marwan et al., 2002, 2003; Trauth et al., 2003; Marwan et al., 2009;20

Donner et al., 2010b; Franke and Donner, 2017). Due to the limitations of palaeoclimate proxy time series in terms of non-

uniform sampling of the data points, uncertainties in dating and measurement, the contamination with noise, and the often

1



non-unique interpretation of the climate signal within the proxy, not all methods are suitable to gain reliable information from

all data (Goswami et al., 2018; Lekscha and Donner, 2018).

Windowed recurrence network analysis (wRNA) has already been successfully used to detect dynamical anomalies in time25

series from different palaeoclimate archives (Donges et al., 2011a, b; Eroglu et al., 2016; Lekscha and Donner, 2018). But it has

also been observed that this method often yields high numbers of false positive significant points, and, that not all palaeoclimate

archives give equally robust results. In order to improve the interpretation of results obtained with wRNA for real-world time

series, we here systematically test the suitability of the approach for analysing palaeoclimate data from different types of

archives by employing proxy system models.30

Proxy system models are forward models that simulate the formation of a palaeoclimate proxy based on the systemic under-

standing of that proxy (Evans et al., 2013). That is, given the climate input variables, the proxy system model outputs a proxy

time series. We here use intermediate complexity models for tree ring width, branched glycerol dialkyl glycerol tetraethers

in lake sediments, and the isotopic composition of speleothems and ice cores (Tolwinski-Ward et al., 2011; Dee et al., 2015,

2018). We first create artificial climate input time series with different properties. In particular, we consider two stochastic pro-35

cesses, Gaussian white noise and an autoregressive process of order 1, and two non-stationary time series from the paradigmatic

Rössler and Lorenz systems. Additionally, we use climate input from the last millennium reanalysis project as an estimate of

realistic past climate variability (Hakim et al., 2016; Tardif et al., 2019). We then compare the input and the model output with

respect to the properties of the time series and the results of wRNA. To quantify significant dynamical anomalies, we use an

areawise significance test that was recently introduced for wRNA (Lekscha and Donner, 2019).40

With this work, we want to contribute to a better understanding and an improved interpretation of results obtained with

wRNA for palaeoclimate applications. We first introduce our analysis framework in Sec. 2, the proxy system models in Sec. 3,

and the input time series in Sec. 4. Then, we show and discuss the time series properties and the results of the wRNA for the

different input and model output time series in Sec. 5 before we present our main conclusions in Sec. 6. Additional information

and figures are included in the Supplementary Material accompanying this paper.45

2 Analysis framework

2.1 Phase space reconstruction

The first step when analysing data using recurrence based approaches is to reconstruct the higher-dimensional phase space of

the system from the measured univariate time series x(t) with observations made at times {ti}Ni=1. For this, we here use uniform

time delay embedding (Takens, 1980; Packard et al., 1980) . Time delay embedding
:::::
which

:
relates the higher-dimensional50

coordinates of the system’s phase space to delayed versions of the measured, univariate time series

x(ti)→ x(ti) = {x(ti),x(ti− τ), . . . ,x(ti− (m− 1)τ)} . (1)

Here, m denotes the embedding dimension and τ is the embedding delay. The embedding theorem of Takens guarantees

that, when choosing the embedding dimension larger than twice the box-counting dimension of the original attractor, the

2



reconstructed and the original system’s attractor are related by a smooth one-to-one coordinate transformation with smooth55

inverse, independent of the choice of the delay (Takens, 1980). That is, analysing the dynamics in the reconstructed phase

space can give information on the original system dynamics.
::::
Still,

::::
this

:::::::
theorem

::::
only

::::::::
provides

:
a
::::::::
sufficient

:::::::::
condition

:::
for

:::
the

:::::::::
embedding

:::::::::
dimension,

:::::
while

::::
also

:::::::::::::::::
smaller-dimensional

::::::::::
embeddings

::::
may

::::
give

:::::
useful

::::::::::
information

:::::
about

:::
the

:::::::
system’s

:::::::::
dynamics.

To determine the embedding parameters in
::
In

:
practical applications,

:::::::
however,

:::
the

::::::::::::
box-counting

:::::::::
dimension

::
of

:::
the

:::::::
original60

:::::::
attractor

:
is
:::::::
usually

::::::::
unknown

:::
and

:::
the

::::
data

:::
are

::::
finite

:::
and

:::::::
subject

::
to

::::
noise

::::
such

::::
that

:::
the

:::::
choice

:::
of

::
the

::::::::::
embedding

:::::::::
parameters

:::::
plays

::
an

::::::::
important

::::
role

:::
for

:::
the

::::::
quality

::
of

:::
the

::::::
phase

:::::
space

::::::::::::
reconstruction.

::
In

:::::::::
particular,

:::
the

::::::::::
embedding

:::::::::
dimension

:::
can

::
be

:::::::::
estimated

::::
using

:
the method of false nearest neighbours (Kennel et al., 1992)can be used for estimating the embedding dimension, while

the first zero of the autocorrelation function or the first minimum of the mutual information can serve as an estimate for the

:
a
:::::::
suitable

:
embedding delay (Abarbanel et al., 1993; Fraser and Swinney, 1986; Kantz and Schreiber, 2004). We here use65

embedding dimension
::
an

::::::::::
embedding

:::::::::
dimension

::
of

:
m= 3 as a compromise between the number of available data points and

the minimum number of independent coordinates as indicated by the false nearest neighbour criterion. For estimating the

embedding delay, we use the first zero of the
:::::
global

::::::
lagged

:
autocorrelation function.

2.2 Windowed recurrence network analysis

We analyse the embedded time series x(t) by means of windowed recurrence network analysis (wRNA), using a sliding70

window approach and dividing the embedded time series into windows of width W with mutual offset dW . For each of those

N ′ = (N − (m−1)τ −W )/dW windows, we construct a network from the time series by identifying the different xi = x(ti)

as nodes of the network and drawing a link between two nodes xi and xj if they are mutually closer in phase space than some

threshold ε. For this purpose, we measure the distances in phase space using the maximum norm
:
,

‖x‖∞ = max
k=1,...,m

{
x(k)

}
., (2)75

:::::
which

::::
has,

:::
due

:::
to

::
its

::::::::::
particularly

::::::
simple

:::::
form

:::::
when

:::::::::
calculated

::
in
:::::::::

Euclidean
::::::
space,

::::
been

:::::::
widely

::::
used

::
in

:::::::::::::::
recurrence-based

:::::::
analyses.

:
Then, the resulting recurrence network can be described by its adjacency matrix A with entries

Ai,j(ε) = θ (ε−‖xi−xj‖)− δi,j . (3)

where θ(·) is the Heaviside function and the delta function δi,j excludes self-loops in the network. Here, we select the threshold

adaptively by choosing a fixed edge density ρ= 0.05. This means,
::
for

:::::
every

::::::::
window, we choose the threshold ε such that a80

fraction ρ of all possible links in the network are realised
::::::::::::
(corresponding

::
to

:::
the

::::::
100ρ%

::::::::
mutually

::::::
closest

::::
pairs

::
of

::::
state

:::::::
vectors).

From the adjacency matrix, we can estimate various network properties. In the course of this work, we will restrict ourselves

to the network transitivity

T =

∑
v,i,jAv,iAi,jAj,v∑
v,i,jAv,iAj,v

, (4)
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which gives the probability that two randomly chosen neighbours of a randomly chosen node are mutually connected. Network85

transitivity is particularly well suited for detecting dynamical anomalies in non-stationary time series, since this network

measure has been shown to be closely related to the dimensionality of the system dynamics,
:::

in
::::::::
particular,

::::::
when

:::::
using

:::
the

::::::::
maximum

:::::
norm

::
to

:::::::
measure

::::::::
distances

::
in

:::::
phase

:::::
space (Donner et al., 2010a, 2011b). Specifically, the quantity logT / log(3/4)

:::
then

:
corresponds to a generalised fractal dimension (Donner et al., 2011a). Thus, low values of the network transitivity can be

related to higher-dimensional dynamics and vice versa.90

For the analysis performed here, we repeat the wRNA for different values of the window widthW ∈ [100,300] with step size

∆W = 1 in order to check the robustness of the results for this analysis parameter. Thus, the resulting values of the network

transitivity can be stored in some matrix Q which is of size NW ×N ′ with NW being the number of window widths for which

the analysis has been performed andN ′ being the number of windows into which the original time series is divided. We choose

the offset of the windowed analysis to be always dW = 1.95

2.3 Significance testing and confidence levels

In order to identify dynamical anomalies from the resulting network transitivity, we first perform a pointwise significance test

using random shuffling surrogates. That is, for every window width W , we randomly draw Ns = 1,000 times W embedded

state vectors from x(t) and calculate the network transitivity of this set of W state vectors. We then take the empirical 2.5th

and 97.5th percentiles from the Ns realisations to obtain a two-sided confidence interval of spw = 95%. All transitivity values100

of the original analysis results that fall outside this interval are considered to show pointwise significant anomalies, that is, the

null hypothesis of the corresponding values of transitivity resulting from random data with the same amplitude distribution as

the original data is rejected. The result of this pointwise significance test can be summarised in the binary significance matrix

Spw of the same size as the matrix of the transitivity results Q. The entries of Spw equal one if the corresponding value of the

transitivity has been found to be pointwise significant, and zero otherwise.105

As intrinsic correlations of the analysis results in both, the time domain (due to the short offset dW ) and the window

width domain can lead to patches of false positives in the pointwise significance matrix, we additionally perform an areawise

significance test (Lekscha and Donner, 2019; Maraun et al., 2007). A pointwise significant point is defined to be areawise

significant, if all neighbouring points within a given rectangle are also pointwise significant, i. e., if the pointwise significant

point lies within a patch of pointwise significant points that is larger than this rectangle. The side lengths of the rectangle110

depend on the intrinsic correlations of a chosen null model that are estimated as detailed in the following
:::::::
described

:::
in

:::::
detail

::
in

::::::::::::::::::::::
Lekscha and Donner (2019).

