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Detecting dynamical anomalies in time series from different palaeoclimate proxy archives
using windowed recurrence network analysis by J. Lekscha and R.V. Donner

First of all, we would like to thank the Referee for thoroughly reading and commenting on our
manuscript. In the following, we provide our answers to the comments.

The purpose of the manuscript is to apply a method developed and documented by the
authors elsewhere (the windowed recurrence network analysis (WRINA)) on artificial
time series simulating the output of speleothem, lake, tree archives and isotopic water
concentration in ice cores. The purpose is to test to what extent the ‘proxy process’
(transformation of the climate signal by the natural archive) could mask anomalies that
would have been otherwise detected in the original time series. Different time series
have been tested, including Gaussian white noise, an autoregressive process of order

1, output non-linear dynamical system model, and data from the reanalysis project of
Hakim et al.

The main diagnostic is ‘network transitivity’, and the application of the method to the
different input datasets generates Figures 2 to 6. The reader is invited to concentrate
on the ‘area-wise’ significance test, which is supposed to indicate a signal of significant
change in network transitivity, to be interpreted as a change in the effective dimension-
ality of the system.

Some results appear a bit disconcerting, especially the test on the AR(1) signal, be-
cause it shows, on the one hand, a large patch of area-wise significant anomalies in
network transitivity which was — if I understood correctly — a priori not expected in
this signal. In addition, this large patch disappears in the natural archives simulated
with this model, while another patch emerges in the speleothem simulation. Simula-
tions with other inputs tend to confirm that the speleothem model is prone to create
or destroy areas of significant network transitivity anomalies seen in the original time
series.

Indeed, the AR(1) signal shows a patch of areawise significant anomalies that is a priori not
expected. As argued in the manuscript (lines 398-400), such artefacts appearing in single
realisations of the stochastic input time series should be excluded in future work by considering
ensembles of realisations of the processes. Unfortunately, this was not possible within the scope of
the original manuscript.

With respect to the results of the different proxy model output time series, we generally found that
the tree ring and the lake sediment model tend to miss, while the speleothem model both misses and
creates additional areawise significant patches of the network transitivity, which is in agreement
with the above observations. We will further disentangle the description of these results in the
revised manuscript in order to make these points clearer.

The study is quite systematic in its approach, to the point of being slightly repetitive,
and yet, one might argue that it falls short convincing the reader about the robustness
of the conclusions. Basically, up to p. 12 the manuscript consists in an exposition of the
methods, which for their greatest part have been described elsewhere (the significant
area test is in press, and the proxy models have been published elsewhere). The out-
put of the wRNA analysis follows a show-and-tell description running until p. 18, and
even though some main conclusions are correctly outlined, the discussion does not



really help identify mechanisms or key conclusions that would actually help to ‘improve
the interpretation of windowed recurrence network analysis’ as announced in the ab-
stract. For example, the authors have observed that the speleothem model modifies

the significant patches, but we do not really which process, in the speleothem model,

is responsible for this behaviour. Do we expect this to be an idiosyncrasy of the par-
ticular speleothem model used here, or do we expect it to be a general result? Which
aspects of the ‘nonlinear filtering’ should be incriminated? The presence of a large
significant area patch on the AR(1) time series, along with its the quasi-absence of
significant changes in network transitivity in the last-millennium reanalysis data is also
disconcerting, because we no longer know how to reasonably interpret the output of

the wRNA for understanding climate dynamics. Is the last millennium actually the right
test bed for this study?

We thank the Referee for pointing out the weaknesses of the presentation of the material and will
work on the mentioned points in the revised manuscript. This particularly concerns the presentation
of the results and the corresponding discussion and conclusions, while for the (admittedly long)
description of the methods and proxy system models, we consider it useful to be included in the
manuscript to provide a complete picture and make the contribution self-consistent. Still, we will
attempt to shorten the detailed description wherever possible and potentially move parts of it to an
appendix or supplementary information document.

Also, we want to stress that this study has been meant to improve the interpretation of WRNA
results in terms of highlighting not only the potentials, but also the limitations of the method when
applied to palaeoclimate data. That is, in particular for the speleothem model, our results show the
need of further studying the effects of different filtering mechanisms on the results of the wRNA in
order to draw reliable conclusions when analysing real-world data. (Note that there have been quite
a few papers reporting the results of windowed recurrence analyses of real-world speleothem data,
e.g., Donges et al., Clim. Past, 2015; Eroglu et al., Nat. Comm., 2016.) In this regard, we argue that
the last millennium is a good test bed because for this period, highly resolved proxy data are
available from various different archives. We will clarify the direct conclusions from the obtained
results with respect to the interpretation of the wRNA and outline further work that will help to
increase the robustness of the conclusions. For the speleothem model results, for example, we
expect the conclusions to hold, independently of the actual model used, but potentially depend on
the choice of the model parameters.

