
A review of “Fractional relaxation noises, motions and the fractional 
energy balance equation” by Shaun Lovejoy.  

General comments 
Despite the reference increase, this revised version has still important gaps on the state-of-art and 
therefore remains unclear on the truly original contributions of this manuscript. There has been 
indeed an abundant literature on fractional differential equations, in particular on the relaxation-
oscillation equation that is the topic of this paper.  
The choice of this linear equation is debatable with respect to the focus on nonlinear geophysics of 
this special centennial issue. In this respect, there are several rather surprising statements, such as 
the second part of the sentence: “The choice of a Gaussian white noise forcing was made both for 
theoretical simplicity but also for physical realism” (L.171-172). This is unfortunately in direct 
agreement with the oft-quoted, ironic Chester Kisiel’s pray to the theoretical hydrologist: “Oh, 
Lord, please, keep the world linear and Gaussian!”.   
Similarly, the claim of “the paucity of mathematical literature on stochastic fractional equations (see 
however [Karczewska and Lizama, 2009])” (L.78) is in contradiction with various review papers, in 
particular the Physics Report of Metzler and Klafter (2000) that focuses on “various generalisations 
to fractional order [that] have been employed, i.e. different fractional operators [that] have been 
introduced to replace either the time derivative or the occurring spatial derivatives, or both” and has 
more than 300 references. More generally, the author’s emphasis on opposing fractional vs. integer 
order differential equations, both linear, seems rather outdated.  
The tentative argument in favour of having an “enormous memory” with the help of a lower 
integration bound  of the so-called Weyl fractional integration/differentiation (which in 
fact could be traced back to Liouville (1832)) is overstated, while it basically corresponds to an 
over-simplification, not only with respect to the finite date of the Big Bang, but also to Earth 
climate. Contrary to the author’s claim that “the interval between an initial time = 0 and a later time 
t […] is the exclusive domain considered in Podlubny’s mathematical monograph on deterministic 
fractional differential equations [Podlubny, 1999]” (L136-138), this monograph, as several others, 
does deal with the Weyl fractional integration/differentiation and a more careful reading of it might 
have helped to simplify and make more rigorous the present manuscript. Let us clarify that a lot of 
efforts had been spent for the finite t0 case (e.g., works of Gorenflo, Mainardi and collaborators) due 
to the fact it was much more difficult than the (negative) infinite case: in fact, it required to define a 
new fractional derivative (Caputo, 1967) to handle the initial conditions, whereas the classical 
Riemann-Liouville failed to do it. All these important technicalities vanish for the (negative) infinite 
case, basically because the Laplace convolution reduces to a Fourier convolution.   
A paradox of this paper is that it claims to be innovative by focusing on the Weyl fractional integral/
derivative (“the key novelty of this paper is therefore to consider the FEBE as a Weyl fractional 
Langevin equation”, L.914), while being lost in many mathematical details (e.g., Mittag-Leffler 
functions) that are rarely necessary for this simplifying case (e.g., the composition of fractional 
integrals/derivatives is then commutative), as well as not taking advantage of other structural 
simplifications resulting from the combination of the linear and Gaussian assumptions (e.g., linear 
stability). On the contrary, the (potential) bringing-in of Fourier techniques is mostly limited to 
spectra in the short sub-section 3.5 “Spectra”.  
It seems that the main results are the scaling behaviours of the studied noise and motion, which the 
author calls fractional relaxation noise and motion, for small and large time lags. Unfortunately, it is 
not clear what is analytically obtained and to which level. Often information is missing on 
important issues, whereas there are numerous mathematical displays. Unfortunately, mathematical 
rigour is not always there, contrary to mathematical pitfalls that bring into question what is really 
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obtained (see examples in detailed comments). A clear synthesis, with a comparison with their 
classical counterparts of fractional Brownian noise and motion, is unfortunately missing.  
The aforementioned problems are amplified in the sections on simulations and prediction and make 
them very difficult to evaluate before these problems will be solved. A final general comment is that 
the author’s claim that the studied noises and motions are generalisation of the Brownian ones is not 
obvious. Indeed, what could be the new generality gained with their help? On the contrary, an 
important and generic property has been lost: scaling. This is a direct consequence of the 
introduction of a characteristic time (presently hidden by the non-dimensionalisation of equations) 
due to the presence of two time derivatives of different orders (H and 0) instead of a unique one for 
(fractional) Brownian noises (H or 0). With no surprise, the case of fractional differential 
polynomials of  “degree” n>2 has been already formally investigated (e.g., Podlubny, 1999). This 
just illustrates that there are many ways to obtain different (approximate) scaling regimes on various 
frequency ranges. By the way, this also points out the physics of the problem well beyond the 
mathematical details that submerge the present manuscript. This is also in agreement with the fact 
that present numerical results on scaling are disappointingly simple compared to the heavy 
mathematical tools used in this paper. 

