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Abstract: 9 
We consider the statistical properties of solutions of the stochastic fractional 10 

relaxation equation (a fractional Langevin equation) that has been proposed as a model for 11 
the earthEarth’s energy balance.  In this equation, the (scaling) fractional derivative term 12 
models the energy storage processes that occur over a wide range of space and time scales.   13 
Up until now, stochastic fractional relaxation processes have only been considered with 14 
Riemann-Liouville fractional derivatives in the context of random walk processes where it 15 
yields highly nonstationary behaviour.   Instead, we consider For our purposes we require 16 
the stationary processes that are thestationary solutions of the Weyl fractional relaxation 17 
equations whose domain is  to t rather than 0 to t. 18 

We follow develop a framework developped for handling the simplest fractional 19 
equations driven by Gaussian white noise forcings: fractional Gaussian noise (fGn) and 20 
fractional Brownian motion (fBm).  These more familiar processes are the high frequency 21 
limits To avoid divergences, we follow the approach used in fractional Brownian motion 22 
(fBm). of The the resulting fractional relaxation motions (fRm) and fractional relaxation 23 
noises (fRn) generalize the more familiar fBm and fGn (fractional Gaussian noise).  Since 24 
these processes are Gaussian, their properties are determined by their second order 25 
statistics; using Fourier and Laplace techniques, We we analytically determine bothdevelop 26 
power series as well as asymptotic expansions.  the small and large scale limits andWe 27 
show extensive analytic and numerical results on the autocorrelation functions, Haar 28 
fluctuations and spectra. We display sample realizations. 29 

Finally, we discuss the prediction of fRn, fRm which – due to long memories is a 30 
past value problem, not an initial value problem (used for example in monthly and seasonal 31 
temperature forecasts).  We develop an analytic formula for the fRn forecast skill and 32 
compare it to fGn.  Although Tthe large scale white noise limit is attained in a slow power 33 
law manner is an (unpredictable) white noise thatso that is attained in a slow power law 34 
manner, when the temporal resolution of the series is small compared to the relaxation time 35 
(of the order of a few years in the Earth), fRn can mimic a long memory process with a 36 
wide range of exponents wider than possible ranging fromwith fGn to or fBm and beyond.  37 
We discuss the implications for monthly, seasonal, annual forecasts of the earthEarth’s 38 
temperature as well as for projecting the temperature to 2050 and 2100.    39 
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1. Introduction: 40 
Over the last decades, stochastic approaches have rapidly developed and have spread 41 

throughout the geosciences.  From early beginnings in hydrology and turbulence, 42 
stochasticity has made inroads in many traditionally deterministic areas.  This is notably 43 
illustrated by stochastic parametrisations of Numerical Weather Prediction models, e.g. 44 
[Buizza et al., 1999], and the “random” extensions of dynamical systems theory, e.g. 45 
[Chekroun et al., 2010].   46 

Pure stochastic approaches have developed primarily along two distinct lines.  One 47 
is the classical (integer ordered, linear) stochastic differential equation approach based on 48 
the Itô or Stratonivch calculus calculii that goes back to the 1950’s (see the useful review 49 
[Dijkstra, 2013]).  The other is the scaling strand that encompasses both linear (monofractal, 50 
[Mandelbrot, 1982]) and nonlinear (multifractal) models (see the review [Lovejoy and 51 
Schertzer, 2013]) that are based on phenomenological scaling models, notably cascade 52 
processes.  These and other stochastic approaches have played important roles in nonlinear 53 
Geoscience. 54 

Up until now, the scaling and differential equation strands of stochasticity have had 55 
surprisingly little overlap.   This is at least partly for technical reasons: integer ordered 56 
stochastic differential equations have exponential Green’s functions that are incompatible 57 
with wide range scaling.  However, this shortcoming can – at least in principle - be easily 58 
overcome by introducing at least some derivatives of fractional order.  Once the (typically) 59 
ad hoc restriction to integer orders is dropped, the Green’s functions are based on 60 
“generalized exponentials” and thesethat are in turn are based instead on fractional powers 61 
laws (see the review [Podlubny, 1999]).   The integer- ordered stochastic equations that 62 
have received most attention are thus the exceptional special, nonscaling,  special cases.  In 63 
physics they correspond to classical Langevin equations; in geophysics and climate 64 
modelling, they correspond to the Linear Inverse Modelling (LIM) approach that goes back 65 
to [Hasselmann, 1976] later elaborated notably by [Penland and Magorian, 1993], 66 
[Penland, 1996], [Sardeshmukh et al., 2000], [Sardeshmukh and Sura, 2009] and [Newman, 67 
2013].  Although LIM is not the only stochastic approach to climate, in two recent 68 
representative multi-author collections ([Palmer and Williams, 2010] and [Franzke and 69 
O'Kane, 2017]), all 32 papers shared the integer ordered assumption[Franzke and O'Kane, 70 
2017] [Franzke and O'Kane, 2017](the single exception being [Watkins, 2017], see also  71 
[Watkins et al., 2020]).. 72 

Under the title “Fractal operators” [West et al., 2003], reviews and emphasizes that 73 
in order to yield scaling behaviours, it suffices that stochastic differential equations contain 74 
fractional derivatives.  However, when it is the time derivatives of stochastic variables that 75 
are fractional -  fractional Langevin equations (FLE) , - then the relevant processes are 76 
generally non-Markovian [Jumarie, 1993], so that there is no Fokker-Planck (FP) equation 77 
describing the corresponding probabilities of the corresponding fractional Langevin 78 
equation (see however [Schertzer et al., 2001] for fractional spatial partial derivative 79 
equations).  Furthermore, we expect that - as with the simplest scaling stochastic model – 80 
fractional Brownian motion (fBm, [Mandelbrot and Van Ness, 1968]) - that the solutions 81 
will not be semi-Martingales martingales and hence that the Itô calculus used for integer 82 
ordered equations will not be applicable (see [Biagini et al., 2008]).   This may explain the 83 
relative paucity of mathematical literature on stochastic fractional equations (see however 84 
[Karczewska and Lizama, 2009]).  In statistical physics, starting with [Mainardi and Pironi, 85 
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1996], [Metzler and Klafter, 2000], [Lutz, 2001] and helped with numerics, the FLE (and 86 
a more general “Generalized Langevin Equation” [Kou and Sunney Xie, 2004], [Watkins 87 
et al., 2019]) has received a little more attention as a model for (nonstationary) particle 88 
diffusion (see [West et al., 2003] for an introduction, or [Vojta et al., 2019] for a more 89 
recent example).  90 

These technical difficulties explain the apparent paradox of Continuous Time 91 
Random Walks (CTRW) and other approaches to anomalous diffusion that involve 92 
fractional equations.  While CTRW probabilities are governed by the deterministic 93 
fractional ordered Generalized Fractional Diffusion equation (e.g. [Hilfer, 2000], [Coffey 94 
et al., 2012]), the walks themselves are based on specific particle jump models rather than 95 
(stochastic) Langevin equations.  Alternatively, a (spatially) fractional ordered Fokker-96 
Planck equation may be derived from an integer-ordered but nonlinear Langevin equation 97 
for a diffusing particle driven by an (infinite variance) Levy motion [Schertzer et al., 2001].  98 
[Kobelev and Romanov, 2000b; Mainardi and Pironi, 1996; Vojta et al., 2019; West et al., 99 
2003] 100 

In nonlinear geoscience, it is all too common for mathematical models and techniques 101 
developed primarily for mathematical reasons, to be subsequently applied to the real world.   102 
This approach - effectively starting with a solution and then looking for a problem - 103 
occasionally succeeds, yet historically the converse has generally proved more fruitful.   104 
The proposal that an understanding of the Earth’s energy balance requires the Fractional 105 
Energy Balance Equation  (FEBE, [Lovejoy et al., 2020b], announced in [Lovejoy, 2019b]) 106 
[Lovejoy, 2019b]is an example of the latter.  First, the scaling exponent of macroweather 107 
(monthly, seasonal, interannual) temperature stochastic variability was determined (HI ≈ -108 
0.085±0.02) and shown to permit skillful global temperature predictions, [Lovejoy, 2015], 109 
[Lovejoy et al., 2015], [Del Rio Amador and Lovejoy, 2019], [Del Rio Amador and Lovejoy, 110 
2020a; Del Rio Amador and Lovejoy, 2020b]. Then, the multidecadal deterministic 111 
response to external (anthropogenic) forcing was shown to also obey a scaling law but with 112 
a different exponent [Hebert, 2017], [Lovejoy et al., 2017], [Procyk et al., 2020] (HF ≈ -113 
0.5±0.2).  It was only later that it was realized that the FEBE naturally accounts for both 114 
the high and low frequency exponents with H = HI + 1/2 and HF = -H with the empirical 115 
exponents recovered with a FEBE of order  H ≈ 0.42±0.02.  The realization that the FEBE 116 
fit the basic empirical facts motivated the present research into its statistical properties.   117 

[Coffey et al., 2012; Hilfer, 2000] 118 
In this paper, we consider the fractional energy balance equationThe (FEBE ) which 119 

is a stochastic fractional relaxation equation ([Lovejoy et al., 2020a]), it is the FLE for the 120 
Earth’s temperature treated as a stochastic variable.  The FEBE is a model determines of 121 
the earthEarth’s global temperature where when the key energy storage processes are 122 
scaling and modelled by a fractional time derivative term.  Whereas earlier approaches 123 
([van Hateren, 2013], [Rypdal, 2012], [Hebert, 2017], [Lovejoy et al., 2017]) postulated 124 
that the climate response function itself is scaling, the FEBE instead situates the scaling in 125 
the energy storage processes[Hebert, 2017; Lovejoy et al., 2017; Rypdal, 2012; van 126 
Hateren, 2013].   127 

The FEBE.  The FEBE differs from the classical energy balance equation (EBE) in 128 
several ways.  Whereas the EBE is integer ordered and describes the deterministic, 129 
exponential relaxation of the earthEarth’s temperature to thermodynamic equilibrium 130 
(Newton’s law of cooling), the FEBE is both stochastic and of fractional order.  The FEBE 131 
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unites the forcings due to internal and external variabilities: .  Whereas the former 132 
represents the forcing and response to the unresolved degrees of freedom - the “internal 133 
variability” - and is treated as a zero mean Gaussian noise, and  the the latter represents the 134 
external (e.g. anthropogenic) forcing and the forced response modelled as by the 135 
(deterministic) ensemble average of the total external forcing.  Complementary work 136 
[Procyk et al., 2020] focuses on the deterministic FEBE equation and its application to 137 
projecting the Earth’s temperature to 2100.       138 

An important but less obvioussubtle EBE - FEBE difference is that whereas the 139 
former is an initial value problem whose initial condition is the earthEarth’s temperature 140 
at t = 0, the FEBE is effectively a past value problem whose prediction skill improves with 141 
the amount of available past data and - depending on the parameters - it can have an 142 
enormous memory.  To understand this, we recall that an important aspect of fractional 143 
derivatives is that they are defined as convolutions over various domains.  To date, the 144 
main one that has been applied to physical problems is the Riemann-Liouville (RL and the 145 
related Caputo) fractional derivative in which the domain of the convolution is the interval 146 
between an initial time = 0 and a later time t.  This is the exclusive domain considered in 147 
Podlubny’s mathematical monograph on deterministic fractional differential equations 148 
[Podlubny, 1999] as well as in the stochastic fractional physics discussed in [West et al., 149 
2003], [Herrmann, 2011], [Atanackovic et al., 2014], and most of the papers in [Hilfer, 150 
2000] (with the partial exceptions of [Schiessel et al., 2000], and [Nonnenmacher and 151 
Metzler, 2000]).   A key point of the FEBE is that it is instead based on Weyl fractional 152 
derivatives i.e. derivatives defined over semi-infinite domains, here from  to t.  This is 153 
the natural range to consider for the Earth’s energy balance and it is needed to obtain 154 
statistically stationary responses.  Although in some respects this semi-infinite domain is 155 
easy to handle the statistics of the resulting processes are not available in the literature.    156 

Physically, iIn the EBE, the earth’s energy storage is modelled by a uniform slab of 157 
material implying that when perturbed, the temperature exponentially relaxes to a new 158 
thermodynamic equilibrium.   whereas in However, the actual energy storage involves a 159 
hierarchy of mechanisms and the assumption that this storage is scalingthe FEBE, is 160 
justified by the observed spatial scaling of atmospheric, oceanic and surface (e.g. 161 
topographic) structures (reviewed in [Lovejoy and Schertzer, 2013]).  A consequence is 162 
that it is instead modelled by a scaling hierarchy of storage mechanisms so that the 163 
temperature relaxes relaxes to equilibrium in a power law rather than exponential manner.    164 

This is the phenomenological justification for the FEBE developped in [Lovejoy et 165 
al., 2020b] where [Lovejoy and Schertzer, 2013]the fractional derivative of order H is an 166 
empirically determined parameter with H = 1 corresponding to the classical (exponential) 167 
exception.  Alternatively, [Lovejoy, 2020a; b] [Lovejoy, 2019a]used Babenko’s operator 168 
method to show that the special H = 1/2 FEBE - the Half-ordered Energy Balance Equation 169 
(HEBE) - could be derived analytically from the classical Budyko-Sellers energy balance 170 
models ([Budyko, 1969], [Sellers, 1969]).  To obtain the HEBE, it is only necessary to 171 
improve the mathematical treatment of the radiative boundary conditions in the classical 172 
energy transport equation.  In other words, the H = 1/2 process discussed below  is 173 
completely classical.   174 

 175 
[Lovejoy, 2015]An important but less obvious EBE - FEBE difference is that whereas 176 

the former is an initial value problem whose initial condition is the earth’s temperature at 177 
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t = 0, the FEBE is effectively a past value problem whose prediction skill improves with 178 
the amount of available past data and - depending on the parameters - it can have an 179 
enormous memory.  To understand this, we recall that an important aspect of fractional 180 
derivatives is that they are defined as convolutions over various domains.  To date, the 181 
main one that has been applied to physical problems is the Riemann-Liouville (RL) 182 
fractional derivative in which the domain of the convolution is the interval between an 183 
initial time = 0 and a later time t.  This is the exclusive domain considered in Podlubny’s 184 
mathematical monograph on deterministic fractional differential equations [Podlubny, 185 
1999] as well as in the stochastic fractional physics discussed in [West et al., 2003].   A 186 
key point of the FEBE is that it is instead based on Weyl fractional derivatives i.e. 187 
derivatives defined over semi-infinite domains, here from  to t.   188 

The purpose of this paper is to understand various statistical properties of the 189 
statistically stationary solutions of noise driven Weyl fractional relaxation - oscillation 190 
differential equations.  We focus on the Weyl fractional relaxation equation that underpins 191 
the FEBE, : particularly its stationary noise solution – “fractional Relaxation noise” (fRn) 192 
- and the its fRn integral “fractional Relaxation motion” (fRm) with stationary increments.  193 
These fRn, fRm are direct extensions of the widely studied fractional Gaussian noise (fGn) 194 
and fractional Brownian motion (fBm) processes.  We derive the main statistical properties 195 
of both fRn and fRm including spectra, correlation functions and (stochastic) predictability 196 
limits needed for forecasting the earthEarth temperature ([Lovejoy et al., 2015], [Del Rio 197 
Amador and Lovejoy, 2019], [Del Rio Amador and Lovejoy, 2020a; Del Rio Amador and 198 
Lovejoy, 2020b]) or projecting it to 2050 or 2100 [Hébert et al., 2020], [Procyk et al., 2020].   199 

The choice of a Gaussian white noise forcing was made both for theoretical simplicity 200 
but also for physical realism.  While the temperature forcings in the (nonlinear) weather 201 
regime are highly intermittent, multifractal, in the lower frequency macroweather regime 202 
over which the FEBE applies it quite exceptional inasmuch as its intermittency is low so 203 
that the temperature anomalies are not far from Gaussian ([Lovejoy, 2018]).   Responses to 204 
multifractal or Levy process FEBE forcings are likely however to be of interest elsewhere. 205 

This paper is structured as follows.  In section 2 we present the classical models of 206 
fractional Brownian motion and fractional Gaussian noise as solutions to fractional 207 
Langevin equations and define the corresponding fractional Relaxation motions (fRm) and 208 
fractional Relaxation noises (fRn) as generalizations.  We develop a general framework for 209 
handling Gaussian noise driven linear fractional Weyl equations taking care of both high 210 
and low frequency divergence issues.  Applying this to fBm, fRm we show that they both 211 
have stationary increments.  Similarly, application of the framework to fGn and fRn shows 212 
that they are stationary noises (i.e. with small scale divergences).  In section 3 we discuss 213 
analytic formulae for the second order statistics including autocorrelations, structure 214 
functions, Haar fluctuations and spectra that determine all the corresponding statistical 215 
properties (with many details in appendix A).  In section 4 we discuss the problem of 216 
prediction – important for macrowether forecasting - deriving expressions for the 217 
theoretical prediction skill as a function of forecast lead time.  In section 5 we conclude 218 
and in appendix B, we derive the properties of the HEBE special case. 219 

