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Abstract: 9 
We consider the statistical properties of solutions of the stochastic fractional 10 

relaxation equation and its fractionally integrated extensions that are models for the Earth’s 11 
energy balance.  In these equations, the highest order derivative term is fractional and it 12 
models the energy storage processes that are scaling over a wide range.  When driven 13 
stochastically, the system is a Fractional Langevin Equation (FLE) that has been considered 14 
in the context of random walks where it yields highly nonstationary behaviour.  An 15 
important difference with the usual applications is that I instead consider the stationary 16 
solutions of the Weyl fractional relaxation equations whose domain is  to t rather than 17 
0 to t. 18 

An additional key difference is that unlike the (usual) FLEs - where the highest order 19 
term is of integer order and the fractional term represents a scaling damping - in the 20 
fractional relaxation equation, the fractional term is of highest order.  When its order is less 21 
than ½ (this is the main empirically relevant range), the solutions are noises (generalized 22 
functions) whose high frequency limits are fractional Gaussian noises (fGn). In order to 23 
yield physical processes, they must be smoothed and this is conveniently done by 24 
considering their integrals. Whereas the basic processes are (stationary) fractional 25 
relaxation noises (fRn), their integrals are (nonstationary) fractional Relaxation motions 26 
(fRm) that generalize both fractional Brownian motion, (fBm) as well as Ornstein-27 
Uhlenbeck processes.   28 

Since these processes are Gaussian, their properties are determined by their second 29 
order statistics; using Fourier and Laplace techniques, we analytically develop 30 
corresponding power series expansions for fRn, fRm and their fractionally integrated 31 
extensions needed to model energy storage processes.  We show extensive analytic and 32 
numerical results on the autocorrelation functions, Haar fluctuations and spectra. We 33 
display sample realizations. 34 

Finally, we discuss the predictability of these processes which – due to long 35 
memories - is a past value problem, not an initial value problem (that is used for example 36 
in highly skillful monthly and seasonal temperature forecasts).  We develop an analytic 37 
formula for the fRn forecast skills and compare it to fGn skill.  The large scale white noise 38 
and fGn limits are attained in a slow power law manner so that when the temporal 39 
resolution of the series is small compared to the relaxation time (of the order of a few years 40 
in the Earth), fRn and its extensions can mimic a long memory process with a range of 41 
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exponents wider than possible with fGn or fBm.  We discuss the implications for monthly, 42 
seasonal, annual forecasts of the Earth’s temperature as well as for projecting the 43 
temperature to 2050 and 2100.    44 

1. Introduction: 45 
Over the last decades, stochastic approaches have rapidly developed and have spread 46 

throughout the geosciences.  From early beginnings in hydrology and turbulence, 47 
stochasticity has made inroads in many traditionally deterministic areas.  This is notably 48 
illustrated by stochastic parametrisations of Numerical Weather Prediction models, e.g. 49 
[Buizza et al., 1999], and the “random” extensions of dynamical systems theory, e.g. 50 
[Chekroun et al., 2010].   51 

In parallel, pure stochastic approaches have developed primarily along two distinct 52 
lines.  One is the classical (integer ordered) stochastic differential equation approach based 53 
on the Itô or Stratonivch calculii that goes back to the 1950’s (see the useful review 54 
[Dijkstra, 2013]).  The other is the scaling strand that encompasses both linear (monofractal, 55 
[Mandelbrot, 1982]) and nonlinear (multifractal) models (see the review [Lovejoy and 56 
Schertzer, 2013]) that are based on phenomenological scaling models, notably cascade 57 
processes.  These and other stochastic approaches have played important roles in nonlinear 58 
Geoscience. 59 

Up until now, the scaling and differential equation strands of stochasticity have had 60 
surprisingly little overlap.   This is at least partly for technical reasons: integer ordered 61 
stochastic differential equations have exponential Green’s functions that are incompatible 62 
with wide range scaling.  However, this shortcoming can – at least in principle - be easily 63 
overcome by introducing at least some derivatives of fractional order.  Once the (typically) 64 
ad hoc restriction to integer orders is dropped, the Green’s functions are based on 65 
“generalized exponentials” that are in turn are based on fractional powers (see the review 66 
[Podlubny, 1999]).  The integer-ordered stochastic equations that have received most 67 
attention are thus the exceptional, nonscaling special cases.  In physics they correspond to 68 
classical Langevin equations; in geophysics and climate modelling, they correspond to the 69 
Linear Inverse Modelling (LIM) approach that goes back to [Hasselmann, 1976] later 70 
elaborated notably by [Penland and Magorian, 1993], [Penland, 1996], [Sardeshmukh et 71 
al., 2000], [Sardeshmukh and Sura, 2009] and [Newman, 2013].  Although LIM is not the 72 
only stochastic approach to climate, in two recent representative multi-author collections 73 
([Palmer and Williams, 2010] and [Franzke and O'Kane, 2017]), all 32 papers shared the 74 
integer ordered assumption (a single exception being [Watkins, 2017], see also  [Watkins 75 
et al., 2020]). 76 

Under the title “Fractal operators” [West et al., 2003], reviews and emphasizes that 77 
in order to yield scaling behaviours, it suffices that stochastic differential equations contain 78 
fractional derivatives.  However, when it is the time derivatives of stochastic variables that 79 
are fractional -  fractional Langevin equations (FLE) - then the relevant processes are 80 
generally non-Markovian [Jumarie, 1993], so that there is no Fokker-Planck (FP) equation 81 
describing the corresponding probabilities.  Even in the relatively few cases where the FLE 82 
has been studied, the fractional terms are generally models of viscous damping so that the 83 
highest order terms are still integer ordered (an exception is [Watkins et al., 2020]  who 84 
mentions “fractionally integrated FLE” of the type studied here but without investigating 85 
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its properties).  Integer ordered terms have the convenient consequence of regularizing the 86 
solutions so that they are at least root mean square continuous; in this paper the highest 87 
order derivatives are fractional so that when the highest order terms are  ≤1/2, the solutions 88 
are “noises” i.e. generalized functions that must be smoothed in order to represent 89 
physically meaningful quantities.     90 

An additional obstacle is that - as with the simplest scaling stochastic model – 91 
fractional Brownian motion (fBm, [Mandelbrot and Van Ness, 1968]) -  we expect that the 92 
solutions will not be semi-martingales and hence that the Itô calculus used for integer 93 
ordered equations will not be applicable (see [Biagini et al., 2008]).   This may explain the 94 
relative paucity of mathematical literature on stochastic fractional equations (see however 95 
[Karczewska and Lizama, 2009]).  In statistical physics, starting with [Mainardi and Pironi, 96 
1996], [Metzler and Klafter, 2000], [Lutz, 2001] and helped with numerics, the FLE (and 97 
a more general “Generalized Langevin Equation” [Kou and Sunney Xie, 2004], [Watkins 98 
et al., 2019]) has received a little more attention as a model for (nonstationary) particle 99 
diffusion (see [West et al., 2003] for an introduction, or [Vojta et al., 2019] for a more 100 
recent example).   These technical aspects may explain why the statistics of the resulting 101 
processes are not available in the literature. 102 

Technical difficulties may also explain the apparent paradox of Continuous Time 103 
Random Walks (CTRW) and other approaches to anomalous diffusion that involve 104 
fractional equations.  While CTRW probabilities are governed by the deterministic 105 
fractional ordered Generalized Fractional Diffusion equation (e.g. [Hilfer, 2000], [Coffey 106 
et al., 2012]), the walks themselves are based on specific particle jump models rather than 107 
(stochastic) Langevin equations.  Alternatively, a (spatially) fractional ordered Fokker-108 
Planck equation may be derived from an integer-ordered but nonlinear Langevin equation 109 
for a diffusing particle driven by an (infinite variance) Levy motion [Schertzer et al., 2001].   110 

In nonlinear geoscience, it is all too common for mathematical models and techniques 111 
developed primarily for mathematical reasons, to be subsequently applied to the real world.   112 
This approach - effectively starting with a solution and then looking for a problem - 113 
occasionally succeeds, yet historically the converse has generally proved more fruitful.   114 
The proposal that an understanding of the Earth’s energy balance requires the Fractional 115 
Energy Balance Equation  (FEBE, [Lovejoy et al., 2021], announced in [Lovejoy, 2019a]) 116 
is an example of the latter.  First, the scaling exponent of macroweather (monthly, seasonal, 117 
interannual) temperature stochastic variability was determined (HI ≈ -0.085±0.02) and 118 
shown to permit skillful global temperature predictions, [Lovejoy, 2015b], [Lovejoy et al., 119 
2015], [Del Rio Amador and Lovejoy, 2019], and then it was extended to regional 120 
temperatures (at 2ox2o resolution)  [Del Rio Amador and Lovejoy, 2019; Del Rio Amador 121 
and Lovejoy, 2021a; Del Rio Amador and Lovejoy, 2021b].  The latter papers showed how 122 
the long memory high frequency approximation to the FEBE can not only make state of 123 
the art multi-month temperature forecasts, but the corresponding simulations generate 124 
emergent properties such as realistic El Nino events.   125 

In parallel, the multidecadal deterministic response to external (anthropogenic, 126 
deterministic) forcing was shown to also obey a scaling law but with a different exponent 127 
[Hebert, 2017], [Lovejoy et al., 2017], [Procyk et al., 2020], [Procyk, 2021; Procyk et al., 128 
2022], (HF ≈ -0.5±0.2).  It was only then was realized that the order h FEBE naturally 129 
accounts for both the high and low frequency global temperature exponents with h = HI + 130 
1/2 and HF = -h with both empirical exponents recovered with a FEBE of order  h ≈ 131 



 4 

0.38±0.03.  The realization that the FEBE fit these basic empirical facts motivated the 132 
present research into its statistical properties including its predictability.   133 

In the EBE, energy storage is modelled by a uniform slab of material implying that 134 
when perturbed, the temperature exponentially relaxes to a new thermodynamic 135 
equilibrium.   However, as reviewed in [Lovejoy and Schertzer, 2013]), both conventional 136 
Global Circulation Models and observations show that atmospheric, oceanic and surface 137 
(e.g. topographic) structures are spatially scaling.  A consequence is that the temperature 138 
relaxes to equilibrium in a power law manner. This motivated earlier approaches ([van 139 
Hateren, 2013], [Rypdal, 2012], [Hebert, 2017], [Lovejoy et al., 2017]) to postulate that 140 
the climate response function (CRF) itself is scaling.  However, these models require either 141 
ad hoc truncations or imply infinite sensitivity to small perturbations  [Rypdal, 2015], 142 
[Hébert and Lovejoy, 2015].   143 

The FEBE instead situates the scaling in the energy storage processes; this is the 144 
physical basis for the phenomenological derivation of the FEBE proposed in [Lovejoy et 145 
al., 2021] and the zeroth order term determines guarantees that equilibrium is reached after 146 
long enough times.   The scaling of the basic physical quantities in both time and space 147 
motivates the study of the FEBE and its fractionally integrated extensions discussed below 148 
temperature treated as a stochastic variable.  The FEBE determines the Earth’s global 149 
temperature when the energy storage processes are scaling and modelled by a fractional 150 
time derivative term.  Recently, analysis of the atmospheric radiation budget has shown 151 
that at least over some regions, the internal component of the radiative forcing may itself 152 
be scaling, this justifies the consideration of the extensions to fGn forcing.   153 

The FEBE differs from the classical energy balance equation (EBE) in several ways.  154 
Whereas the EBE is integer ordered and describes the deterministic, exponential relaxation 155 
of the Earth’s temperature to equilibrium, the FEBE is of fractional order and because it is 156 
both deterministic and stochastic it unites all the forcings and responses into a single model.  157 
Whereas the former represents the forcing and response to the unresolved degrees of 158 
freedom - the “internal variability” - and is treated as a zero mean Gaussian noise, the latter 159 
represents the external (e.g. anthropogenic) forcing and the forced response modelled by 160 
the (deterministic) total external forcing.  Complementary work [Procyk et al., 2020], 161 
[Procyk, 2021; Procyk et al., 2022] uses the deterministic FEBE as the basic model for the 162 
response to external forcing, but its Bayesian parameter estimation uses the stochastic 163 
FEBE to characterize the likelihood function of the residuals assumed to be the responses 164 
to stochastic internal forcing and governed by the same equation.  It thus avoids the ad hoc 165 
error models involved in conventional Bayesian parameter estimation.  The result is a 166 
parsimonious, FEBE projection of the Earth’s temperature to 2100 that has much lower 167 
uncertainty than the classical Global Circulation Model alternative.   This is the first time 168 
that classical General Circulation Model climate projections have been confirmed by an 169 
independent, qualitatively different, approach. 170 

An important but subtle EBE - FEBE difference is that whereas the former is an 171 
initial value problem whose initial condition is the Earth’s temperature at t = 0, the FEBE 172 
is effectively a past value problem whose prediction skill improves with the amount of 173 
available past data and - depending on the parameters - it can have an enormous memory 174 
[Del Rio Amador and Lovejoy, 2021b].  To understand this, recall that an important aspect 175 
of fractional derivatives is that they are defined as convolutions over various domains.  To 176 
date, the main one that has been applied to physical problems is the Riemann-Liouville 177 
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(and the related Caputo) fractional derivative specialized to convolutions over the interval 178 
between an initial time = 0 and a later time t.  With one or two exceptions, this is the domain 179 
considered in Podlubny’s mathematical monograph on deterministic fractional differential 180 
equations [Podlubny, 1999] as well as in the stochastic fractional physics discussed in 181 
[West et al., 2003], [Herrmann, 2011], [Atanackovic et al., 2014], and most of the papers 182 
in [Hilfer, 2000] (with the partial exceptions of [Schiessel et al., 2000], and [Nonnenmacher 183 
and Metzler, 2000]).   A key point of the FEBE is that it is instead based over semi-infinite 184 
domains - here from  to t - often called “Weyl” fractional derivatives. This is the 185 
natural range to consider for the Earth’s energy balance and it is needed to obtain 186 
statistically stationary responses.  Random walk problems involve fractional equations over 187 
the domain 0 to t can be dealt with using Laplace transform techniques.  In comparison the 188 
Earth’s temperature balance involves statistically stationary stochastic forcings that are 189 
more conveniently dealt with using Fourier techniques.   190 