Overall, the aforementioned problems, as well as the sharp contrast between this long paper (56 
pages, 127 equations) with much more compact and rigorous papers (e.g., Karczewska and Lizama 
(2009)), invite to proceed to a thorough revision  that will better build upon the present state-of-the 
art that could produced a terser paper with more rigorous, parsimonious mathematics. However, not 
only the mathematics need to be considerably cleaned up, but the main and challenging issue is to 
define a new “key novelty”.  

A sample of detailed comments 
- introduction: the space-time fractional integration/differentiation for multifractals are surprisingly 
forgotten as well as others reviewed by Metzler and Klafter (2000), although being more general 
than the present factional time derivatives; 
- Eq. 2 does not provide the Riemann-Liouville fractional derivative (but in fact the Caputo 
fractional derivative), furthermore no other equation does it; 
- L.250: there are many reasons that an integration is not in general the inverse of a derivative, 

despite this is often considered to be true, including by the author; 
- in Eq.3 and equations that follow, the Weyl derivative symbol could be simplified in  since  

other fractional derivatives are not used (except in appendix A);  
- L261-263: see general comment on this so-called generalisation;  
- step-response function of the noise: in the present case (see general comments on the simplifying 

case ) it is in fact an impulse-response function of  the motion, while in other cases it 
has much less generality and is much less generic than an impulse-response function. Therefore, 
it would be simpler to use only impulse-response functions. In particular, Eq.13 is immediate.  

- Eqs.15-18 are classical (this should be said without any ambiguity) and are in fact a 
mathematical detour that is not indispensable, see below, especially comments on Appendix A; 

- L.330: it is the Mittag-Leffler functions  that are often called “generalized exponentials”, not 
the Green functions;  

- L.332: see previous comments on step-response function and there is no difficulty to take care of 
possible divergences; 

- L.341, equation without label: the symbol  is not defined and cannot inferred in a unique 
way from Eq.16), hence the origin of its r.h.s. is rather mysterious; 
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- Eq. 17: the leading term is missing, the summation should begin with n=0 , a precise reference 
should be given to the corresponding theorem that yields only a limited series, not an entire 
function as displayed. This is particularly important for H=1. 

- L.347: poor display of , the present comment is unclear since only this kind of expansion 
could be expected; 

- L367-369: this claims does not seem reasonable because Karczewska and Lizama (2009) worked 
on the more complex case of a finite  and a complex vector-valued process, hence beyond the 
framework/approach of the present paper;  

-  sect.2.3: 
- it should rather begin with Eq. 36-c (with possible divergences) rather than from Eqs.19-20, 

which are furthermore written in a complicated manner to obtain a simple centralisation of the 
motion (Eq.21). In the latter equation, there is a one-way implication between the two 
equalities… which therefore should be stated in the reverse order.  

- Eq.34-b is a direct consequence of Eq.35 and <dW(s)dW(s’)>=ds 
- there is a change of notations (U-> Y, Q->Z) that is not so helpful (only due to the introduction 

of the ad-hoc pre-factor NH  in Eqs.19-20); 
- most developments constitute a mathematical detour, furthermore with too many small 

variations. In particular, the so-called Haar fluctuations of Y are merely fluctuations of their 
integrals Z. It rather adds a distracting jargon than anything else and should be forgotten. 

- section 3: 
- Eqs.40-41:  

- it is rather obvious that the normalisation coefficient  is an imaginary number on the 
range  (and a real number on the range , contrary to the 
claim of L.490), which is at odd with the non-negativeness of the structure function;  

- one then wonders what was really done in the following, since this expression of  could 
not have been used; 

- as well as what is done outside of the range  and for the structure function 
of the noise (L.468 is rather ambiguous and/or inconsistant);  

- it seems the sign error results from an error on the argument of the sinus, which is indeed 
different according to another approach;  

- in any case, a lot of information is missing on how Eq.40 is obtained; 
- most developments of the section 3, particularly those around Eqs.40-41, as well as those of  

of Appendix B, would be greatly simplified if it would start with a developed sub-section 3.5 
on Fourier space;  
- Eq.60 does not display relevant functions.  

- Appendix A 
- its goal is questionable since it aims to “use the R-L Green’s functions to solve the Weyl 

fractional derivative equation” (L.1039), i.e., why to use a more complex approach than 
needed? 

- it seems mostly based on a circular reasoning:  and R-L is a special case 

of , but forgetting that it is in fact used for a fixed . By the way, the Green function 
 (Eq. 87 and others) is not defined;  

- Appendix B 
- to go from Eq.90 (improper integral of a series) to Eq.92 (series of improper integrals) 

requires conditions that are not discussed. They are a priori not satisfied. This explains the 
divergences  of the resulting series;  
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- obviously,  of Eq.94 does not correspond to  of Eq.93: it rather corresponds to 
, which is not relevant;  

- there is no justification to sum in Eq.94 only the integrals that converge at infinity (L.1069) 
- Eq.96 is obviously wrong: its r.h.s. should correspond to the summation of a geometric 

series (as foreseen from the l.h.s.), which is easy to obtain and quite different;  
- it is extremely difficult to accept the statement “Since the series is divergent, the accuracy 

decreases if we use more than one term in the sum” (L.1080). 
- the above inconsistencies bring into question all the claims that follow. 
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