 220 
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2. Unified treatment of fBm and fRm: 221 

2.1 fRn, fRm, fGn and fBm 222 
In the introduction, we outlined physical arguments[Lovejoy et al., 2020a] argued  223 

that the earthEarth’s global energy balance could be well modelled by the (linearized) 224 
fractional energy balance equation, more details will be published elsewhere.  Taking T as 225 
the globally averaged temperature, t r as the characteristic time scale for energy 226 
storage/relaxation processes,  and F as the (stochastic) forcing (energy flux; power per 227 
area), and l the climate sensitivity (temperature increase per unit flux of forcing)  the FEBE 228 
can be written in Langevin form as: 229 

, (1) 230 

Where where (for 0 < H < 1) the Riemann-Liouville fractional derivative symbol  is 231 
defined as: 232 

233 

, (2) 234 

Where G is the standard gamma function.  Derivatives of order n>1 can be obtained using 235 
n = H+m where m is the integer part of n, and then applying this formula to the mth ordinary 236 
derivative.  The main case studied in applications (e.g. random walks) is a = 0 so that 237 
Laplace transform techniques are often used;  (alternatively, the somewhat different the 238 

“Riemann-LiouvilleCaputo fractional derivative” , is used).   However, hhere ere we 239 

will be interested in ; : the “Weyl fractional derivative”  which is 240 
naturally handled by Fourier techniques (section 3.5 and appendix A), and in this case, the 241 
distinction is unimportant.  Although it. is in many respects simpler, the statistical 242 
characterizations and prediction properties are not available in the literature justifying the 243 
following developments.  244 

Since equation 1 is linear, by taking ensemble averages, it can be decomposed into 245 
deterministic and random components with, the former driven by the mean forcing external 246 
to system <F>, - representing the forcing external to system - and the latter by the 247 
fluctuating stochastic fluctuating component F - <F>   representing the internal forcing due 248 
to thedriving the internal internal variability.   In [Lovejoy et al., 2020a]Elsewhere we will 249 
primarily considered the deterministic part, in the following, we consider the simplest 250 
purely stochastic model in which <F> = 0 and F = g where g is a Gaussian “delta correlated” 251 
white noise: 252 

. (3) 253 
In [Hebert, 2017], [Lovejoy et al., 2017], [Hébert et al., 2020] [Hébert et al., 2020] 254 

it was argued on the basis of an empirical study of ocean- atmosphere coupling that tr ≈ 2 255 

τ
r
H
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years (recent work indicates a value somewhat higher, (≈ 5 years, [Procyk et al., 2020]) 256 
and in [Lovejoy et al., 2015] [Lovejoy et al., 2020a] and [Del Rio Amador and Lovejoy, 257 
2019] that the value H ≈ 0.4 reproduced both the earthEarth’s temperature both at scales 258 
>> < tr t  as	well	as	for	macroweather	scales	(longer	than	the	weather	regime	scales	259 
of	about	10	days)	but	still	< trt.   260 

When 0 < H < 1, eq. 1 with g(t�) replaced by a deterministic forcing is a fractional 261 
generalization of the usual (H = 1) relaxation equation; when 1 < H < 2, it is a generalization 262 
of the usual (H = 2) oscillation equation, the “fractional oscillation equation”, see e.g. 263 
[Podlubny, 1999].  This classification is based on the deterministic equations; for the noise 264 
driven equations, we find that there are two critical exponents H = 1/2 and H = 3/2 and 265 
hence three ranges.  Although we focus on the range 0 < H < 3/2 (especially 0 < H < 1/2), 266 
we also give results for the full range 0 < H < 2 that includes the strong oscillation range. 267 

To simplify the development, we use the relaxation time t to nondimensionalize time 268 
i.e. to replace time by t/tr to obtain the canonical Weyl fractional relaxation equation:  269 

 (4) 270 

for the nondimensional process UH.    The dimensional solution of eq. 1 with 271 
nondimensional F = g = lF  is simply T(t) =  ttr -1 UH(t/trt) so that in the nondimensional 272 
eq. 4, the characteristic transition “relaxation” time between dominance by the high 273 
frequency (differential) and the low frequency (UH term) is t = 1.  Although we give results 274 
for the full range 0 < H < 2 - i.e. both the “relaxation” and  “oscillation” ranges – for 275 
simplicity, we refer to the solution UH(t) as “fractional Relaxation noise” (fRn) and to QH(t) 276 
as “fractional Relaxation motion” (fRm).   Note that we take QH(0) = 0 so that QH is related 277 
to UH via an ordinary integral from time = 0 to t and that  fRn is only strictly a noise when 278 
H ≤ 1/2. 279 

In dealing with fRn and fRm, we must be careful of various small and large t 280 
divergences.  For example, eqs. 1 and 4 are the fractional Langevin equations 281 
corresponding to generalizations of integer ordered stochastic diffusion equations: the 282 
solution with the classical H = 1 value is the Ohrenstein-Uhlenbeck process.  Since g(t) is 283 
a “generalized function” - a “noise” - it does not converge at a mathematical instant in time, 284 
it is only strictly meaningful under an integral sign.  Therefore, a more standard form of eq. 285 
4 is obtained by integrating both sides by order H: (i.e. by differentiating by -H and 286 
assuming that differentiation and integration of order H commute): 287 

, (5)288 

 ( 5) 289 
 290 
(see e.g. in [Karczewska and Lizama, 2009]).  The white noise forcing in the above is 291 
statistically stationary; we show below that the solution for UH(t) is also statistically 292 
stationary.  It is tempting to obtain an equation for the motion QH(t) by integrating eq. 4 293 
from  to t  to obtain the fractional Langevin equation:  where W is 294 

Wiener process (a usual standard Brownian motion) satisfying .  295 

−∞Dt
H +1( )UH = γ ; UH =

dQH
dt −∞Dt

H +1( )UH = γ t( ); UH = dQH

dt

U
H
t( )= − −∞Dt

−HU
H
+ −∞Dt

−Hγ = − 1
Γ H( ) t − s( )H−1UH

s( )ds
−∞

t

∫ + 1
Γ H( ) t − s( )H−1 γ s( )ds

−∞

t

∫

−∞
	−∞Dt

HQ
H
+Q

H
=W

	
dW = γ t( )dt
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Unfortunately the Wiener process integrated  to t almost surely diverges, hence we 296 
relate QH to UH by an integral from 0 to t.  297 

In the high frequency limit, the derivative dominates and we obtain fRn and fRm are 298 
generalizations of fractional Gaussian noise (fGn, FH) and fractional Brownian motion 299 
(fBm, BH); this can be seen since the latter satisfy the the simpler fractional Langevin 300 
equation: 301 

 (6) 302 

Whose solution FH is the fractional Gaussian noise process (fGn), and whose integral BH 303 
is fractional Brownian motion (fBm).  We thus anticipate that FH and BH are the high 304 
frequency limits of fRn, fRm.  so that FH is a Weyl fractional integration of order H of a 305 
white noise and if H = 0, then FH itself is a white noise and BH is it’s ordinary integral (from 306 
time = 0 to t), a usual Brownian motion, it satisfies BH (0) = 0 (FH is not to be confused 307 
with the forcing F). 308 

Before continuing, a comment is necessary on the use of the symbol H that 309 
Mandelbrot introduced for fBm in honour of E. Hurst’s Hurst who pioneering pioneered 310 
the study of long memory processes in Nile flooding [Hurst, 1951].  First, note that eq. 6 311 
implies that the root mean square (RMS) increments of BH over intervals Dt grow as312 

 (see below).  Since fBm is often defined by this scaling property, 313 

it is usual to use the fBm exponent HB = H+1/2.   In terms of HB, from eq. 6, we see that 314 
fGn (FH) is a fractional integration of a white noise of order H =  HB - 1/2, whereas fBm is 315 
an integral of order HB  + 1/2, the 1/2 being a consequence of the fundamental scaling of 316 
the Wiener measure whose density is g(t).  While the parametrization in terms of HB is 317 
convenient for fGn and fBm, in this paper, we follow [Schertzer and Lovejoy, 1987] who 318 
more generally used H to denote an order of fractional integration.  This more general usage 319 
includes the use of H as a general order of fractional integration in the Fractionally 320 
Integrated Flux (FIF) model [Schertzer and Lovejoy, 1987] which is the basis of space-time 321 
multifractal modelling (see the monograph [Lovejoy and Schertzer, 2013]).  In the FIF 322 
generalization, the density of a Wiener measure (i.e. the white noise forcing in eq. 6) is 323 
replaced by the density of a (conservative) multifractal measure.   The scaling of this 324 
multifractal measure is different from that of the Wiener measure so that the extra 1/2 term 325 
does not appear.  A consequence is that in multifractal processes, H simultaneously 326 
characterizes the order of fractional differentiation/integration (H < 0 or H > 0), and has a 327 
straightforward empirical interpretation as the “fluctuation exponent” that characterizes the 328 
rate at which fluctuations grow (H > 0) or decay (H < 0) with scale.   In comparison, for 329 
fBm, the critical H distinguishing integration and differentiation is still zero, but H > 0 or 330 
H < 0 corresponds to fluctuation exponents HB > 1/2 or HB  <1/2; which for these Gaussian 331 
processes is termed “persistence’ persistence” and “antiperistenceantiperistence”.  There 332 
are therefore several H’s in the literature and in the paperbelow, we continue to denote the 333 
order of the fractional integration by H but we relate it to other exponents as needed. 334 

2.2 Green’s functions 335 
As usual, we can solve inhomogeneous linear differential equations by using 336 

appropriate Green’s functions: 337 

−∞

  
−∞ Dt

H FH = γ t( ); FH =
dBH

dt

		
ΔB

H
Δt( )

2 1/2
∝Δt H+1/2
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, (7) 338 

Where where  and  are Green’s functions for the differential operators 339 

corresponding respectively to  and . 340 

 and  are the usual “impulse” (Dirac) response Green’s functions (hence 341 

the subscript “0”).  For the differential operator  they satisfy: 342 

. (8) 343 
Integrating this equation we find an equation for their integrals G1,H  which are thus 344 

“step” (Heaviside, subscript “1”) response Green’s functions satisfying: 345 

; ; 346 
 347 

, (9) 348 
where Q is the Heaviside (step) function.  The inhomogeneous equation:  349 

 (10) 350 
has a solution in terms of either an impulse or a step Green’s function: 351 

, (11) 352 

the equivalence being established by integration by parts with the conditions   353 
and G1,H(0) = 0.  The use of the step rather than impulse response is standard in the Energy 354 
Balance Equation literature since it gives direct information on energy balance and the 355 
approach to equilibrium (see e.g. [Lovejoy et al., 2020b]).  The step response for  the noise 356 
is also the basic impulse response function for the motion (although care is needed for the 357 
convergence, see below). 358 

For fGn, the Green’s functions are simply the kernels of Weyl fractional integrals: 359 

, (12) 360 

obtained by integrating both sides of eq. 6 by order H.  We conclude: 361 

  

FH t( ) = G0,H
fGn( )

−∞

t

∫ t − s( )γ s( )ds

U H t( ) = G0,H
fRn( )

−∞

t

∫ t − s( )γ s( )ds

  
G0,H

fGn( )
  
G0,H

fRn( )

	−∞Dt
H

		−∞Dt
H +1

  
G0,H

fGn( )
  
G0,H

fRn( )

Ξ
ΞG0,H t( ) = δ t( )

ΞG1,H t( ) =Θ t( ); Θ t( ) = δ s( )ds
−∞

t

∫

		
dG1,H
dt

=G0,H

Ξf t( ) = F t( )

f t( )= G0,H t − s( )F s( )ds =
−∞

t

∫ G1,H t − s( ) ′F s( )ds
−∞

t

∫ ; ′F s( )= dF
ds

  F −∞( ) = 0

		
F
H
t( ) = 1

Γ H( )
t − s( )

H−1
γ s( )ds

−∞

t

∫
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. (13) 362 

Similarly, appendix A shows that for fRn, dDue to the statistical stationarity of the 363 
white noise forcing g(t), that the Riemann-Liouville Green’s functions can be used: 364 

 (14) 365 

with: 366 

, (15) 367 

so that ,  are simply the first terms in the power series expansions of the 368 
corresponding fRn, fRm Green’s functions.   369 

We now recall some classical results useful in geophysical applications.  First, These 370 
these Green’s functions are often equivalently written in terms of Mittag-Leffler functions 371 
(“generalized exponentials”), Ea,b: 372 

. (16) 373 
 374 
By taking integer H, the G functions reduce to factorials and G0,H, G1,H reduce to 375 
exponentials hence, ,  are sometimes called “generalized exponentials”. 376 
FinallySecond, we note that at the origin, for 0 < H < 1, G0,H is singular whereas G1,H is 377 
regular so that it is often may be advantageous to use the latter (step) response function (for 378 
example in the numerical simulations in section 4).   These Green’s function responses are 379 
shown in figure 1.   When 0 < H ≤ 1, the step response is monotonic; in an energy balance 380 
model, this would correspond to relaxation to thermodynamic equilibrium.  When 1 < H < 381 
2, we see that there is overshoot and oscillations around the long term value; it is therefore 382 
(presumably) outside the physical range of an equilibrium process. 383 

In order to understand the relaxation process – i.e. the approach to the asymptotic 384 
value 1 in fig. 1 for the step response G1,H - we need the asymptotic expansions: 385 

G0,H
fGn( ) =

t H−1

Γ H( )
;

G1,H
fGn( ) =

t H

Γ H +1( )
;

−
1
2
≤ H <

1
2

		
U
H
t( ) = G0,H

fRn( ) t − s( )γ s( )ds
−∞

t

∫

		

G0,H
fRn( ) t( ) = −1( )

n+1 t nH−1

Γ nH( )n=1

∞

∑

G1,H
fRn( ) t( ) = −1( )

n+1 t nH

Γ nH+1( )n=1

∞

∑
0<H ≤2

  
G0,H

fGn( )
  
G1,H

fGn( )

G0,H
fRn( ) t( ) = t H−1EH ,H −t H( ) Eα,β z( ) = zn

Γ αn +β( )n=0

∞

∑

G1,H
fRn( ) t( ) = t HEH ,H+1 −t H( ) H ≥ 0

G0,H
fRn( ) G1,H

fRn( )
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, ( 17) 386 

Where   is the z order (fractionally) integrated impulse response G0,H.  Specifically, 387 

for z = 0, 1 we obtain the special cases corresponding to impulse and step responses: 388 

 389 

, (1817) 390 

(0 < H < 1, 1 < H < 2; note that the n = 0 terms are 0, 1 for , respectively) 391 
[Podlubny, 1999], i.e. power laws in t-H rather than tH.  According to this, the asymptotic 392 
approach to the step function response (bottom row in fig. 1) is a slow, power law process.   393 
In the FEBE, this implies for example that the classical CO2 doubling experiment would 394 
yield a power law rather than exponential approach to a new thermodynamic equilibrium.  395 
Comparing this to the EBE, – i.e. the special case H = 1 –, we have: 396 

, (1918) 397 

so that when H = 1, the asymptotic step response is instead approached exponentially fast.  398 
There are also analytic formulae for fRn when H = 1/2 (the HEBE) discussed in appendix 399 
C B notably involving logarithmic corrections.   400 

Gζ ,H
fRn( ) t( ) = ∑

n=0

∞ −1( )n
Γ ζ − nH( ) t

ζ −1−nH ; t >>1

Gζ ,H t( )

G0,H
fRn( ) t( ) = H −1( )n+1

n=1

∞

∑ t−1−nH

Γ 1−nH( )
; t >>1

G0,H
fRn( ) t( ) = −1( )n

n=0

∞

∑ t −1−nH

Γ −nH( ) ; t >>1

G1,H
fRn( ) t( ) = −1( )n

n=0

∞

∑ t −nH

Γ 1− nH( ) ; t >>1

G0,H
fRn( ) G1,H

fRn( )

G0,1 t( ) = e−t ; G1,1 t( ) =1− e−t
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 401 
Fig. 1: The impulse (top) and step response functions (bottom) for the fractional relaxation 402 

range (0 < H < 1, left, red is H = 1, the exponential), the black curves, bottom to top are for H = 403 
1/10, 2/10, ..9/10) and the fractional oscillation range (1 < H < 2, red are the integer values H = 1, 404 
bottom, the exponential, and top, H = 2, the sine function, the black curves, bottom to top are for 405 
H = 11/10, 12/10, ..19/10. 406 

2.3 A family of Gaussian noises and motions:  407 
In the above, we discussed fGn, fRn and their integrals fBm, fRm, but these are 408 

simply special cases; a of a more general theory valid for a wide family variety of Green’s 409 
functions that lead to convergent noises and motionscould be used, .  We expect for 410 
example we expect our that our approach also to applies to the stochastic Basset’s equation 411 
which could be regarded as a natural extension of the stochastic relaxation equation (see 412 
discussed in [Karczewska and Lizama, 2009] for the more general case of finite and 413 
complex vector-valued processes), which could be regarded as an extension of the 414 
stochastic relaxation equation.   415 