We have mentioned that the FEBE can be derived phenomenologically where the 191 
fractional derivative of order h term representing the energy storage processes [Lovejoy et 192 
al., 2021].  In this approach the order h is an empirically determined parameter with h = 1 193 
corresponding to the classical (exponential) exception.  Alternatively it may derived from 194 
a more fundamental starting point, the classical heat equation – the same starting point as 195 
the classical Budyko-Sellers energy balance models ([Budyko, 1969], [Sellers, 1969]). 196 
Recently it was shown that with the help of Babenko’s operator method that the special h 197 
= 1/2 FEBE - the Half-ordered Energy Balance Equation (HEBE) - could be derived 198 
analytically from the classical heat equation [Lovejoy, 2021a; b].   199 

To obtain the HEBE, it is sufficient to follow the Budyko-Sellers approach, but to 200 
avoid one of their key approximations.  The Earth’s atmosphere and ocean are driven by 201 
local imbalances in radiative fluxes.  While Budyko-Sellers models simply redirect this 202 
flux away from the equator, the HEBE improvement ([Lovejoy, 2021a; b]) is to instead use 203 
the mathematically correct radiative-conductive surface boundary conditions.  When this 204 
is done in the classical energy transport equation, one obtains an important h = 1/2 special 205 
case of the FEBE, the Half-order EBE or HEBE. The use of half-order derivatives in the 206 
heat equation is completely classical and goes back to at least [Oldham, 1973; Oldham and 207 
Spanier, 1972], [Babenko, 1986], [Magin et al., 2004] [Sierociuk et al., 2013].  The 208 
extension to h ≠ 1/2 can be obtained using the same mathematical techniques by starting 209 
with the fractional generalization of the classical heat equation, the fractional heat equation.  210 
Further generalizations are also possible and will be reported elsewhere. 211 

The choice of a Gaussian white noise forcing was made not so much for its theoretical 212 
simplicity but for its physical realism.  Using scaling to divide atmospheric dynamics into 213 
dynamical ranges ([Lovejoy, 2013], [Lovejoy, 2015a], [Lovejoy, 2019b]), the main ones are 214 
weather, macroweather and climate.  While the temperature variability in both space and 215 
in time is generally highly intermittent (multifractal), there is one exception: the temporal 216 
macroweather regime (starting at the lifetime of planetary structures - roughly ten days – 217 
up until the climate regime at much longer scales).   Macroweather is the regime over which 218 
the FEBE applies and it has exceptionally low intermittency: temporal (but not spatial) 219 
temperature anomalies are not far from Gaussian ([Lovejoy, 2018]). Responses to 220 
multifractal or Levy process FEBE forcings may however be of interest elsewhere. 221 

This paper is structured as follows.  In section 2 we present the fractional relaxation 222 
equation, forced by a Gaussian white noise as a natural generalization of classical fractional 223 
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Brownian motion, fractional Gaussian noise and Ornstein-Uhlenbeck processes (sections 224 
2.1, 2.2).  When forced by Gaussian white noises, the solutions define the corresponding 225 
fractional Relaxation motions (fRm) and fractional Relaxation noises (fRn).  We consider 226 
further extensions to the case where the equation is forced by a scaling noise fGn (section 227 
2.3, eqs. 21, 22). This is equivalent to considering the fractionally integrated fractional 228 
relaxation equation with white noise forcing.   In section 2, we first solve the equations in 229 
terms of Green’s functions, and then introduce powerful Fourier techniques that yield 230 
integral representations of the second order statistics including autocorrelations, structure 231 
functions (eqs. 33, 35), Haar fluctuations and spectra (with many details in appendix A, in 232 
appendix B, we derive the properties of the HEBE special case).  In section 3, we develop 233 
both short and long time (asymptotic) series expansions for the statistics (eqs. 49, 51) and 234 
we display and discuss sample fRn, fRm processes.  In section 4 we discuss the problem 235 
of prediction – important for macroweather forecasting – and derive expressions for the 236 
optimum predictor (eq. 63) and its theoretical prediction skill as a function of forecast lead 237 
time (eq. 68).  In section 5 we conclude. 238 

I could note that the paper is somewhat complex due to the necessity of developping 239 
several approaches: Fourier for the main integral representations (section 2), Laplace for 240 
the asymptotic expansions (section 3), and real space for the predictability results (section 241 
4).  242 

2. The fractional relaxation equation 243 

2.1 fRn, fRm, fGn and fBm 244 
In the introduction, we outlined physical arguments that the Earth’s global energy 245 

balance could be well modelled by the fractional energy balance equation.  Taking T as the 246 
globally averaged temperature, t as the characteristic time scale for energy 247 
storage/relaxation processes, F as the (stochastic) forcing (energy flux; power per area), 248 
and s the climate sensitivity (temperature increase per unit flux of forcing) the FEBE can 249 
be written in Langevin form as: 250 

, (1) 251 

where  the Riemann-Liouville fractional derivative symbol  is defined as: 252 

, (2) 253 

Where G is the standard gamma function.  Derivatives of order n>1 can be obtained using 254 
n = h+m where m is the integer part of n, and then applying this formula to the mth ordinary 255 
derivative.  The main case studied in applications (e.g. random walks) is a = 0 so that 256 
Laplace transform techniques are often used (alternatively, the somewhat different Caputo 257 
fractional derivative is used).  However, here we will be interested in : the Weyl 258 
fractional derivative  which is naturally handled by Fourier techniques (section 2.4 259 
and appendices A, B), and in this case, this distinction is unimportant.   260 

Since equation 1 is linear, by taking ensemble averages, it can be decomposed into 261 
deterministic and random components with the former driven by the mean forcing external 262 

τh
a
D
t
hT( )+T = sF

a
D
t
h

a
D
t
hT = 1

Γ 1−h( )
d
dt

t − s( )−hT s( )ds
a

t

∫ ; 0<h<1

	a=−∞

−∞Dt
h
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to system <F>,  and the latter by the fluctuating stochastic component F - <F>  representing 263 
the internal forcing driving the internal variability.  The deterministic part has been used to 264 
project the Earth’s temperature throughout the 21st century ([Procyk et al., 2020], [Procyk 265 
et al., 2022]); in the following we consider the simplest purely stochastic model in which 266 
<F> = 0 and F = g where g is a Gaussian “delta correlated” and unit amplitude white noise: 267 

. (3) 268 

In [Hebert, 2017], [Lovejoy et al., 2017], [Hébert et al., 2021] it was argued on the 269 
basis of an empirical study of ocean- atmosphere coupling that tr ≈ 2 years while recent 270 
work indicates a value somewhat higher, ≈ 5 years, [Procyk et al., 2022].  At high 271 
frequencies, [Lovejoy et al., 2015] and [Del Rio Amador and Lovejoy, 2019], [Del Rio 272 
Amador and Lovejoy, 2021a] that the value h ≈ 0.4 reproduced both the Earth’s temperature 273 
both at scales < t as	well	as	for	macroweather	scales	(longer	than	the	weather	regime	274 
scales	of	about	10	days)	but	still	< t.  [Procyk et al., 2020] also used the FEBE to estimate 275 
(the global) s = [0.45,0.67]	K/(W/m2)	(90%	confidence	interval)	and		the	amplitude	of	276 
the	radiative	forcing	at	monthly	resolution	was:	[0.89;1.42]	W/m2	(90%	confidence	277 
interval).		278 

When 0 < h < 1, eq. 1 with g(t) replaced by a deterministic forcing is a fractional 279 
generalization of the usual (h = 1) relaxation equation; when 1 < h < 2, it is the “fractional 280 
oscillation equation”, a generalization of the usual (h = 2) oscillation equation, [Podlubny, 281 
1999].  282 

To simplify the development, we use the relaxation time t to nondimensionalize time 283 
i.e. to replace time by t/t to obtain the canonical Weyl fractional relaxation equation:  284 

 (4) 285 

for the nondimensional process Uh. The dimensional solution of eq. 1 with nondimensional 286 
g = sF  is simply T(t) =  t -1 Uh(t/t ) so that in the nondimensional eq. 4, the characteristic 287 
transition “relaxation” time between dominance by the high frequency (differential) and 288 
the low frequency (Uh term) is t = 1.  Although we give results for the full range 0 < h < 2 289 
- i.e. both the “relaxation” and  “oscillation” ranges – for simplicity, we refer to the solution 290 
Uh(t) as “fractional Relaxation noise” (fRn) and to Qh(t) as “fractional Relaxation motion” 291 
(fRm).   Note that fRn is only strictly a noise when h ≤ 1/2. 292 

In dealing with fRn and fRm, we must be careful of various small and large t 293 
divergences.  For example, eqs. 1 and 4 are the fractional Langevin equations 294 
corresponding to generalizations of integer ordered stochastic diffusion equations: the 295 
classical h = 1 case is the Ohrenstein-Uhlenbeck process.  Since g(t) is a “generalized 296 
function” - a “noise” - it does not converge at a mathematical instant in time, it is only 297 
strictly meaningful under an integral sign.  Therefore, a standard form of eq. 4 is obtained 298 
by integrating both sides by order h (i.e. by differentiating by -h and assuming that 299 
differentiation and integration of order h commute): 300 

, 301 

 (5) 302 

γ v( ) = 0; γ v( )γ u( ) = δ u − v( )

−∞Dt
h +1( )Uh = γ ; Qh t( ) = Uh v( )

0

t

∫ dv

U
h
t( )= − −∞Dt

−hU
h
+ −∞Dt

−hγ = − 1
Γ h( ) t − v( )h−1Uh

v( )dv
−∞

t

∫ + 1
Γ h( ) t − v( )h−1 γ v( )dv

−∞

t

∫
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(see e.g. [Karczewska and Lizama, 2009]).  The white noise forcing in the above is 303 
statistically stationary; the solution for Uh(t) is also statistically stationary.  It is tempting 304 
to obtain an equation for the motion Qh(t) by integrating eq. 4 from  to t  to obtain the 305 
fractional Langevin equation:  where W is Wiener process (a standard 306 

Brownian motion) satisfying .  Unfortunately the Wiener process integrated 307 
 to t almost surely diverges, hence we relate Qh to Uh by an integral from 0 to t.  308 

In the high frequency limit, the derivative dominates and we obtain the simpler 309 
fractional Langevin equation: 310 

 (6) 311 

Whose solution Fh is the fractional Gaussian noise process (fGn, not to be confused with 312 
the forcing), and whose integral Bh is fractional Brownian motion (fBm).  We thus 313 
anticipate that Fh and Bh are the high frequency limits of fRn, fRm.   314 

2.2 Green’s functions 315 
Although it will turn out that Fourier techniques are very convenient for calculating 316 

the statistics, there are also advantages to classical (real space) approaches and in any case 317 
they are needed for studying the predictability properties (section 4).   We therefore start 318 
with a discussion of Green’s functions that are the classical tools for solving 319 
inhomogeneous linear differential equations: 320 

, (7) 321 

where  and  are Green’s functions for the differential operators corresponding 322 

respectively to  and .  Note that due to causality, all the Green’s functions 323 
used in this paper vanish for t<0. 324 

 and  are the usual “impulse” (Dirac) response Green’s functions (hence 325 

the subscript “0”).  For the differential operator  they satisfy: 326 
. (8) 327 

Integrating this equation we find an equation for their integrals G1,h  which are thus 328 
“step” (Heaviside, subscript “1”) response Green’s functions satisfying: 329 

; , (9) 330 

where Q is the Heaviside (step) function (= 0 for t<0, = 1 for t ≥0).  The inhomogeneous 331 
equation:  332 

 (10) 333 
has a solution in terms of either an impulse or a step Green’s function: 334 

−∞

−∞Dt
hQ

h
+Q

h
=W

	
dW = γ t( )dt

−∞

−∞Dt
hFh = γ ; Bh t( ) = Fh v( )dv

0

t

∫

Fh t( ) = G0,h
fGn( ) t − v( )γ v( )dv

−∞

t

∫

Uh t( ) = G0,h
fRn( ) t − v( )γ v( )dv

−∞

t

∫

G0,h
fGn( ) G0,h

fRn( )

−∞Dt
h

−∞Dt
h +1

G0,h
fGn( )

G0,h
fRn( )

Ξ

ΞG0,h t( ) = δ t( )

ΞG1,h t( ) =Θ t( ); Θ t( ) = δ v( )dv
−∞

t

∫
dG1,h
dt

=G0,h

Ξf t( ) = F t( )
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, (11) 335 

the equivalence being established by integration by parts with the conditions   336 
and G1,h(0) = 0.  The use of the step rather than impulse response is standard in the Energy 337 
Balance Equation literature since it gives direct information on energy balance and the 338 
approach to equilibrium (see e.g. [Lovejoy et al., 2021]).  The step response for  the noise 339 
is also the basic impulse response function for the motion. 340 

For fGn, the Green’s functions are simply the kernels of the fractional integrals: 341 