First, we choose a null model for which we want to perform the areawise test. We here
::::
Here,

:::
we

:
employ a data-adaptive

null model using iterative amplitude-adjusted Fourier transform surrogates of the original time series (Schreiber and Schmitz,

2000). That is, we test whether the same analysis results could have been obtained from data with the same amplitude distri-115

bution and linear correlation structure as the original data but that are otherwise random, i. e., originate from linear stochastic

processes with prescribed correlations. We thus create Nda = 100 such surrogate data sets and perform the same analysis

on them as on the original data. We then quantify the intrinsic correlations by calculating correlation functions in the time
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and the window width domain for the different values of the window width W . The corresponding preliminary decorrelation

lengths are obtained as the values of the time lag or window width where the correlation function falls below a threshold that120

we set to 1/e for the time and 2/e for the window width domain. Those different values of the threshold can be explained

by the different behaviour of the correlation function in the different domains and are set in accordance with the findings

in Lekscha and Donner (2019). We then estimate the final decorrelation lengths lt and lW of the two domains by applying a

linear fit to the preliminary decorrelation length as a function of the window width

lt/W =mt/WW +nt/W .125

Finally, we define the areawise significance matrix Saw to have entries Sawi,j = 1 if the relation

i+(lt/2−1)∑
p=i−(lt/2−1)

j+(lW /2−1)∑
q=j−(lW /2−1)

Spwp,q = (lt− 1)(lW − 1)

holds, and to have entries Sawi,j = 0 otherwise. A detailed and more general description of the areawise significance test can be

found in Lekscha and Donner (2019).

3 Proxy system models130

Forward modelling of palaeoclimate proxies offers the possibility to gain insights into the underlying processes that influence

the sensitivity of a given proxy to climate variations and can thus be used to investigate characteristic properties of time series

of different palaeoclimate archives and their implications for further analyses. We here use four models for typical proxies

from tree rings, lake sediments, ice cores and speleothems, respectively, in order to test how well dynamical anomalies can be

identified when applying wRNA to time series originating from those archives.135

Generally, a proxy system model can be divided into an environment, a sensor, an archive and an observation sub-model (Evans

et al., 2013). The environment model can be used to model the environmental factors that the archive is sensitive to using the

climatic input variables. The sensor model then describes how the archive reacts to the environment, and the archive model

accounts for how this reaction is written into the archive. Finally, an observation model can be used to simulate uncertainties in

dating or measurements. Here, depending on the archive, we use different combinations of the environment, sensor and archive140

sub-models, while neglecting possible dating and measurement uncertainties. In the following, we will give a brief overview

over the model structures and parameters. A full description of the models can be found in the corresponding references.

3.1 Tree rings

Tree rings are one of the most important archives for palaeoclimate reconstructions of the last millennium (Bradley, 2015;

St. George, 2014; St. George and Esper, 2019). To model the tree ring width as a function of time at a particular site, we145

use the intermediate complexity model Vaganov-Shashkin-Lite (VS-Lite) (Tolwinski-Ward et al., 2011). This is a reduced

version of the full Vaganov-Shashkin model (Vaganov et al., 2006) and requires monthly input data of temperature T and
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either precipitation P or soil moisture M . Additional model parameters are thresholds for temperature and soil moisture below

which growth is not possible and above which growth is optimal (T1,M1,T2,M2), the latitude of the site Φ, and integration

start and end months I0 and If that set the period over which climate is responsible for growth in a given year.150

If precipitation is given, the Leaky Bucket model (Huang et al., 1996) is used as environment model to calculate the soil

moisture M(t) based on the water balance in soil. This model requires additional parameters such as the initial moisture

content of the soil M0, minimum and maximum soil moisture content Mmin,max, runoff parameters m, α and µ and the root

depth dr. The sensor model for the tree ring width then basically relies on the principle of limiting factors (Fritts, 1976), that

is, it assumes that tree ring growth is limited by the resource that is the scarcest for optimal growing conditions, i. e., in this155

case, the temperature or the soil moisture. A temperature-based growth response is calculated as

gT (t) =


0 if T (t)< T1
T (t)−T1
T2−T1

if T1 ≤ T (t)≤ T2

1 if T2 > T (t)

(5)

and similarly, a growth response gM (t) is calculated for soil moisture. In addition, a third insolation-based growth response

gE(t) is calculated based on the mean of the normalised lengths of the day for each month. The total growth response g(t) of

the tree to the climatic input is then given as the minimum of the temperature and moisture based growth responses modulated160

by the insolation based growth response,

g(t) = gE(t)min{gT (t),gM (t)} . (6)

To obtain the annual growth response from those monthly data, the model integrates the growth response g(t) over those

months that are specified as the start and end months I0 and If . Finally, the annually resolved time series of tree ring width

anomalies is obtained by normalising the annual growth response to zero mean and unit variance.165

:
It
::::::
should

:::
be

:::::
noted

:::
that

::::
this

:::::
model

:::::
does

:::
not

::::
take

::::
into

::::::
account

:::::::
juvenile

::::
tree

:::::::
growth.

::::
Real

::::
tree

:::
ring

::::::
width

::::
data

:::
are

::
of

::::::
course

::::::
subject

::
to

:::::::
juvenile

::::::
growth

::::
and

:::
the

:::::
effect

::
is
:::::::
usually

:::::::::
subtracted

::::
from

:::
the

:::::::::
measured

::::
data.

::::::::
Problems

::::::
arising

:::::
from

::::
this

:::
are

::::
thus

:::::::::
disregarded

::
in

:::
the

::::::
model

:::::
which

:::
we

::::
will

::::::
further

::::::
address

:::::
when

:::::::::
discussing

:::
the

:::::
results

:::
for

:::
the

::::::
model.

:

To set the model parameters to realistic values, we use an exemplary real-world data set of a local tree ring width index

chronology from eastern Canada (54.2◦ N, 70.3◦W) that was previously used for regional summer temperature reconstruc-170

tion (Gennaretti et al., 2014). The quality of this data set with respect to data homogeneity, sample replication, growth co-

herence, chronology development, and climate signal has been ranked high (Esper et al., 2016). Regional average annual

temperature is about −3.8◦C with average maximum temperatures of 16◦C in July and minimum temperatures of −23◦C in

January. The average annual precipitation sum is 693 mm with a monthly minimum of about 30 mm in February/March and a

maximum of about 100 mm in September. This information has been used in order to choose the mean and standard deviations175

of the climatic input variables and their annual cycles. An overview of the climate input and also the model parameters is given

in Table 1. To determine the threshold parameters, we used the Bayesian parameter estimation as suggested in Tolwinski-Ward

et al. (2013). The parameters for the Leaky Bucket model are chosen as recommended in Tolwinski-Ward et al. (2011).
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Table 1. Climatic input variables and model parameters for the tree ring width model as derived from the eastern Canada data (Gennaretti

et al., 2014).

variable description value

Tm mean temperature at site −3.8◦ C

Pm mean annual precipitation sum 693 mm

Φ latitude of site 54.2◦N

I0,f integration period influencing growth [1,12]

T1,2 temperature thresholds for growth [5.8,17]◦C

M1,2 soil moisture thresholds for growth [0.032,0.24]

Mmin,max minimum/maximum soil moisture content [0.01,0.76]

M0 soil moisture content at start of simulation 0.2

m runoff parameter 4.886

α runoff parameter 0.093 month−1

µ runoff parameter 5.8

dr root depth 1000 mm

3.2 Lake sediments

Records from lake sediments are available from many regions worldwide and can provide information about past temperatures180

and precipitation, depending on the regional boundary conditions and measured proxy (Cohen, 2003). We here model branched

glycerol dialkyl glycerol tetraethers (brGDGTs) from lacustrine archives that have been related to air temperatures by using

one of the sensor models provided in the PRYSM v2.0 framework (Dee et al., 2018). For this, as model input, a time series of

mean annual air temperature T is required.

BrGDGTs are produced by bacteria and their degree of cyclisation and methylation has been related to soil temperatures,185

lake pH, and also to mean annual air temperatures (Weijers et al., 2007; De Jonge et al., 2014; Russell et al., 2018). The degree

of methylation is quantified by a methylation of branched tetraether (MBT) index. The sensor model employs the MBT′5ME

index that only uses 5-methyl isomers. In particular, the calibration of Russell et al. (2018) is used, in which the mean annual

air temperature is related to the MBT′5ME index via the equation

MBT ′5ME = (T + 1.21)/32.42. (7)190

The archive model then accounts for bioturbation and mixing of the sediments using the TURBO2 model (Trauth, 2013).