With the motivation outlined in the previous sections, and following [Mandelbrot 416 
and Van Ness, 1968] (see also  [Biagini et al., 2008]), the simplest way to proceed is to 417 
start by defining the general motion ZH(t) as: 418 

, (2019) 419 

where NH is a normalization constant and H is an index.  It is advantageous to rewrite this 420 
in standard notation (e.g.  [Biagini et al., 2008]) as: 421 

1	 2	 3	
t	

0.5	

1.0	

1.5	

G0,H	

Im
pu

ls
e	
Re

sp
on

se
	 0	<	H	<	1	

2	 4	 6	 8	 10	 12	 14	 t	

0.2	

0.4	

0.6	

0.8	

1.0	

t	2	 4	 6	 8	 10	 12	 14	

0.5	

1.0	

1.5	

2.0	

G0,H	

G1,H	 G1,H	

St
ep

	R
es
po

ns
e	

2	 4	 6	 8	 10	 12	 14	 t	

-	1.0	

-	0.5	

0.5	

1.0	

t	

1	<	H	<	2	

ZH t( ) = NH G1,H t − s( )γ s( )ds
−∞

t

∫ − NH G1,H −s( )γ s( )ds
−∞

0

∫
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, (2120)  422 

where the “+” subscript indicates that the argument is  > 0, and the range of integration is 423 
over all the real axis .   Here and throughout, the Green’s functions need only be 424 
specified for t>0 corresponding to their causal range.   425 

The advantage of starting with the motion ZH is that it is based on the step response 426 
G1,H which is finite at small t; the disadvantage is that integrals may diverge at large scales.  427 
The second (constant) term in eq. 20 was introduced by [Mandelbrot and Van Ness, 1968] 428 
for fBm precisely in order to avoid large scale divergences in fBm.  As discussed in 429 
appendix A, tThe introduction of this constant physically corresponds to considering the 430 
long- time behaviour of the fractional random walks discussed in [Kobelev and Romanov, 431 
2000a] and [West et al., 2003].   The physical setting of the random walk applications is a 432 
walker with position X(t) and velocity V(t).  Assuming that the walker startsing at the origin 433 
corresponds corresponding to a fractionally diffusing particle whose velocity obeying 434 
obeys the fractional Riemann-Liouville relaxation equation. 435 

From the definition (eq. 19 20 or 2021), we have: 436 

. (2221) 437 

Hence, the origin plays a special role, so that the ZH(t) process is nonstationary.  438 
The variance VH(t) of ZH (not to be confused with the velocity of a random walker) 439 

is:  440 
. (2322) 441 

Equivalently, with an obvious change of change of variable: 442 

, (2423) 443 

so that VH(0) = 0.  ZH will converge in a root mean square sense if VH converges.  If G1,H is 444 

a power law at large scales: , then Hl  < 1/2 is required for 445 

convergence.  Similarly, if at small scales , then convergence of VH 446 
requires Hh > -1/2.  We see that for fBm (eq. 13), Hl = Hh = H so that this restriction implies 447 
-1/2 < H < 1/2 which is equivalent to the usual range 0 < HB < 1 with HB = H + 1/2.  448 
Similarly, for fRm, using G(fRn)1,H(t), we have Hh = H, (eq. 15) and Hl = -H, (eq. 187) so 449 
that fRm converges for H > -1/2, i.e. over the entire range 0 < H < 2 discussed in this paper.   450 
Since the small scale limit of fRm is fBm, we see that the range 0 < H < 2 overlaps with 451 
the range of fBm and extends it at large H.   452 

From eq. 2019 we can consider the statistics of the increments: 453 

,(2524) 454 

 

ZH t( ) = NH G1,H t − s( )+ −G1,H −s( )+( )γ s( )ds
!
∫

 !

  
ZH 0( ) = 0; ZH 0( ) = 0 ZH 0( ) = 0; ZH 0( ) = 0

 
VH t( ) = ZH

2 t( ) = NH
2 G1,H t − s( )+ −G1,H −s( )+( )2 ds
!
∫

VH t( ) = NH
2 G1,H s + t( )−G1,H s( )( )2 ds +
0

∞

∫ NH
2 G1,H s( )2 ds
0

t

∫

G1,H ∝ t Hl ; t >>1

G1,H ∝ t
Hh ; t <<1

 

ZH t( )− ZH u( ) = NH G1,H t − s( )+ −G1,H u − s( )+( )γ s( )ds
!
∫

=
d
NH G1,H t − u − ′s( )+ −G1,H − ′s( )+( )γ ′s( )d ′s

!
∫ ; ′s = s − u
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where we have used the fact that  where  means equality in a probability sense.  455 
This shows that: 456 

, (2625)

 

457 
so that the increments ZH(t) are stationary.  From this, we obtain the variance of the 458 
increments = ZH(t)-ZH(t-Dt): 459 

. (2726) 460 
Since  is a mean zero Gaussian process, its statistics are determined by the 461 
covariance function:  462 

. (2827) 463 
The noises are the derivatives of the motions and as we mentioned, depending on 464 

H, we only expect their finite integrals to converge.  Let us therefore define the resolution 465 
t noise YH,t corresponding to the mean increments of the motions: 466 

. (2928) 467 
The noise, YH(t) can now be obtained as the limit : 468 

. (3029) 469 

 Applying eq. 2627, we obtain the variance: 470 

, (3130) 471 
since ,  could be considered as the anomaly fluctuation of YH , so that 472 

 is the anomaly variance at resolution t.    473 
From the covariance of ZH (eq. 2728) we obtain the correlation function:  474 

 475 
. (3231) 476 

Alternatively, taking time in units of the resolution l = Dt/t: 477 

478 

. (3332) 479 

γ ʹs( )=
d
γ s( ) =

d

ZH t( )− ZH u( )=
d
ZH t −u( )− ZH 0( ) = ZH t −u( )

ΔZH Δt( )
ΔZH Δt( )2 =VH Δt( ); Δt = t − u

ZH t( )

CH t,u( ) = ZH t( )ZH u( ) = 1
2
VH t( )+VH u( )−VH t −u( )( )

		
Y
H ,τ t( ) =

Z
H
t( )−ZH t −τ( )

τ
	τ →0

	
Y
H
t( ) =

dZ
H
t( )

dt

YH ,τ t( )2 = YH ,τ
2 = τ−2VH τ( )

  
YH ,t 0( ) = 0 YH ,τ t( )

τ−2VH τ( )

RH ,τ Δt( ) = YH ,τ t( )YH ,τ t −Δt( ) = τ−2 ZH t( )− ZH t − τ( )( ) ZH t −Δt( )− ZH t −Δt − τ( )( )

= τ−2
1
2
VH Δt − τ( )+VH Δt + τ( )−2VH Δt( )( )

Δt ≥ τ

RH ,τ 0( ) = YH ,τ t( )
2
= τ−2VH τ( ); Δt = 0

RH ,τ λτ( ) = YH ,τ t( )YH ,τ t −λτ( ) = τ−2 ZH t( )− ZH t − τ( )( ) ZH t −λτ( )− ZH t −λτ − τ( )( )

= τ−2
1
2
VH λ −1( ) τ( )+VH λ+1( ) τ( )−2VH λτ( )( )

λ ≥1

RH ,τ 0( ) = YH ,τ t( )
2
= τ−2VH τ( ); λ = 0
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RH,t can be conveniently written in terms of centred finite differences: 480 

. (3433) 481 

The finite difference formula is valid for Dt ≥ t.  For finite t, it allows us to obtain the 482 
correlation behaviour by replacing the second difference by a second derivative, an 483 
approximation that is very good except when Dt is close to t. 484 

Taking the limit  in eq. 343 to obtain the second derivative of VH, and after 485 
some manipulations, we obtain the following simple formula for the limiting function 486 
RH(Dt): 487 

. (3534) 488 

If the integral for VH converges, this integral for RH(Dt) will also converges except possibly 489 
at Dt = 0 (in the examples below, when H ≤ 1/2).   490 

Eq. 354 shows that RH is the correlation function of the noise: 491 

 . (3635) 492 

This result could have been derived formally from: 493 
 494 

495 

 (3736) 496 

but our the above derivation explicitly handles the convergence issues. 497 
A useful statistical characterization of the processes is by the statistics of its their 498 

Haar fluctuations over an interval Dt.  For an interval Dt, Haar fluctuations are the 499 
differences between the averages of the first and second halves of an interval.   For the 500 
noise YH, the Haar fluctuation is:  501 

.  502 
(3837) 503 
In terms of ZH(t): 504 

RH ,τ λτ( ) = 1
2
Δτ
2VH λτ( ) ≈ 1

2
VH ʹ́ Δt( ); Δτ f t( ) =

f t + τ / 2( )− f t − τ / 2( )
τ

τ→ 0

RH Δt( ) = 1
2
d 2VH Δt( )
dΔt 2

= NH
2 G0,H s + Δt( )G0,H s( )ds
0

∞

∫ ; G0,H =
dG1,H
ds

YH t( ) = G0,H t − s( )γ s( )ds
−∞

t

∫
YH t( ) = NH G0,H t − s( )γ s( )ds

−∞

t

∫

YH t( ) = ZH
′ t( ) = dZH t( )

dt
= d
dt

G1,H
−∞

t

∫ t − s( )γ s( )ds;

= G0,H
−∞

t

∫ t − s( )γ s( )ds

YH t( ) = ′ZH t( ) =
dZH t( )
dt

= NH

d
dt

G1,H t − s( )γ s( )ds
−∞

t

∫

= NH G0,H t − s( )γ s( )ds
−∞

t

∫

  
ΔYH Δt( )Haar

= 2
Δt

YH s( )ds−
t−Δt /2

t

∫
2
Δt

YH s( )ds
t−Δt

t−Δt /2

∫

Field Code Changed
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.  505 
(3938) 506 
Therefore:   507 

. (4039) 508 
This formula will be useful below. 509 

3 Application to fBm, fGn, fRm, fRn: 510 

3.1 fBM, fGn: 511 
The above derivations were for noises and motions derived from differential 512 

operators whose impulse and step Green’s functions had convergent VH(t).  Before 513 
applying them to fRn, fRm, we illustrate this by applying them first to fBm and fGn.   514 

The fBm results are obtained by using the fGn step Green’s function (eq. 13) in eq. 515 
243 to obtain: 516 

.  (4140) 517 
The standard normalization and parametrisation is: 518 

. (4241) 519 
This normalization turns out to be convenient for bothnot only for  fBm and fRm but also 520 
for fRm so that we use it below to obtain: 521 

, (4342) 522 

so that: 523 

, (4443) 524 

so – as mentioned earlier - HB is the fluctuation exponent for fBm.  Note that fBm is usually 525 
defined as the Gaussian process with VH given by eq. 43 i.e. with this normalization (e.g. 526 
[Biagini et al., 2008]).   527 

We can now calculate the correlation function relevant for the fGn statistics.  With 528 
the normalization NH =KH: 529 

  
ΔYH Δt( )Haar

= 2
Δt

ZH t( )− 2ZH t − Δt / 2( ) + ZH t − Δt( )( )

  

ΔYH Δt( )Haar

2
= 2

Δt
⎛
⎝⎜

⎞
⎠⎟

2

2 ΔZH Δt / 2( )2
− 2 YH ,Δt /2 t( )YH ,Δt /2 t − Δt / 2( )( )

= 2
Δt

⎛
⎝⎜

⎞
⎠⎟

2

4VH Δt / 2( )−VH Δt( )( )

VH
fBm( ) t( ) = NH

2 2sin πH( )Γ −1− 2H( )
π

⎛
⎝⎜

⎞
⎠⎟
t 2H+1; − 1

2
≤ H < 1

2

NH = KH = π
2sin πH( )Γ −1− 2H( )

⎛
⎝⎜

⎞
⎠⎟

1/2

= − π
2cos πHB( )Γ −2HB( )

⎛

⎝⎜
⎞

⎠⎟

1/2

;

HB = H + 1
2
; 0 ≤ HB <1

VHB

fBm( ) t( ) = t 2H+1 = t 2HB ; 0 ≤ HB <1

ΔBH Δt( )2
1/2
= Δt HB ; ΔBH Δt( ) = BH t( )− BH t −Δt( )
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530 

,  (4544)
 

531 

the bottom line approximations are valid for large scale ratios l.  We note the difference in 532 
sign for HB > 1/2½ (“persistence”), and for HB < 1/2½ (“antipersistence”).  When HB = 533 
1/2½, the noise corresponds to usual standard Brownian motion, it is uncorrelated. 534 

3.2 fRm, fRn 535 
3.2.1 VH(t) 536 
Since fRm, fRn are Gaussian, their properties are determined by their second order 537 

statistics, by VH(t), RH(t).  These statistics are second order in G0,H(t) and can most easily 538 
be determined using the Fourier representation of G0,H(t), (section 3.5, appendix A).  The 539 
development is challenging because unlike the G0,H(t) functions that are entirely expressed 540 
in series of fractional powers of t, VH(t) and RH(t) involve mixed fractional and integer 541 
power expansions, the details are given in appendix A, here we summarize the main results.  542 
To lighten the notation, we drop the superscripts “fRn”, “fRm” and use the unnormalized 543 
functions (NH = 1).   544 

First, for the motions, we have: 545 

 (4645)  546 

 547 

 548 

where  F is the Hurwitz-Lerch phi function .   When 0<H<1/2, 549 

then the leading term is t1+Hn with n = 2, so that the coefficient can be used for 550 
normalization:  (the fBm normalization).  When ½<H<2, then 551 

this becomes negative, so that it cannot be used, however in this case, the leading term is 552 
t2 and its coefficient may be used for normalization: 553 

RH ,τ
fGn( ) λτ( ) = 1

2
τ2H−1 λ+1( )2H+1 + λ −1( )2H+1 −2λ2H+1( ); λ ≥1; −

1
2
< H <

1
2

RH ,τ
fGn( ) 0( ) = τ2H−1

RHB ,τ
fGn( ) λτ( ) ≈ H 2H +1( ) λτ( )2H−1 = HB 2HB −1( ) λτ( )2 HB−1( ) ; −

1
2
< H <

1
2

λ >>1

VH t( ) = 2 DnΓ −1− Hn( )t1+Hn
n=2

∞

∑ + 2 Fj
t j+1

Γ j + 2( )j=1,odd

∞

∑ ; 0 < H < 2

Dn = −1( )n
sin nH π

2
⎛
⎝⎜

⎞
⎠⎟
sin n−1( )H π

2
⎛
⎝⎜

⎞
⎠⎟

2π sin H π
2

⎛
⎝⎜

⎞
⎠⎟

Fj = − 1
πH

cot
πH
2

⎛
⎝⎜

⎞
⎠⎟

Φ −1,1,1− j
H

⎛
⎝⎜

⎞
⎠⎟
+Φ −1,1, j

H
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Φ z,s,a( ) = zn n+ a( )−s
n=0

∞

∑

NH
−2 = KH

−2 = 2D2Γ −1− 2H( )
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554 
 (4746) 555 

(see section 3.5 A for the relation with G0,H).  Since  diverges for all integer 556 

j/H and since we sum over odd integer j, the expansion only converges for irrational H.  557 
Therefore, the convergence properties are not clear, but due to the presence of the G 558 
functions they appear to converge for all t although the convergence is slow (see the 559 
numerical results in appendix A, and also for a slightly different expansion that converges 560 
more rapidly, useful in applications). 561 

For multidecadal global climate projections, the relaxation time has been estimated 562 
at ≈ 5 years ([Procyk et al., 2020]), so that we are interested in the long time behaviour 563 
(exploited for example in [Hébert et al., 2020]).  For this, asymptotic expansions are useful, 564 
in appendix A we show that:  565 

 (4847) 566 
where we have included the term: 567 

 (4948) 568 
 569 

for 1<H<2, cos(p/H)<0 so that at large t, PH(t) is subdominant, however it explains the 570 
oscillations visible in fig. 2.  The constant aH can be determined numerically if needed. 571 

For convenience, the leading terms of the normalized VH are:  572 

573 
 (5049) 574 
and for ½<H<2, using : 575 

 (5150) 576 
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Note that for 3/2<H<2,  (appendix A).  The change in normalization for 578 

H > 1/2 is necessary since KH2<0 for this range.  Fig. 2 shows plots of V(norm)H(t), the small 579 
t2 behaviour for H > 1/2 corresponds to fRm increments 580 

 i.e. to a smooth process, differentiable of order 1; see 581 

section 3.4.   582 

Since , the corrections imply that at large scales
 

583 

 so that the fRm process QH appears to be anti-persistent at large 584 

scales. 585 
 586 
3.2.2 RH(t) 587 

The formulae for RH can be obtained from the above using588 
 (eq. 35, appendix A): 589 

