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Abstract. As one of the most active nonlinear inversion methods in transient electromagnetic8

(TEM) inversion, the back propagation (BP) neural network has high efficiency because the9

complicated forward model calculation is unnecessary in iteration. The global optimization ability10

of the particle swarm optimization (PSO) is adopted for amending BP’s sensitivity on initial11

parameters, which avoids it falling into local optimum. A chaotic oscillation inertia weight PSO12

(COPSO) is proposed in accelerating convergence. The COPSO-BP algorithm performance is13

validated by two typical testing functions, then by two geoelectric models inversion and a field14

example. The results show that the COPSO-BP method has better accuracy, stability and relative15

less training times. The proposed algorithm has a higher fitting degree for the data inversion, and16

it is feasible in geophysical inverse applications.17

Keywords：transient electromagnetic inversion; BP neural network; particle swarm optimization;18

chaotic oscillation19

1 Introduction20

Transient electromagnetic (TEM) method applies the secondary receiving voltage induced by the21

rapid switching off pulse current, and then deduces the geoelectrical parameters consisting of the22

resistivities and thicknesses of the layers. The later is a typical TEM inversion issues with nonlinear23

feature. The linear inversion method was simple and widely used through linearization process,24

yet it is extremely dependent on initial parameters selection and resulting in poor inversion25

accuracy. Hence, the nonlinear inversion methods attract more geophysicists attention in recent26

years.27
 The artificial neural network(ANN) is one of the most active nonlinear inversion methods, it has28
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very high computation efficiency because the complicated forward model calculation is29

unnecessary in iteration. All the geoelectrical parameters and the forward model relations are30

implied in the weight and threshold parameters of ANN. And it is different from the non-linear31

Monte Carlo method with global space search solution (He et al., 2018; Jha et al., 2008; Pekşen et32

al., 2014; Sharma, 2012; Tran and Hiltunen, 2012). Srinivas et al. (2012) compared the inversion33

performance of BP, radial basis function(RBF) and generalized regression neural network (GRNN)34

in vertical electrical sounding data, then established a 1-D inversion model with BP and finally35

realized the parameters inversion. Maiti et al. (2012) proposed a Bayesian neural network training36

method in 1-D electrical sounding. Jiang et al. (2018) improved the training method for kernel37

principal component wavelet neural network and achieved the resistivity imaging. Jiang et al.38

(2016a) gave a learning algorithm based on information criterion (IC) and particle swarm39

optimization for RBF network which improves the global search ability. Johnson (2017) utilized40

neural network method to invert multi-layer georesistivity sounding. Jiang et al. (2016b) presented41

a pruning Bayesian neural network (PBNN) method for resistivity imaging and solved the42

instability, local minimization problems. Raj et al. (2014) solved non-linear apparent resistivity43

inversion problems with ANN. The ANN has been widely applied in electric prospecting data44

interpretation for its powerful fitting ability. However, the neural network method is sensitive to45

initial parameter settings and falls easily into local minimum. Lots improved methods were46

proposed for balancing the convergence rate and inversion quality. Zhang and Liu (2011) proposed47

ant colony optimization for ANN and applied in high density resistivity, acquired smaller48

inversion errors and higher determinant coefficients. Dai et al. (2014) suggested a differential49

evolution (DE) for BP which enhanced the global search ability. Marina et al. (2014) introduced50

the genetic algorithm for ANN.51

The Particle swarm optimization (PSO) has simple structure, fast convergence rate, high52

accuracy and global optimization ability. Fernández et al. (2010) successfully introduced the PSO53

in 1-D resistivity inversion. Godio and Santilano (2018) applied it in geophysical inversion and54

deduced a depth resistivity earth model. Since the PSO’s global searching performance, the BP’s55

initial weights and thresholds can be trained by PSO and then the BP’s global optimization ability56

can be improved. Comparing to the standard PSO (SPSO), a chaotic oscillation inertia weight PSO57

(COPSO) which can accelerate the convergence rate in the early stage was proposed naturally(Shi58

et al., 2009).59

The paper structure is as following: the principle of PSO algorithm with different inertia60

weights schemes, the BP neural network and the proposed COPSO-BP algorithm are given in61

section 2. Then, the COPSO-BP algorithm performance is validated by two typical testing62

functions in section 3. And in later section, inversion simulations of a three-layer and five-layer63

geoelectric models are carried out, the hidden layer neuron numbers determining method is put64

forward and algorithms performance is compared.65

http://dict.cnki.net/javascript:showjdsw('jd_t','j_')
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2 Principle of COPSO-BPAlgorithms66