TURBO2 models the benthic mixing effects on individual sediment particles by assuming that in a mixed layer of a specified

thickness on top of a sediment core, instantaneous mixing of the sediment particles occurs, while the rest of the core is not

affected by the mixing. In addition to the time series of the sensor model output, the archive model requires three further input

parameters, the abundance of the signal carrier over time (abu), the mixed layer thickness over time (mxl), and the number195
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Table 2. Climatic input variables and model parameters for the lake sediment model as derived from the eastern Canada data (Gennaretti

et al., 2014).

variable description value

Tm mean temperature at site −3.8◦ C

abu abundances of input species 200

mxl mixed layer thickness 4

numb amount of measured foraminifera 10

of fossil foraminifera on which the proxy signal is measured (numb). The model then returns time series of original and

bioturbated abundances and corresponding proxy signatures for the original and a second virtual species that is required to

keep the total abundance of all species constant over time. The bioturbated proxy signatures of the first species are then used

as final proxy for the mean annual air temperature.

To tune the climatic input variables, we use the climatic setup corresponding to the one used for the tree ring archive in200

eastern Canada, while for the model parameters, we use typical values for lake sediments that are taken as default in the

PRYSM implementation of the lake archive model (Dee et al., 2018). In particular, it should be noted that for the abundances

of the input species and the mixed layer thickness, we use constant values over time. The climatic and model input parameters

are specified in Table 2.

3.3 Speleothems205

Oxygen isotope fractions of speleothems have been shown to provide valuable insights into past climate variability (Wong and

Breecker, 2015). We here model the isotopic composition of speleothems by using the speleothem model presented within

the PRYSM framework (Dee et al., 2015). This intermediate-complexity model is based on the model in Partin et al. (2013)

and requires the mean annual temperature T and the mean of the precipitation-weighted annual isotopic composition of the

precipitation δ18OP as input. Additionally, the ground water residence time τgw has to be specified.210

The sensor model covers processes in the karst and the cave, while processes in the soil such as evapotranspiration are

neglected. The model filters the δ18OP signal by applying an aquifer recharge model to simulate the storage and thus the mixing

of water of different ages in the karst. This process is parameterised by the mean transit time τgw. The isotopic composition

of the cave water is then given as the convolution (∗) of δ18Ow with the impulse response of the aquifer recharge model

g(t) = τ−1gw exp(−tτgw) for t > 0:215

δ18Od = g(t) ∗ δ18OP . (8)
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Table 3. Climatic input variables and model parameters for the speleothem δ18O model as derived from the Dongge cave data (Wang et al.,

2005).

variable description value

Tm mean temperature at site 15.6◦ C

δ18OP mean isotopic composition of precipitation −8.05 ‰

τgw mean aquifer transit time 5 years

Finally, to obtain the isotopic composition of the flowstone calcite δ18Oc, the model implements a temperature-dependent

fractionation (Wackerbarth et al., 2010)

δ18Oc =
δ18Od + 1000

1.03086
exp

(
2780

T 2
a

− 2.89

1000

)
− 1000 (9)

with the temperature Ta being the decadal average of T that is calculated using a Butterworth filter (Zumbahlen, 2008).220

The parameters for the speleothem δ18O model are tuned by using the data of stalagmite DA from Dongge cave (Wang et al.,

2005) which is one of the most studied speleothem data sets. Dongge cave is located in Southern China (25.3◦ N, 108.1◦ E)

at an elevation of 680 m and the data could be related to the history of the Asian monsoon of the last 9,000 years. The proxy

values have an average of −8.05 ‰ and the average temperature in the cave is 15.6◦C. The mean of the precipitation-weighted

isotopic composition of the input is chosen such that the average of the model output data equals the average of the Dongge225

cave proxy data. There is no information available about the mean transit time, i. e., the time the water has spent inside the karst

before entering the cave. We here choose to use an average transit time of five years, which is slightly larger than the average

sampling rate of the data (4.2 years). An overview of the input variables and model parameters is given in Table 3.

3.4 Ice cores

Proxy time series from ice cores have been used in a variety of contexts to study past climate variability on different time230

scales (Jouzel, 2013; Thompson et al., 2005). As for the speleothem δ18O, we use the model for ice core δ18O that is imple-

mented and presented within the PRYSM framework (Dee et al., 2015). The model requires the precipitation-weighted mean

annual isotopic composition of the precipitation δ18OP as input. Additional parameters are the mean temperature at the site

Tm, the altitude of the glacier z, the mean surface pressure p, the mean accumulation rate at the site A, and the total depth of

the core hmax which is given by the time span of the observations times the average accumulation rate.235

The sensor model corrects the isotopic composition of the precipitation for the altitude of the glacier by using the relation

δ18Oice = δ18OP +
z

100
a, (10)

with a describing the altitude effect. The archive model then accounts for compaction and diffusion within the ice core. First,

the density of the core has to be calculated as a function of the depth of the core. For this, an adapted version of the firn

densification model by Herron and Langway is used (Herron and Langway, 1980). From the density and the mean temperature240
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Table 4. Climatic input variables and model parameters for the ice core δ18O model as derived from the Quelccaya ice cap data (Thompson

et al., 2013; Yarleque et al., 2018).

variable description value

δ18OP mean isotopic composition of precipitation −3.75 ‰

Tm mean temperature at site −3.99◦ C

A average accumulation rate at site 1.15 m w.e./a

p mean surface pressure at site 1 Atm

z altitude of site 5670 m

ρ0 surface density of snow at site 300 kg/m3

a altitude effect −0.25 ‰/100 m

Tm, we can then compute the diffusion length σ within the core as a function of the depth h (Johnsen et al., 2000). This, in

turn, is used to calculate the final proxy time series δ18Od by convolving the isotopic signal of the ice δ18Oice with a Gaussian

kernel function with standard deviation equalling the diffusion length at a given depth,

δ18Od =
1

σ
√

2π
exp

(
−h2

2σ2

)
∗ δ18Oice, (11)

where the convolution is again denoted by the asterisk (∗).245

To tune the climatic input variables and model parameters of the ice core δ18O model, we use an exemplary real world data

set of the Quelccaya ice cap (Thompson et al., 2013) which is one of the most studied ice core data sets outside the polar

regions. The Quelccaya ice cap is located in the Peruvian Andes (13◦56′ S, 70◦50′W) at an altitude of 5670 m above sea level.

The average accumulation rate is 1.15 m water equivalent per year and the mean δ18Oice is −17.9 ‰. The average annual

temperature over the last decade at the Quelccaya ice cap is given as Tm =−3.99◦ C (Yarleque et al., 2018). An overview of250

the climatic input variables and the model parameters can be found in Table 4.

4 Input data

We now introduce the data sets that we use as input for the proxy system models. We first consider two stationary stochastic

processes, namely Gaussian white noise (GWN) and an autoregressive process of order 1 (AR(1) process) to evaluate whether

such input can lead to the detection of dynamical anomalies in the proxy time series. Then, we consider non-stationary versions255

of the two well-known Rössler (ROS) and Lorenz (LOR) systems. For all those processes, time series of length N = 1,000 are

independently created to describe temperature, precipitation and precipitation-weighted oxygen isotope fractions as detailed

below, where the precipitation is proportional to negative temperature. Additionally, we use data from the last millennium

reanalysis project (Hakim et al., 2016; Tardif et al., 2019). Then, as for the tree ring width model monthly input is required, an

annual cycle is added to the temperature and precipitation data. The amplitude of the annual cycle is chosen according to the260

climatic boundary conditions of the tree ring width index time series from eastern Canada presented in Sec. 3. Finally, yearly
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means for temperature and sums for precipitation are calculated for those models that require yearly input. The input time

series are normalised to zero mean and unit standard deviation, and for each model, the mean is adjusted to the corresponding

climatic boundary conditions.

4.1 Gaussian white noise265

For the case of GWN, we draw N data points independently at random from the probability distribution

pG(x) =
1√
2πσ

exp

(
(x−µ)2

2σ2

)
, (12)

where σ = 1 is the standard deviation and µ= 0 is the mean of the distribution. We do not expect to detect significant dynamical

anomalies from time series created in this way as the process is stationary.

4.2 Autoregressive process of order 1270

For the AR(1) process, we create a time series of length N by using the relation

x(t) = αx(t− 1) + εt (13)

with εt a Gaussian random variable with zero mean and constant standard deviation σε = 0.5. The scaling factor is given as

α= 0.7 corresponding to the approximate value that we obtained when fitting an AR(1) process to the tree ring width data

from eastern Canada (Gennaretti et al., 2014). As initial condition, we use x(0) = 0.3. The resulting time series is normalised275

to zero mean and unit standard deviation. As for GWN, we do not expect to detect significant dynamical anomalies in the

corresponding time series.

4.3 Non-stationary Rössler system

::
In

:
a
::::
next

:::::
step,

::
we

::::
use

::::
data

::::
from

::
a
::::::::::::
non-stationary

::::::
version

:::
of

:::
the

::::::
Rössler

::::::
system

::::::
which

:::::::
exhibits

:::::::::
non-trivial

:::
and

::::
rich

::::::::
cascades

::
of

::::::::::
bifurcations

::::::
despite

:::
its

:::::
rather

::::::
simple

:::::::
attractor

:::::::::
topology. The Rössler system is defined by the set of ordinary differential280

equations (ODEs) (Rössler, 1976)

ẋ(t) =−y(t)− z(t)

ẏ(t) = x(t) + ay(t) (14)

ż(t) = b(t) + z(t)(x(t)− c).

:
It
::::::
should

::
be

:::::
noted

::::
that

:::
this

::::::
model

::
is

:::
not

:::::
meant

::
to

:::::::
simulate

::::
real

:::::
world

::::::
climate

:::::::::
dynamics.