, (12) 342 

obtained by integrating both sides of eq. 6 by order h.  We conclude: 343 

. (13) 344 

For fRn, we now recall some classical results useful in geophysical applications.  345 
First, these Green’s functions are often equivalently written in terms of Mittag-Leffler 346 
functions (“generalized exponentials”), Ea,b: 347 

 (14) 348 

 349 

(to lighten the notation in eq. 14 and in the following, we suppress the superscripts for fRn, 350 
fRm proceesses).  A convenient feature of Mittag-Leffler functions is that they can be 351 
easily integrated by any positive order a: 352 

353 

  (15) 354 
([Podlubny, 1999]).  As mentionned, the constraint t>0 is due to causality, physical Green’s 355 
functions vanish for negative arguments.  In the following this will simply be assumed. 356 
With a = 1, we obtain the useful formula: 357 

 (16) 358 

With this, we see that  and  are simply the first terms in the power series 359 
expansions of the corresponding fRn, fRm Green’s functions.  The solution to eq. 4 with 360 
the white noise forcing g(t) is therefore: 361 

f t( )= G0,h t − v( )F v( )dv =
−∞

t

∫ G1,h t − v( ) ′F v( )dv
−∞

t

∫ ; ′F v( )= dF
dv

  F −∞( ) = 0

F
h
t( )= 1

Γ h( ) t − v( )h−1γ v( )dv
−∞

t

∫

G0,h
fGn( ) = t h−1

Γ h( ) ; G1,h
fGn( ) = t h

Γ h +1( ) ; − 1
2
≤ h < 1

2

G0,h t( ) = t h−1Eh,h −t h( ); Eα,β z( ) = zn

Γ αn +β( )n=0

∞

∑

G0,h t( ) = −1( )n+1 t
nh−1

Γ nh( )n=1

∞

∑ ; 0 < h ≤ 2

Gα,h t( ) = 0Dt
−α G0,h t( )( ) = t h−1+αEh,h+α −t h( ) = tα−1 −1( )n+1 t nh

Γ α + nh( ) ;n=1

∞

∑ t ≥ 0

0; t < 0

α ≥ 0; 0 ≤ h ≤ 2

G1,h t( ) = t hEh,h+1 −t h( ); G1,h t( ) = −1( )n+1 t nh

Γ 1+ nh( )n=1

∞

∑

G0,h
fGn( ) G1,h

fGn( )
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 (17) 362 

Where for this “pure” fRn process, we have added the subscript “0” for reasons 363 
discussed below.  We note that at the origin, for 0 < h < 1, G0,h is singular whereas G1,h is 364 
regular so that it is may be advantageous to use the latter (step) response function (for 365 
example in the numerical simulations in section 4).   These Green’s function responses are 366 
shown in figure 1.   When 0 < h ≤ 1, the step response is monotonic; in an energy balance 367 
model, this would correspond to relaxation to equilibrium.  When 1 < h < 2, we see that 368 
there is overshoot and oscillations around the long term value; it is therefore (presumably) 369 
outside the physical range of an equilibrium process. 370 

In order to understand the relaxation process – i.e. the approach to the asymptotic 371 
value 1 in fig. 1 for the step response G1,h - we need the asymptotic expansion: 372 

, (18) 373 

For a = 0, 1 we obtain the special cases corresponding to impulse and step responses: 374 

 (19) 375 

(0 < h < 1, 1 < h < 2; note that the n = 0 terms are 0, 1 for , respectively) [Podlubny, 376 
1999], i.e. the asymptotic expansions are power laws in t-h rather than th.  According to this, 377 
the asymptotic approach to the step function response (bottom row in fig. 1) is a slow, 378 
power law process.   In the FEBE, this implies for example that the classical CO2 doubling 379 
experiment would yield a power law rather than exponential approach to a new 380 
thermodynamic equilibrium.  Comparing this to the EBE,  i.e. the special case h = 1, we 381 
have: 382 

, (20) 383 

so that when h = 1, the asymptotic step response is instead approached exponentially fast.  384 
We see that when h = 1 the process is a classical Ornstein-Uhlenbeck process so that fRn 385 
can be considered a generalization of the latter. There are also analytic formulae for fRn 386 
when h = 1/2 (the HEBE) discussed in appendix B notably involving logarithmic 387 
corrections.   388 
 389 

U0,h t( )= G0,h t − v( )γ v( )dv
−∞

t

∫

Gα ,h t( ) = ∑
n=0

∞ −1( )n
Γ α − nh( ) t

α−1−nh; t >>1

G0,h t( ) = −1( )n
n=0

∞

∑ t −1−nh

Γ −nh( ) ; G1,h t( ) = −1( )n
n=0

∞

∑ t −nh

Γ 1− nh( ) ; t >>1

G0,h G1,h

G0,1 t( ) = e−t ; G1,1 t( ) =1− e−t
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	390 
Fig. 1a: The impulse (top) and step response functions (bottom) for the fractional relaxation 391 

range (0 < h < 1, left, red is h = 1, the exponential), the black curves, bottom to top are for h = 1/10, 392 
2/10, ..9/10) and the fractional oscillation range (1 < h < 2, red are the integer values h = 1, bottom, 393 
the exponential, and top, h = 2, the sine function, the black curves, bottom to top are for h = 11/10, 394 
12/10, ..19/10. 395 

2.3 The a order	 fractionally integrated fRn, fRm processes: 396 
Before proceeding to discuss the statistics of fRn, fRm processes, it is useful to 397 

make a generalization to the fractionally integrated processes: 398 
 (21) 399 

Ua,h is the “a	order	integrated,	fractional	h relaxation noise”. Combined with the Green’s 400 
function relation (eq. 15; recall that G0,h (t) = 0 for t<0), we find that Ua,h, 401 

Ga,h are respectively the fractionally integrated relaxation noises and Green’s functions of 402 
the fractionally integrated fractional relaxation equation: 403 

 (22) 404 

If the highest order derivative is constrained to be an integer (i.e. a+h = 1 or 2), then the 405 
equation is a standard fractional Langevin equation, for example U could for the velocity 406 
of a particle with fractional damping and white noise forcing, although even here, the initial 407 
conditions are usually taken to be at t = 0 not .  Equivalently, Ua,h, is the solution of 408 
the relaxation equation but with an fGn forcing: 409 
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Uα ,h = −∞Dt
−αU0,h

Gα ,h = −∞Dt
−αG0,h

−∞Dt
α+h + −∞Dt

α( )Uα ,h = γ ; −∞Dt
α+h + −∞Dt

α( )Gα ,h = δ t( )

t = −∞
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 (23) 410 

(the Weyl fractional derivatives commute).  Fa is the a order fGn process, and the 411 
restriction a <1/2 is needed to ensure low frequency convergence (see below). 412 

In the Earth’s radiative balance, such fractionally integrated fRn processes arise in 413 
two physically interesting situations.  The  first is where the forcing itself has a long 414 
memory – e.g. it is an fGn process.  Whereas the memory in a pure fRn process is purely 415 
from the high frequency storage term, in this case, the forcing (the overall radiative 416 
imbalance) also contributes to the memory and this has important consequences for the 417 
predictability (section 4).  Although the solutions Ua,h are mathematically the same whether 418 
from the fractional relaxation equation with fGn forcing (eq. 23) or the fractionally 419 
integrated fractional relaxation equation with white noise forcing (eq. 22), only the former 420 
is directly relevant for the Earth energy balance.  This is because the energy balance 421 
involves the response from both stochastic (internal) and deterministic (external) forcing.  422 
For the latter, it is important that following a step function forcing, at long times, the system 423 
will approach a new state of thermodynamic equilibrium.  This implies that the term in the 424 
equation that dominates at low frequencies – the lowest order term - be of order zero so 425 
that if F in eq. 1 is a step function, that the new equilibrium temperature (anomaly) is T = 426 
sF. 427 

The second situation where fractionally integrated fRn processes arise is for the 428 
energy storage (even in the purely white noise forcing case).  The storage process is the 429 
difference between the forcing and the response: 430 

   (24) 431 
so that: 432 

 (25) 433 

Even when the forcing is pure white noise (a = 0), the storage is an h ordered fractionally 434 
integrated process: ; this corresponds to the storage following an impulse forcing.  435 

The storage following a step forcing is obtained by integration order 1: .   Similarly, 436 

the Green’s function for the fRn storage following an impulse forcing is  and following 437 

a step forcing,  (fig. 1b).  Since it turns out that most of the pure fRn (a = 0) results 438 

are readily generalized to 0<a<1/2, many fractionally integrated results are given below. 439 
 440 

−∞Dt
h +1( )Uα ,h = −∞Dt

−αγ = Fα t( ); 0 ≤α <1/ 2

Sα ,h = Fα −Uα ,h

Sα ,h = −∞Dt
hUα ,h =Uh−α ,h

S0,h =Uh,h

U1+h,h
Gh,h

G1+h,h
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 441 
Fig. 1b:  The storage Green’s functions for the fractional relaxation equation (a = 0): top 442 
impulse response (Gh,h), bottom, step response (G1+h,h).  Black is for h = 1/10, 2/10,..10/10, 443 
red for 11/10, 12/10, …19/10 (to identify the curves, use the fact that at large t, they are in 444 
order of increasing h (bottom to top).  For small t,  (eq. 15) so that for h≤1/2, 445 

the impulse response is singular at the origin.  For large t,  (eq. 18) so that for 446 
h<1, the total impulse response storage decreases following the impulse, for h = 1 (the 447 
EBE), it tends to unity and for h>1, it diverges.   448 

2.4 Statistics 449 
In the above, we discussed fGn, fRn and their order one integrals fBm, fRm as well 450 

as fractional generalizations, presenting a classical (real space) approach stressing the links 451 
with fGn, fBm, we now turn to their statistics.  Ua,h(t) is a mean zero stationary Gaussian 452 
process (i.e. <Ua,h(t)> = 0 where “<.>” indicates ensemble or statistical averaging), 453 
therefore its statistics are determined completely by it’s autocorrelation function Ra,h(t) 454 
which is only a function of the lag t: 455 

 (26) 456 

��� ��� ��� ��� ��� ���
�

���

���

���

���

���

������

��� ��� ��� ��� ��� ���
�

�

�

�

�

����

Gh,h ∝ t
2h−1

Gh,h ∝ t
h−1

Rα ,h t( ) = Uα ,h t + v( )Uα ,h v( ) = Gα ,h t + v( )Gα ,h v( )dv
0

∞

∫
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The far right equality follows from  and  (“*” 457 

indicates “convolution”).  The process can only be normalized by  when there is 458 
no small scale divergence i.e. when: 459 

  (27) 460 

When a+h<1/2, this diverges; in order to be normalized,  the process must be averaged at 461 
a finite resolution (below). 462 

Although it is possible to follow [Mandelbrot and Van Ness, 1968] and derive many 463 
statistical properties in real space, a Fourier approach is not only more streamlined, but is 464 
more powerful.    The reason for the simplicity of the Fourier approach is that the Fourier 465 
Transform (FT, indicated by the tilda) of the Weyl fractional derivative is symbolically: 466 

 (28) 467 
(e.g. [Podlubny, 1999], this is simply the extension of the usual rule for the FT of integer-468 
ordered derivatives).  Therefore since Ua,h, Ga,h are respectively solutions and Green’s 469 
functions of the fractionally integrated fractional relaxation equation (eq. 22) we have: 470 

, (29) 471 

 472 

So that: 473 

 474 

 (30) 475 
We see that in the limit h→0,  is an a order fGn process (see e.g. eq. 23).   476 

Now we can use the fact that the white noise g has a flat spectrum: 477 

478 

 (31) 479 
The modulus (vertical bars) intervene since for any real function f(t) we have 480 

, where the superscript “*” indicates complex conjugate.   481 
Application of eq. 31 leads to:  482 

483 

 (32) 484 

Uα ,h = Gα ,h ∗γ γ t( )γ ′t( ) = δ t − ′t( )
Rα ,h 0( )

Rα ,h 0( ) = Uα ,h
2 =

0

∞

∫Gα ,h v( )2 dv < ∞; α + h >1/ 2

iω( )h↔
FT

−∞Dt
h

iω( )α+h + iω( )α⎛
⎝

⎞
⎠U
!