2.1 Chaotic Oscillation PSO algorithm67

For N-dimensional optimization problem, supposing the position (resistivity and thickness for68

layered model parameters inversion) and velocity(update speed) of the i-th particle (global search69

group number) at time t are xi= (xi1, xi2,…, xiN) and vi= (vi1, vi2,…, viN) respectively. Then, at time70

t+1 ,they can be calculated by the iterations as71

1
1 1 2 2( ) ( )t t t t t t

id id id id gd idv v c r p x c r p x       (1)
72

1 1t t t
id id idx x v   (2)

73

where r1,r2 are random value evenly distributed in the interval (0,1), c1,c2 are learning factors74

(usually equal to 2). And pid, pgd means the individual and global maximum.75

The inertia weight parameter ω affects the algorithm performance seriously. A fixed weight76

always was used in the early time, and then various dynamic weights were proposed. Shi et al.77

(2010) have summarized several methods as78

1 s s e max( ) ( )t t T      (3)79

2
2 s s e max( ) ( )( )t t T      (4)80

2
3 s s e max max( ) ( ) 2 ( )t t T t T          (5)81

Where ωs and ωe are the start and end weight. The t, Tmax are the current and maximum iteration.82

The above weights are of smooth and monotonically decreasing. In this paper, we proposed a83

decreasing oscillation weights scheme which was based on chaotic logistic equation. Its specific84

calculation formula as85

 1 1t t tx x x   0,1,2, ,t n  (6)86

     c e s e 0.99t tt x       (7)87

where μ is the control parameter. A complete chaos state is established for x∈(0,1) and μ = 4, an88

inertia weight is then obtained from Eq.(7). Numerical experiments were carried out89

correspondingly and showed that the initial value of x0 has little effect on inertia weight ω. The90

inertia weights comparison was shown in Fig.1 where x0 = 0.234 and μ = 4 for chaotic oscillation.91

92
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Fig. 1 Inertial weight curves comparison93

2.2 BPNeural Network94

BP neural network is multi-layer feed forward structure, and a typical three-layer network is95

shown in Fig. 2 (Yong et al., 2009).96

97
Fig. 2 Three-layer BP neural network structure98

where x1,x2,…,xn are the input value, y1,y2,…,ym are the predicted output, wij,wjk are the network99

weights. The threshold parameter α is defined in hidden layer with its output100

1

n

j ij i j
i

H f w x 


   
 
 1,2, ,j l  (8)101

where l is the hidden layer nodes numbers, f is the activation function with different expressions,102

and the most widely used is sigmoid type function. The predicted output for the k-th unit is103

calculated by104

1

l

k j jk k
j

O H w b


  (9)
105

And parameter b means the output threshold. Then the prediction error can be determined based106

on predicted output Ok and the expected output Tk as ek = (Tk-Ok)Ok(1-Ok). The updating formula107

for weights and thresholds are as following108

1

1

(1 )

(1 )

m

ij ij j j i jk k
k

jk jk j k
m

j j j j jk k
k

k k k

w w H H x w e

w w H e

H H w e

b b e
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

  






  


 


   

  




(10)109

where i=1,2,…,n; j=1,2,…,l; k=1,2,…,m; and η is the learning rate.110

2.3 BPNeural Network with COPSO algorithm111

The initial parameters are chosen randomly, which affects the convergence rate, learning112

efficiency and perhaps falling into local minimum. The Chaotic Oscillation PSO (COPSO) has a113

much better global optimization capability, therefore, the COPSO algorithm is proposed to optimize114
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the initial weight and threshold of BP. The COPSO-BP pseudo-codes were briefly described as115

following:116

117

Table.1 Pseudo-codes of COPSO-BP algorithm118

1: BP network structure definition (neuron numbers n,l,m, and activation function)

2： COPSO initialization for BP (weights, threshold as X. PSO parameters as Vmin,Vmax,ɷc,c1,c2, size M, Tmax)

3： Initializing BP with Xi (i=1,2,…,M) and evaluating fitness by Eq.(11) for each individual

4： Setting the pid and pgd

5: While iter< Tmax do

6: updating inertia weight by Eq.(7)