:
285

We here use the two fixed parameters a= 0.2 and c= 5.7 and a time varying parameter b(t) = b0+∆b(t−t0) with b0 = 0.02

and ∆b= 0.001. We numerically solve this system of ODEs with a temporal resolution of ∆t= 0.1 for times in the range

[0,730], discard the first 300 points and then use every seventh point of the remaining time series of the x-component to end up

with a time series of length N = 1,000. As initial conditions we use x(0) = 0.5, y(0) = 0 and z(0) = 0. Again, we normalise
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the time series to have zero mean and unit standard deviation. The resulting time series and the corresponding Feigenbaum290

diagram of the stationary system (i. e., b= const.) are shown in the Supplementary Material in Fig. S1.

From the Feigenbaum diagram, it becomes clear that we expect to detect alternating periods of lower and higher dimensional

dynamics in the time series. In particular, we stress that we do not expect to detect the bifurcation points but periods of

outstandingly high- or low-dimensional dynamics in between them as we use random shuffling surrogates for the pointwise

significance test.295

4.4 Non-stationary Lorenz system

The Lorenz system
:::::
shows

:
a
:::::

more
:::::::::::
complicated

:::::::
attractor

:::::::
topology

::::
than

:::
the

:::::::
Rössler

::::::
system

::::
and

:::
has

::::
been

:::::::::
originally

:::::::::
introduced

::
as

:
a
::::::
simple

:::
toy

:::::
model

:::
for

:::::::::::
atmospheric

:::::::::
convection

::::::::
processes

::::::::::::
(Lorenz, 1963)

:
.
::
It is given by the following set of ODEs (Lorenz,

1963):

ẋ(t) = a(y(t)−x(t))300

ẏ(t) = x(t)(b(t)− z(t))− y(t) (15)

ż(t) = x(t)y(t)− cz(t).

We here use the setting studied in Donges et al. (2011a) and correspondingly fix the parameters a= 10.0 and c= 8/3, while

the parameter b is again varied over time as b(t) = b0 + ∆b(t− t0) with b0 = 160.0 and ∆b= 0.02. We numerically solve

this system of ODEs with a temporal resolution of ∆t= 0.05 for times in the range [0,500] and use every fifth point of the x-305

component of the system to end up with a univariate time series of lengthN = 1,000. As initial conditions we use x(0) = 10.0,

y(0) = 10.0 and z(0) = 10.0. Again, we normalise the time series to have zero mean and unit standard deviation.

The stationary Lorenz system has been found to exhibit a shift from periodic to chaotic dynamics at b= 166.0 (Barrio

and Serrano, 2007), while for the transient system as described above, transitions could be detected at b= 161.0 and b=

166.5 (Donges et al., 2011a). Thus, we expect to detect regimes of more periodic dynamics for b < 166.5 and of more chaotic310

dynamics for b≥ 166.5 in terms of significantly high and low values of the network transitivity, respectively.

4.5 Last millennium reanalysis data

Finally, we consider reconstructed temperature and precipitation data of the years 501− 2000 AD from the last millennium

reanalysis project version 2 (Hakim et al., 2016; Tardif et al., 2019), which combines information from general circulation

models and from proxy measurements using palaeoclimate data assimilation. As no information about the isotopic composition315

of the precipitation is available, we only consider the models for tree ring width and lake sediments with this input. From

the available global gridded data, we use the standardised, thus, unit-less, ensemble average time series of temperature and

precipitation from the grid points with the coordinates closest to those for which we have calibrated the tree and the lake

model, that is, at (54◦ N, 70◦W).
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5 Results320

5.1 Time series properties

As a first step to evaluate the results, we take a look at the properties of the time series generated by
:::::
Before

::::::::
studying the different

proxy system modelsand compare them to the ,
:::
we

::::
note

:::
that

::::::::
applying

::::
some

:::::::
general

::::::
filtering

:::::::::
techniques

:::::
such

::
as

::::::
moving

:::::::
average

::::::
filtering

:::
or

:::::::::
exponential

::::::::::
smoothing

::
to

:::
the

::::::::
described

::::::::
stochastic

:
input time series . Supplementary Figures S2 to S4 display the

annually sampled input time series for temperature, precipitation and isotopic compositions and the corresponding output time325

series of the four proxy system models for the five input scenarios of GWN, the AR(1)process, the non-stationary Rössler

system, the non-stationary Lorenz system, and the last millennium reanalysis data. The expected low-pass filter effects of the

speleothem, ice and lake models due to the cave residence time, diffusion, and bioturbation, respectively, are directly visible in

the
::
on

:::
the

:::
one

:::::
hand

:::
and

:::
the

:::::::::::
deterministic

:::::
input

::::
time

:::::
series

:::
on

:::
the

::::
other

:::::
hand

:::::::
changes

:::
the

::::::
results

::
of

:::
the

:::::::::
windowed

:::::::::
recurrence

:::::::
network

:::::::
analysis

::
in

:::::::
different

:::::
ways

:::
(not

::::::
shown

::::
here

:::
for

:::::::
brevity).

::::
For

:::
the

::::::::
stochastic

:
time series, while for the tree model, such330

an effect is neither expected nor visible. Also, it should be noted that the tree ring model with the parameters as specified in

Table 1 seems to primarily respond to temperature rather than to precipitation, meaning that the limiting factor for tree growth

in eastern Canada is temperature, which is ecologically reasonable.

Normalised histograms, autocorrelation functions (acf) and estimated power spectral densities (psd) of the different input

and proxy system model output time series for GWN, AR(1), ROS, LOR, and LMR (top to bottom). The input variables are335

denoted in grey, the tree model output in green, the lake model output in blue, the speleothem model output in red, and the ice

model output in magenta. For further evaluation, we standardise all time series to zero mean and unit variance and examine

some properties of the different input and output series. The left panels of Fig. ?? show the normalised histograms of the input

and output variables. To quantify differences in the histograms, we consider the skewness of the distributions of the different

time series (see Supplementary Table S1). We observe that the resulting time seriesfrom the tree model all show significant340

deviations in skewness from the input data, which is probably due to the thresholding of the growth response functions for

temperature and soil moisture. For the other proxy models, we observe a significant influence of the model on the skewness of

the output for those inputs that are not stochastic. This might either be related to the smaller confidence bounds due
::
the

:::::::
filtering

:::::
mostly

::::::::
changes

:::
the

:::::::::
variability

::
of

:::
the

:::::::::
calculated

:::::::
network

::::::::::
transitivity.

:::
In

::::::::
particular,

:::::::
filtering

:::
an

::::::
AR(1)

:::::::
process

::::
with

:::::::
moving

:::::::
averages

::::::::
produces

:::::::
extended

::::
and

::::::::
additional

::::::::
areawise

:::::::::
significant

::::::
patches

:::
of

::::
high

:::::
values

:::
of

:::
the

:::::::
network

:::::::::
transitivity.

:::
In

::::
turn,

:::
for345

::::::::::
deterministic

:::::
input

::::
time

::::::
series,

::
the

:::::::::
variability

::
of

:::
the

:::::::
network

:::::::::
transitivity

:::::::
remains

:::::
rather

::::::
robust

:::::
under

:::::::
filtering.

:::::::::::
Furthermore,

:::
the

:::::
results

:::
for

:::
the

:::::::
network

::::::::::
transitivity

::::::
remain

::::::
similar

:::::
when

::::::
adding

:::::
white

:::::
noise to the different surrogate generation, or hint to a

different reaction of the models to different distributions of the input data
::::
input

::::
time

:::::
series

:::
up

::
to

::::::::::::
signal-to-noise

:::::
ratios

::
of

::
10

::::
and

::::
show

::::::::::
increasingly

::::::::
different

::::::::
variability

:::
for

:::::
lower

:::::::::::::
signal-to-noise

:::::
ratios.

Finally, we have a look at the autocorrelation functions and the power spectral densities of the different input and proxy model350

:::
We

::::
then

::::
turn

::
to

:::
the output time series . The middle and right panels of Fig. ?? show the resulting autocorrelation functions

and estimates of the power spectral density obtained using the Welch method (Welch, 1967). As before, we observe that the

autocorrelation function and power spectral density of the tree ring model output closely follow the respective temperature
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Figure 1. Network transitivity (colour-coded) for GWN model in- and output with areawise significance test (contours).

input, while the speleothem model output shows the expected loss of power in the higher frequencies. Similarly, a loss of

power in the higher frequencies can be observed in the ice core model output but not as pronounced as for the speleothem355

model output. The same holds for the lake sediment model output except for the Rössler and Lorenz scenarios, where the lake

model output shows more power in the higher frequencies than the corresponding input . This is most likely related to the

different time-scales of variability present in those time seriesin comparison with the others and the particular choice of mixed

layer thickness in the lake sediment model, mxl = 4.

5.1 Windowed recurrence network analysis360

In a second step, we analyse the different proxy
::
of

:::
the

:::::::
different

:::::
proxy

:::::::
system

::::::
models

::::::
which

:::::::
combine

:::::
linear

::::
and

:::::::::
non-linear

:::::::::::::
transformations

:::
and

:::::::
filtering

:::
of

:::
the

:::::
input

:::::
time

::::::
series.

::::
The

:::::::
different

:::::
input

::::
and

:
model output time series using wRNA as

introduced in Sec. 2 and compare the results to those of the input time series
:::
and

:::::
some

:::::::
remarks

:::
on

::::
their

:::::::::
properties

:::
can

:::
be

:::::
found

::
in

:::
the

:::::::::::::
Supplementary

:::::::
Material. Figures 1 to 5 show the resulting network transitivity over time for the different input

time series. The analysis is combined with the areawise significance test and areawise
::::::::
Areawise significant points indicating365

anomalously low or high values of the network transitivity are highlighted by the contours.