 (5251) 590 
The normalized autocorrelation functions are thus: 591 

 592 

  593 

 (5352) 594 
(note F3<0 for 3/2<H<2).   595 

The asymptotic expansions are: 596 

 (5453) 597 
(when 0 < H < 1/2, for t ≈ t we must use the exact resolution t fGn formula, eq. 45, top, 598 
note the absolute value sign for ½<H<3/2).  For large t: 599 

; t>>1. (5554) 600 

Note that for 0<H<1, G(-H)<0 so that R>0 over this range (fig. 3).   Formulae 53 shows 601 
that there are three qualitatively different regimes: 0 < H < 1/2, 1/2 < H < 3/2, 3/2 < H < 2; 602 
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this is in contrast with the deterministic relaxation and oscillation regimes (0 < H <1 and 1 603 
< H <2).  We return to this in section 3.4. 604 

Now that we have worked out the behaviour of the correlation function, we can 605 
comment on the issue of the memory of the process.  Starting in turbulence, there is the 606 
notion of “integral scale” that is conventionally defined as the long time integral of the 607 
correlation function.  When the integral scale diverges, the process is conventionally 608 
termed a “long memory process”.  With this definition, if the long time exponent of RH is 609 
> -1, then the process has a long memory.  Eq. 55 shows that the long time exponent =         610 
-(1+H) so that for all H considered here, the integral scale converges.  However, it is of the 611 
order of the relaxation time which may be much larger than the length of the available 612 
sample series.  For example, eq. 55 shows that when H <1/2, the effective exponent 2H -1 613 
implies (in the absence of a cut-off), a divergence at long times, so that up to the relaxation 614 
scale, fRn mimics a long memory process. 615 

 616 

 617 
Fig. 2: The normalized VH functions for the various ranges of H for fRm.  The plots from 618 

left to right, top to bottom are for the ranges 0 < H<1/2, 1/2 < H < 1, 1 < H < 3/2, 3/2 < H < 2.  619 
Within each plot, the lines are for H increasing in units of 1/10 starting at a value 1/20 above the 620 
plot minimum; overall, H	increases	in	units	of	1/10	starting	at	a	value	1/20,	upper	left	to	39/20,	621 
bottom	right (ex. for the upper left, the lines are for H = 1/20, 3/10, 5/20, 7/20, 9/20).  For all H’s 622 
the large t behaviour is linear (slope = 1, although note the oscillations for the lower right hand plot 623 
for 3/2<H<2).  For small t, the slopes are 1+2H (0<H≤1/2) and 2 (1/2≤H<2). 624 
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 625 
 626 
Fig. 3: The normalized correlation functions RH for fRn corresponding to the VH function 627 

in fig. 2 0 < H 1/2 (upper left) 1/2 < H < 1 (upper right), 1 < H < 3/2) lower left, 3/2 < H < 2 lower 628 
right.   In each plot, the curves correspond to H increasing from bottom to top in units of 1/10 629 
starting from 1/20 (upper left) to 39/20 (bottom right).  For H<1/2, the resolution is important since 630 

RH,t diverges at small t.  In the upper left figure, RH,t is shown with t = 10-5; they were normalized 631 
to the value at resolution t = 10-5, for H >1/2, the curves are normalized with .   In all 632 
cases, the large t slope is – 1-H.  633 

uncorrelated. 634 
3.2 fRm, fRn 635 

There are various cases to consider, appendix B gives some of the mathematical details 636 
including a small t series expansions for 0 < H < 3/2; the leading terms are:  637 
 (45) 638 

 639 
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 641 
 642 

All for t<<1.  The change in normalization for H > 1/2 is necessary since KH2<0 for 643 
this range.  Similarly, the H >1/2 normalization cannot be used for H < 1/2 since CH 644 
diverges for H < 1/2.  See fig. 2 for plots of V(fRm)H(t).  Note that the small t2 behaviour for 645 

H > 1/2 corresponds to fRm increments  i.e. to a smooth 646 

process, differentiable of order 1; see section 3.4.   647 
For large t, we have: 648 

 649 

 (46) 650 

where aH is a constant, the above is valid for t>>1.  Since , 651 

the corrections imply that at large scales
 

 so that the fRm process QH 652 

appears to be anti-persistent at large scales. 653 
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 654 
Fig. 2: The VH functions for the various ranges of H for fRm (these characterize the variance 655 

of fRm).  The plots from left to right, top to bottom are for the ranges 0 < H < 1/2, 1/2 < H < 1, 1 < 656 
H < 3/2, 3/2 < H < 2.  Within each plot, the lines are for H increasing in units of 1/10 starting at a 657 
value 1/20 above the plot minimum (ex. for the upper left, the lines are for H = 1/20, 3/10, 5/20, 658 
7/20, 9/20).  For all H’s the large t behaviour is linear (slope = one, although note the oscillations 659 
for 3/2<H<2).  For small t, the slopes are 1+2H (0<H≤1/2) and 2 (1/2≤H<2). 660 
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 661 
 662 
Fig. 3: The correlation functions RH for fRn corresponding to the VH function in fig. 2 0 < 663 

H < 1/2 (upper left), 1/2 < H < 1 (upper right), 1 < H < 3/2) lower left, 3/2 < H < 2 lower right.   In 664 
each plot, the curves correspond to H increasing from bottom to top in units of 1/10 starting from 665 

1/20 (upper left) to 39/20 (bottom right).  For H < 1/2, the RH,t are shown with t = 10-5; they were 666 
normalized to the value at resolution t = 10-5.  For H > 1/2, the curves are normalized with NH = 667 
1/CH; for H < 1/2, they were normalized to the value at resolution t = 10-5.   In all cases, the large t 668 
slope is – 1-H.  669 

 670 
The formulae for RH can be obtained by differentiating the above results for VH twice 671 

(eqs. 45, 46), see appendix B for details and Padé approximants): 672 
 673 

 674 

 (47) 675 

(when 0< H < 1/2, for t ≈ t we must use the resolution t fGn formula, eq. 44, top).  676 
For large t: 677 
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 678 
 679 

; t>>1 (48) 680 

Note that for 0<H<1, G(-H)<0 so that R>0 over this range (fig. 3).  Also, when H < 681 
1/2, we see (eq. 47) that RH(t) diverges in the small scale limit so that we must use RH,t (t) 682 
and the corresponding small t formula above is only valid for 1>>t>> t.  When t ≈ t, the 683 
exact formula (eq. 31) must be used.  Formulae 45, 47 show that there are three qualitatively 684 
different regimes: 0 < H < 1/2, 1/2 < H < 3/2, 3/2 < H < 2; this is in contrast with the 685 
deterministic relaxation and oscillation regimes (0 < H <1 and 1 < H <2).  We return to this 686 
in section 3.4. 687 

Now that we have worked out the behaviour of the correlation function, we can 688 
comment on the issue of the memory of the process.  Starting in turbulence, there is the 689 
notion of “integral scale” that is conventionally defined as the long time integral of the 690 
correlation function.  When the integral scale diverges, the process is conventionally 691 
termed a “long memory process”.  With this definition, if the long time exponent of RH is 692 
> -1, then the process has a long memory.  Eq. 48 shows that the long time exponent is    -693 
1-H so that for all H considered here, the integral scale converges.  However, it is of the 694 
order of the relaxation time which may be much larger.  For example, eq. 47 shows that 695 
when H <1/2, the effective exponent 2H -1 implies (in the absence of a cut-off), a 696 
divergence at long times, so that fRn mimics a long memory process. 697 

3.3 Haar fluctuations 698 
Using eq. 4039 we can determine the behaviour of the RMS Haar fluctuations.  699 

Applying this equation to fGn we obtain  with HHaar = H – 1/2 700 

(the subscript “Haar” indicates that this is not a difference/increment fluctuation but rather 701 
a Haar fluctuation).  For the motion, the Haar exponent is equal to the exponents of the 702 

increments (eq. 4344) so that  with HHaar = HB = H + 1/2 (both 703 

results were obtained in [Lovejoy et al., 2015]).  Therefore, from an empirical viewpoint if 704 
we have a scaling Gaussian process and (up to the relaxation time scale) when -1/2 < HHaar  705 
< 0, it has the scaling of an fGn and when 0 < HHaar  < 1/2, it scales as an fBm.   706 

Using eq. 3940, we can determine the Haar fluctuations for fRn . 707 

With the small and large t approximations for VH(t), we can obtain the small and large Dt 708 
behaviour of the Haar fluctuations.  Therefore, the leading terms for small Dt are: 709 

, (5655) 710 
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where the DtH-1/2 behaviour comes from terms in VH ≈ t1+2H . and the Dt behaviour from the 711 

VH ≈ t4 terms that arise when H > 3/2.  Note (eq. 3940) that  depends on 712 

4VH(Dt/2) - VH(Dt) so that quadratic terms in VH(t) cancel.   The HHaar = 1 behaviour from 713 
the VH ≈ t4 terms that arise when H > 3/2. 714 

As H increases past the critical value H = 1/2, the sign of HHaar changes so that when 715 
1/2 < H < 3/2, we have 0 < HHaar < 1 so that over this range, the small Dt behaviour mimics 716 
that of fBm rather than fGn (discussed in the next section). 717 

For large Dt, the corresponding formula is: 718 

. (5756) 719 

 This white noise scaling is due to the leading behavior VH(t) ≈ t over the full range 720 
of H (eq. 487), see fig. 4a.  721 

 722 
Fig.	4a:	The	RMS	Haar	fluctuation	plots	for the fRn process for 0 < H < 1/2 (upper left), 723 

1/2 < H < 1 (upper right), 1 < H < 3/2 (lower left), 3/2 < H < 2 (lower right).  The individual curves 724 
correspond to those of fig. 2, 3.  The	small	Dt	slopes	follow	the	theoretical	values	H	-	1/2	up	to	725 
H	=	3/2	(slope=	1);	for	larger	H,	the	small	t	slopes	all	=	1.		Also,	at	large	t	due	to	dominant	V	≈	726 
t	terms,	in	all	cases	we	obtain	slopes	t-1/2.		727 
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3.4 fBm, fRm or fGn? 729 
Our analysis has shown that there are three regimes with qualitatively different small 730 

scale behaviour, let us compare them in more detail.   The easiest way to compare the 731 
different regimes is to consider their increments.  Since fRn is stationary, we can use: 732 

. (5857) 733 

Over the various ranges for small Dt, (t≪1 is the resolution) recall that we have: 734 

, (5958) 735 

(when H>1/2 the resolution is not important, the index is dropped).  We see that in the 736 
small H range, the increments are dominated by the resolution t, the process is a noise that 737 
does not converge point-wise, hence the t dependence.  In the middle (1/2 < H < 3/2) 738 
regime, the process is point-wise convergent (take the limit t->0) although it cannot be 739 
differentiated by any positive integer order.  Finally, the largest H regime 3/2<H<2), the 740 

process is smoother: , so that it is almost surely differentiable of 741 

order 1.    Since the fRm are simply order one integrals of fRn, their orders of  742 
differentiability are simply augmented by one. 743 

Considering the first two ranges i.e. 0 < H < 3/2, we therefore have several processes 744 
with the same small scale statistics and this may lead to difficulties in interpreting empirical 745 
data that cover ranges of time scales smaller than the relaxation time.   For example, we 746 
already saw that over the range 0 < H < 1/2 that at small scales we could not distinguish 747 
fRn from the corresponding fGn; they both have anomalies (averages after the removal of 748 
the mean) or Haar fluctuations that decrease with time scale with (exponent H -1/2, (eq. 749 
4956).  This similitude was not surprising since they both were generated by Green’s 750 
functions with the same high frequency term.  From an empirical point of view, with data 751 
only available over scales much smaller than the relaxation time, it might be impossible to 752 
distinguish the two since over scales much smaller than the relaxation time,; their statistics 753 
can be very close.  754 

The problem is compounded when we turn to increments or fluctuations that increase 755 
with scale.  To see this, note that in the middle range (1/2 < H < 3/2), the exponent -1+ 2H 756 
spans the range 0 to 2.  This is the sameoverlaps the range 1 to 2 spanned by fRm (QH) with 757 
0 < H < 1/2: 758 

, (6059) 759 
and with fBm (BH) over the same H range (but for all Dt): 760 

. (6160) 761 
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If we use the usual fBm exponent HB = H +1/2, then, over the range 0 < H < 1/2 we 762 
may not only compare fBm with fRm with the same HB, but also with an fRn process with 763 
an H larger by unity, i.e. with HB = H-1/2 in the range 1/2 < H < 3/2.  In this case, we have: 764 

 765 

 (6261) 766 

, 767 

 768 
 769 

where	a,	b	are	constants	(section	3.2).			Over	the	entire	range	0	<	HB	<	1,	we	see	that	770 
the	only	difference	between	fBm,	and	fRn,	and	fRn	fRm	is	their	different	large	scale	771 
corrections	to	the	small	scale	 	behaviours.		Therefore,	if	we	found	a	process	that	772 
over	a	finite	range	was	scaling	with	exponent	1/2	<	HB	<1,	then	over	that	range,	we	773 
could	not	tell	the	difference	between	fRn,	fRm,	fBm,	see	fig.	4b	for	an	example	with	HB	774 
=	0.95.			775 
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	777 
Fig. 4b: A comparison of fRn with H = 1.45, fRm with H = 0.45 and fBm with H = 0.45.  778 

For small Dt, they all have RMS increments with exponent HB = 0.95 and can only be distinguished 779 
by their behaviours at Dt larger than the relaxation time (log10Dt = 0 in this plot). 780 

3.5 Spectra: 781 
Since YH(t) is stationary process, its spectrum is the Fourier transform of the 782 

correlation function RH(t) (the Wiener-Khintchin theorem).   However, it is easier to 783 
determine it directly from the fractional relaxation equation using the fact that the Fourier 784 
transform (F.T., indicated by the tilda) of the Weyl fractional derivative is simply785 

 (e.g. [Podlubny, 1999], this is simply the extension of the 786 

usual rule for the F.T. of integer-ordered derivatives).  Therefore take the F.T. of eq. 4 (the 787 
fRn), to obtain: 788 

, (6362) 789 

so that the Fourier transform of G0,H is: 790 

 ( 64) 791 

 792 
 And the spectrum of YH is: 793 
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. (6563) 794 

 (since the Gaussian white noise was normalized such that =1).  Due to the 795 

Wiener-Khintchin theorem, the spectrum is the Fourier transform of the autocorrelation 796 
function, hence: 797 

 ( 66) 798 
We use this relationship extensively in appendix A in order to derive the main fRn, fRm 799 
statistical properties that were discussed above.   800 

From eq. 66 we already can immediately obtain some basic results.  First, due to 801 
Parseval’s theorem: 802 

  ( 67) 803 
 804 

When H<1/2 this is divergent, but when H>1/2, this can be used to normalize RH.  805 
We may easily obtain the The asymptotic high and low frequency behaviours are 806 

therefore,:  807 

. (6864) 808 
This corresponds to the scaling regimes determined by direct calculation above:   809 

. (6965) 810 

(H ≠ 1).  Note that the usual (Orenstein-Uhlenbeck) result for H = 1 has no wH term, hence 811 
no t-1-H term; it has an exponential rather than power law decay at large t.   812 

From the spectrum of U, we can easily determine the spectrum of the stationary Dt 813 
increments of the fRm process QH: 814 

 (66) 815 
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3.6 Sample processes 816 
It is instructive to view some samples of fRn, fRm processes.  For this purpose, we 817 

can use the solution for fRn in the form of a convolution (eq. 35), and use numerical 818 
convolution algorithms.  For simulations, both the small and large scale divergences must 819 
be considered.  Starting with the approximate methods developed by [Mandelbrot and 820 
Wallis, 1969], it took some time for exact fBm, and fGn simulation techniques to be 821 
developed [Hipel and McLeod, 1994], [Palma, 2007].  Fortunately, for fRm, fRn, the low 822 
frequency situation is easier since the long time memory is much smaller than for fBm, 823 
fGn.  Therefore, as long as we are careful to always simulate series a few times the 824 
relaxation time and then to throw away the earliest 2/3 or 3/4 of the simulation, the 825 
remainder will have accurate correlations.  With this procedure to take care of low 826 
frequency issues, we can therefore use the solution for fRn in the form of a convolution 827 
(eqs. 19, 35, 36), and use standard numerical convolution algorithms. 828 

However, we still must be careful about the high frequencies since the impulse 829 
response Green’s functions G0,H are singular for H<1.  In order to avoid singularities, 830 
Simulations simulations of fRn are best made by first simulating the motions QH and then 831 
taking finite differences using:  (* denotes a Weyl convolution) 832 

and obtain the resolution t fRn, using .  Numerically, 833 

thisThis allows us to use the smoother (nonsingular) G1 in the convolution rather than the 834 
singular G0.   The simulations shown in figs. 5, 6 follow this procedure and the Haar 835 
fluctuation statistics were analyzed verifying the statistical accuracy of the simulations. 836 