α ,h = γ!↔
FT

−∞Dt
α+h + −∞Dt

α( )Uα ,h = γ

iω( )α+h + iω( )α⎛
⎝

⎞
⎠G
!
α ,h =1↔

FT

−∞Dt
α+h + −∞Dt

α( )Gα ,h = δ

U!α ,h ω( ) = γ!

iω( )α 1+ iω( )h( ) ; G!α ,h ω( ) = 1

iω( )α 1+ iω( )h( ) ; 0 <α <1; 0 < h < 2

Uα ,0

γ! ω( )γ! ′ω( ) = δ ω + ′ω( ) γ! ω( ) 2 = 2πδ ω + ′ω( )↔
FT

γ t( )γ ′t( ) = δ t − ′t( )

f! ω( ) = f! * −ω( )

Rα ,h t( ) = 1
2π

eiωt
−∞

∞

∫ EU ω( )dω ; EU ω( ) = U!α ,h ω( ) 2 = 1

ω
2α
1+ −iω( )h( ) 1+ iω( )h( )
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i.e. the spectrum EU is the FT of the correlation function Ra,h(t) (the Wiener-Khintchin 485 
theorem).  Applying this to Ua,h, we obtain: 486 

 (33) 487 

This shows that  so that below, we only consider t≥0. 488 

Since,  diverges for a+h<1/2, we consider the integral Qa,h of the process 489 
(the “motion”) from which we can easily compute the average.  The corresponding variance 490 
Va,h is: 491 

 (34) 492 
In terms of :  493 

 494 

  a<1/2,  0<h<2. (35) 495 
We see that at low frequencies, when a≥1/2 the integral diverges for all t.  Also note that 496 
a series expansion for Va,h(t) in t will have only even ordered integer power terms.  497 

Comparing eqs. 33, 35 we see that R, V are linked by the simple relation: 498 

 (36) 499 
Therefore by integrating eq. 26 (twice), we can express Va,h in terms of Ga,h: 500 

 (37) 501 

This can be verified by differentiation and using . 502 

The basic behaviour can be understood in the Fourier domain.  First, putting t = 0 in 503 
eq. 32 (i.e. “Parseval’s theorem”) we have: 504 

  (38)  505 
So that when a+h <1/2, R diverges at high frequencies (small t), hence to represent a 506 
physical process (here, the Earth’s temperature), the process must be averaged over a finite 507 
resolution t.  When a+h>1/2, R(0) is finite and can therefore be used to obtain a normalized 508 
autocorrelation function (eq. 27).   509 

From eq. 32, we may also easily obtain the asymptotic high and low frequency 510 
behaviours of the energy spectrum:  511 

Rα ,h t( ) = 1
2π

cos ωt( )dω
ω

2α
1+ iω( )h( ) 1+ −iω( )h( )−∞

∞

∫

Rα ,h t( ) = Rα ,h −t( )
Rα ,h 0( )

Vα ,h t( ) = Qα ,h t( )2 ; Qα ,h t( ) = Uα ,h v( )dv
0

t

∫

U!α ,h ω( )
Vα ,h t( ) = 1π

1− cosωt( )
ω 2 U!α ,h ω( ) 2 dω

−∞

∞

∫ = 1
π

1− cosωt( )
ω

2+2α

dω

1+ iω( )h( ) 1+ −iω( )h( )−∞

∞

∫

Rα,h t( ) = 1
2
d 2Vα,h t( )
dt 2

Vα ,h t( ) = Gα+1,h t + v( )−Gα+1,h v( )( )2 dv
0

∞

∫ + Gα+1,h v( )2 dv
0

t

∫
dGα+1,h

dt
= Gα ,h

Rα ,h 0( ) = 1
2π −∞

∞

∫EU ω( )dω = 1
2π

dω

ω
2α
1+ iω( )h( ) 1+ −iω( )h( )−∞

∞

∫
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. (39) 512 

2.5 Finite resolution processes 513 
When a+h<1/2 the process doesn’t converge at any instant t, it is a noise, a 514 

generalized function.  To represent the Earth’s temperature it must therefore be averaged 515 
at a finite resolution t: 516 

. (40) 517 

Applying eq. 34, 40, we obtain the “resolution t” autocorrelation: 518 

	519 

, (41) 520 
Alternatively, measuring time in units of the resolution l = Dt/t:	521 

522 

 (42) 523 
Ra,h,t can be conveniently written in terms of centred finite differences: 524 

. 525 

 (43) 526 
The finite difference formula is valid for Dt ≥ t.  For finite t, it allows us to obtain the 527 
correlation behaviour by replacing the second difference by a second derivative, an 528 
approximation that is very good except when Dt is close to t.		Taking the limit  in 529 
eq. 43 we obtain the second derivative formula eq. 36.	530 

3 Application to fBm, fGn, fRm, fRn 531 

3.1 fBm, fGn 532 
The above derivations were for noises and motions derived from differential 533 

operators whose impulse and step Green’s functions had convergent Va,h(t).  Before 534 
applying them to fRn, fRm, we illustrate this by applying them first to fBm and fGn.   535 

The fBm results are obtained by using the fGn step Green’s function (eq. 13) in eq. 536 
35 with h = 0 to obtain: 537 

E
U
ω( )∝

ω−2 α+h( ) +O ω−2α−3h( ); ω >>1

ω−2α −2cos πh
2

⎛
⎝⎜

⎞
⎠⎟
ωh−2α +O ω2h−2α( ) ω <<1

Uα ,h,τ t( )= Qα ,h t( )−Qα ,h t −τ( )
τ

Rα,h,τ Δt( ) = Uα,h,τ t( )Uα,h,τ t − Δt( ) = τ−2 Qα,h t( )−Qα,h t − τ( )( ) Qα,h t − Δt( )−Qα,h t − Δt − τ( )( )
= τ−2 1

2
Vα,h Δt − τ( )+Vα,h Δt + τ( )− 2Vα,h Δt( )( )

Δt ≥ τ

Rα,h,τ 0( ) = τ−2Vα,h τ( )

Rα,h,τ λτ( ) = Uα,h,τ t( )Uα,h,τ t − λτ( ) = τ−2 1
2
Vα,h λ −1( )τ( )+Vα,h λ +1( )τ( )− 2Vα,h λτ( )( ); λ ≥1

Rα,h,τ λτ( ) = 1
2
Δτ
2Vα,h λτ( ) ≈ 1

2
Vα,h

′′ Δt( ); Δτ f t( ) = f t + τ / 2( )− f t − τ / 2( )
τ

τ→ 0
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. 538 

 (44) 539 
The standard normalization and parametrisation is: 540 

. (45) 541 
This normalization turns out to be convenient not only for fBm but also for fRm so that for  542 
the normalized process: 543 

, (46) 544 

Where we have introduced the standard fBm parameter H = h+1/2 so that: 545 

, (47) 546 

hence H is the fluctuation exponent for fBm.  Note that fBm is usually defined as the 547 
Gaussian process with VH given by eq. 46 i.e. with this normalization (e.g. [Biagini et al., 548 
2008]).   549 

We can now calculate the correlation function relevant for the fGn statistics.  With 550 
the above normalization: 551 

 
552 

,  (48)
 

553 

the bottom approximations are valid for large scale ratios l.  We note the difference in sign 554 
for H > ½ (“persistence”), and for H < ½ (“antipersistence”).  When H = ½, the noise 555 
corresponds to standard Brownian motion, it is uncorrelated. 556 

3.2 fRm, fRn 557 
3.2.1 Ra,h(t) 558 

Since fRm, fRn are Gaussian, their properties are determined by their second order 559 
statistics, by Va,h(t), Ra,h(t).  These statistics are second order in Ga,h(t) and can most easily 560 
be determined using the Fourier representation of Ga,h(t), (section 2.4, appendix A, B).  The 561 
development is challenging because unlike the Ga,h(t) functions that are entirely expressed 562 
in series of fractional powers of t, Va,h(t) and Ra,h(t) involve mixed fractional and integer 563 
power expansions, the details are given in the appendices, here we summarize the main 564 
results.     565 

Vh
fBm( ) t( ) = 4Vα=h,0 t( ) = 2sin πh( )Γ −1− 2h( )

π
⎛
⎝⎜

⎞
⎠⎟
t 2h+1; − 1

2
≤ h < 1

2

Nh = Kh =
π

2sin πh( )Γ −1− 2h( )
⎛
⎝⎜

⎞
⎠⎟

1/2

= − π
2cos πH( )Γ −2H( )

⎛
⎝⎜

⎞
⎠⎟

1/2

;

H = h + 1
2
; 0 ≤ H <1

VH
fBm( ) t( ) = t 2h+1 = t 2H ; 0 ≤ H <1

ΔBH Δt( )2
1/2

= Δt H ; ΔBH Δt( ) = BH t( )− BH t − Δt( )

Rh,τ
fGn( ) λτ( ) = 1

2
τ2h−1 λ +1( )2h+1 + λ −1( )2h+1 − 2λ2h+1( ); λ ≥1; − 1

2
< h < 1

2

Rh,τ
fGn( ) 0( ) = τ2h−1

RH ,τ
fGn( ) λτ( ) ≈ h 2h +1( ) λτ( )2h−1 = H 2H −1( ) λτ( )2 H−1( ) ;

λ >>1
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First, for the noises, we have:  566 

; 567 

;568 

 (49) 569 
At small t, the lowest order terms dominate, the normalized autocorrelations are thus: 570 

571 

572 

 573 
 (50) 574 
(note F3<0 for 3/2<h+a<2, see appendix A).  We see that at small t, the behaviour of the 575 
normalized autocorrelations depend essentially on the sum h+a, in particular, when 576 
h+a<1/2, the process is effectively an fGn process with effective fluctuation exponent H = 577 
-½ + (h+a).  This is to be expected since a+h is the highest order term in the fractionally 578 
integrated fractional relaxation equation (eq. 22). 579 
 580 
3.2.2 Va,h(t) 581 

Integrating twice , we obtain: 582 

583 

 (51)  584 
When 0<a+h<1/2, the leading (n = 2) term for Va,h is t1+2(h+a), ( ) so that the fBm 585 
coefficient can be used for normalization using .  When h+a>1/2, this 586 
normalization becomes negative, so that it cannot be used, however in this case, Ra,h (0) = 587 
F1 and may be used for normalization instead. For an analytic expression, convergence 588 
properties including numerical results and modified expansions that converge more rapidly, 589 
see appendix A, for the special case h = 1/2, appendix B. 590 

For convenience, the leading terms of the normalized Va,h are:  591 

 (52) 592 

Rα ,h t( ) = DnΓ 1− hn− 2α( )t−1+hn+2α
n=2

∞

∑ + Fj
t j−1

Γ j( )j=1,odd

∞

∑

Fj = −
cosπ h

2
+α⎛

⎝⎜
⎞
⎠⎟

hsin πh
2

⎛
⎝⎜

⎞
⎠⎟
sin

π
h
j − 2α( )⎛

⎝⎜
⎞
⎠⎟

Dn = −1( )n
sin nπh

2
+απ⎛

⎝⎜
⎞
⎠⎟
sin

n−1( )πh
2

⎛

⎝
⎜

⎞

⎠
⎟

π sin πh
2

⎛
⎝⎜

⎞
⎠⎟

Rα ,h
norm( ) t( ) = h+α( ) 1+ 2 h+α( )( )t−1+2 h+α( ) +O t−1+3h+2α( ); τ << t <<1; 0 < h+α( ) <1/ 2

Rα ,h
norm( ) t( ) = 1−

Γ 1− 2 h+α( )( ) sin π h+ 2α( )( )
πF1

t−1+2 h+α( ) +O t−1+3h+2α( ); t <<1;
1/ 2 < h+α( ) < 3/ 2

Rα ,h
norm( ) t( ) = 1+ t2

2F1
F3 +O t−1+2 h+α( )( )...; t <<1; 3 / 2 < h+α( ) < 2

Vα ,h t( ) = 2
0

t

∫
0

v

∫Rα ,h u( )du⎛

⎝⎜
⎞

⎠⎟
dv

Vα ,h t( ) = 2 DnΓ −1− hn− 2α( )t1+hn+2α
n=2

∞

∑ + 2 Fj
t j+1

Γ j + 2( )j=1,odd

∞

∑ ; 0 < h < 2; 0 ≤α <1/ 2

∝Vα+h
fBm( )

Rα,h,τ 0( ) = τ−2Vα,h τ( )

Vα ,h
norm( ) t( ) = t1+2 h+α( ) +O t1+3h+2α( )+O t2( ); 0 < h+α( ) <1/ 2
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 593 

 594 

 595 
3.2.3 Asymptotic expansions 596 

For multidecadal global climate projections, the relaxation time has been estimated 597 
at ≈ 5 years ([Procyk et al., 2020; 2022]), so that we are interested in the long time 598 
behaviour (exploited for example in [Hébert et al., 2021]).  For this, asymptotic expansions 599 
are needed, in appendix A we show:  600 

 (53) 601 

Where the  = 0 for h<1 while for 1<h<2 it has exponentially damped oscillations 602 
(see fig. 2 lower right and appendix A).   603 

For pure fRn processes a useful formula is: 604 

605 
 (54) 606 
Or more generally: 607 

   608 

 t≫1; 0≤h<2; 0≤a<1/2 (55) 609 
We see that when a ≠0, D0 >0 so that as expected, the leading behaviour has no h 610 
dependence, it is only due to the long range correlations in the forcing; we obtain the fGn 611 

result: ≈t2a-1.  For pure fRn processes this reduces to  (note that 612 

<0 for 0<h<1).   613 

Integrating  twice and doubling, we obtain  614 

615 

 (56) 616 
(the full expansion is given in appendix A, see fig. 3 for plots).  The constants of integration 617 
aa,h, ba,h are not determined since the expansion is not valid at t = 0; they can be determined 618 
numerically if needed.  However, in the limit a→0 (the pure fRn case), the leading term is 619 
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exactly t (corresponding to ordinary Brownian motion) so that an extra a0,h is not needed 620 
(appendix A).   When a>0, the far left (fGn) term from the forcing dominates, at large 621 
enough t, with H = a+1/2, the corresponding motion is an fBm.   622 

Using the above results we see that there are three limiting fRn/fRm cases that yield 623 
fGn/fBm processes: 624 

 (57) 625 

 626 
 627 
Fig. 2: The normalized correlation functions R0,h for fRn corresponding to the V0,h function 628 

in fig. 2: 0 < h< 1/2 (upper left) 1/2 < h < 1 (upper right), 1 < h < 3/2) lower left, 3/2 < h < 2 lower 629 
right.   In each plot, the curves correspond to h increasing from bottom to top in units of 1/10 630 
starting from 1/20 (upper left) to 39/20 (bottom right).  For h<1/2, the resolution is important since 631 

R0,h,t diverges at small t.  In the upper left figure, R0,h,t is shown with t = 10-5; they were 632 
normalized to the value at resolution t = 10-5, for h >1/2, the curves are normalized with .   In 633 
all cases, the large t slope is – 1-h.  634 
 635 