To sound hopefully a bit more constructive, I would suggest the authors to seek for
more general aspects of the filtering process which may destroy or generate spurious
changes in network transitivity. Is this caused by non-linearity in the instantaneous
response (what would an ‘exp(x)’ filtering generate?) Is this the temporal smoothing
process? Is it the amount of noise? What would this analysis tell us about how to

find proxies that would preserve the wRNA signal, beyond the particular example cho-
sen here? Which are the desirable characteristics for such proxies? Answering these
questions would provide some more general and perhaps valuable hints for the inter-
pretation of the wRNA, which could then be summarised in the abstract.

We thank the Referee for these suggestions and fully agree that including the results for a set of
general filtering functions and noises on the wRINA results will help interpreting the obtained results
by providing insights into the mechanisms that are responsible for them in the different proxy
system models. We will further elaborate on these more general aspects in the revised version of the
manuscript.

Perhaps the reader will also better appreciate the interest of the wRNA if more clues



are given about how to interpret it: can one get a more or less adequate intuition of
what a change in wRNA implies about the dynamics of climate. What, physically, does
an increase or a decrease in network transitivity mean? Would this be associated with
a form of ‘global synchronisation’ ? Are we expecting it when we approach a form of
bifurcation (a “tipping point”)? What is the wRNA telling us that is not obvious from
visual inspection of the time series?

We agree with the Referee that including a paragraph on the interpretation of wRNA with respect to
the climate system is a very good idea. Still, general statements will hardly be possible as climate-
related interpretations vary depending on the location and thus, local boundary conditions have to
be taken into account. Also, the network transitivity calculated from a single time series cannot be
associated with a ‘global synchronisation’ as only information from a single location is taken into
account. Instead, the network transitivity has rather been related to the dynamical regularity of the
variations in the analysed time series (e.g., Donges et al., PNAS, 2011) with higher values of the
network transitivity corresponding to less irregular variability and vice versa. This is in accordance
with the interpretation of the network transitivity as an indicator of the dimensionality of the
system’s dynamics. In this regard, detected anomalies in the network transitivity could be related to
some tipping point, but do not have to be. We will attempt to provide a more concise description of
possible interpretations of the wRINA results in the (palaeo)climate context in the revised version of
the manuscript.

Finally, the choice of an embedding dimension m = 3 was, to this reader, difficult

to reconcile the quote that “The embedding theorem of Takens guarantees that, when
choosing the embedding dimension larger than twice the box-counting dimension of the
original attractor, the reconstructed and the original system’s attractor are related by a
smooth one-to-one coordinate transformation with smooth inverse, independent of the
choice of the delay”. Wouldn’t we have expected, on this basis, a much larger embed-
ding dimension? This may invite some discussion, perhaps available in Lekscha and
Donner, (in press). In 1984 (Nature, vol. 311, p. 311), Nicolis and Nicolis published an
estimate of the ‘climate attractor dimension’ but subsequent authors (including Grass-
berger, 1986, Nature, 1996, vol. 323, p. 609, and Vautard and Ghil, 1989, Physica

D, vol. 35, p.395) pointed the difficulty of actually getting a meaningful estimate of “a
climate dimension” from a 1-dimensional, finite record. Could the authors clarify their
position in this respect?

We are well aware of the problem of choosing an appropriate embedding dimension when the
available data are univariate, finite, and subject to noise. The embedding theorem of Takens is a
sufficient condition and not a necessary one; thus, embedding dimensions smaller than twice the
box-counting dimension of the original system’s attractor may lead (at least approximately) to an
appropriate embedding, which might possibly, at least partly, reconcile the quote and the choice of
the embedding dimension m = 3. Also, it should be noted that the theorem is strictly valid only for
perfect data. Thus, for finite and noisy data, the estimation of the embedding dimension has to rely
on some more or less heuristic approaches. Many of these approaches however either have
problems of distinguishing deterministic chaos and noise or systematically underestimate the
embedding dimension.

In this spirit, we fully agree with the critiques of the cited papers that it is difficult to get a
meaningful estimate of an embedding dimension from univariate, finite and noisy data. For the
particular case of a ‘climate attractor dimension’, we agree that the climate system is not a low-
dimensional dynamical system. Still, we think that lower dimensional embeddings can be used to
obtain meaningful information about a system. Furthermore, in the palaeoclimate context where
available time series are often rather short, we do not think that high-dimensional embeddings are



useful as the limited amount of data points will in most cases not be sufficient to sample the
attractor in a high-dimensional embedding space.

In the majority of the paper, we do not directly analyse climate data but rather synthetic data
representing different kinds of underlying processes. For convenience, comparability, and with
respect to the time series length and the increasing computational effort for larger embedding
dimensions, we chose m = 3 for all analysed time series, thus, also for the last millennium
reanalysis data which indeed represents more closely the actual dynamics of the climate system. In
general, when analysing real-world data, we think that the problem of choosing an appropriate
embedding dimension is best tackled by employing one of the estimation methods that can
distinguish deterministic and stochastic signals and do not require too many subjective parameter
choices (such as the one presented in Cao (1997), Physica D, 110, 43-50), and additionally slightly
varying the obtained embedding dimension when analysing the data to check the robustness of the
results. In the revised manuscript, we will add a more detailed comment on our choice of m = 3.