[Hipel and McLeod, 1994; Mandelbrot and Wallis, 1969; Palma, 2007] 837 
In order to clearly display the behaviours, recall that when t>>1, we showed that all 838 

the fRn converge to Gaussian white noises and the fRm to Brownian motions (albeit in a 839 
slow power law manner).  At the other extreme, for t << 1, we obtain the fGn and fBm 840 
limits (when 0 < H < 1/2) and their generalizations for  1/2 < H < 2.   841 

Fig. 5a shows three simulations, each of length 219, pixels, with each pixel 842 
corresponding to a temporal resolution of t = 2-10.  so that the unit (relaxation) scale is  210 843 
elementary pixels.  Each simulation uses the same random seed but they have H’s 844 
increasing from H = 1/10 (top set) to H = 5/10 (bottom set).  The fRm at the right is from 845 
the running sum of the fRn at the left.  Each series has been rescaled so that the range 846 
(maximum - minimum) is the same for each.  Starting at the top line of each group, we 847 
show 210 points of the original series degraded by a factor 29.  The second line shows a 848 
blow-up by a factor of 8 of the part of the upper line to the right of the dashed vertical line.  849 
The line below is a further blown up by factor of 8, until the bottom line shows 1/512 part 850 
of the full simulation, but at full resolution.  The unit scale indicating the transition from 851 
small to large is shown by the horizontal red line in the middle right figure.   At the top 852 
(degraded by a factor 29), the unit (relaxation) scale is 2 pixels so that the top line degraded 853 
view of the simulation is nearly a white noise (left), (ordinary) Brownian motion (right).  854 
In contrast, the bottom series is exactly of length unity so that it is close to the fGn limit 855 
with the standard exponent HB = H+1/2.   Moving from bottom to top in fig. 5a, one 856 
effectively transitions from fGn to fRn (left column) and fBm to fRm (right).   857 

If we take the empirical relaxation scale for the global temperature to be 27 months 858 
(≈10 years, [Lovejoy et al., 2017]) and we use monthly resolution temperature anomaly 859 
data, then the nondimensional resolution is 2-7 corresponding to the second series from the 860 

		QH =G1,H ∗γ QH ∝G1,H ∗γ

UH ,τ t( ) = QH t +τ( )−QH t( )( ) / τ
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top (which is thus 210 months ≈ 80 years long).  Since H ≈ 0.42±0.02 ([Del Rio Amador 861 
and Lovejoy, 2019]), the second series from the top in the bottom set is the most realistic, 862 
we can make out the low frequency ondulutions that are mostly present at scales 1/8 of the 863 
series (or less).  864 

Fig. 5b shows realizations constructed from the same random seed but for the 865 
extended range 1/2 < H < 2 (i.e. beyond the fGn range).   Over this range, the top (large 866 
scale, degraded resolution) series is close to a white noise (left) and Brownian motion 867 
(right).  For the bottom series, there is no equivalent fGn or fBm process, the curves become 868 
smoother although the rescaling may hide this somewhat (see for example the H = 13/20 869 
set, the blow-up of the far right 1/8 of the second series from the top shown in the third line.  870 
For 1 < H < 2, also note the oscillations with wavelength frequency  (eq. 871 

49)of order unity, this is the fractional oscillation range. 872 
Fig. 6a shows simulations similar to fig. 5a (fRn on the left, fRm on the right) except 873 

that instead of making a large simulation and then degrading and zooming, all the 874 
simulations were of equal length (210 points), but the relaxation scale was changed from 875 
215 pixels (bottom) to 210, 25 and 1 pixel (top).  Again the top is white noise (left), Brownian 876 
motion (right), and the bottom is (nearly) fGn (left) and fBm (right), fig. 6b shows the 877 
extensions to 1/2 < H < 2. 878 

 879 
Fig. 5a: fRn and fRm simulations (left and right columns respectively) for H = 1/10, 3/10, 880 

5/10 (top to bottom sets) i.e. the exponent range that overlaps with fGn and fBm.  There are three 881 
simulations, each of length 219 pixels, each use the same random seed with the unit scale equal to 882 

2π / sin π / H( )

H=1/10	

H=3/10	

H=5/10	
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210 pixels (i.e. a resolution of t = 2-10).  .  The entire simulation therefore covers the range of scale 883 
1/1024 to 512 units.  The fRm at the right is from the running sum of the fRn at the left.   884 

Starting at the top line of each groupset, we show 210 points of the originals series degraded 885 
in resolution by a factor 29 .  Since the length is t = 29 units long, each pixel has resolution t = 1/2.).    886 
The second line of each set takes shows a blow-up by a factor of 8 of the part segment of the upper 887 
line lying to the right of the dashed vertical line, 1/8 of its length.  It therefore spans t=0 to t = 29/8 888 
= 26 but resolution was taken as t = 2-4, hence it is still 210 pixels long (note, each series was rescaled 889 
so that its range between maximum and minimum was the same)..  Since each pixel has a resolution 890 
of 2-4, the unit scale is 24 pixels long, this is shown in red in the second series from the top (middle 891 
set).  The process of taking 1/8 and blowing up by a factor of 8 line below each is a further blow 892 
up by factor of 8, continues to the third line (length t = 23, resolution t = 2-7), unit scale =27 pixels 893 
(shown by the red arrows in the third series) until the bottom line series which spans the range t = 894 
0 to t = 1 and a resolution t = 2-10shows 1/512 part of the full simulation, but at full resolution. with 895 
unit scale 210 pixels (the whole series displayed).   Each series was rescaled in the vertical so that 896 
its range between maximum and minimum was the same.   897 

The unit relaxation sscales indicating indicated by the red arrows mark the transition  from 898 
small to large scale.  Since theis shown by the horizontal red line in the middle right figure.   At the 899 
top series in each set has a(degraded by a factor 29), the unit scale is of 2 2 (degraded) pixels (too 900 
small to be shown in red) so that the strongly degraded view at the topit of each simulation is nearly 901 
a white noise (left), or (ordinary) Brownian motion (right).  In contrast, the bottom series is exactly 902 
of length unity t = 1 so that it is close to the fGn and fBm limits (left and right) with the standard 903 
exponent HB = H+1/2. As indicated in the text, the second series from the top in the bottom set is 904 
most realistic for monthly temperature anomalies. 905 

 906 

 907 
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Fig. 5b:  The same as fig. 5a but for H = 7/10, 13/10 and 19/10 (top to bottom).   Over this 908 
range, the top (large scale, degraded resolution) series is close to a white noise (left) and Brownian 909 
motion (right).  For the bottom series, there is no equivalent fGn or fBm process, the curves become 910 
smoother although the rescaling may hide this somewhat (see for example the middle H = 13/20 911 
set, the blow-up of the far right 1/8 of the second series from the top shown in the third line).  Also 912 
note for the bottom two sets with 1 < H < 2, the oscillations that have frequency 913 

wavelengths of order unity, this is the fractional oscillation range. 914 
 915 

 916 
Fig. 6a: This set of simulations is similar to fig. 5a (fRn on the left, fRm on the right) except 917 

that instead of making a large simulation and then degrading and zooming, all the simulations were 918 
of equal length (210 points), but resolutions t = 2-15, 2-10, 2-5 the , 1 (bottom to top).  The simulations 919 
therefore spanned the ranges of scale 2-15 to 2-5 ; 2-10 to 1 ; 2-5 to 25 ; 1 to 210 and the same random 920 
seed was used in each so that we can see how the structures slowly change when the relaxation 921 
scale changes.  The bottom fRn, H = 5/10 set is the closest to that observed for the Earth’s 922 
temperature, and since the relaxation scale is of the order of a few years, the second series from the 923 
top of this set (with one pixel = one month) is close to that of monthly global temperature anomaly 924 
series.  In that case the relaxation scale would be 32 months and the entire series would be 210/12 ≈ 925 
85 years long. 926 

unit scale (the relaxation time) was changed from 215 pixels (bottom row of each set) to 210, 927 
25 and 1 pixel (top).  The top series (of total length 210 relaxation times) is (nearly) a white noise 928 
(left), and Brownian motion (right), and the bottom is (spanning a range of scales from 2-15 to 2-5 929 
relaxation times) is (nearly) an fGn (left) and fBm (right).  The total range of scales covered here 930 

2π / sin π / H( )
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(210x215) is larger than in fig. 5a and allows one to more clearly distinguish the high and low 931 
frequency regimes.  932 

 933 

 934 
Fig. 6b:  The same fig. 6a but for larger H values; see also fig. 5b.  935 

4. Prediction 936 
The initial value for Weyl fractional differential equations is effectively at , 937 

so that for fRn it is not directly relevant at finite times (although the ensemble mean is 938 
assumed = 0; for fRm, QH(0)=0 is important).   The prediction problem is thus to use past 939 
data (say, for t < 0) in order to make the most skilful prediction of the future noises and 940 
motions at t > 0.   We are therefore dealing with a past value rather than a usual initial 941 
value problem.  The emphasis on past values is particularly appropriate since in the fGn 942 
limit, the memory is is so large that values of the series in the distant past are important.  943 
Indeed, prediction of fGn with a finite length of past data involves placing strong 944 
(mathematically singular) weights on the most ancient data available (see [Gripenberg and 945 
Norros, 1996], [Del Rio Amador and Lovejoy, 2019], [Del Rio Amador and Lovejoy, 946 
2020b]).  This is quite different from standard stochastic predictions that are based on short 947 
memory (exponential) auto-regressive or moving average type processes that are not much 948 
different from initial value problems. 949 

H=7/10	

H=13/10	

H=19/10	
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In general, there will be small scale divergences (for fRn, when 0 < H  ≤ 1/2) so that 950 
it is important to predict the finite resolution fRn: .  Using eq. 288 for , we 951 
have: 952 

. (7067) 953 

Let us Defining define the predictor for t ≥ 0 (indicated by a circonflex):  954 

. (7168) 955 

To show that it is indeed the optimal predictor, considerWe see that the error  956 
in the predictor is: 957 

. (7269) 958 

Eq. 63 72 shows that the error depends only on g(s) for s>0 whereas the predictor 959 
(eq. 6271) only depends on g(s) so that for s<0, hence they are orthogonal: 960 

, (7370) 961 

Hencethis is a sufficient condition for,  is to be the minimum square predictor which 962 
is the optimal predictor for Gaussian processes, (e.g. [Papoulis, 1965]).  The prediction 963 
error variance is: 964 

, (7471) 965 

or with a change of variables: 966 

, (7572) 967 

where we have used (the unconditional variance). 968 
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Using the usual definition of forecast skill (also called the Minimum Square Skill 969 
Score or MSSS) we obtain: 970 

. (7673) 971 

When H < 1/2 and , we can check that we obtain the 972 

fGn result: 973 

 (7774) 974 
[Lovejoy et al., 2015].  This can be expressed in terms of the function: 975 

, (7875) 976 
sSo that the usual fGn result (independent of t) is: 977 

. (7976) 978 

To survey the implications, let’s start by showing the t independent results for fGn, 979 
shown in fig. 7 which is a variant on a plot published in [Lovejoy et al., 2015].   We see 980 
that when H ≈ 1/2 (HB ≈ 1) that the skill is very high, indeed, in the limit , we 981 
have perfect skill for fGn forecasts (this would of course require an infinite amount of past 982 
data to attain). 983 
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 985 
Fig. 7: The prediction skill (Sk) for pure fGn processes for forecast horizons up to l = 10 986 

steps (ten times the resolution).  This plot is non-dimensional, it is valid for time steps of any 987 
duration.  From bottom to top, the curves correspond to H = 1/20, 3/10, …9/20 (red, top, close to 988 
the empirical H). 989 
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 991 
Fig. 8:  The left column shows the skill (Sk) of fRn forecasts (as in fig. 7 for fGn) for fRn 992 

skill with H = 1/20, 5/20, 9/20 (top to bottom set); l is the forecast horizon, the number of steps of 993 
resolution t forecast into the future.  The right hand column shows the ratio (r) of the fRn to 994 
corresponding fGn skill. 995 

Here the result depends on t; each curve is for different values increasing from 10-4 (top, 996 
black) to 10 (bottom, purple) increasing by factors of 10 (the red set in the bottom plots with t = 997 
10-2, H = 9/20 are closest to the empirical values).   The right hand column shows the ratio (r) 998 
of the fRn to corresponding fGn skill. 999 

 1000 
Now consider the fRn skill.  In this case, there is an extra parameter, the resolution 1001 

of the data, t.  Figure 8 shows curves corresponding to fig. 7 for fRn with forecast horizons 1002 
integer multiples (l) of t i.e. for times t = lt in the future, but with separate curves, one 1003 
for each of five t values increasing from 10-4 to 10 by factors of ten.  When t is small, the 1004 
results should be close to those of fGn, i.e. with potentially high skill, and in all cases, the 1005 
skill is expected to vanish quite rapidly for t>1 since in this limit, fRn becomes an 1006 
(unpredictable) white noise (although there are scaling corrections to this).  1007 

To better understand the fGn limit, it is helpful to plot the ratio of the fRn to fGn skill 1008 
(fig. 8, right column).  We see that even with quite small values t = 10-4 (top, black curves), 1009 
that some skill has already been lost.  Fig. 9 shows this more clearly, it shows one time step 1010 
and ten time step skill ratios.   To put this in perspective, it is helpful to compare this using 1011 
some of the parameters relevant to macroweather forecasting.  According to [Lovejoy et al., 1012 
2015] and [Del Rio Amador and Lovejoy, 2019], the relevant empirical Haar exponent is ≈ 1013 
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-0.08 values for the global temperature H is ≈ 0.45 over the range 1 month to 10 years, (i.e. 1014 
the empirical RMS Haar exponent is ≈ -0.05 so that the H = -0.05+1/2 - 0.08 ≈ 0.42).  1015 
Although direct empirical estimates of the relaxation time, are difficult since the responses 1016 
to anthropogenic forcing begin to dominate over the internal variability after ≈10 years 1017 
[Procyk et al., 2020] have used the determistic response to estiamte a global relaxation time 1018 
of ≈ 5 years.   Also, according to [Hébert et al., 2020], the transition scale is ≈ 2 years 1019 
(although the uncertainty is large), so that forFor monthly resolution forecasts, the non-1020 
dimensional resolution is t ≈ 1/24100.  With these values, we see (red curves) that we may 1021 
have lost ≈ 2530% of the fGn skill for one month forecasts and ≈ 8085% for ten month 1022 
forecasts.  Comparing this with fig. 7 we see that this implies about 60% and 10% skill (see 1023 
also the red curve in fig. 8, bottom set).  1024 

Going beyond the 0 < H < 1/2 region that overlaps fGn, fig. 10 clearly shows that the 1025 
skill continues to increase with H.  We already saw (fig. 4) that the range 1/2 < H < 3/2 has 1026 
RMS Haar fluctuations that for Dt < 0 mimic fBm and these do indeed have higher skill, 1027 
approaching unity for H near 1 corresponding to a Haar exponent ≈ 1/2, i.e. close to an 1028 
fBm with HB = 1/2, i.e. a regular Brownian motion.  Recall that for Brownian motion, the 1029 
increments are unpredictable, but the process itself is predictable (persistence).    1030 

Finally, in figure 11a, b, we show the skill for various H’s as a function of resolution 1031 
t.  Fig. 11a for the H < 3/2 shows that for all H, the skill decreases rapidly for t > 1.  Fig. 1032 
12b in the fractional oscillation equation regime shows that the skill also oscillates. 1033 
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Fig. 9:  The ratio of fRn skill to fGn skill (left: one step horizon, right: ten step forecast 1035 
horizon) as a function of resolution t for H increasing from (at left) bottom to top (H = 1/20, 2/20, 1036 
3/20…9/20); the H = 9/20 curves (close to the empirical value) is shown in red. 1037 

 1038 
Fig. 10:  The one step (left) and ten step (right) fRn forecast skill as a function of H for 1039 

various resolutions (t) ranging from t = 10-4 (black, left of each set) through t = 10-3 (brown) 10-2  1040 
(red), 0.1 (blue), 1 (orange),to t =  10 (purple).  In the right set  (right of each set, purple, for the 1041 
right set the t = 1 (orange), 10 (purple) lines are nearly on top of the Sk = 0 line.  Again red (t = 10-1042 
2) is the more empirical relevant value for monthly data).  Recall that the regime H < 1/2 (to the left 1043 
of the vertical dashed lines) corresponds to the overlap with fGn. 1044 
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 1046 
Fig. 11a:  One step fRn prediction skills as a function of resolution for H’s increasing from 1047 

1/20 (bottom) to 29/20 (top), every 1/10.  Note the rapid transition to low skill, (white noise) for 1048 
t > 1.  The curve for H = 9/20 is shown in red.  1049 
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 1050 
Fig. 11b:  Same as fig. 11a except for H = 37/20, 39/20 showing the one step skill (black), 1051 

and the ten step skill (dashed).  The right hand dashed and right hand solid lines, are for H = 39/20, 1052 
they clearly show that the skill oscillates in this fractional oscillation equation regime.   The 1053 
corresponding left lines are for H = 37/20. 1054 