:::::::
contours.

:
For Gaussian white noise (Fig. 1), we do not get any areawise significant points in the input temperature and

also the output of the tree ring width and the lacustrine archive models do not exhibit any areawise significant points
::::::
observe

::
the

::::::::
expected

:::::::
changes

::
in

:::
the

:::::::::
variability

::
of

:::
the

:::::::
network

:::::::::
transitivity

:::
for

::::::::
stochastic

:::::
input

:::::
when

:::::::::
processing

:::
the

::::
time

:::::
series

:::::::
through

:::::::
different

:::::
filters. For the isotopic composition of the precipitation, we find a patch of areawise significant anomalously low370
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Figure 2. Same as in Fig. 1, but for AR(1) model input.

values of the network transitivity
:
, which is a random artefact

::::::
artifact

:
in this particular realisation of GWN. The output of

the speleothem and the ice core model do not show this anomaly, i. e., the processing through the model causes the initially

significant (false positive) points to be missed . Additionally, the speleothem output shows a small patch of falsely identified

areawise significant high values of the network transitivity for small window width after t= 400
:::
and

::::::
creates

:::
an

::::::::
additional

:::::
patch

::
of

:::::::
areawise

:::::::::
significant

:::::::
network

:::::::::
transitivity

::
in

:::
the

::::
case

::
of

:::
the

::::::::::
speleothem

:::::
model.375

In the case of the AR(1) process (Fig. 2), we observe an areawise significant patch of anomalously high values of network

transitivity for the input temperature that is not apparent in the tree ring width and lake sediment model output. For the isotope

input, we do not find any areawise significant points, while the speleothem model shows two large and two small falsely

identified significant patches of network transitivity.
:::
That

:::
is,

::::
when

::::::::
recalling

:::
the

::::::
results

:::
for

:::
the

:::::::
filtering

::
of

:::
the

::::::
AR(1)

:::::::
process,

::
we

::::
find

:::
that

:::
the

::::::::::
speleothem

:::::
model

::::::
seems

::
to

:::::::::
particularly

:::::::
involve

:
a
::::
way

::
of

:::::::
filtering

:::
that

::::::::
produces

::::::
patches

::
of
::::::::
areawise

:::::::::
significant380

::::
high

:::::
values

::
of

:::
the

:::::::
network

:::::::::
transitivity

:::::
while

:::
the

:::::
other

::::::
models

:::::
rather

::::::
change

:::
the

:::::::::
variability

::
of

:::
the

:::::::::
stochastic

:::::
input.

For the non-stationary Rössler system (Fig. 3), the input time series show areawise significant patches of low network

transitivity values in the parameter range b ∈ [0.30,0.35] and of high network transitivity for b ∈ [0.55,0.57]. The isotope input

has an additional small areawise significant patch around b= 0.15. The
::
As

::::::::
expected

:::
for

:::::::::::
deterministic

:::::
input,

:::
we

:::::::
observe

::
a

::::
much

::::::
better

::::::::
agreement

:::
of

::
the

:::::::::
variability

::
of

:::
the

:::::::
network

:::::::::
transitivity

:::
for

:::
the

:::::
input

:::
and

::::::
model

:::::
output

::::
time

:::::
series

::::
than

:::
for

:::
the

::::
two385

::::::::
stochastic

::::
input

::::
and

::::::::::::
corresponding

:::::
model

::::::
output

::::
time

:::::
series.

::::
Still,

:::
for

:::
the

:
tree ring and lake sediment modeloutputs again show

no areawise significant points, i. e., the model processing
:
,
:::
the

:::::::::
processing

:::::::
through

:::
the

:::::
model

:
prevents the significant points to
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Figure 3. Same as in Fig. 1, but for non-stationary Rössler system input. The vertical lines mark the expected bifurcation points identified in

the Feigenbaum diagram in Supplementary Fig. S1.

be detected. The speleothem model output only shows the small areawise significant patch at b= 0.15 but not the others, while

the output from the ice core model displays the areawise significant patch for b ∈ [0.30,0.35].

The input time series of the non-stationary Lorenz system (Fig. 4) exhibits a large patch of areawise significant low values390

of the network transitivity for high values of b and a small patch of areawise significant high values of the network transitivity

around b= 163.2. The isotope input shows another small significant patch around b= 166.6. The
:::::::
resulting

:::::::
network

:::::::::
transitivity

::
for

:::
all

:::::
proxy

::::::
system

:::::
model

::::::
output

::::
time

:::::
series

:::::
except

:::
the

:::
one

::::
from

:::
the

::::
lake

:::::
model

:::::::::
reproduce

:::
the

::::
shift

::
in

::::::
network

:::::::::
transitivity

:::::
from

:::::
higher

::
to

:::::
lower

::::::
values

::::
after

::::::::
b= 166.5

::
as

::::::::
expected

:::
for

:::
this

:::::::::::
deterministic

:::::
input.

:::
The

:
tree ring width

:::::
model output reproduces the

large and the small patch of significant values of the network transitivity and additionally exhibits another areawise significant395

patch of high transitivity values close to the small patch. The lake sediment output does not show any areawise significant

points. The speleothem output shows a large patch of areawise significant high transitivity values for
::
In

:::
the

:::::::::
speleothem

::::::
model

::::::
output,

:::
not

::
the

::::
low

:::::
values

::
of

:::
the

:::::::
network

:::::::::
transitivity

::
at

:::
the

:::
end

::
of

:::
the

::::
time

:::::
series

:::
but

:::::
rather

:::
the

::::
high

:::::
values

:::
for

:
b ∈ [162.5,166.5]

and, like this, captures the small patch from the isotope input, but also exhibits a large number of falsely identified significant

points, while the large patch of low transitivity values from the input is not found to be areawise significantfor the model output400

except for a very small part of it
::
are

::::::::
classified

::
as

::::::::
areawise

:::::::::
significant,

:::::
which

::::::
might

::::
again

:::
be

::::::
related

::
to

:::
the

::::::::
particular

:::::::
filtering

::
in

::
the

::::::::::
speleothem

::::::
model

::::::::
favouring

::::::::
areawise

:::::::::
significant

::::
high

:::::
values

:::
of

:::
the

:::::::
network

:::::::::
transitivity. The ice core model output only

shows a small patch for high values of b and low values of the window width and misses most of the areawise significant points

apparent in the isotope input.
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Figure 4. Same as in Fig. 1, but for non-stationary Lorenz system input. The vertical lines denote the transitions at b= 161.0 and b= 166.5

as detected in Donges et al. (2011a).

Figure 5. Network transitivity (colour-coded) for last millennium reanalysis input at (54◦ N, 70◦ W) and corresponding output with areawise

significance test (contours). The vertical lines denote the approximate onset dates of the Medieval Climate Anomaly, the Little Ice Age, and

the industrial age, respectively.
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Table 5. Fraction of missed and falsely identified significant points in the different proxy models with respect to the corresponding reference

input variables.

archive reference GWN AR(1) ROS LOR LMR

tree rings temperature missed 0.000 0.056 0.012 0.003 0.004

falsely identified 0.000 0.000 0.000 0.064 0.000

lake sediments temperature missed 0.000 0.056 0.011 0.083 0.004

falsely identified 0.000 0.000 0.000 0.000 0.000

speleothems isotopes missed 0.010 0.000 0.011 0.106 –

falsely identified 0.001 0.105 0.001 0.289 –

ice cores isotopes missed 0.010 0.000 0.006 0.109 –

falsely identified 0.000 0.000 0.011 0.001 –

For the last millennium reanalysis data temperature input (Fig. 5), we find a patch of areawise significant values of anoma-405

lously low values of the network transitivity around the year 900 AD, roughly coinciding with the onset of the European

Medieval Climate Anomaly (
:::::
MCA,

:
denoted by a vertical line at 950 AD). The other vertical lines depict the approximate onset

of the European Little Ice Age
:::::
(LIA)

:
at 1400 AD, and the onset of the industrial age at 1850 AD. It should be noted that the

timings and imprints of these episodes are known to exhibit substantial regional differences (Franke and Donner, 2017), thus,

the reference lines are only for orientation. The model output time series do not show any areawise significant points even410

though the network transitivity of the tree ring model output
:::::
model

::::::
output

::::
(and

:::::::::
particularly

:::
the

::::
tree

::::
ring

:::::
width

:::::
model

:::::::
output)

varies similarly as the network transitivity of the temperature input with higher values corresponding to lower-dimensional

dynamics during the Medieval Climate Anomaly
:::::
during

::::
the

:::::
MCA

:
and lower values corresponding to higher-dimensional

dynamicsduring the Little Ice Age
:::::
during

:::
the

:::::
LIA.

:::
The

:::::
MCA

:::
has

:::::
often

::
be

::::::::
attributed

::
to

:::::
more

:::::
stable

::::::
climate

:::::::::
conditions

:::::
while

:::
the

:::
LIA

::::
has

::::
often

::::
been

:::::::::
associated

::::
with

:::::
more

:::::::
variable

::::::
climate

:::::::::
conditions

::::
even

::::::
though

::::
this

::::::
imprint

:::
has

::::::
varied

::::::
locally

:::
and

:::
has

:::::
been415

::::::
mainly

::::::::
discussed

:::
for

:::::::
Europe.