Vα ,h t( )∝ t2H

Rα ,0 t( ) = 14 Rα
fGn( ) t( ); 0 <α <1/ 2; h = 0

Rα ,h t( ) = Rα fGn( ) t( ); 0 <α <1/ 2; t >>1

Rα ,h t( ) = Rα+h
fGn( ) t( ); 0 <α + h <1/ 2; t ≈ 0

-	 4	 -	 2	 2	 4	
Log	10	t	

-	 8	

-	 6	

-	 4	

-	 2	

Lo
g	 1

0	R
	

-	 4	 -	 2	 2	 4	

-	 8	

-	 6	

-	 4	

-	 2	

-	 1	 1	 2	 3	 4	

-	 8	

-	 6	

-	 4	

-	 2	
-	 1	 1	 2	 3	 4	

-	 10	

-	 8	

-	 6	

-	 4	

-	 2	Log	10	t	

Lo
g	 1

0	R
	

Lo
g	 1

0	R
	

Lo
g	 1

0	R
	

Log	10	t	

Log	10	t	

F3
−1/2



 21 

 636 
Fig. 3: The normalized V0,h functions for the various ranges of h for fRm.  The plots from 637 

left to right, top to bottom are for the ranges 0 < h<1/2, 1/2 < h < 1, 1 < h < 3/2, 3/2 < h < 2.  Within 638 
each plot, the lines are for h increasing in units of 1/10 starting at a value 1/20 above the plot 639 
minimum; overall, h	increases	in	units	of	1/10	starting	at	a	value	1/20,	upper	left	to	39/20,	640 
bottom	right (ex. for the upper left, the lines are for h = 1/20, 3/10, 5/20, 7/20, 9/20).  For all h’s 641 
the large t behaviour is linear (slope = 1, although note the oscillations for the lower right hand plot 642 
for 3/2<h<2).  For small t, the slopes are 1+2h (0<h≤1/2) and 2 (1/2≤h<2). 643 

 644 

3.3 Haar fluctuations 645 
A useful statistical characterization of the processes is by the statistics of their Haar 646 

fluctuations over an interval Dt.  For an interval Dt, Haar fluctuations (based on Haar 647 
wavelets) are the differences between the averages of the first and second halves of an 648 
interval.   For a process U, the Haar fluctuation is:  649 

.  (58) 650 

In terms of the process at resolution Dt/2, (i.e. averaged at this scale) : 651 

.  (59) 652 

Therefore:  	653 
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ΔU Δt( )Haar =
2
Δt

U v( )dv −
t−Δt /2

t

∫
2
Δt

U v( )dv
t−Δt

t−Δt /2

∫
UΔt /2 t( )

ΔU Δt( )Haar =
2
Δt
UΔt /2 t( )−UΔt /2 t − Δt / 2( )( )
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. (60) 654 

Where V(t) is the variance of the integral of U over an interval t (eq. 34). 	655 
Using eq. 60 we can determine the behaviour of the RMS Haar fluctuations; terms 656 

like  contribute  to the RMS Haar fluctuation  (the 657 

exception is when x =2 which contributes nothing).  Applying this equation to fGn 658 

parameter h we obtain  with H = h – ½.  659 

Using the results above for Va,h we therefore obtain the leading exponents: 660 

 (61) 661 
Fig. 4 shows that the theory agrees well with the numerics.   662 

For the range of a, h discussed here (0≤a<1/2, 0≤h≤2), H spans the range -1/2 (white 663 
noise) to 1.  In comparison, fGn processes have H covering the range -1 <H <0 and fBm 664 
processes have 0<H<1, therefore, depending on whether the process is observed at time 665 
scales below or above the relaxation time scale (Dt = 1), fractionally integrated fRn 666 
processes can mimick fGn or fBm processes.    If we consider the integrals - the motions - 667 
the value of H is increased by 1 (although for Haar fluctuations, it cannot exceed H = 1).  668 
Overall, from an empirical viewpoint, if over some range of scales (that may only be a 669 
factor of 100 or less), it may be quite hard to distinguish the various models, especially 670 
since the transition from low to high frequency scaling may be very slow (see especially 671 
appendix B for the h = 1/2 case).  Recent work shows that the maximum likelihood method 672 
may be the optimum parameter estimation technique [Procyk, 2021]. 673 
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 674 
Fig.	4:	The	RMS	Haar	fluctuation	plots	for the pure (a = 0) fRn process for 0 < h < 1/2 675 

(upper left), 1/2 < h < 1 (upper right), 1 < h < 3/2 (lower left), 3/2 < h < 2 (lower right).  The 676 
individual curves correspond to those of fig. 2, 3.  The	small	Dt	slopes	follow	the	theoretical	677 
values	h	-	1/2	up	to	h	=	3/2	(slope=	1);	for	larger	h,	the	small	t	slopes	all	=	1.		Also,	at	large	t	678 
due	to	dominant	V	≈	t	terms,	in	all	cases	we	obtain	slopes	t-1/2.		679 

3.4 Sample processes 680 
It is instructive to view some samples of fRn, fRm processes, (here we consider only 681 

a = 0).   For simulations, both the small and large scale divergences must be considered.  682 
Starting with the approximate methods developed by [Mandelbrot and Wallis, 1969], it 683 
took some time for exact fBm, and fGn simulation techniques to be developed [Hipel and 684 
McLeod, 1994], [Palma, 2007].  Fortunately, for fRm, fRn, the low frequency situation is 685 
easier since the long time memory is much smaller than for fBm, fGn.  Therefore, as long 686 
as we are careful to always simulate series a few times longer than the relaxation time and 687 
then to throw away the earliest 2/3 or 3/4 of the simulation, the remainder will have accurate 688 
statistics.  With this procedure to take care of low frequency issues, we can therefore use 689 
the solution for fRn in the form of a convolution, and use standard numerical convolution 690 
algorithms. 691 

We must nevertheless be careful about the high frequencies since the impulse 692 
response Green’s functions G0,h are singular for h<1.  In order to avoid singularities, 693 
simulations of fRn are best made by first simulating the motions Q0,h using  694 
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and obtain the resolution t fRn, using .  Numerically, 695 
this allows us to use the smoother (nonsingular) G1,h in the convolution rather than the 696 
singular G0,h.   The simulations shown in figs. 5, 6 follow this procedure and the Haar 697 
fluctuation statistics were analyzed verifying the statistical accuracy of the simulations. 698 

In order to clearly display the behaviours, recall that when t>>1, we showed that all 699 
the fRn converge to Gaussian white noises and the fRm to Brownian motions (albeit in a 700 
slow power law manner).  At the other extreme, for t << 1, we obtain the fGn and fBm 701 
limits (when 0 < h < 1/2) and their generalizations for  1/2 < h < 2.   702 

Fig. 5a shows three simulations, each of length 219, pixels, with each pixel 703 
corresponding to a temporal resolution of t = 2-10 so that the unit (relaxation) scale is  210 704 
elementary pixels.  Each simulation uses the same random seed but they have h’s increasing 705 
from h = 1/10 (top set) to h = 5/10 (bottom set).  The fRm at the right is from the running 706 
sum of the fRn at the left.  Each series has been rescaled so that the range (maximum - 707 
minimum) is the same for each.  Starting at the top line of each group, we show 210 points 708 
of the original series degraded by a factor 29.  The second line shows a blow-up by a factor 709 
of 8 of the part of the upper line to the right of the dashed vertical line.  The line below is 710 
a further blown up by factor of 8, until the bottom line shows 1/512 part of the full 711 
simulation, but at full resolution.  The unit scale indicating the transition from small to 712 
large is shown by the horizontal red line in the middle right figure.   At the top (degraded 713 
by a factor 29), the unit (relaxation) scale is 2 pixels so that the top line degraded view of 714 
the simulation is nearly a white noise (left), (ordinary) Brownian motion (right).  In contrast, 715 
the bottom series is exactly of length unity so that it is close to the fGn limit with the 716 
standard exponent H = h+1/2.   Moving from bottom to top in fig. 5a, one effectively 717 
transitions from fGn to fRn (left column) and fBm to fRm (right).   718 

If we take the empirical relaxation scale for the global temperature to be 27 months 719 
(≈10 years, [Lovejoy et al., 2017]) and we use monthly resolution temperature anomaly 720 
data, then the nondimensional resolution is 2-7 corresponding to the second series from the 721 
top (which is thus 210 months ≈ 80 years long).  Since h ≈ 0.38±0.03 [Procyk et al., 2022], 722 
the second series from the top in the bottom set is the most realistic, we can make out the 723 
low frequency ondulutions that are mostly present at scales 1/8 of the series (or less).  724 

Fig. 5b shows realizations constructed from the same random seed but for the 725 
extended range 1/2 < h < 2 (i.e. beyond fGn).   Over this range, the top (large scale, 726 
degraded resolution) series are close to white noises (left) and Brownian motions (right).  727 
For the bottom series, there is no equivalent fGn or fBm process, the curves become 728 
smoother although the rescaling may hide this somewhat (see for example the h = 13/20 729 
set, the blow-up of the far right 1/8 of the second series from the top shown in the third line.  730 
For 1 < h < 2, also note the oscillations with frequency  (eq. 53, A.3), this is 731 
the fractional oscillation range. 732 

Fig. 6a shows simulations similar to fig. 5a (fRn on the left, fRm on the right) except 733 
that instead of making a large simulation and then degrading and zooming, all the 734 
simulations were of equal length (210 points), but the relaxation scale was changed from 735 
215 pixels (bottom) to 210, 25 and 1 pixel (top).  Again the top is white noise (left), Brownian 736 
motion (right), and the bottom is (nearly) fGn (left) and fBm (right), fig. 6b shows the 737 
extensions to 1/2 < h < 2. 738 

 739 

U0,h,τ t( ) = Q0,h t +τ( )−Q0,h t( )( ) / τ

2π / sin π / h( )
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 740 
Fig. 5a: fRn and fRm simulations (left and right columns respectively) for h = 1/10, 3/10, 741 

5/10 (top to bottom sets, all with a = 0) i.e. the exponent range that overlaps with fGn and fBm.  742 
There are three simulations, each of length 219 pixels, each use the same random seed with the unit 743 
scale equal to 210 pixels (i.e. a resolution of t = 2-10).  The entire simulation therefore covers the 744 
range of scale 1/1024 to 512 units.  The fRm at the right is from the running sum of the fRn at the 745 
left.   746 

Starting at the top line of each set, we show 210 points of the original series degraded in 747 
resolution by a factor 29 .  Since the length is t = 29 units long, each pixel has resolution t = 1/2).    748 
The second line of each set takes the segment of the upper line lying to the right of the dashed 749 
vertical line, 1/8 of its length.  It therefore spans t=0 to t = 29/8 = 26 but resolution was taken as t = 750 
2-4, hence it is still 210 pixels long.  Since each pixel has a resolution of 2-4, the unit scale is 24 pixels 751 
long, this is shown in red in the second series from the top (middle set).  The process of taking 1/8 752 
and blowing up by a factor of 8 continues to the third line (length t = 23, resolution t = 2-7), unit 753 
scale =27 pixels (shown by the red arrows in the third series) until the bottom series which spans 754 
the range t = 0 to t = 1 and a resolution t = 2-10 with unit scale 210 pixels (the whole series displayed).   755 
Each series was rescaled in the vertical so that its range between maximum and minimum was the 756 
same.   757 

The unit relaxation scales indicated by the red arrows mark the transition from small to large 758 
scale.  Since the top series in each set has a unit scale of 2 (degraded) it is nearly a white noise (left), 759 
or (ordinary) Brownian motion (right).  In contrast, the bottom series is exactly of length t = 1 so 760 
that it is close to the fGn and fBm limits (left and right) with the standard exponent H = h +1/2. As 761 
indicated in the text, the second series from the top in the bottom set is most realistic for monthly 762 
temperature anomalies. 763 
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 765 

 766 
Fig. 5b:  The same as fig. 5a but for h = 7/10, 13/10 and 19/10 (top to bottom).   Over this 767 

range, the top (large scale, degraded resolution) series is close to a white noise (left) and Brownian 768 
motion (right).  For the bottom series, there is no equivalent fGn or fBm process, the curves become 769 
smoother although the rescaling may hide this somewhat (see for example the middle h = 13/20 set, 770 
the blow-up of the far right 1/8 of the second series from the top shown in the third line).  Also note 771 
for the bottom two sets with 1 < h < 2, the oscillations that have frequency , this is 772 
the fractional oscillation range. 773 

 774 
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 776 
Fig. 6a: This set of simulations is similar to fig. 5a (fRn on the left, fRm on the right) except 777 

that instead of making a large simulation and then degrading and zooming, all the simulations were 778 
of equal length (210 points), but resolutions t = 2-15, 2-10, 2-5 , 1 (bottom to top).  The simulations 779 
therefore spanned the ranges of scale 2-15 to 2-5 ; 2-10 to 1 ; 2-5 to 25 ; 1 to 210 and the same random 780 
seed was used in each so that we can see how the structures slowly change when the relaxation 781 
scale changes.  The bottom fRn, h= 5/10 set is the closest to that observed for the Earth’s 782 
temperature, and since the relaxation scale is of the order of a few years, the second series from the 783 
top of this set (with one pixel = one month) is close to that of monthly global temperature anomaly 784 
series.  In that case the relaxation scale would be 32 months and the entire series would be 210/12 ≈ 785 
85 years long. 786 

The top series (of total length 210 relaxation times) is (nearly) a white noise (left), and 787 
Brownian motion (right), and the bottom is (nearly) an fGn (left) and fBm (right).  The total range 788 
of scales covered here (210x215) is larger than in fig. 5a and allows one to more clearly distinguish 789 
the high and low frequency regimes.  790 
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 792 
Fig. 6b:  The same fig. 6a but for larger h values; see also fig. 5b.  793 