4. Conclusions: 1055 

 1056 
Ever	since	[Budyko,	1969]	and	[Sellers,	1969],	the	energy	balance	between	the	1057 

earth	 and	 outer	 space	 has	 been	modelled	 by	 the	 Energy	 Balance	 Equation	 (EBE)	1058 
which	is	an	ordinary	first	order		differential	equation	for	the	temperature	(Newton’s	1059 
law	of	cooling).		In	the	EBE,	the	integer	ordered	derivative	term	accounts	for	energy	1060 
storage.	 	 Physically,	 it	 corresponds	 to	 storage	 in	 a	 uniform	 slab	 of	 material.	 	 To	1061 
increase	realism,	one	may	introduce	a	few	interacting	slabs	(representing	for	example	1062 
the	 atmosphere	 and	 ocean	 mixed	 layer;	 the	 Intergovernmental	 Panel	 on	 Climate	1063 
Change	recommends	two	such	components	[IPCC,	2013]).	 	 	However	due	to	spatial	1064 
scaling,	 a	 more	 realistic	 model	 involves	 a	 continuous	 hierarchy	 of	 storage	1065 
mechanisms	and	this	can	easily	be	modelled	by	using	fractional	rather	than	integer	1066 
ordered	derivatives:	the	Fractional	Energy	Balance	Equation	(FEBE,	[Lovejoy,	2019b;		1067 
2019c;	Lovejoy	et	al.,	2020b]).					1068 

The	FEBE	 is	a	 fractional	relaxation	equation	that	generalizes	 the	EBE.	 	When	1069 
forced	by	 a	Gaussian	white	noise,	 it	 is	 also	 a	 generalization	of	 fractional	Gaussian	1070 
noise	(fGn)	and	its	integral	generalizes	fractional	Brownian	motion	(fBm).		Over	the	1071 
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parameter	range	0	<	H	<	1/2	(H	 is	 the	order	of	 the	 fractional	derivative),	 the	high	1072 
frequency	 FEBE	 limit	 (fGn)	 has	 been	 used	 as	 the	 basis	 of	 monthly	 and	 seasonal	1073 
temperature	forecasts	[Lovejoy	et	al.,	2015],	[Del	Rio	Amador	and	Lovejoy,	2019],	[Del 1074 
Rio Amador and Lovejoy, 2020a; Del Rio Amador and Lovejoy, 2020b].		For	multidecadal	1075 
time	scales	the	low	frequency	limit	has	been	used	as	the	basis	of	climate	projections	1076 
through	to	the	year	2100	[Hebert,	2017],	[Lovejoy	et	al.,	2017],	[Hébert	et	al.,	2020],	1077 
[Procyk	et	al.,	2020].		The	success	of	these	two	applications	with	different	exponents	1078 
but	with	values	predicted	by	the	FEBE	with	the	same	empirical	underlying	H	≈	0.4,	is	1079 
what	 originally	motivated	 the	 FEBE,	 and	 the	work	 reported	 here.	 	 The	 statistical	1080 
characterizations	–	correlations,	structure	functions	Haar	fluctuations	and	spectra	as	1081 
well	 as	 the	 predictability	 properties	 are	 important	 for	 these	 and	 other	 FEBE	1082 
applications.		1083 

While	 the	 deterministic	 fractional	 relaxation	 equation	 is	 classical,	 various	1084 
technical	difficulties	arise	when	it	is	generalized	to	the	stochastic	case:	in	the	physics	1085 
literature,	it	is	a	Fractional	Langevin	Equation	(FLE)	that	has	almost	exclusively	been	1086 
considered	as	a	model	of	diffusion	of	particles	starting	at	an	origin.		This	requires		t	=	1087 
0	 (Riemann-Liouville)	 initial	 conditions	 that	 imply	 that	 the	 solutions	 are	 strongly	1088 
nonstationary.	 In	 comparison,	 the	 Earth’s	 temperature	 fluctuations	 that	 are	1089 
associated	with	its	internal	variability	are	statistically	stationary.		This	can	easily	be	1090 
modelled	by	Weyl	fractional	derivatives,	i.e.	initial	conditions	at	 .			1091 

Beyond	the	proposal	that	the	FEBE	is	a	good	model	for	the	Earth’s	temperature,	1092 
the	key	novelty	of	this	paper	is	therefore	to	consider	the	FEBE	as	a	Weyl		fractional	1093 
Langevin	 equation	 and	 proceed	 to	 give	 the	 fundamental	 statistical	 properties	1094 
including	series	expansions	about	the	origin	and	infinity	(asymptotic),	as	well	as	the	1095 
theoretical	predictability	skill.		When	driven	by	Gaussian	white	noises,	the	solutions	1096 
are	 a	 new	 stationary	 process	 –	 fractional	 Relaxation	 noise	 (fRn).	 	 Over	 the	 range	1097 
0<H<1/2,	we	show	that	the	small	scale	limit	is	a	fractional	Gaussian	noise	(fGn)	–	and	1098 
its	 integral	 -	 fractional	 Relaxation	 motion	 (fRm)	 -	 has	 stationary	 increments	 and	1099 
which	generalizes	fractional	Brownian	motion	(fBm).		Although	at	long	enough	times,	1100 
the	fRn	tends	to	a	Gaussian	white	noise,	and	fRm	to	a	standard	Brownian	motion,	this	1101 
long	time	convergence	is	slow	(it	is	a	power	law).	1102 

The	deterministic	FEBE	has	two	qualitatively	different	cases:	0<	H	<1	and	1<	H	1103 
<2	 corresponding	 to	 fraction	 relaxation	 and	 fractional	 oscillation	 processes	1104 
respectively.				In	comparison,	the	stochastic	FEBE	has	three	regimes:	0<	H	<	1/2,	1/2	1105 
<	H	<	3/2,	3/2	<	H	<2,	with	the	lower	ranges	(0	<	H	<	3/2)	having	anomalous	high	1106 
frequency	scaling.	 	For	example,	 it	was	 found	 that	 fluctuations	over	scales	smaller	1107 
than	the	relaxation	time	can	either	decay	or	grow	with	scale	-	with	exponent	H	-	1/2	1108 
(section	3.5)	-	the	parameter	range	0	<	H	<	3/2	has	the	same	scaling	as	the	(stationary)	1109 
fGn	(H	<	1/2)	and	the	(nonstationary)	fBm	(1/2	<	H	<	3/2),	so	that	processes	that	1110 
have	been	empirically	identified	with	either	fGn	or	fBm	on	the	basis	of	their	scaling,	1111 
may	in	fact	turn	out	to	be	(stationary)	fRn	processes;	the	distinction	is	only	clear	at	1112 
time	scales	beyond	the	relaxation	time.	1113 

Although	 the	 basic	 approach	 could	 be	more	 applied	 to	 a	 range	 of	 FLEs,	 we	1114 
focused	on	the	fractional	relaxation-oscillation	equation.	 	Much	of	the	effort	was	to	1115 
deduce	 the	 asymptotic	 small	 and	 large	 scale	 behaviours	 of	 the	 autocorrelation	1116 
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functions	that	determine	the	statistics	and	in	verifying	these	with	extensive	numeric	1117 
simulations.	 	 	An	 interesting	exception	was	the	H	=	1/2	special	case	which	 for	 fGn	1118 
corresponds	to	an	exactly	1/f		noise.		Here,	we	were	able	to	find	exact	mathematical	1119 
expressions	 for	 the	 full	 correlation	 functions,	 showing	 that	 they	 had	 logarithmic	1120 
dependencies	at	both	small	and	large	scales.		The	resulting	Half	order	EBE	(HEBE)	has	1121 
an	exceptionally	slow	transition	from	small	 to	 large	scales	(a	 factor	of	a	million	or	1122 
more	is	needed)	and	empirically,	it	is	quite	close	to	the	global	temperature	series	over	1123 
scales	of	months,	decades	and	possibly	longer.		1124 

Beyond	 improved	 monthly,	 seasonal	 temperature	 forecasts	 and	1125 
multidecadal	projections,	the	stochastic	FEBE	opens	up	several	paths	for	1126 
future	research.		One	of	the	more	promising	of	these	is	to	follow	up	on	the	1127 
special	value	H	=	1/2	that	is	very	close	to	that	found	empirically	and	that	1128 
can	 be	 analytically	 deduced	 from	 the	 classical	 Budyko-Sellers	 energy	1129 
transport	 equation	 by	 improving	 the	 mathematical	 treatment	 of	 the	1130 
radiative	boundary	conditions	 [Lovejoy,	 2020a;	b].	 [Lovejoy,	 2019a]	 	 In	1131 
the	latter	case,	one	obtains	a	partial	fractional	differential	equation	for	1132 
the	horizontal	space-time	variability	of	temperature	anomalies	over	the	1133 
Earth’s	 surface,	 allowing	 regional	 forecasts	 and	 projections.		1134 
Generalizations	 include	 the	 nonlinear	 albedo-temperature	 feedbacks	1135 
needed	 for	modelling	of	 transitions	between	different	past	 climates.	 In 1136 
geophysics, the two main stochastic approaches are stochastic differential 1137 
equations and stochastic scaling models.   In the former, the equations are 1138 
typically assumed to be of integer order.   As a consequence they have 1139 
exponential Green’s functions and they are handled mathematically using the Itô 1140 
calculus.  In contrast, scaling models are typically constructed to directly satisfy 1141 
scaling symmetries, the usual ones are the linear (monofractal) fBm, fGn and 1142 
their Levy extensions [Watkins, 2017]or the nonlinear stochastic models 1143 
(cascades, multifractals).  	1144 

 1145 
In this paper we combine both the scaling and differential equation approaches by 1146 

allowing the time derivatives to be of fractional order.  Fractional derivatives are 1147 
convolutions with power laws, in Fourier space they are power law filters, they are scaling.   1148 
In this paper, we considered fractional Langevin equations in which the fractional time (not 1149 
space) terms are scaling.  For technical reasons, these fractional time processes are non-1150 
Markovian so that they do not have Fokker-Plank equations nor are they semi-martingales, 1151 
they are not amenable to the Itô calculus.  These technical issues may explain why the 1152 
stochastic relaxation equations of interest in this paper have barely been considered.  Indeed, 1153 
the closest that have been considered up until now are the stochastic Riemann - Liouville 1154 
fractional relaxation equations that are relevant in fractional random walks. However, these 1155 
walks are nonstationary whereas we require stationary processes that are obtained as 1156 
solutions of stochastic Weyl fractional equations.  Our motivation is the proposal by 1157 
[Lovejoy et al., 2020a] that the Fractional Energy Balance Equation (FEBE) is a good 1158 
model of the earth’s radiative equilibrium with the sun and outer space. In this model, the 1159 
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fractional term in the equation phenomenologically accounts for scaling, hierarchical 1160 
energy storage mechanisms.  The deterministic FEBE models the response of the earth to 1161 
changing external forcings (solar, volcanic, anthropogenic) whereas the noise driven FEBE 1162 
discussed here models the climate system’s response to internal variability that has been 1163 
acting for a very long time.  1164 

The FEBE is a fractional relaxation equation that generalizes Newton’s law of 1165 
cooling, it is also a generalization of fractional Gaussian noise (fGn) and its integral 1166 
fractional Brownian motion (fBm).  Over the parameter range 0 < H < 1/2 (H is the order 1167 
of the fractional derivative), the high frequency FEBE limit (fGn) has been used as the 1168 
basis of monthly and seasonal temperature forecasts [Lovejoy et al., 2015], [Del Rio 1169 
Amador and Lovejoy, 2019].  For multidecadal time scales – with the same value H ≈ 0.4 1170 
- it has been used as the basis of climate projections [Hébert et al., 2020].  The success of 1171 
these two applications with a unique exponent makes it plausible that the FEBE is a good 1172 
model of the earth’s energy budget.    1173 

When the order of the fractional derivative H is in the range 0 < H < 1, the equation 1174 
is called the fractional relaxation equation, the value H = 1 corresponds to standard integer 1175 
ordered (exponential) relaxation: for deterministic temperatures it is Newton’s law of 1176 
cooling, for the noise driven case, it yields Orhenstein - Uhlenbeck processes.   In the range 1177 
1 < H < 2 (the maximum discussed here), the character of the deterministic equation 1178 
changes, over this range it is called the fractional oscillation equation.   In the stochastic 1179 
case, there are three qualitatively distinct regimes not two: 0< H < 1/2, 1/2 < H < 3/2, 3/2 1180 
< H <2 with the lower ranges (0 < H < 3/2) having anomalous high frequency scaling.  For 1181 
example, we found that fluctuations over scales smaller than the relaxation time can either 1182 
decay or grow with scale - with exponent H - 1/2 (section 3.5) - the parameter range 0 < H 1183 
< 3/2 has the same scaling as the (stationary) fGn (H < 1/2) and the (nonstationary) fBm 1184 
(1/2 < H < 3/2), so that processes that have been empirically identified with either fGn or 1185 
fBm on the basis of their scaling, may in fact turn out to be (stationary) fRn processes; the 1186 
distinction is only clear at time scales beyond the relaxation time. 1187 

Since the Riemann-Liouville fractional relaxation equation had already been studied, 1188 
the main challenge was to implement the Weyl fractional derivative while avoiding 1189 
divergence issues.  The key was to follow the approach used in fBM, i.e. to start by defining 1190 
fractional motions and then the corresponding noises as the (ordinary) derivatives of the 1191 
motions.   Over the range 0 < H < 1/2, the noises fGn and fRn diverge in the small scale 1192 
limit: like Gaussian white noise, they are generalized functions that are strictly only defined 1193 
under integral signs; they can best be handled as differences of motions.    1194 

Although the basic approach could be applied to a range of fractional operators, we 1195 
focused on the fractional relaxation equation.  Much of the effort was to deduce the 1196 
asymptotic small and large scale behaviours of the autocorrelation functions that determine 1197 
the statistics and in verifying these with extensive numeric simulations.   An interesting 1198 
exception was the H = 1/2 special case which for fGn corresponds to an exactly 1/f  noise.  1199 
Here, we were able to find exact mathematical expressions for the full correlation functions, 1200 
showing that they had logarithmic dependencies at both small and large scales.  The value 1201 
1/2 is very close to that found empirically for the earth’s temperature and the exceptionally 1202 
slow transition from small to large scales (a factor of a million or more is needed) suggests 1203 
that this may be a good model for regional temperatures since the variation of the apparent 1204 
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(local) exponents (estimated over a range of 100 to 1000 in scale), may simply be a 1205 
consequence of varying relaxation time scales rather than regionally varying exponents.  1206 
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Appendix A: Random walks and the Weyl fractional Relaxation equation 1214 
The usual fractional derivatives that are considered in physical applications are 1215 

defined over the interval from 0 to t; this includes the Riemann - Liouville (“R-L”; e.g. the 1216 
monographs by [Miller and Ross, 1993], and [West et al., 2003]) and the Caputo fractional 1217 
derivatives [Podlubny, 1999].  The domain 0 to t is convenient for initial value problems 1218 
and can notably be handled by Laplace transform techniques.   However, many geophysical 1219 
applications involve processes that have started long ago and are most conveniently treated 1220 
by derivatives that span the domain  to t, i.e. that require the semi-infinite Weyl 1221 
fractional derivatives.    1222 

It is therefore of interest to clarify the relationship between the Weyl and R-L 1223 
stochastic fractional equations and Green’s functions when the systems are driven by 1224 
stationary noises.  In this appendix, we consider the stochastic fractional relaxation 1225 
equation for the velocity V of a diffusing particle.  This was discussed by [Kobelev and 1226 
Romanov, 2000a] and [West et al., 2003] in a physical setting where V corresponds to the 1227 
velocity of a fractionally diffusing particle.  The fractional Langevin form of the equation 1228 
is: 1229 

 (71) 1230 
where g is a white noise and we have used the R-L fractional derivative.   This equation 1231 
can be written in a more standard form by integrating both sides by order H: 1232 

 (72) 1233 

The position  satisfies: 1234 

 (73) 1235 
where  is a Wiener process.   1236 

The solution for X(t) is obtained using the Green’s function G0,H: 1237 

 (74) 1238 
where E is a Mittag-Leffler function (eq. 16).   Integrating by parts and using G1,H(0) 1239 

= 0, W(0) = 0 we obtain: 1240 

1241 
(75) 1242 

This yields: 1243 

 (76)   1244 
X(t) is clearly nonstationary: its statistics depend strongly on t.  The first step in 1245 

extracting a stationary process is to take the limit of very large t, and consider the process 1246 
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over intervals that are much shorter than the time since the particle began diffusing.  We 1247 
will show that the increments of this new process are stationary.  1248 

Define the new process Zt’(t) over a time interval t that is short compared to the time 1249 
elapsed since the beginning of the diffusion (t’): 1250 

 (77) 1251 
(for simplicity we will take X0 = 0, but since  rapidly decreases to zero, 1252 

at large t’ this is not important).  Now use the change of variable s’ = s - t’+ t: 1253 

 (78) 1254 

Now, use the fact that  (equality in a probability sense) and take 1255 
the limit .  Dropping the prime on s we can write this as: 1256 