:::::
Thus,

:::::
given

:::
the

:::::::::
theoretical

:::::::
relation

:::::::
between

:::::::
network

:::::::::
transitivity

::::
and

:::
the

::::::::::::
dimensionality

:::
of

:::
the

:::::::
system’s

::::::::
dynamics

::::::::::::::::::
(Donner et al., 2011a)

:
,
:::
we

::::::::
tentatively

::::::::
conclude

::::
that

:::
the

:::::
higher

::::::
values

::
of

:::
the

:::::::
network

:::::::::
transitivity

::::::
during

:::
the

:::::
MCA

:::
and

:::
the

:::::
lower

:::::
values

::
of

:::
the

:::::::
network

:::::::::
transitivity

::::::
during

:::
the

:::
LIA

::::::
reflect

:
a
:::::::::::
lower/higher

::::::::::
dimensional

::::::::
dynamics

::
of

:::
the

::::::
system

:
at
::::
this

::::::::
particular

:::::::
location

::
in

:::::
terms

::
of

:::
the

:::::::::
complexity

::
of

::::::::
temporal

::::::::
variations

:::::
rather

::::
than

::::
just

:
a
::::::
change

::
in

::::::::
variance.

::
In

:::::
terms

::
of

:::
the

::::
time

:::::
series

::::::::
properties

:::
for

:::
the

:::::::
different

:::::::
periods,

:::
we

::::::
indeed

::::::::::
additionally

:::::::
observe

::
an

::::::::
increase

::
in

:::::::
variance

::
of

:::
the

::::
time

:::::
series

:::::
from420

::
the

::::::
MCA

::
to

:::
the

::::
LIA,

::::::
which

::
is

::::
very

:::::
likely

::::
also

:::::::
reflected

::
in

:::
the

::::::::
different

:::::::::
recurrence

::::::::
networks

::::
and,

::::
thus,

:::
the

::::::::
resulting

:::::::
network

:::::::::
transitivity.

:::
We

::::
note

::::
that

:::
this

:::::::::::::
non-stationarity

:::
in

:::::::
variance

:::::
along

::::
with

:::
the

:::::::::
MCA-LIA

::::::::
transition

::
in

:::
the

::::::::::::::
European/North

:::::::
Atlantic

:::::
sector

:::
has

::::
also

::::
been

:::::::
reported

::
as

:::::
being

::::::::
reflected

::
in

::::
other

:::::::::
non-linear

::::::::::::
characteristics,

::::::
which

::::
have

::::
been

:::::::::
previously

:::::::::
interpreted

::
as

::
a

:::::::
hallmark

::
of

:::::
some

:::::::::
dynamical

:::::::
anomaly

::::::::::::::::::::::::::::::::::::::::::
(Franke and Donner, 2017; Schleussner et al., 2015).

In order to quantify the effect of the proxy system models as nonlinear
::::::::
non-linear

:
filters of the input signal on the detection425

of areawise significant points, Table 5 displays the fraction of falsely identified and missed significant points in the different
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proxy models for the different input time series. We observe that for the tree ring width model, the lacustrine sediment model,

and the ice core model missed significant points are more common than falsely identified significant points, with the exception

of the Lorenz input for the tree ring width model. For the speleothem model, both falsely identified and missed significant

points occur. In fact, this model shows particularly high fractions of falsely identified and missed significant points, while430

overall, the ice core model seems to best reproduce the results of the input
:
in

:::::
terms

::
of

:::
the

:::::::::::
classification

::
of

::::::::
areawise

:::::::::
significant

:::::
points.

Taken together, the previous findings should raise awareness in the context of future applications of wRNA to palaeoclimate

proxy time series, suggesting that interpretations of results obtained for individual records only may not be sufficiently robust

for drawing substantiated conclusions. From a practical perspective, this calls for combining different time series from different435

proxies and/or archives from the same region to obtain further climatological knowledge from such kind of analysis (Donges

et al., 2015a; Franke and Donner, 2017).

6 Discussion and conclusions

In this paper, we have studied the suitability of windowed recurrence network analysis (wRNA) for detecting dynamical

anomalies in time series from different proxy archives. For this, we used proxy system models that simulate the formation440

of proxy archives, such as for example tree rings, lake sediments, speleothems, and ice cores, given some climatic input

variables like temperature and precipitation. We created artificial input time series with different properties and additionally

used temperature and precipitation data from the last millennium reanalysis project (Hakim et al., 2016; Tardif et al., 2019).

We then processed the input time series through the different proxy models and compared time series properties such as the

autocorrelation function for the input and model output time series. Finally, we contrasted the results of wRNA for the different445

input and model output time series.

We observed the expected loss of power in the higher frequencies for the lake sediment, speleothem, and ice core model

output time series (due to intrinsic smoothing /integration processes inherent to the physical system)and noted changes in

the skewness of the model output time series for the deterministic and real-world inputscenarios. The tree ring width model

showed changes in skewness also for the stochastic input
:::
first

:::::::::
compared

:::
the

:::::
results

:::
of

::::::
wRNA

:::
for

::::::::
stochastic

::::
and

:::::::::::
deterministic450

::::
input

::
to

::::::::::::
corresponding

::::::
results

:::::
when

::::::
filtering

:::
the

::::
time

:::::
series

:::::
using

:::::::
moving

::::::
average

:::::::
filtering

::::
and

:::::::::
exponential

:::::::::
smoothing

:::::::
(results

:::
not

::::::
shown).

:::
We

::::::
found

:::
that

:::::::
filtering

:::::
alters

:::
the

::::::::
variability

::
of

:::
the

:::::::
network

:::::::::
transitivity

::::
with

::
a
:::
bias

:::::::
towards

:::::::::
additional

:::
and

::::::::
extended

::::::
patches

::
of

:::::::
areawise

:::::::::
significant

::::
high

:::::::::
transitivity

:::::
values

:::
for

::::::::
stochastic

:::::
input. For the wRNA

:::
The

:::::::
network

:::::::::
transitivity

::
of

:::::::::::
deterministic

::::
input

::::::
seems

::
to

::
be

:::::
rather

::::::
robust

:::::
under

::::
such

:::::::
filtering.

::::::
When

:::::::::
processing

:::
the

::::
input

::::
time

:::::
series

:::::::
through

:::
the

:::::::
different

::::::
proxy

::::::
system

::::::
models,

:::::
these

:::::::::
differences

:::
for

::::::::
stochastic

::::
and

:::::::::::
deterministic

::::
input

:::::
were

::::
also

:::::::
apparent.

:::
In

:::::
terms

::
of

:::::::
areawise

:::::::::
significant

:::::::::
anomalies455

::
of

:::
the

:::::::
network

:::::::::
transitivity, we found that time series of tree ring width and brGDGTs in lake sediments have problems with

missing areawise significant points, while the isotopic composition of speleothems also exhibits falsely identified significant

points
::
of

::::
high

::::::
values

::
of

:::
the

:::::::
network

:::::::::
transitivity

::::::::
probably

::::::
related

::
to

:::
the

::::
bias

:::::::
towards

::::::
higher

:::::
values

::
of

:::
the

::::::::
network

:::::::::
transitivity
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:::
due

::
to

:::
the

:::::::::
particular

:::::::
filtering

::
in

:::
the

::::::
model. Time series of the isotopic composition of ice yield comparable results to the

corresponding input but also sometimes miss significant points.460

For the stochastic input time series as for example the isotope input of GWN, we found some areawise significant artefacts

in single realisations. To improve the reliability of the results for the these processes, more realisations should be considered

to confirm
:::::
Taken

:::::::
together,

::::
our

::::::
results

::::
show

:::
the

:::::
need

::
of

::::::
further

::::::::
studying

:::
the

::::::
effects

::
of

::::::::
different

::::::
filtering

:::::::::::
mechanisms

:::
on

:::
the

:::::
results

::
of

:::
the

::::::
wRNA

::
in

:::::
order

::
to

:::::::
interpret the results and to exclude the influence of random artefacts. As we applied an areawise

significance test to identify dynamical anomalies which reduces the number of false positives in the analysis results, this can465

also reduce the number of true positives and increase the number of false negatives independent of whether considering model

input or output time series. In this regard, we also observed that time series with stronger autocorrelations in most cases

show higher correlations for
::::
draw

:::::::
reliable

::::::::::
conclusions

:::::
when

::::::::
analysing

:::::::::
real-world

:::::
data.

::::
This

::::::::::
particularly

:::::::
concerns

::::
data

:::::
from

::::::::::
speleothems

::
as

::::
they

::::
have

::::
been

::::::
studied

:::::
quite

::::
often

:::::
using

::::::::
windowed

:::::::::
recurrence

:::::::
analysis

:::::
(e. g.,

::::::::::::::::::::::::::::::::::
Donges et al. (2015a); Eroglu et al. (2016)

:
)
:::
and

:::::::
filtering

::::::
effects

::::
seem

::
to

::::
have

::
a

::::::::::::
non-negligible

:::::::
influence

:::
on

:::
the

:::::
results

:::
for

::::
this

:::
type

:::
of

::::::
archive.

:::::
Thus,

:::
the

::::
role

::
of the wRNA470

results in the different domains and, thus, have more restrictive bounds of the areawise significance test (not shown).
:::::
model

:::::::::
parameters

:::
that

:::::::
control

:::
the

:::::::
filtering

:::::
(here,

:::
the

:::::
mean

::::::
aquifer

::::::
transit

:::::
time)

::::::
should

::
be

:::::::
studied

::
in

::::
more

::::::
detail

:::
and

::
in

:::
the

:::::::
context

::
of

:::
the

:::::::::
real-world

::::::::::
applications,

::::::
should

:::
be

:::::
taken

:::
into

:::::::
account

:::
for

::::::::
estimates

::
of

:::::
these

:::::::::
parameters

:::
for

:::
the

:::::::::
particular

:::
data

:::
to

:::::
better

:::::::
interpret

::::::::::::
corresponding

:::::
results

:::
of

:::
the

:::::::
network

:::::::::
transitivity.