4. Prediction 794 
The initial value for Weyl fractional differential equations is effectively at , 795 

so that for fRn, it is not directly relevant at finite times (although the ensemble mean is 796 
assumed = 0; for fRm, the initial condition Qa,h(0) = 0 is important).   The prediction 797 
problem is thus to use past data (say, for t < 0) in order to make the most skillful prediction 798 
for t > 0.   We are therefore dealing with a past value rather than a usual initial value 799 
problem.  The emphasis on past values is particularly appropriate since in the fGn limit, 800 
the memory is so large that values of the series in the distant past are important.  Indeed, 801 
prediction of fGn with a finite length of past data involves placing strong (mathematically 802 
singular) weights on the most ancient data available (see [Gripenberg and Norros, 1996], 803 
[Del Rio Amador and Lovejoy, 2019], [Del Rio Amador and Lovejoy, 2021a], [Del Rio 804 
Amador and Lovejoy, 2021b]).  This is quite different from standard stochastic predictions 805 
that are based on short memory (exponential) auto-regressive or moving average type 806 
processes that are not much different from initial value problems. 807 

To deal with the small scale divergences when 0 < h+a  ≤ 1/2 it is necessary to 808 
predict the finite resolution fRn: .  Using eq. 40 for , we have: 809 
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.  (62) 810 

Now define the predictor for t ≥ 0 (indicated by a circonflex):  811 

. (63) 812 

To show that it is indeed the optimal predictor, consider the predictor error : 813 

.814 

 (64) 815 
Eq. 64 shows that the error depends only on g(v) for v>0 whereas the predictor (eq. 63) 816 
only depends on g(v) for v<0, hence they are orthogonal: 817 

, (65) 818 

this is a sufficient condition for  to be the minimum square predictor which is the 819 
optimal predictor for stationary Gaussian processes, (e.g. [Papoulis, 1965]).  The prediction 820 
error variance is: 821 

, 822 

 (66) 823 
or with a change of variables: 824 

, (67) 825 

where we have used  (the unconditional variance). 826 
There are numerous skill indicators but the most popular and easy to interpret 827 

definition of forecast skill is the “Minimum Square Skill Score” or “MSSS” (see [Del Rio 828 
Amador and Lovejoy, 2021a] for discussion of this and other indicators).  For this, we 829 
obtain: 830 
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. (68) 831 

When h < 1/2 and , we obtain the fGn result: 832 

   (69) 833 

[Lovejoy et al., 2015].  Where l is the forecast horizon (lead time) measured in the number 834 
of time steps in the future (due to the fGn scaling, it is independent of the resolution t).  835 
The MSSS gives the fraction of the variance explained by the optimum predictor, when the 836 
skill = 1, the forecast is perfect. 837 

To survey the implications, let’s start by showing the t independent results for fGn, 838 
shown in fig. 7 which is a variant on a plot published in [Lovejoy et al., 2015].   We see 839 
that when h ≈ 1/2 (H ≈ 1) that the skill is very high, indeed, in the limit , we have 840 
perfect skill for fGn forecasts (this would of course require an infinite amount of past data 841 
to attain). 842 

 843 

Sk ,τ t( ) = 1−
Eτ t( )2

Eτ ∞( )2
=

G1+α ,h u + τ( )−G1+α ,h u( )( )2 du
t−τ

∞

∫
Vα ,h τ( )

=
G1+α ,h v + τ( )−G1+α ,h v( )( )2 dv

t−τ

∞

∫

G1+α ,h v + τ( )−G1+α ,h v( )( )2 dv
0

∞

∫ + G1+α ,h v( )2 dv
0

τ

∫

G1,h t( ) = G1,hfGn( ) t( ) = t h

Γ 1+ h( )
Sk =

ξh ∞( )− ξh λ( )
ξh ∞( )+ 1

2h+1

ξh λ( ) = v +1( )h − vh( )2 dv
0

λ−1

∫

h→1/2
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 844 
Fig. 7: The prediction skill (Sk) for pure fGn processes for forecast horizons up to l = 10 845 

steps (ten times the resolution).  This plot is non-dimensional, it is valid for time steps of any 846 
duration.  From bottom to top, the curves correspond to h = 1/20, 3/10, …9/20 (red, top, close to 847 
the empirical h).	848 
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 850 
Fig. 8:  The left column shows the skill (Sk) of pure (a = 0) fRn forecasts (as in fig. 7 for 851 

fGn) for fRn skill with h = 1/20, 5/20, 9/20 (top to bottom set); l is the forecast horizon, the number 852 
of steps of resolution t forecast into the future.  The right hand column shows the ratio (r) of the 853 
fRn to corresponding fGn skill.	854 

Here the result depends on t; each curve is for different values increasing from 10-4 (top, 855 
black) to 10 (bottom, purple) increasing by factors of 10 (the red set in the bottom plots with t = 856 
10-2, h = 9/20 are closest to the empirical values).   	857 

 858 
Now consider the fRn skill, we’ll start by considering the pure (a = 0) fRn case where 859 

the memory comes completely from the (high frequency) storage, anticipating that the fGn 860 
forced case (a ≠ 0) obtains its memory and skill from both storage and the forcing.  In 861 
comparison with fGn, fRn has an extra parameter, the resolution of the data, t.  Figure 8 862 
shows curves corresponding to fig. 7 for fRn with forecast horizons integer multiples (l) 863 
of t i.e. for times t = lt in the future, but with separate curves, one for each of five t values 864 
increasing from 10-4 to 10 by factors of ten.  When t is small, the results should be close to 865 
those of fGn, i.e. with potentially high skill, and in all cases, the skill is expected to vanish 866 
quite rapidly for t>1 since in this limit, fRn becomes an (unpredictable) white noise 867 
(although there are scaling corrections to this).  868 

To better understand the fGn limit, it is helpful to plot the ratio of the fRn to fGn skill 869 
(fig. 8, right column).  We see that even with quite small values t = 10-4 (top, black curves), 870 
that some skill has already been lost.  Fig. 9 shows this more clearly, it shows one time step 871 
and ten time step skill ratios.   To put this in perspective, it is helpful to compare this using 872 
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some of the parameters relevant to macroweather forecasting.  According to [Lovejoy et al., 873 
2015] and [Del Rio Amador and Lovejoy, 2019], the relevant empirical Haar exponent is ≈ 874 
-0.1 for the global temperature so that h = 1/2 - 0.1 ≈ 0.4.  Although direct empirical 875 
estimates of the relaxation time, are difficult since the responses to anthropogenic forcing 876 
begin to dominate over the internal variability after ≈10 years [Procyk et al., 2022] have 877 
used the deterministic response to estimate a global relaxation time of ≈ 5 years (work in 878 
progress using maximum likelihood estimates shows that a scales of hundreds of kilometers, 879 
it is quite variable ranging from months to decades [Procyk, 2021]).  For monthly resolution 880 
forecasts, the non-dimensional resolution is t ≈ 1/100.  With these values, we see (red 881 
curves) that we may have lost ≈ 30% of the fGn skill for one month forecasts and ≈ 85% 882 
for ten month forecasts.  Comparing this with fig. 7 we see that this implies about 60% and 883 
10% skill (see also the red curve in fig. 8, bottom set).  884 

Going beyond the 0 < h < 1/2 region that overlaps fGn, fig. 9, 10 clearly shows that 885 
the skill continues to increase with h.  We already saw (fig. 4) that the range 1/2 < h < 3/2 886 
has RMS Haar fluctuations that for Dt < 0 mimic fBm and these do indeed have higher skill, 887 
approaching unity for h near 1 corresponding to a Haar exponent ≈ 1/2, i.e. close to an fBm 888 
with H = 1/2, i.e. a regular Brownian motion.  Recall that for Brownian motion, the 889 
increments are unpredictable, but the process itself is predictable (persistence).   In figure 890 
9, we show the skill for various h’s as a function of resolution t.  Fig. 11a shows that for h 891 
< 3/2, the skill decreases rapidly for t > 1.  Fig. 11b in the fractional oscillation equation 892 
regime shows that the skill oscillates. 893 

We may now consider the skill of the fGn forced process (a ≠ 0), fig. 12.  For small 894 
t, short lags, l (the upper left), the contours are fairly linear along lines of constant h+a, 895 
so that as expected, the predictability is essentially that of an fGn process but with effective 896 
exponent h+a.  At the opposite extreme (large t, h, the lines are fairly horizontal, indicating 897 
that the skill from the storage (i.e. from h) is negligible, and that all the memory (and hence 898 
skill) comes from the forcing fGn, exponent a.  The in-between resolutions and lags 899 
generally have in-between slopes.  As expected, the skill from the storage drops off quickly 900 
for resolutions ≈> t. For h≥1, there is some waviness in the contours due to the oscillatory 901 
nature of the Green’s functions. 902 

 903 
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 904 
Fig. 9:  The ratio of (a = 0) fRn skill to fGn skill (left: one step horizon, right: ten step 905 

forecast horizon) as a function of resolution t for h increasing from (at left) bottom to top (h = 1/20, 906 
2/20, 3/20…9/20); the h = 9/20 curves (close to the empirical value) is the curve that starts at the 907 
left of each plot.	908 

�� �� �� �� �
����� �

�	�

�	�

�	


�	�

�	�
�

�� �� �� �� �

�	�

�	�

�	


�	�

�	�
�

�����τ

� �

�����τ



 35 

 909 
Fig. 10:  The one step (left) and ten step (right) pure (a = 0) fRn forecast skill as a function 910 

of h for various resolutions (t) ranging from t = 10-4 (black, left of each set) through t = 10-3 911 
(brown) 10-2 (red), 0.1 (blue), 1 (orange), 10 (purple).  In the right set t = 1 (orange), 10 (purple) 912 
lines are nearly on top of the Sk = 0 line.  Again red (t = 10-2) is the more empirical relevant value 913 
for monthly data.  Recall that the regime h < 1/2 (to the left of the vertical dashed lines) corresponds 914 
to the overlap with fGn.	915 
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 917 
Fig. 11a:  One step pure (a = 0)  fRn prediction skills as a function of resolution for h’s 918 

increasing from 1/20 (bottom) to 29/20 (top), every 1/10.  Note the rapid transition to low skill, 919 
(white noise) for t > 1.  The curve for h = 9/20 is shown in red. 	920 
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 921 
Fig. 11b:  Same as fig. 11a except for h = 37/20, 39/20 showing the one step skill (black), 922 

and the ten step skill (dashed).  The right hand dashed and right hand solid lines, are for h = 39/20, 923 
they clearly show that the skill oscillates in this fractional oscillation equation regime.  The 924 
corresponding left lines are for h = 37/20. 925 
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	926 
Fig. 12: Contour plots of the forecast skill, with h along the horizontal and a along the vertical axis.  927 

The plots are for increasing nondimensional resolutions: t = 0.001, 0.01, 0.1, 1, 10 (top to bottom), with 928 
forecasts for lags l = 1, 3, 10 (left to right) and with contour levels (legend) varying from nearly no skill 929 
(0.03), to nearly full skill (0.98).   930 

4. Conclusions: 931 
Ever since [Budyko, 1969] and [Sellers, 1969], the energy balance between the earth 932 

and outer space has been modelled by the Energy Balance Equation (EBE), based on the 933 
continuum heat equation, see [North and Kim, 2017] for a recent review and see [Ziegler 934 
and Rehfeld, 2020] for a recent regional application).  It is most commonly used as a model 935 
for the globally averaged temperature where it is usually derived by applying Newton’s 936 
law of cooling applied to a uniform slab of material, a “box”.  The resulting EBE is a first 937 
order relaxation equation describing the exponential relaxation of the temperature to a new 938 
equilibrium after it has been perturbed by an external forcing.  Its first order (h = 1) 939 
derivative term  accounts for energy storage.   940 
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The resulting model relaxes to equilibrium much too quickly so that to increase 941 
realism, it is usual to introduce a few interacting slabs (representing for example the 942 
atmosphere and ocean mixed layer; the Intergovernmental Panel on Climate Change 943 
recommends two such components [IPCC, 2013]).   However, it turns out that these h = 1 944 
box models do not use the correct surface radiative-conductive boundary conditions.  If 945 
one assumes heat transport by the classical heat equation and radiative-conductive 946 
boundary conditions are used instead, one instead obtains the Half-order EBE, the HEBE 947 
with h = 1/2 [Lovejoy, 2021a; b] which is already close to the global empirical value (h = 948 
0.38±0.03, [Procyk et al., 2022], [Del Rio Amador and Lovejoy, 2019], see also [Lovejoy 949 
et al., 2015]).  However this model is only valid in the macroweather regime - for time 950 
scales of weeks and longer and due to the spatial scaling in the atmosphere, the fractional 951 
heat equation (FHE) may be more a more appropriate model than the classical one.  The 952 
use of the FHE can be justified by recognizing that a realistic energy transport model 953 
involves a continuous hierarchy of mechanisms. The extension to the FHE leads directly 954 
to a fractional relaxation equation that generalizes the EBE: the Fractional Energy Balance 955 
Equation [Lovejoy, 2021a; b] (FEBE).  The FEBE can also be derived phenomenologically 956 
by assuming that energy storage processes are scaling, [Lovejoy, 2019a;  2019b; Lovejoy 957 
et al., 2021]).     958 