 (79) 1257 
 where we have written Z(t) for the limiting process. 1258 

Since Z(0) = 0, Z(t) is still nonstationary.  But now consider the process Y(t) given 1259 
by its derivative: 1260 

 (80) 1261 
(since G1(0) = 0).  Y(t) is clearly stationary. 1262 

We now show that Y(t) satisfies the Weyl version of the relaxation equation. Consider 1263 
the shifted function:  and take Y0 as a solution to the Riemann-Liouville 1264 
fractional equation: 1265 

 (81) 1266 
or equivalently in integral form: 1267 

 (82) 1268 
With solution: 1269 

 (83) 1270 
(with Y0(0) = 0). 1271 

Now shift the time variable so as to obtain: 1272 

 (84) 1273 
(with Yt’(-t’) = 0).  Now make the change of variable s ’= s - t’: 1274 

		
Z

ʹt
t( ) = X ʹt( )− X ʹt −t( ) = G0,H ʹt − s( )γ s( )ds

0

ʹt

∫ − G0,H ʹt −t − s( )γ s( )ds
0

ʹt −t

∫

		E1,H − ʹt H( )

		
Z ′t t( ) = G1,H t − ′s( )γ ′s + ′t −t( )d ′s

− ′t +t

t

∫ − G1,H − ′s( )γ ′s + ′t −t( )d ′s
− ′t +t

0

∫

	
γ ′s + ′t −t( )=

d

γ ′s( )
	 ′t →∞

		
Z t( ) = Z∞ t( ) = G1,H t − s( )γ s( )ds

−∞

t

∫ − G1,H −s( )γ s( )ds
−∞

0

∫

		
Y t( ) = dZ t( )

dt
= G0,H t − s( )γ s( )ds

−∞

t

∫ ; G0,H t( ) = dG1,H t( )
dt

		Y ′t t( ) =Y0 t + ′t( )

		0Dt
HY0 +Y0 = γ

		
Y0 t( ) = − 0Dt

−HY0 + 0Dt
−Hγ = − 1

Γ H( ) t − s( )H−1Y0 s( )ds
0

t

∫ + 1
Γ H( ) t − s( )H−1 γ s( )ds

0

t

∫

		
Y0 t( ) = G0,H t − s( )γ s( )

0

t

∫ ds

		
Y ′t t( ) = − 1

Γ H( ) t + ′t − s( )H−1Y0 s( )ds
0

t+ ′t

∫ + 1
Γ H( ) t + ′t − s( )H−1 γ s( )ds

0

t+ ′t

∫
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 (85) 1275 
We see that Yt’ is therefore the solution of: 1276 

 (86) 1277 
However, since Yt’ is the shifted Y0 we have the solution: 1278 

 (87) 1279 

Again, using  and dropping the primes, we obtain: 1280 

 (88) 1281 
Finally, taking the limit  we have the equation and solution for 1282 

: 1283 

 (89) 1284 
with .  1285 

The conclusion is that as long as the forcings are statistically stationary we can use 1286 
the R-L Green’s functions to solve the Weyl fractional derivative equation. Although we 1287 
have explicitly derived the result for the fractional relaxation equation, we can see that it is 1288 
of wider generality. 1289 
  1290 

		
Y ′t t( ) = − 1

Γ H( ) t − ′s( )H−1Y ′t ′s( )d ′s
− ′t

t

∫ + 1
Γ H( ) t − ′s( )H−1 γ ′s( )d ′s

− ′t

t

∫ ; γ ′s + ′t( )=
d

γ ′s( )

	− ′t Dt
HY ′t +Y ′t = γ

		
Y ′t t( ) =Y0 t + ′t( ) = G0 t + ′t − s( )γ s( )ds

0

t+ ′t

∫ = G0 t − ′s( )γ ′s + ′t( )
− ′t

t

∫ d ′s

	
γ ′s + ′t( )=

d

γ ′s( )

		
Y ′t t( ) = G0 t − s( )γ s( )

− ′t

t

∫ ds

	 ′t →∞

	
Y t( ) =Y∞ t( )

		
−∞Dt

HY +Y = γ ; Y t( ) = G0 t − s( )γ s( )
−∞

t

∫ ds; Y t( ) =Y∞ t( )

		Y −∞( ) =0
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Appendix BA: The small and large scale fRn, fRm statistics: 1291 

 1292 

A.1 RH(t) as a Laplace transform 1293 
In section 2.3, we derived general statistical formulae for the auto-correlation 1294 

functions of motions and noises defined in terms of Green’s functions of fractional 1295 
operators.   Since the processes are Gaussian, autocorrelations fully determine the statistics.  1296 
While the autocorrelations of fBm and fGn are well known (and discussed in section 3.1), 1297 
those for fRm and fRn are new and are not so easy to deal with since they involve quadratic 1298 
integrals of Mittag-Leffler functions.   1299 

In this appendix, we derive the basic power law expansions valid as well as large t 1300 
(asymptotic) expansions, and we numerically investigate their accuracy.  For simplicity, 1301 
we consider the unnormalized autocorrelation and V functions. 1302 

It seems simplest to start with the Fourier expression for the autocorrelation function 1303 
for the unit white noise forcing (section 3.5), eq. 65, 66.(A1)(A2)(A3)(A2)  (A3)First 1304 
convert the inverse Fourier transform (eq. 66) into a Laplace transform.  For this, consider 1305 
the integral over the contour C in the complex plane: 1306 

 (A14) 1307 

We take C to be the closed contour obtained by integrating along the imaginary axis (this 1308 
part gives RH(t), eq. 66), and closing the contour along an (infinite) semicircle over the 1309 
second and third quadrants.   When 0<H<1, there are no poles in these quadrants, but we 1310 
must integrate around a branch cut on the -ve real axis.  When 1<H<2, we must take into 1311 
account two new branch cuts and two new poles in the -ve real plane.   In a polar 1312 
representation , the additional branch cuts are along the rays ; r>1, 1313 
circling around the poles at .  The branch cuts give no net contribution, but the 1314 
residues of the poles do make a contribution (PH ≠ 0 below).  We can express both cases 1315 
with the formula: 1316 

 (A25)  1317 
“Im” indicates the imaginary part and: 1318 

 (A36) 1319 

I z( ) = 1
2π

ezt

1+ zH( ) 1+ −z( )H( )C
∫ dz

z = reiθ z = re± iπ /H

z = e± iπ /H

RH t( ) = − 1
π
Im e− xtdx

1+ xH( ) 1+ xHeiπH( )0

∞

∫ + PH ,+ t( ); t > 0

PH ,± t( ) = 0; 0 < H <1

PH ,± t( ) = −e
tcos π

H
⎛
⎝⎜

⎞
⎠⎟
sin ± π

H
+ Hπ
2

+ t sin π
H

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

H sin πH
2

⎛
⎝⎜

⎞
⎠⎟

; 1< H < 2
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While the integral term is monotonic, the PH term oscillates with frequency 1320 
.  PH accounts for the oscillations visible in figs. 2, 3, 5b although since 1321 

when 1<H<2, cos(p/H)<1, they decay exponentially.  When H>1, this pole contribution 1322 
dominates RH(t) for a wide range of t values around t = 1, although as we see below, 1323 
eventually at large t, power law terms come to the fore.  When H = 1, we obtain the classical 1324 

Ornstein-Uhlenbeck autocorrelation: . 1325 

A.2 Asymptotic expansions: 1326 
An advantage of writing RH(t) as a Laplace transform is that we can use Watson’s 1327 

lemma to obtain an asymptotic expansion (e.g. [Bender and Orszag, 1978]).  The idea is 1328 
that an expansion of eq. A.2 around x = 0 can be Laplace transformed term by term to yield 1329 
an asymptotic expansion for large t.   Defining the convenient coefficient: 1330 

 (A47) 1331 
 1332 

The x expansion of the integrand can be expressed in terms of D-n as: 1333 

 1334 
 (A58) 1335 

Therefore, taking the term by term Laplace transform and using Watson’s 1336 
lemma[Bender and Orszag, 1978]: 1337 

 (A69) 1338 
Where we have used , and have included the 1339 

exponentially decaying residue PH,+ that contributes when 1<H<2.   The first two terms 1340 
(without PH+) are explicitly: 1341 

 (A710) 1342 
 1343 

Note that for 0<H<1 G(-H)<0.   1344 
For the motions (fRm), we need the expansion of VH(t), it can be obtained by using 1345 

 (eq. 35). Integrating RH twice, we have:  1346 

 (A811) 1347 

ω = 2π / sin π / H( )

R1 t( ) = 12 e
− t

Dn = −1( )n+1
cos n− 1

2
⎛
⎝⎜

⎞
⎠⎟
πH

⎛
⎝⎜

⎞
⎠⎟
− cos πH

2
⎛
⎝⎜

⎞
⎠⎟

2π sin πH
2

⎛
⎝⎜

⎞
⎠⎟

= −1( )n
sin nH π

2
⎛
⎝⎜

⎞
⎠⎟
sin n−1( )H π

2
⎛
⎝⎜

⎞
⎠⎟

π sin H π
2

⎛
⎝⎜

⎞
⎠⎟

− 1
π
Im 1

1+ xH( ) 1+ xHeHiπ( ) = −2 D−n
n=1

∞

∑ xnH

RH t( ) = −2 D−nΓ 1+ nH( )
n=1

∞

∑ t− 1+nH( ) + PH ,+ t( ); t >>1

Γ 1+ Hn( )sin nHπ( ) = −π / Γ −nH( )

RH t( ) = − 1
Γ −H( ) t

− 1+H( ) +
2+ sec Hπ( )
2Γ −2H( ) t

− 1+2H( ) + ...; t >>1

RH t( ) = 12
d 2VH t( )
dt2

VH t( ) = t + aH − 4 D−nΓ −1+ nH( )
n=1

∞

∑ t1−nH + 2PH ,− t( ); t >>1
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Where the t +aH terms come from the constants of integration and PH- from the poles when 1348 

1<H<2.  The unit coefficient of the leading t term is a consequence of .  This 1349 

can be shown by considering the derivative of VH from eq. 24: 1350 

 (A912) 1351 
Since for 0<H<2, G0,H(t)>0 and 0< G1,H (t)<2 we obtain: 1352 

 (A1013) 1353 

For large t, G0,H(t) ≈ t-1-H , , in addition  so that  1354 

and to leading order VH(t) ≈ t for large t.  If needed, the constant term aH can be obtained 1355 
numerically. 1356 

 1357 

A.3 Power series expansions about the origin: 1358 
For many applications one is interested in the behavior of RH(t) for scales of months 1359 

which is typically less than the relaxation time, i.e. t<1.  It is therefore important to 1360 
understand the small t behaviour.  We again consider the Laplace integral for the 0<H<1 1361 
case.  In this case, we can divide the range of integration in two parts: 1362 

 (A1114)  1363 

and then use the binomial expansions: 1364 

 (A1215)  1365 
We can now integrate each term seperately using: 1366 

 (A1316) 1367 
Where EnH is the exponential integral function.  Adding the two integrals and summing 1368 
over n, we obtain: 1369 

lim
t→∞

∂VH
∂t

= 1

∂VH
∂t

= J t( )+G1,H t( )2 ; J t( ) = G0,H u( ) G1,H u( )−G1,H u − t( )( )du
t

∞

∫

J t( ) < G0,H u( )G1,H u( )−G1,H u − t( ) du
t

∞

∫ < 2 G0,H u( )du
t

∞

∫

lim
t→∞
J t( ) = 0 lim

t→∞
G1,H t( )2 = 1 lim

t→∞

∂VH
∂t

= 1

RH t( ) = − Im
π

e− xtdx
1+ xH( ) 1+ eiπ HxH( )0

1

∫ − Im
π

e− xtdx
1+ xH( ) 1+ eiπ HxH( )1

∞

∫

1
1+ xH( ) 1+ xHeiπH( ) =

1
eiπH −1

−1( )n einπHeiπH −1( )
n=0

∞

∑ xnH ; x <1

1
1+ xH( ) 1+ xHeiπH( ) = − 1

eiπH −1
−1( )n e− inπHeiπH −1( )

n=1

∞

∑ x−nH ; x >1

e− xt xnH dx
0

1

∫ =
−1( ) j−1

Hn+ j( )Γ j( ) t
j−1

j=1

∞

∑

e− xt x−nH dx
1

∞

∫ = EnH t( ) = π t−1+Hn

sin πnH( )Γ Hn( ) +
−1( ) j−1

Hn− j( )Γ j( ) t
j−1

j=1

∞

∑
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 (A1417)  1370 
(note the appearance of Dn with n>0) and: 1371 

 1372 
 (A1518) 1373 

where  F is the Hurwitz-Lerch phi function .   1374 

 1375 
Fig. A1: This shows the logarithm of the relative error in the  approximation (i.e. 1376 

with 10 fractional terms and 10 integer order terms) with respect to the deviation from the fGn RH(t)  1377 
.  The lines are for  H = 2/10, 1378 

4/10,… ,16/10, 18/10 (excluding the exponential case H = 1), from left to right (note convergence 1379 
is only for irrational H, therefore an extra 10-4 was added to each H).  For the low H values the 1380 
convergence is particularly slow, but is believed for H.   1381 

 1382 
Comments: 1383 
 1384 
1) These and the following formulae are for t>0; RH is symmetric for t → -t. 1385 

RH t( ) = DnΓ 1− Hn( )t−1+Hn
n=2

∞

∑ + Fj
t j−1

Γ j( )j=1,odd

∞

∑

Fj = − 1
π
cot

πH
2

⎛
⎝⎜

⎞
⎠⎟

−1( )n
nH + jn=−∞

∞

∑ = − 1
πH

cot
πH
2

⎛
⎝⎜

⎞
⎠⎟

Φ −1,1,1− j
H

⎛
⎝⎜

⎞
⎠⎟
+Φ −1,1, j

H
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Φ z,s,a( ) = zn n+ a( )−s
n=0

∞

∑

-4 -3 -2 -1 1
Log10t

-6

-5

-4

-3

-2

-1

1

Log10r(t)

H=2/10 H=4/10 H = 6/10 H = 8/10 - 18/10

RH
10,10( ) t( )

r = log10 1− RH
fGn t( )− RH10,10( ) t( )( ) / RHfGn t( )− RH t( )( )
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 1386 
2) Each integer term of the expansion Fj is itself obtained as an infinite sum, so that 1387 

the overall result for RH(t) is effectively a doubly infinite sum.  This procedure implicitly 1388 
swaps the order of the summation and apparently explains the fact that while the expansions 1389 
were derived for the case 0<H<1, the final expansion is valid for the full range 0<H<2: 1390 
numerically, it accurately reproduces the oscillations when H>1. 1391 

 1392 
3) The fGn correlation function is given by the single n = 2 term: 1393 

 (A1619)  1394 
When 0 < H < 1/2, it is divergent at the origin; since it corresponds to fGn, the 1395 

normalization constant is .   When ½< H <2, it is still the 1396 

leading term fractional term, but the constant F1 dominates at small t. 1397 
 1398 

4) The Hurwitz-Lerch phi function  needed for Fj, diverges for H 1399 

= j/n where, n is an integer.  The overall sum over all j thus diverges for all rational H.  For 1400 
irrational H, the convergence properties are not easy to establish, although due to the G 1401 
functions, these series apparently converge for all t≥0, but the convergence is rather slow.  1402 
Fig. A1 shows some numerical results showing the convergence of the 10th order fractional 1403 
10th order integer power approximation (nmax = jmax =10).  Since the fGn term diverges for 1404 
small t when H ≤1/2 it is more useful to consider the convergence of the difference with 1405 
respect to the fGn term (i.e.  is the sum in eq. A.15 from n = 3 to 10 and 1406 

odd j ≤9).  Fig. A1 shows the logarithm of the ratio of the approximation with respect to 1407 
the true value:  (to avoid exact rationals, 1408 

10-4 was added to the H values).  From the figure we see that the approximation is 1409 
satisfactory except for small H, we return to this below. 1410 

  1411 
5) For H>1/2, when t = 0, the only nonzero term is from the constant F1: RH(0) = 1412 

F1 , this gives the normalization constant (section 3.2).  Comparing with eq. 67, we 1413 
therefore have: 1414 

 (A1720) 1415 

 1416 
Similarly, when H >3/2, we can apply Parseval’s theorem to the derivative G’0,H, 1417 

where it gives the coefficient of the t2 term so that: 1418 

RH
fGn( ) t( ) = D2Γ 1− 2H( )t−1+2H =

sin Hπ( )
π

Γ 1− 2H( )t−1+2H

NH
−2 = KH

−2 = 2D2Γ −1− 2H( )

Φ −1,1,1− j
H

⎛
⎝⎜

⎞
⎠⎟

RfGn t( )− RH ,a t( )

r = log10 1− RfGn t( )− RH ,a t( )( ) / RfGn t( )− RH t( )( )