:

Falsely identified significant points in the model output, particularly present in the results for the speleothem model,475

might for the stochastic processes be
::::
Still,

:::
we

::::
want

:::
to

:::::
stress

:::
that

:::::
even

::::
then,

:::::::::
providing

:
a
:::::::

general
::::::
recipe

:::
for

::::::::::
interpreting

:::
the

:::::::
resulting

:::::::
network

::::::::::
transitivity

::
is

::::::
hardly

:::::::
possible

::
in

:::
the

::::::::::::::
(palaeo)climate

:::::::
context.

:::::::::::::
Climate-related

::::::::::::
interpretations

::::::
always

:::::
vary

::::::::
depending

:::
on

:::
the

:::::::
location

::::
and

::::
thus,

::::
local

:::::::::
boundary

:::::::::
conditions

::::
have

::
to

:::
be

::::
taken

::::
into

:::::::
account.

:::
As

:::::::::
motivated

::
in

:::::::
Section

::
2,

:::
the

:::::::
network

:::::::::
transitivity

:::
has

:::::
been related to the strong filtering within the model. For the Lorenz input, the processing through

the speleothem model leads to large fractions of both,falsely identified and missed significant points as the high
:::::::::
dynamical480

::::::::
regularity

::
of

:::
the

:::::::::
variations

::
in

:::
the

:::::::
analysed

:::::
time

:::::
series

::::
(e.g.,

::::::::::::::::::
Donges et al. (2011b)

:
)
::::
with

::::::
higher values of the network transi-

tivity before the transition at b= 166.5 are classified as significant, while in the input, the low values
::::::::::::
corresponding

::
to

::::
less

:::::::
irregular

:::::::::
variability

:::
and

::::
vice

:::::
versa.

::::
This

::
is

::
in

::::::::::
accordance

::::
with

:::
the

:::::::::::
interpretation of the network transitivity after b= 166.5 are

classified as significant. Missed significant points in the model output may also
::
as

:::
an

:::::::
indicator

:::
of

:::
the

::::::::::::
dimensionality

:::
of

:::
the

:::::::
system’s

:::::::::
dynamics.

::
In

::::
this

::::::
regard,

:::::::
detected

:::::::::
anomalies

::
in

:::
the

:::::::
network

::::::::::
transitivity

:::::
could be related to the processing through485

the model destroying some structure within the data such as the thresholding process in the tree ring width model
:::::
some

::::::
tipping

:::::
point,

:::
but

::
do

:::
not

::::
have

::
to
:::
be.

Future work should
:::
also

:
include the study of alternative proxy system models within this framework. Results of proxy sys-

tem models for both, the same proxies (but with more detailed systemic understanding of the formation of the proxies
:
,
::
as

:::
for

:::::::
example

:
a
::::
tree

::::
ring

:::::
width

:::::
model

::::::::::
accounting

:::
for

:::::::
juvenile

::::::
growth

::
of

:::
the

:::::
trees) and different proxy variables (in particular, for490

other lacustrine proxy variables), will complement the improved understanding of the suitability of wRNA for these types of

time series and will advance the interpretation of the corresponding results. Also, sensitivity studies for the different model pa-
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rameters are of interest to better interpret results obtained with wRNA for a given real-world data set. This concerns particularly

the mean aquifer transit time of the speleothem model.

:::
For

:::
the

::::::::
stochastic

:::::
input

::::
time

:::::
series

::
as

:::
for

:::::::
example

:::
the

:::::::
isotope

::::
input

::
of

::::::
GWN,

:::
we

:::::
found

:::::
some

::::::::
areawise

::::::::
significant

::::::::
artefacts495

::
in

:::::
single

::::::::::
realisations.

:::
To

:::::::
improve

:::
the

::::::::
reliability

:::
of

:::
the

:::::
results

:::
for

:::
the

:::::
these

:::::::::
processes,

::::
more

::::::::::
realisations

::::::
should

::
be

::::::::::
considered

::
to

::::::
confirm

:::
the

::::::
results

:::
and

::
to
:::::::

exclude
:::
the

::::::::
influence

::
of

:::::::
random

::::::::
artefacts.

::
As

:::
we

:::::::
applied

::
an

::::::::
areawise

::::::::::
significance

:::
test

::
to

:::::::
identify

::::::::
dynamical

:::::::::
anomalies

::::::
which

::::::
reduces

:::
the

:::::::
number

::
of

:::::
false

:::::::
positives

:::
in

:::
the

:::::::
analysis

::::::
results,

:::
this

::::
can

::::
also

::::::
reduce

:::
the

::::::
number

:::
of

:::
true

::::::::
positives

:::
and

:::::::
increase

:::
the

::::::
number

::
of
:::::
false

::::::::
negatives

::::::::::
independent

::
of

:::::::
whether

::::::::::
considering

:::::
model

:::::
input

::
or

:::::
output

::::
time

::::::
series.

::
In

:::
this

::::::
regard,

:::
we

::::
also

::::::::
observed

:::
that

::::
time

:::::
series

:::::
with

:::::::
stronger

:::::::::::::
autocorrelations

::
in

:::::
most

::::
cases

:::::
show

::::::
higher

::::::::::
correlations

:::
for

:::
the500

::::::
wRNA

:::::
results

::
in
:::
the

::::::::
different

:::::::
domains

::::
and,

::::
thus,

::::
have

:::::
more

::::::::
restrictive

:::::::
bounds

::
of

:::
the

:::::::
areawise

::::::::::
significance

::::
test

:::
(not

:::::::
shown).

:

Additionally, the study of properties of the analysed time series can serve as starting point to judge the suitability of wRNA

for other data to be analysed. In particular, the effect of filtering the time series with different non-linear filters prior to the

analysis as done within the different proxy system models can and should be studied more systematically. In particular
::::
Also,

the theory of non-linear observability might give an interesting new perspective on this as the filtering can be seen as creating a505

new observable, and the choice of observable has already been shown to influence results of recurrence quantification analysis

and recurrence network analysis (Portes et al., 2014, 2019). Moreover, further systematically studying the relation between

the autocorrelation of a time series and the resulting network properties might yield additional information on the role of the

different archives for wRNA.
::
the

::::::
results

::
of

:::::::
wRNA.

Code availability. Exemplary Python code for the windowed recurrence network analysis including the areawise significance test is available510

at https://gitlab.pik-potsdam.de/lekscha/awsig. A comprehensive implementation of recurrence network analysis can be found in the open-

source Python package pyunicorn (Donges et al., 2015b), which can be found at https://github.com/pik-copan/pyunicorn.
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Figure S1. Transient time series of the x-component of the Rössler system with parameter b varying in every integration step (top) and

Feigenbaum diagram for corresponding stationary system (bottom).
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Figure S2. Annually resolved input time series for temperature, precipitation and isotopic composition and corresponding model output time

series (top to bottom) for the two noise processes (left: Gaussian white noise, right: AR(1) process).
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Figure S3. Same as in Fig. S2, but for the two deterministic non-stationary systems (left: non-stationary Rössler system, right: non-stationary

Lorenz system).
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Figure S4. Annually resolved input time series for temperature and precipitation and corresponding model output time series (top to bottom)

for the last millennium reanalysis data (Hakim et al., 2016; Tardif et al., 2019).
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:::
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results

:::
of
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:::::::
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::::
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:::::::
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the
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of
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the
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time
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generated
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the
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different
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proxy

::::::
system

::::::
models

:::
and

::::::::
compare

::::
them

::
to

:::::
those

::
of

:::
the

::::
input

::::
time

::::::
series.

::::::
Figures

:::
S2

::
to

:::
S4

::::::
display

:::
the

::::::::
annually

:::::::
sampled

:::::
input

::::
time

:::::
series

:::
for

:::::::::::
temperature,

::::::::::
precipitation

::::
and

:::::::
isotopic5

:::::::::::
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and
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the

::::::::::::
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output
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series

::
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::::
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models

:::
for
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input
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scenarios
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of
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::
the
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AR(1)

:::::::
process,

:::
the

:::::::::::::
non-stationary

::::::
Rössler

:::::::
system,

:::
the

::::::::::::
non-stationary

:::::::
Lorenz

::::::
system,

::::
and

:::
the

:::
last

::::::::::
millennium

:::::::::
reanalysis

::::
data.

:::
The

::::::::
expected

::::::::
low-pass

::::
filter

::::::
effects

::
of

:::
the

::::::::::
speleothem,

:::
ice

:::
and

::::
lake

::::::
models

:::
due

:::
to

::
the

:::::
cave

::::::::
residence

::::
time,

::::::::
diffusion,

::::
and

::::::::::
bioturbation,

:::::::::::
respectively,

:::
are

::::::
directly

::::::
visible

::
in

:::
the

::::
time

::::::
series,

::::
while

:::
for

:::
the

::::
tree

::::::
model,

::::
such
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an

:::::
effect
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is

::::::
neither

::::::::
expected
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nor
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Figure S5.
::::::::
Normalised

:::::::::
histograms,

:::::::::::
autocorrelation

::::::::
functions

::::
(acf)

:::
and

:::::::
estimated

:::::
power

:::::::
spectral

::::::
densities

:::::
(psd)

::
of

:::
the

::::::
different

:::::
input

:::
and

::::
proxy

::::::
system

:::::
model

:::::
output

:::
time

:::::
series

::
for

::::::
GWN,

:::::
AR(1),

::::
ROS,

:::::
LOR,

:::
and

::::
LMR

::::
(top

::
to

::::::
bottom).