When forced by a Gaussian white noise, the FEBE is also a generalization of 959 
fractional Gaussian noise (fGn) and its integral (fractional Relaxation motion, fRm), 960 
generalizes fractional Brownian motion (fBm).  More classically, it generalizes the 961 
Orenstein-Uhlenbeck process that corresponds to the h =1 special case (i.e. the standard 962 
EBE with white noise forcing).  Over the parameter range 0 < h < 1/2, the high frequency 963 
FEBE limit (fGn) has been used as the basis of monthly and seasonal temperature forecasts 964 
[Lovejoy et al., 2015], [Del Rio Amador and Lovejoy, 2019; Del Rio Amador and Lovejoy, 965 
2021a; Del Rio Amador and Lovejoy, 2021b]; at one month lead times, these macroweather 966 
forecasts are similar in skill to conventional numerical models whereas for bimonthly, 967 
seasonal and annual forecasts they are more skillful [Del Rio Amador and Lovejoy, 2021a].  968 
For multidecadal time scales the low frequency limit has been used as the basis of climate 969 
projections through to the year 2100 [Hebert, 2017], [Lovejoy et al., 2017], [Hébert et al., 970 
2021], and more recently, the full FEBE has been used directly [Procyk et al., 2020], 971 
[Procyk, 2021], [Procyk et al., 2022].   972 

It was the success of predictions and projections with different exponents but 973 
theoretically derived the same empirical underlying FEBE h ≈ 0.4, that over the last years, 974 
motivated the development of the FEBE (announced in [Lovejoy, 2019a]) and the work 975 
reported here.  The statistical characterizations – correlations, structure functions, Haar 976 
fluctuations and spectra as well as the predictability properties are important for these and 977 
other FEBE applications and are derived in this paper.  978 

While the deterministic fractional relaxation equation is classical, various technical 979 
difficulties arise when it is generalized to the stochastic case: in the physics literature, it is 980 
a Fractional Langevin Equation (FLE) that has almost exclusively been considered as a 981 
model of diffusion of particles starting at an origin.  This requires  t = 0 initial conditions 982 
that imply that the solutions are strongly nonstationary. In comparison, the Earth’s 983 
temperature fluctuations that are associated with its internal variability are statistically 984 
stationary.  This can easily be modelled with initial conditions at  i.e. by using Weyl 985 
fractional derivatives.  In addition, in the usual FLE, the highest order derivative is an 986 

t = −∞
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integer so that sample processes are RMS differentiable order at least one ([Watkins et al., 987 
2020] have called the FEBE a “Fractionally Integrated FLE”) .  In the FEBE and the 988 
fractionally integrated extensions, the highest order derivative is readily of order <1/2 so 989 
that sample processes are generalized functions (“noises”) and must be smoothed/averaged 990 
for physical applications.   991 

Although EBE’s were originally developed to understand the deterministic 992 
temperature response to external forcing, the temperature also responds to stochastic 993 
“internal” forcing.  While the Earth system variability is generally highly nonGaussian 994 
(multifractal, [Lovejoy, 2018]), the temporal macroweather regime modelled here is the 995 
quasi-Gaussian exception.   This paper therefore explores the statistics of the temperature 996 
response when it is stochastically forced by Gaussian processes: both by white noise (a = 997 
0) and by a (long memory) fractional Gaussian noise (fGn) processes. The white noise 998 
special case –“pure fRn, fRm” - is the a = 0 special case, fGn forced case extends the 999 
parameter range to 0 ≤ a < 1/2.  According to work in progress using satellite and reanalysis 1000 
radiances, both cases appear to be empirically relevant for modelling the Earth’s energy 1001 
balance.    1002 

A key novelty is therefore to consider the fractional relaxation - equation (a 1003 
Fractional Langevin Equation, FLE) forced by white and scaling noises starting from 1004 

: equivalent to Weyl “fractionally integrated fractional relaxation equation”).  In 1005 
addition, the highest order terms in standard FLE’s are integer ordered, the fractional terms 1006 
represent damping and are of lower order, guaranteeing that solutions are regular functions. 1007 
However, the FEBE’s highest order term is fractional and over the main empirically 1008 
significant parameter range (a+h<1/2) the processes are noises (generalized functions): in 1009 
order to represent physical processes, they must be averaged.  This is conveniently handled 1010 
by introducing their integrals or “motions”.  We proceeded to derive their fundamental 1011 
statistical properties including series expansions about the origin and infinity.  These 1012 
expansions are nontrivial since they mix fractional and integer ordered terms (Appendix 1013 
A).  Since the FEBE is used as the basis for macroweather predictions, the theoretical 1014 
predictability skill is important in applications and was also derived.   1015 

With these stationary Gaussian forcings, the solutions are a new stationary process 1016 
– fractional Relaxation noise (fRn, a =0) and their extensions to fractionally integrated fRn 1017 
processes (a>0).  Over the range 0 < a + h < 1/2, we show that the small scale limit is a 1018 
fractional Gaussian noise (fGn) – and its integral - fractional Relaxation motion (fRm) - 1019 
has stationary increments and which generalizes fractional Brownian motion (fBm).  1020 
Although at long enough times, the fRn (a = 0) tends to a Gaussian white noise, and fRm 1021 
to a standard Brownian motion, this long time convergence is typically very slow (when 1022 
a>0, the long time behaviours are fGn and fBm processes, parameter a). 1023 

Much of the effort was to deduce the asymptotic small and large scale behaviours 1024 
of the autocorrelation functions that determine the statistics and in verifying these with 1025 
extensive numerical simulations.   An interesting exception was the h = 1/2 special case 1026 
which for fGn corresponds to an exactly 1/f  noise.  Here, we give the exact mathematical 1027 
expressions for the full correlation functions, showing that they had logarithmic 1028 
dependencies at both small and large scales.  The resulting Half order EBE (HEBE) has an 1029 
exceptionally slow transition from small to large scales (a factor of a million or more is 1030 
needed) and empirically, it is quite close to the global temperature series over scales of 1031 
months, decades and possibly longer.  1032 

t = −∞
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Beyond improved monthly, seasonal temperature forecasts and multidecadal 1033 
projections, the stochastic FEBE opens up several paths for future research.  One of the 1034 
more promising is to apply these techniques to the spatial FEBE and generalize it in various 1035 
directions. This is a follow up on the special value h = 1/2 that is very close to that found 1036 
empirically and that can be analytically deduced from the classical Budyko-Sellers energy 1037 
transport equation by improving the mathematical treatment of the radiative boundary 1038 
conditions [Lovejoy, 2021a; b].  In the latter case, one obtains a partial fractional 1039 
differential equation for the horizontal space-time variability of temperature anomalies 1040 
over the Earth’s surface, allowing regional forecasts and projections.  This has already 1041 
allowed improved regional projections ([Procyk, 2021]) and promises better monthly, 1042 
seasonal forecasts. 1043 

While the FEBE has already demonstrated its ability to project future climates, 1044 
these improvements will allow for the modelling of the nonlinear albedo-temperature 1045 
feedbacks needed for modelling of transitions between different past climates.  Finally, 1046 
FEBE based projections have shown that in spite of improved computer power and 1047 
algorithms, that conventional GCM approaches may be suffering from diminishing returns: 1048 
the GCMs in the latest IPCC assessment (AR6, 2021) are even more uncertain: a range 2 - 1049 
5.5K/CO2 doubling (90% confidence) as those in the previous assessment (AR5, 2013, 1.5 1050 
- 4.5K per doubling) while also being somewhat warmer.  The FEBE had the somewhat 1051 
lower but much less uncertain range 1.6 – 2.4K/CO2 doubling (90% confidence).   1052 
Conventional GCM approaches attempt to explicitly model as many degrees of freedom as 1053 
possible and by the year 2030, they are expected to have kilometric scale (“cloud 1054 
resolving”) resolutions that will model structures that live for only 15 minutes and then– 1055 
average them over decades.  The FEBE (with regional and other fututre extensions), is in 1056 
contrast, a high level stochastic model that accounts for the collective interactions of huge 1057 
numbers of degrees of freedom [Lovejoy, 2019a], it is thus a promising candidate for a new 1058 
generations of climate models. 1059 
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Appendix A: The small and large scale fRn, fRm statistics: 1065 

A.1 Ra,h(t) as a Laplace transform 1066 
In section 2.4, we derived general statistical formulae for the auto-correlation 1067 

functions of motions and noises defined in terms of Green’s functions of fractional 1068 
operators.   Since the processes are Gaussian, autocorrelations fully determine the statistics.  1069 
While the autocorrelations of fBm and fGn are well known those for fRm and fRn are new 1070 
and are not so easy to deal with since they involve quadratic integrals of Mittag-Leffler 1071 
functions.  In this appendix, we derive the basic power law expansions as well as large t 1072 
(asymptotic) expansions, and we numerically investigate their accuracy.   1073 

It is simplest to start with the Fourier expression for the autocorrelation function for 1074 
the unit white noise forcing (eq. 33).  First convert the inverse Fourier transform (eq. 66) 1075 
into a Laplace transform.  For this, consider the integral over the contour C in the complex 1076 
plane: 1077 

 (A.1) 1078 

Take C to be the closed contour obtained by integrating along the imaginary axis 1079 
(this part gives Ra,h(t), eq. 33), and closing the contour along an (infinite) semicircle over 1080 
the second and third quadrants.   When 0<h<1, there are no poles in these quadrants, but 1081 
we must integrate around a branch cut on the negative real axis.  When 1<h<2, we must 1082 
take into account two new branch cuts and two new poles in the negative real half plane.   1083 
In a polar representation , the additional branch cuts are along the rays ; 1084 
r>1, circling around the poles at .  The additional branch cuts give no net 1085 
contribution, but the residues of the poles do make a contribution (Pa,h ≠ 0 below).  We 1086 
can express both cases with the formula: 1087 

 (A.2) 

1088 

“Im” indicates the imaginary part and: 1089 

 0≤a<1/21090 

 (A.3) 1091 
 1092 
While the integral term is monotonic, the Pa,h term oscillates with frequency 1093 

.  Pa,h accounts for the oscillations visible in figs. 2, 3, 5b although since 1094 
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when 1<h<2, cos(p/h)<1, they decay exponentially.  When h>1, this pole contribution 1095 
dominates Ra,h(t) for a wide range of t values around t = 1, although as we see below, 1096 
eventually at large t, power law terms come to the fore.   1097 
 1098 
Comments: 1099 
a) When a = 0, h = 1, we obtain the classical Ornstein-Uhlenbeck autocorrelation: 1100 

.   1101 

b) In the case h = 0, the process reduces to an fGn process: 1102 
.  There is an extra factor of 4 that comes from the 1103 

small h limit . 1104 

A.2 Asymptotic expansions: 1105 
An advantage of writing Ra,h(t) as a Laplace transform is that we can use Watson’s 1106 

lemma to obtain an asymptotic expansion (e.g. [Bender and Orszag, 1978]).  The idea is 1107 
that an expansion of eq. A.2 around x = 0 can be Laplace transformed term by term to yield 1108 
an asymptotic expansion for large t.    1109 

The expansion of the integrand around x = 0 can be obtained from a binomial 1110 
expansion (see also A.10): 1111 

(A.4) 1112 
 1113 
 this leads to: 1114 

 (A.5) 1115 

 1116 

(note D-n is used in the expansion here; Dn is used below).  1117 
Therefore, taking the term by term Laplace transform and using Watson’s lemma: 1118 

1119 

(0<a<1/2). (A.6) 1120 
Where we have included the exponentially decaying residue Pa,h,+ that contributes when 1121 
1<h<2.  Note that although G diverges for all negative integer arguments, using the identity 1122 

 we see that the product1123 

 is finite.  1124 
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 The first terms are explicitly:  1125 

 1126 

 t≫1 (A.7) 1127 
We see that when a ≠0, D0 >0 so that as expected, the leading behaviour has no h 1128 
dependence, it is only due to the long range correlations in the forcing; we obtain the fGn 1129 
result: t2a-1.  However for the pure fRn case, a = 0 and D0 = 0 so that we obtain: 1130 

 (A.8) 1131 

i.e. the leading behaviour is t-(1+h).  Note that the leading n =1 coefficient reduces to                  1132 
-1/ G(-h) and that for 0<h<1, G(-h)<0.   1133 

For the motions (fRm), we need the expansion of Va,h(t), it can be obtained by 1134 
integrating Ra,h twice (using eq. 36):  1135 

0≤a<1/21136 

 (A.9) 1137 
Where Pa,h- is from the poles when 1<h<2.  Since the asymptotic expansion is not valid for 1138 
t = 0, we used the indefinite integrals of  Ra,h hence there is a linear  term from 1139 

the constants of integration.  However, when a>0, the leading term is the t2a+1 term from 1140 
the fGn forcing and in the pure fRn case (a=0), we can take  1141 

so that the leading term n = 0 already gives the correct fRm behaviour:  so that 1142 
a0,h = 0 (b0,h can be determined numerically).  1143 

 1144 

A.3 Power series expansions about the origin: 1145 
For many applications one is interested in the behavior of Ra,h(t) for scales of 1146 

months which is typically less than the relaxation time, i.e. t<1.  It is therefore important 1147 
to understand the small t behaviour.  We again consider the Laplace integral for the 0<h<1 1148 
case.  In this case, we can divide the range of integration in eq. A2 into two parts for 0<x<1 1149 
and x>1.  For the former, we use the expansion in eq. A4 and for the latter:  1150 

(A.10) 1151 

  1152 
We can now integrate each term seperately using:  1153 
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1154 

 (A.11) 1155 

where is the exponential integral.  Adding the two integrals and 1156 

summing over n, we obtain: 1157 

 (A.12)  1158 

 1159 

 1160 
(we have interchanged the order of summations and used Dn from eq. A5 with n>0).   1161 