RH 0( ) = G0,H s( )2 ds
0

∞

∫ = F1

= − 1
πH

cot
πH
2

⎛
⎝⎜

⎞
⎠⎟

Φ −1,1,1− 1
H

⎛
⎝⎜

⎞
⎠⎟
+Φ −1,1, 1

H
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

1/ 2 < H < 2
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   1419 
(A1821) 1420 
(when H<3/2, the left hand side diverges while the right hand side remains finite).  1421 
  1422 

6) The expression for VH(t) can be  obtained by integrating twice noting that VH(0) 1423 
= 0, V’H(0)=0: 1424 

 (A1922)  1425 

3.4 A Convenient approximation  1426 
The expansion for RH is the sum of a fractional and an integer ordered series.  Partial 1427 

sums appear to converge (fig. A1), albeit slowly.  Examination of partial sums shows that 1428 
the integer ordered and fractional ordered terms tend to cancel, the difficulty due to the 1429 

term  that comes from the exponential integral.  This suggests an 1430 

alternative way of expressing the series:  1431 

 (A2023) 1432 
 1433 

Where Dn is given by eq. A.4 and the n sums start at n = 2 since D1 = 0.  Cj can be expressed 1434 
as: 1435 

1436 
 (A2124)  1437 
We can also expand the exponential integral: 1438 

 (A2225)  1439 
For the jmax and nmax partial sums, we have: 1440 

 1441 
 (A2326) 1442 
Now define the (jmax, nmax) approximation by: 1443 

 (A2427)  1444 

′G0,H s( )2 ds
0

∞

∫ = −F3 =
1

πH
cot

πH
2

⎛
⎝⎜

⎞
⎠⎟

Φ −1,1,1− 3
H

⎛
⎝⎜

⎞
⎠⎟
+Φ −1,1, 3

H
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

VH t( ) = 2 DnΓ −1− Hn( )t1+Hn
n=2

∞

∑ + 2 Fj
t j+1

Γ j + 2( )j=1,odd

∞

∑ ; 0 < H < 2

Φ −1,1,1− j
H

⎛
⎝⎜

⎞
⎠⎟

RH t( ) = DnEnH t( )
n=2

∞

∑ + Cj

−1( ) j−1
Γ j( ) t

j−1

j=1

∞

∑ ; Cj =
Dn
Hn+ j( )n=2

∞

∑

Cj = − ie− iHπ

2πH eiHπ −1( ) − eiHπ + e2iHπ( )Φ −1,1,1+ j
H

⎛
⎝⎜

⎞
⎠⎟
+Φ eiHπ ,1,1+ j

H
⎛
⎝⎜

⎞
⎠⎟
+ e3iHπΦ e− iHπ ,1,1+ j

H
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

EnH t( ) = π t−1+Hn

sin πnH( )Γ Hn( ) +
−1( ) j−1

Hn− j( )Γ j( ) t
j−1

j=1

∞

∑

RH ,nmax , jmax t( ) = DnΓ 1− nH( )t−1+Hn
n=2

nmax

∑ + Fj ,nmax
−1( ) j−1
Γ j( ) t

j−1

j=1

jmax

∑ ; Fj ,nmax = Cj +
Dn
Hn− jn=2

nmax

∑

RH ,nmax , jmax t( ) =
RH
nmax+1, jmax( ) t( )+ RHnmax , jmax( ) t( )

2
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This has the effect of adding in half the next higher n term and is more accurate; overall, 1445 
jmax and nmax may now be taken to be much smaller than in the previous approximation. For 1446 
example putting nmax =2, jmax = 1, we get with the partial sum: 1447 

 (A2528)  1448 
Where: 1449 

 (A2629) 1450 
To understand the behaviour, fig. A2 shows the behaviour of coefficient of the            1451 

t-1+3H term , the constant term F1 and the coefficient of the next integer (linear in 1452 

t) term .  Up until the end of the fGn region (H = 1/2), the t-1+3H  and F1 1453 
terms have opposite signs and tend to cancel.  In addition, we see that for t ≈<1 and H<1, 1454 
they dominate over the (omitted) linear term. Fig. B3 shows that the RH,2,1 approximation 1455 
is surprisingly good for H<1 and is still not so bad for 1< H <2.  This approximation is thus 1456 
useful for monthly resolution macroweather temperature fields that have relaxation times 1457 
of years or longer and where H is mostly over the range 0< H <1/2, but over some tropical 1458 
ocean regions can increase to as much as H ≈ 1.2 ([Del Rio Amador and Lovejoy, 2020b]). 1459 
Fig. A2 shows that the (2,1) approximation is reasonably accurate for t ≈<1, especially for 1460 
H<1. 1461 

RH ,2,1 t( ) = RHfGn( ) t( )+ D32 Γ 1− 3H( )t−1+3H + F1

F1 = C1 +
D2

2H −1
+

D3
2 3H −1( )

D2 =
sin πH( )

π
; D3 = −

sin πH( ) 1+ 2cos πH( )( )
π

D3
2
Γ 1− 3H( )

F2 = C2 +
D2

2H − 2
+

D3
2 3H − 2( )



 59 

	1462 

Fig. A2: The solid line is the constant term F1, the long dashes are the coefficients 1463 

of the fractional power, the short dashes are the coefficients of the linear term: .  1464 
We can see that the contribution of the linear term (used in the  approximation) for H<1 1465 

and t<1 is fairly small; whereas for 1<H<2, it is larger and the  approximation is 1466 

significantly better than the  approximation (see fig. B3). 1467 

0.5 1.0 1.5 2.0
H

-4

-2

2

coeff

D3
2
Γ 1− 3H( )

F2 = C2 +
D2

2H − 2
+

D3
2 3H − 2( )

RH ,2,2 t( )
RH ,2,2 t( )

RH ,2,1 t( )
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 1468 
Fig. A3: This shows the logarithm of the relative error in the (2,1) approximation with 1469 

respect to the deviation from the fGn RH(t) 1470 
( ).   For H<1, t<0 it is of the order ≈ 30% 1471 

whereas for H >1, it of the order 100%.  The H = 1 (exponential) curve is not shown although when 1472 
t<0 the error is of order 60%. 1473 

B.1 Discussion 1474 
In section 2.3, we derived general statistical formulae for the auto-correlation 1475 

functions of motions and noises defined in terms of Green’s functions of fractional 1476 
operators.   Since the processes are Gaussian, autocorrelations fully determine the statistics.  1477 
While the autocorrelations of fBm and fGn are well known (and discussed in section 3.1), 1478 
those for fRm and fRn are new and are not so easy to deal with since they involve quadratic 1479 
integrals of Mittag-Leffler functions.   1480 

In this appendix, we derive the leading terms in the basic small and large t expansions, 1481 
including results of Padé approximants that provide accurate approximations to fRn at 1482 
small times. 1483 

B.2 Small t behaviour 1484 
fRn statistics: 1485 
a) The range 0<H<1/2: 1486 

Start with: 1487 
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 (90) 1488 
(eq. 34) and use the series expansion for G0,H: 1489 

 (91) 1490 
So that: 1491 

 (92) 1492 

This can be written: 1493 

 (93) 1494 

Evaluating the integral, and changing summation variables, we obtain: 1495 
 1496 

 (94) 1497 

where we have taken take k = n + m and the square brackets indicate the integer 1498 
part; beyond the indicated k range, the integrals diverge at infinity.   1499 

We can now sum over m: 1500 

 (95)1501 
where we have used: 1502 

 (96) 1503 
Finally, we can introduce the polynomial f(z) and write: 1504 

 (97) 1505 
Taking the k = 0 term only and using the H < 1/2 normalization NH = KH, we have 1506 

and (as expected), we obtain the fGn result: 1507 

 (98) 1508 

  
RH t( ) = N H
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0

∞
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∞
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Γ n+1( )Γ m+1( )
s+ t( ) n+1( )H−1

s m+1( )H−1

0

∞

∫ ds
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∞

∑
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∞
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π
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H
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(for t larger than the resolution t). 1509 
Since the series is divergent, the accuracy decreases if we use more than one term in 1510 

the sum. The series is nevertheless useful because the terms can be used to determine Padé 1511 
approximants, and they can be quite accurate (see fig. B1 and the discussion below). The 1512 
approximant of order 1, 2 was found to work very well over the whole range 0 < H < 3/2.  1513 

 1514 
b) The range 1/2 < H < 3/2: 1515 

In this range, no terms in the expansion eq. 97 converge, however, the series still 1516 
turns out to be useful.  To see this use the identity: 1517 

1518 
 (99) 1519 

where we have used the H >1/2 normalization NH = 1/CH. 1520 
It turns out that if use this identity and substitute the series expansion for G0,H, that 1521 

the integrals converge up until order m+n < [3/H] - 2 (rather than [1/H] - 2), and the 1522 
coefficients are identical.  We obtain: 1523 

 (100) 1524 

where the Bk are the same as before.  This formula is very close to the one for 0< H 1525 
<1/2 (eq. 97). 1526 

 1527 
c) The range 3/2 < H < 2: 1528 

Again using the identity eq. 99, we can make the approximation 1529 

; this is useful since when H > 3/2,  and we 1530 

obtain: 1531 

 (101) 1532 

 1533 
Padé: 1534 

Although the series (eqs. 97, 100) diverge, they can still be used to determine Padé 1535 
approximants (see e.g. [Bender and Orszag, 1978]).  Padé approximants are rational 1536 
functions such that the first N + M + 1 of their Taylor expansions of are the same as the 1537 
first N + M + 1 coefficients of the function f to which they approximate.  The optimum (for 1538 
H < 1/4) is the N = 1, M = 2 approximant (“Padé 12”, denoted P12).  Applied to the function 1539 
f(z) in eq. 97, its first four terms are: 1540 

 1541 
f(z) = B0 + B1 z + B2 z2 + B3 z3  (102) 1542 
 1543 
with approximant: 1544 
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2
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2
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∞
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 (103) 1545 

where the Bk are taken from the expansion eq. 95.   Figures B1, B2 show that the 1546 
approximants are especially accurate in the lower range of H values where the first term in 1547 
the series (the fGn approximation) is particularly poor. 1548 

 1549 
Fig.	 B1:	 The	 log10	 ratio	 of	 the	 fRn	 correlation	 function	R(fRn)H(t)	 to	 the	 fGn	1550 

approximation	R(fGn)H(t)	(solid)	and	to	the	Padé	approximant	R(Padé)H(t)	(dashed)	for	1551 
H	=	1/20	(black),	2/20	(red),	3/20	(blue),	4/20	(brown),	5/20	(purple).	 	The	Padé	1552 
approximant	is	the	Padé12	polynomial	(eq.	103).		As	H	increases	to	0.25,	Pade	gets	1553 
worse,	fGn	gets	better	(see	fig.	B2).	1554 
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	1555 
Fig.	B2:	The	same	as	fig.	B1	but	for	H	=	6/20	(brown),	7/20	(blue),	8/20	(red),	1556 

9/20	(black).	 	 	The	Padé12	approximant	(dashed)	is	generally	a	bit	worse	than	fGn	1557 
approximation	(solid).	1558 

 1559 
fRm statistics: 1560 

For the small t behaviour of the motion fRm, it is simplest to integrate RH(t) twice: 1561 

 (104) 1562 
using the expansion eq. 95, we obtain: 1563 

 (t<<1)1564 
 (105) 1565 

the leading terms are: 1566 
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 (t<<1)1567 
 (106) 1568 

and: 1569 

 (t<<1)1570 

 (107) 1571 
To find an expansion for the range 3/2 < H <2, we similarly integrate eq. 101: 1572 

 (108) 1573 

B.3 Large t behaviour: 1574 
When t is large, we can use the asymptotic t expansion: 1575 

 1576 
 (109) 1577 

to evaluate the first integral on the right in eq. 23.  Using eq. 109 for the G1,H(s + t) 1578 
term and the usual series expansion for the G1,H(s) we see that we obtain terms of the type: 1579 

 (110) 1580 
there will only be terms of decreasing order (the unit term has no t dependence). 1581 

Now consider the second integral in eq. 23: 1582 

 (111) 1583 

As long as H<1, both of these terms will increase with t and will therefore dominate 1584 
the first term: they will thus be the leading terms.  We therefore obtain the expansion: 1585 

 (112) 1586 

where aH is a constant term from the first integral.  Putting the terms in leading 1587 
order, depending on the value of H: 1588 

 (113) 1589 

To determine RH(t) we simply differentiate twice and multiply by ½: 1590 
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 (114) 1591 

Note that for 0<H<1, G(-H)<0 so that R>0 over this range. 1592 
All the formulae for both the small and large t behaviours were verified numerically; 1593 

see figs. 2, 3, 4. 1594 
  1595 
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Appendix CB: The H=1/2 special case: 1597 
When H = 1/2, the high frequency fGn limit is an exact “1/f noise”, (spectrum    w-1) 1598 

it has both high and low frequency divergences.  The high frequency divergence can be 1599 
tamed by averaging, but the not the low frequency divergence, so that fGn is only defined 1600 
for H<1/2.  However, for the fRn, the low frequencies are convergent (appendix B) over 1601 
the whole range 0 < H < 2, and for H = 1/2 we find that the correlation function has a 1602 
logarithmic dependence at both small and large scales.  This is associated with particularly 1603 
slow transitions from high to low frequency behaviours.  The critical value H = 1/2 1604 
corresponds to the HEBE that was recently proposed  [Lovejoy, 2020a; b]where it was 1605 
shown that the value H = 1/2 could be derived analytically from the classical Budyko-1606 
Sellers energy balance equation.    1607 

is thus of intrinsic interest; and fFor fRn, it is possible to obtain exact analytic 1608 
expressions for RH, VH and the Haar fluctuations; we develop these in this appendix, for 1609 
some early results, see [Mainardi and Pironi, 1996].  For simplicity, we assume the 1610 
normalization NH = 1.  [Hébert and Lovejoy, 2018; Lovejoy, 2019a; Mainardi and Pironi, 1611 
1996] 1612 

The starting point is the expression: 1613 

, (B1)  1614 
(e.g. [Podlubny, 1999]).  From this, we obtain the impulse and step Green’s functions: 1615 

, (B2) 1616 
(see eq. 16).  The impulse response G0,H(t) can be written as a Laplace transform: 1617 

. (B3) 1618 
Therefore, the correlation function is: 1619 

 (B4) 1620 
Performing the s and p integrals we have: 1621 

. (B5) 1622 
Finally, this Laplace transform yields: 1623 

, (B6) 1624 
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where: 1625 

, (B7) 1626 
and:  1627 

. (B8) 1628 
To obtain the corresponding VH use: 1629 

. (B9) 1630 
The exact V1/2(t) is: 1631 

  1632 
 (B10) 1633 

where  is the MeijrG function, Chi is the CoshIntegral function and Shi is the 1634 
SinhIntegral function. 1635 

We can use these results to obtain small and large t expansions:  1636 

 (B11) 1637 

, 1638 
 1639 

where gE is Euler’s constant = 0.57… and:  1640 

 (B12) 1641 

. 1642 
We can also work out the variance of the Haar fluctuations: 1643 

1644 
 (B13) 1645 
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. 1646 
Figure C1 B1 shows numerical results for the fRn with H = ½, the transition between 1647 

small and large t behaviour is extremely slow; the 9 orders of magnitude depicted in the 1648 
figure are barely enough.   The extreme low (R1/2)1/2 (dashed) asymptotes at the left to a 1649 
slope zero (a square root  logarithmic limit, eq. 125B11), and to a -3/4 slope at the right.   1650 
The RMS Haar fluctuation (black) changes slope from 0 to -1/2 (left to right).  This is 1651 
shown more clearly in fig. C2 B2 that shows the logarithmic derivative of the RMS Haar 1652 
(black) compared to a regression estimate over two orders of magnitude in scale (blue; a 1653 
factor 10 smaller and 10 larger than the indicated scale was used).  This figure underlines 1654 
the gradualness of the transition from H = 0 to H = -1/2.   If empirical data were available 1655 
only over a factor of 100 in scale, depending on where this scale was with respect to the 1656 
relaxation time scale (unity in the plot), the RMS Haar fluctuations could have any slope 1657 
in the range 0 to -1/2 with only small deviations. 1658 

 1659 
Fig. C1B1: fRn statistics for H = 1/2: the solid line is the RMS Haar fluctuation, the dashed 1660 

line is the root correlation function (R1/2)1/2 (the normalization constant = 1, it has a logarithmic 1661 
divergence at small t). 1662 
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 1664 
Fig. C2B2: The logarithmic derivative of the RMS Haar fluctuations (solid) in fig. C1 B1 1665 

compared to a regression estimate over two orders of magnitude in scale (dashed; a factor 10 1666 
smaller and 10 larger than the indicated scale was used).  This plot underlines the gradualness of 1667 
the transition from H = 0 to H = -1/2: over range of 100 or so in scale there is approximate scaling 1668 
but with exponents that depend on the range of scales covered by the data.  If data were available 1669 
only over a factor of 100 in scale, the RMS Haar fluctuations could have any slope in the fGn range 1670 
0 to     -1/2 with only small deviations. 1671 
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