:::
The

:::::
input

::::::
variables

:::
are

::::::
denoted

::
in

::::
grey,

:::
the

:::
tree

:::::
model

:::::
output

::
in

::::
green,

:::
the

::::
lake

::::
model

::::::
output

:
in
::::
blue,

:::
the

:::::::::
speleothem

:::::
model

:::::
output

::
in

:::
red,

:::
and

::
the

:::
ice

:::::
model

:::::
output

::
in

:::::::
magenta.

::::::
visible.

:::::
Also,

:
it
::::::
should

::
be

:::::
noted

::::
that

:::
the

:::
tree

::::
ring

:::::
model

::::
with

:::
the

::::::::::
parameters

::
as

:::::::
specified

::
in

:::::
Table

::
1

:::::
seems

::
to

::::::::
primarily

:::::::
respond10

::
to

::::::::::
temperature

:::::
rather

::::
than

::
to

:::::::::::
precipitation,

::::::::
meaning

:::
that

:::
the

:::::::
limiting

::::::
factor

::
for

::::
tree

::::::
growth

::
in

:::::::
eastern

::::::
Canada

::
is

:::::::::::
temperature,

:::::
which

::
is

::::::::::
ecologically

:::::::::
reasonable

::::
and

::::
also

::
be

::::::
related

:::
to

:::
the

:::
fact

::::
that

:::::::::::
precipitation

::
is

::::
only

::::::::
indirectly

:::::
taken

::::
into

::::::
account

:::
in

:::
the

::::
used

:::::
model

:::
for

:::
tree

::::
ring

::::::
width.

:::
For

::::::
further

:::::::::
evaluation,

:::
we

::::::::::
standardise

:::
all

::::
time

:::::
series

::
to

::::
zero

:::::
mean

::::
and

:::
unit

::::::::
variance

:::
and

::::::::
examine

:::::
some

::::::::
properties

:::
of

:::
the

:::::::
different

::::
input

::::
and

::::::
output

:::::
series.

::::
The

:::
left

::::::
panels

::
of

::::
Fig.

::
S5

:::::
show

:::
the

:::::::::
normalised

::::::::::
histograms

::
of

:::
the

::::
input

::::
and

::::::
output

::::::::
variables.15

::
To

:::::::
quantify

::::::::::
differences

::
in

:::
the

:::::::::
histograms,

:::
we

::::::::
consider

:::
the

::::::::
skewness

::
of

:::
the

::::::::::
distributions

:::
of

:::
the

:::::::
different

::::
time

:::::
series

::::
(see

:::::
Table

:::
S1).

:::
We

:::::::
observe

::::
that

:::
the

:::::::
resulting

:::::
time

:::::
series

::::
from

:::
the

::::
tree

:::::
model

:::
all

:::::
show

:::::::::
significant

::::::::
deviations

::
in
:::::::::

skewness
::::
from

:::
the

:::::
input

::::
data,

:::::
which

::
is
::::::::
probably

::::
due

::
to

:::
the

:::::::::::
thresholding

::
of

:::
the

::::::
growth

::::::::
response

::::::::
functions

:::
for

::::::::::
temperature

::::
and

:::
soil

::::::::
moisture.

::::
For

:::
the

::::
other

:::::
proxy

:::::::
models,

:::
we

:::::::
observe

:
a
:::::::::
significant

::::::::
influence

::
of

:::
the

:::::
model

:::
on

:::
the

::::::::
skewness

::
of

:::
the

:::::
output

:::
for

:::::
those

:::::
inputs

::::
that

:::
are

:::
not

5



::::::::
stochastic.

::::
This

::::::
might

:::::
either

::
be

::::::
related

::
to

:::
the

:::::::
smaller

:::::::::
confidence

::::::
bounds

::::
due

::
to

:::
the

:::::::
different

::::::::
surrogate

:::::::::
generation,

:::
or

:::
hint

::
to

::
a20

:::::::
different

:::::::
reaction

::
of

:::
the

::::::
models

::
to

::::::::
different

::::::::::
distributions

::
of

:::
the

:::::
input

::::
data.

:

::::::
Finally,

:::
we

::::
have

::
a
::::
look

::
at
:::
the

:::::::::::::
autocorrelation

::::::::
functions

::::
and

:::
the

::::::
power

::::::
spectral

::::::::
densities

::
of

::::
the

:::::::
different

:::::
input

:::
and

::::::
proxy

:::::
model

::::::
output

::::
time

::::::
series.

:::
The

::::::
middle

::::
and

::::
right

::::::
panels

::
of

::::
Fig.

:::
S5

:::::
show

:::
the

:::::::
resulting

:::::::::::::
autocorrelation

::::::::
functions

::::
and

::::::::
estimates

::
of

:::
the

:::::
power

:::::::
spectral

::::::
density

::::::::
obtained

:::::
using

::
the

::::::
Welch

:::::::
method

::::::::::::
(Welch, 1967).

:::
As

::::::
before,

:::
we

:::::::
observe

:::
that

:::
the

:::::::::::::
autocorrelation

:::::::
function

:::
and

::::::
power

:::::::
spectral

::::::
density

::
of

:::
the

::::
tree

::::
ring

:::::
model

::::::
output

::::::
closely

::::::
follow

:::
the

:::::::::
respective

::::::::::
temperature

:::::
input.

::::
The

:::::
good25

::::::::
agreement

::::::::
between

:::
the

::::::::::
temperature

:::::
input

:::
and

::::
the

:::
tree

::::
ring

:::::
width

::::::
model

::::::
output

:::
can

:::
be

:::::::
partially

::::::::
attributed

:::
to

:::
the

:::::
model

::::
not

:::::
taking

::::
into

::::::
account

:::::::
juvenile

::::::
growth

:::
of

:::
the

::::
trees.

::::
The

::::::::::
speleothem

:::::
model

::::::
output

:::::
shows

:::
the

::::::::
expected

:::
loss

:::
of

:::::
power

::
in

:::
the

::::::
higher

::::::::::
frequencies.

::::::::
Similarly,

::
a
::::
loss

::
of

::::::
power

::
in

:::
the

::::::
higher

::::::::::
frequencies

::::
can

::
be

::::::::
observed

:::
in

:::
the

:::
ice

::::
core

::::::
model

::::::
output

:::
but

:::
not

:::
as

:::::::::
pronounced

:::
as

::
for

:::
the

::::::::::
speleothem

:::::
model

::::::
output.

::::
The

:::::
same

::::
holds

:::
for

:::
the

::::
lake

::::::::
sediment

:::::
model

::::::
output

:::::
except

:::
for

:::
the

::::::
Rössler

::::
and

::::::
Lorenz

::::::::
scenarios,

:::::
where

:::
the

::::
lake

::::::
model

:::::
output

::::::
shows

::::
more

::::::
power

::
in

:::
the

:::::
higher

::::::::::
frequencies

::::
than

:::
the

::::::::::::
corresponding

:::::
input.

::::
This30

:
is
:::::
most

:::::
likely

::::::
related

::
to

:::
the

:::::::
different

::::::::::
time-scales

::
of

:::::::::
variability

::::::
present

:::
in

::::
those

::::
time

::::::
series

::
in

::::::::::
comparison

::::
with

:::
the

:::::
others

::::
and

::
the

:::::::::
particular

:::::
choice

::
of
::::::
mixed

::::
layer

::::::::
thickness

::
in
:::
the

::::
lake

::::::::
sediment

::::::
model,

:::::::
mxl = 4.

:

::::::::
Skewness

::
of

:::::
time

:::::
series

Table S1 gives the skewness of the distributions of the different time series where those values showing a significant deviation

from the skewness of the corresponding input are marked in bold. To test whether the skewness values of the model output time35

series differ significantly from that of the respective input, we create Nsk = 10,000 surrogate data sets for each of the input time

series. For GWN and the AR(1) process, this is done by creating different realisations of the corresponding process according

to the descriptions in Sec. 4, while for the other time series, the surrogates are created by adding white noise with signal-to-

noise ratios of 25 for the model systems and 100 for the last millennium reanalysis data. Then, for each surrogate realisation,

we calculate the skewness of the distribution and take the 0.5th and 99.5th percentile as confidence bounds resulting in the 99%40

confidence intervals of [−0.20,0.20] for GWN, [−0.29,0.29] for the AR(1) process, [0.20,0.23] for the non-stationary Rössler

system, [−0.03,0.00] for the non-stationary Lorenz system, [0.32,0.34] for the last millennium reanalysis temperature, and

[0.00,0.02] for the last millennium reanalysis precipitation. As precipitation is proportional to the negative temperature and

isotopes, the corresponding confidence interval for the Rössler system is [−0.23,−0.20] and for the Lorenz system [0.00,0.03].

45
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Table S1. Skewness of the different input and proxy system model output time series with significant deviations of the model output time

series from the corresponding input marked in bold.

input/output GWN AR(1) ROS LOR LMR

temperature 0.00 0.07 0.21 −0.02 0.33

precipitation 0.12 −0.03 −0.20 0.01 0.01

isotopes −0.06 0.12 0.22 −0.02 –

trw 0.34 0.35 0.40 0.26 0.63

lak 0.11 0.23 −0.05 0.01 0.71

spt −0.04 0.29 −0.27 0.26 –

ice −0.01 0.15 0.15 −0.05 –
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