The series for the coefficient Fj can now be summed analytically.  Although the 1162 
sum is a special case of the Lipchitz summation and Poisson summation formulae, the 1163 
easiest method is to use the Sommerfeld-Watson transformation (e.g. [Mathews and 1164 
Walker, 1973]) that converts an infinite sum into a contour integral that is then deformed.  1165 
The Sommerfeld-Watson transformation states that for a an analytic function f(z) that goes 1166 

to zero at least as fast as , that: 1167 

 (A.13) 1168 

Where zk is the location of the poles of f(z) and Rk is the residue of the corresponding pole.  1169 
In the above, take:  1170 

 (A.14) 1171 
There is a single pole at z1 = -a and the residue is , therefore: 1172 

 (A.15) 1173 
The second sum needed in Fj can be obtained using h = 0 in the above so that 1174 

overall:  1175 
 1176 

1177 

 (A.16) 1178 
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If j is even, then the term in the square bracket is pure real hence Fj vanishes.  1179 
Otherwise: 1180 

  (A.17)  1181 

 1182 
 Note that F1>0 for h + a >1/2 (with 0≤a<1/2, 0≤h<2), whereas for h + a <1/2 it is quite 1183 
complicated (see below). 1184 

 1185 
Fig. A1: This shows the logarithm of the relative error in the  approximation (i.e. 1186 

with 10 fractional terms and 10 integer order terms) with respect to the deviation from the fGn 1187 
R0,h(t)  .  The lines are for  h = 2/10, 1188 

4/10,… ,16/10, 18/10 (excluding the exponential case h = 1), from left to right (note convergence 1189 
is only for irrational h, therefore an extra 10-4 was added to each h).  For the low h values the 1190 
convergence is particularly slow.	1191 

 1192 
Comments: 1193 

1) These and the following formulae are for t>0; in addition, only the even integer 1194 
ordered terms are non zero (the sum over odd j).  1195 
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2) Each integer term of the expansion Fj is itself obtained as an infinite sum, so that 1196 
the overall result for Ra,h(t) is effectively a doubly infinite sum.  This procedure swaps the 1197 
order of the summation and apparently explains the fact that while the expansions were 1198 
derived for the case 0<h<1, the final expansion is valid for 0≤a<1/2 and the full range 1199 
0<h<2: numerically, it accurately reproduces the oscillations when h>1. 1200 

3) The fGn correlation function is given by the single n = 2 term: 1201 

 (A.18)  1202 

It is also proportional to the correlation function of the fGn forced h = 0, fRn process: 1203 
. 1204 

4) When 0 < a+h < 1/2, R is divergent at the origin; this leading term 1205 
is only dependent on h+a corresponding to an 1206 

fGn with parameter h+a.   When ½< h+a <2, it is still the leading fractional term, but the 1207 
constant F1 dominates at small t. 1208 

5) The Fj terms diverge when (j-2a)/ h is an integer.  For example, if a = 0, the 1209 
overall sum over all j thus diverges for all rational h.  For irrational h, the convergence 1210 
properties are not easy to establish, although due to the G functions, these series apparently 1211 
converge for all t≥0, but the convergence is rather slow. 1212 

Fig. A1 shows some numerical results for a = 0 showing the convergence of the 1213 
10th order fractional 10th order integer power approximation (nmax = jmax =10).  Since the 1214 
leading (fGn) term diverges for small t, when h ≤1/2 it is more useful to consider the 1215 
convergence of the difference with respect to the fGn term i.e.  where  1216 

the approximation  is from the sum from n = 3 to 10 and odd j  ≤ 9.  Fig. A1 shows 1217 
the logarithm of the ratio of the approximation with respect to the true value: 1218 

 (to avoid exact rationals, 10-4 was 1219 

added to the h values).  From the figure we sees that the approximation is satisfactory 1220 
except for small h.  In the next section we return to this. 1221 

6) For a+h>1/2, when t = 0, the only nonzero term is from the constant F1: Ra,h(0) 1222 
= F1, this gives the normalization constant.  Comparing with eq. 27, we therefore have: 1223 

1224 

 (A.19) 1225 
Similarly, when a+h >3/2, for the quadratic the squared integral of G’a,h is finite and it 1226 
gives the coefficient of the t2 term so that:   1227 

Rh
fGn( ) t( ) = D2Γ 1− 2h( )t−1+2h = sin hπ( )

π
Γ 1− 2h( )t−1+2h

Rh
fGn( ) t( ) = 4Rα=h,0 t( )

Γ −1− 2 h+α( )( )sin π h+α( )( )t−1+2 h+α( ) / π

Rh
fGn( ) t( )− R0,h,a t( )

R0,h,a t( )

r = log10 1− Rh
fGn( ) t( )− R0,h,a t( )( ) / Rh fGn( ) t( )− R0,h t( )( )

Rα ,h 0( ) = Gα ,h u( )2 du
0

∞

∫ = F1 = −
cosπ h

2
+α⎛

⎝⎜
⎞
⎠⎟

hsin πh
2

⎛
⎝⎜

⎞
⎠⎟
sin

π
h
1− 2α( )⎛

⎝⎜
⎞
⎠⎟

; α + h >1/ 2; 0 ≤α <1/ 2
1/ 2 < h < 2



 48 

  (A.20) 1228 
7) The expression for Va,h(t) can be obtained by integrating twice (eq. 36).  1229 
8) In the special cases h = 1/m, with m a positive integer, Fj is independent of j and 1230 

the integer powered series can be summed yielding a result proportional to cosht.  However, 1231 
this large t divergence is cancelled out by the fractional term and the result is finite (this 1232 
partial cancellation is discussed in the next subsection).  The special important case h = 1/2 1233 
is dealt with in appendix B. 1234 

A.4 A Convenient approximation  1235 
The expansion for Ra,h is the sum of a fractional and an integer ordered series.  1236 

Partial sums appear to converge (fig. A1), albeit slowly.  For simplicity, we consider the 1237 
case of primary interest, a pure fRn process (a = 0).  Examination of partial sums shows 1238 
that the integer ordered and fractional ordered terms tend to cancel, the difficulty due to 1239 
the coefficient of the integer ordered terms  that comes from the exponential 1240 
integral and can be large when .  This suggests an alternative way of expressing 1241 
the series:  1242 

 (A.21) 1243 

 1244 
Where Dn is given by eq. A.5 and the n sums start at n = 2 since D1 = 0.  Cj can be expressed 1245 
as: 1246 

1247 

 (A.22)  1248 

where  F is the Hurwitz-Lerch phi function .   1249 

We can also expand the exponential integral: 1250 

 (A.23)  1251 

For the jmax and nmax partial sums, we have: 1252 

 1253 

 (A.24) 1254 
Now define the (jmax, nmax) approximation by: 1255 
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 (A.25)  1256 

This has the effect of adding in half the next higher n term and is more accurate; overall, 1257 
jmax and nmax may now be taken to be much smaller than in the previous approximation. For 1258 
example putting nmax =2, jmax = 1, we get with the partial sum: 1259 

 (A.26)  1260 

Where: 1261 

 1262 

 (A.27) 1263 
To understand the behaviour, fig. A2 shows the behaviour of coefficient of the            1264 

t-1+3h term , the constant term F1 and the coefficient of the next integer (linear 1265 

in t) term .  Up until the end of the fGn region (h = 1/2), the    1266 

t-1+3h  and F1 terms have opposite signs and tend to cancel.  In addition, we see that for t 1267 
≈<1 and h<1, they dominate over the (omitted) linear term. Fig. A3 shows that the R0,h,2,1 1268 
approximation is surprisingly good for h<1 and is still not so bad for 1< h <2.  This 1269 
approximation is thus useful for monthly resolution macroweather temperature fields that 1270 
have relaxation times of years or longer and where h is mostly over the range 0< h <1/2, 1271 
but over some tropical ocean regions can increase to as much as h ≈ 1.2 ([Del Rio Amador 1272 
and Lovejoy, 2021a]). Fig. A3 shows that the (2,1) approximation is reasonably accurate 1273 
for t ≈<1, especially for h<1. 1274 
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R0,h
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	1275 
Fig. A2: The solid line is the constant term F1, the long dashes are the coefficients 1276 

of the fractional power, the short dashes are the coefficients of the linear term: 1277 

.  We can see that the contribution of the linear term (used in the  1278 

approximation) for h<1 and t<1 is fairly small; whereas for 1<h<2, it is larger and the  1279 

approximation is significantly better than the  approximation (see fig. A3).	1280 
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 1281 
Fig. A3: This shows the logarithm of the relative error in the (2,1) approximation with 1282 

respect to the deviation from the fGn Rh(t) 1283 
( ).   For h<1, t<0 it is of the order ≈ 30% 1284 
whereas for h>1, it of the order 100%.  The h = 1 (exponential) curve is not shown although when 1285 
t<0 the error is of order 60%. 1286 
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1287 

Appendix B: The h=1/2 special case 1288 
When a = 0, h = 1/2, the high frequency fGn limit is an exact “1/f noise”, (spectrum    1289 

w-1) it has both high and low frequency divergences.  The high frequency divergence can 1290 
be tamed by averaging, but not the low frequency divergence so that fGn is only defined 1291 
for h<1/2.  However, for fRn, the low frequencies are convergent  over the whole range 0 1292 
< h < 2, and for h = 1/2 we find that the correlation function has a logarithmic dependence 1293 
at both small and large scales.  This is associated with particularly slow transitions from 1294 
high to low frequency behaviours.  The critical value h = 1/2 corresponds to the HEBE  1295 
[Lovejoy, 2021a; b] where it was shown that the value h = 1/2 could be derived analytically 1296 
from the classical Budyko-Sellers energy balance equation.   Therefore, Ra,1/2(t), Va,1/2(t), 1297 
characterize the statistics of the temperature response of the classical heat equation 1298 
response to an fGn order a forcing.  1299 

It is possible to obtain exact analytic expressions for Ra,1/2(t), Va,1/2(t) and the Haar 1300 
fluctuations; we develop these in this appendix, for some early results, see [Mainardi and 1301 
Pironi, 1996].  1302 

The starting point is the Laplace expression A2 with h = 1/2: 1303 1304 

 (B1) 1305 
We require the following Laplace transforms: 1306 

1307 
 (B.2) 1308 

Where we have introduced the incomplete gamma function:   (with a 1309 

branch cut in the complex plane from  to 0).  The general result is thus: 1310 

 1311 

 (B.3) 1312 
Fig. B1 shows plots  over 8 orders of magnitude in t, indicating the generally 1313 

very slow converge to the asymptotic behaviour (shown as straight lines at the right).  1314 
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Fig. B1 also shows the singular small t behaviour of the pure fRn case (a = 0).  In 1315 
this limit both L1, and L2, are  singular - they both yield logarithmic small scale divergences.  1316 
Pure fRn is of special interest, and yields the somewhat simpler result: 1317 

; 1318 

 ;1319 

  (B.4) 1320 
We can use these results to obtain small and large t expansions:  1321 

1322 

 (B.5) 1323 

, 1324 

where gE is Euler’s constant = 0.57… (the asymptotic formula can be obtained as a special 1325 
case of eq. in appendix A, but note the logarithmic small scale divergence).    1326 

To obtain the corresponding results for V0,1/2 use: .  1327 
The exact V0,1/2 is: 1328 

1329 

 (B.6) 1330 
where  is the MeijrG function, Chi is the CoshIntegral function and Shi is the 1331 
SinhIntegral function.  The expansions are:  1332 

1333 

 (B.7) 1334 

. 1335 

We can also work out the variance of the Haar fluctuations: 1336 
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1337 

 (B.8) 1338 

. 1339 

Figure B2 shows numerical results for a = 0, h = ½, the transition between small and 1340 
large t behaviour is extremely slow; the 9 orders of magnitude depicted in the figure are 1341 
barely enough.   The extreme low (R1/2)1/2 (dashed) asymptotes at the left to a slope zero 1342 
(a square root  logarithmic limit, eq. B8), and to a -3/4 slope at the right.   The RMS Haar 1343 
fluctuation (black) changes slope from H = 0 to -1/2 (left to right).  Fig. B2 also shows the 1344 
logarithmic derivative of the RMS Haar (black) compared to a regression estimate over 1345 
two orders of magnitude in scale (dashed; a factor 10 smaller and 10 larger than the 1346 
indicated scale was used, this represents a possible empirically accessible range).  This 1347 
figure underlines the gradualness of the transition from H = 0 to H = -1/2.   If empirical 1348 
data were available only over a factor of 100 in scale, depending on where this scale was 1349 
with respect to the relaxation time scale (unity in the plot), the RMS Haar fluctuations could 1350 
have any slope in the range 0 to -1/2 with only small deviations. 1351 

 1352 
 1353 

Fig. B1: Ra,1/2 for a increasing from 0 (pure fRn) to 8/10 in steps of 1/10 (at right: bottom 1354 
to top).  The a = 0 curve has a logarithmic divergence at small t (the far left).  Recall from section 1355 
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that at large t, R
0,1/2

≈ t
-3/2

 and for a>0: R
a,1/2 

≈ t
2a-1, for a = 0, 1/5, 2/5 the theoretical asymptotes of 1356 

the leading terms are indicated for reference. 1357 
. 1358 

 1359 
Fig. B2: The logarithmic derivative of the RMS Haar fluctuations of U0,1/2 (solid) in fig. 1360 

B1 compared to a regression estimate over two orders of magnitude in scale (dashed; a factor 10 1361 
smaller and 10 larger than the indicated scale was used).  This plot underlines the gradualness of 1362 
the transition from slopes 0 to -0.5 corresponding to apparent H = 0 to H = -1/2 scaling.  Over 1363 
range of 100 or so in scale there is approximate scaling but with exponents that depend on the range 1364 
of scales covered by the data.  If data were available only over a factor of 100 in scale, the RMS 1365 
Haar fluctuations could have any slope in the fGn range 0 to   -1/2 with only small deviations.	1366 
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