7: for i=1:M (all particles) do

8: updating velocity Vi by Eq.(1)

9: updating particle position Xi by Eq.(2)

10: Initializing BP with new Xi and calculating fitness by Eq.(11)

11: if Xi is better than pid

12: Set Xi is to be pid

13: End if

14: if Xi is better than pgd

15: Set Xi is to be pgd

16: End if

17: End for i

18: iter = iter+1

19: End While

20: Initializing BP with pgd

21: Inputting and obtaining the predicted output

The formula for calculating the i-th particle fitness is defined as119

 
2

1 1

1 ˆ
S m

i sj sj
s j

f Y Y
S  

  (11)120

where S is the number of training set samples, m is the output neurons number, Ysj is the j-th true121

output of the s-th sample, and
ŝjY is the corresponding predict output.122

3 Algorithm Testing123

In order to investigate the COPSO-BP performance and reliability, Rosenbrock and Bohachevsky124

testing functions were adopted, which are typical non-convex functions and mainly to evaluate the125

performance of unconstrained algorithms. However, due to the random nature of the function, it is not126

easy to solve and has a global minimum function value of zero.127
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(1) Rosenbrock function：128

     2 22
1 1 2 1( ) 100 1 , 10,10 , 1, 2if x x x x x i       

(12）129

(2) Bohachevsky function：130

       2 3 2 2
2 1 2 1 2 3 3 2 1 3sin cos , 2 ,2 , 1,2,3if x x x x x x x x x x x i          (13)131

The standard PSO-BP (SPSO-BP) with linear decreasing inertia weight as Eq.(3), the132

COPSO-BP were carried out respectively. The three-layer BP of n-s-1 structure is constructed with133

different hidden nodes. The PSO parameters are population size M = 60, learning factors c1 = c2 =134

2.0, the maximum iteration Tmax = 30, inertia weight ωs = 0.9, ωe = 0.4, x0 = 0.234 and μ = 4 for135

chaotic parameters, the search dimension D = n×s+s×1+s+1 which includes all the neuron136

weights and thresholds. For BP network, 150 training samples and 50 testing samples were137

randomly produced within the variable range. The training error is defined as138

 
21 S

s s
s

E T O
S

  (14)139

where S is the training samples number, Ts , Os are the expected and predicted output for training140

sample s respectively. The network structures with minimum training errors for Rosenbrock and141

Bohachevsky functions are 2-7-1 and 3-6-1 respectively. The simulation performs 20 times for142

each testing function with SPSO-BP and COPSO-BP algorithms. The numerical result was shown143

in Table.2. One of the evolutionary training error curves (select one in 20 times randomly) were144

shown in Fig.3, and the fitting curves of COPSO-BP algorithm were shown in Fig.4.145

Table.2 Comparison of SPSO-BP and COPSO-BP algorithm for testing functions146

Testing functions
SPSO-BP COPSO-BP

Average value Optimal value Average value Optimal value

Rosenbrock 2.375e-3 2.300e-5 1.201e-3 2.410e-06

Bohachevsky 0.225 1.024e-3 0.193 3.360e-4

147
Fig. 3 Training error curves of SPSO-BP and COPSO-BP algorithms148
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149
Fig. 4 Fitting curves of COPSO-BP algorithm150

It can be seen in Table.2 that both the SPSO-BP and COPSO-BP algorithms can acquire a151

relative high accuracy for testing functions, the COPSO-BP is a slightly better than SPSO-BP.152

However, the COPSO-BP has better convergence rate and optimization efficiency in the early153

stage in Fig.3. Therefore, the SPSO-BP and COPSO-BP algorithms have strong learning ability,154

good stability and generalization ability, which will be suitable for TEM inversion.155

4 Layered model and parameter analysis156

4.1 Forward Model157

According to Kaufman’s derivation (1983), the frequency response of central loop source for the158

layered model takes the following Hankel transform159

 
2

10
1 1

( , ) dz
mH Ia J m m

m m R
  




 (15)160

where a is the radius of transmitting coil, I is the excitation current, ρ is the center distance161
between the transmitting coil and the receiving coil, J1(mρ) is the first-order Bessel function, m is162
integral variable, m1 = (m2-k12)1/2, k1 is the conduction current, σ1 is the conductivity, k1 = -iωμσ1,163
and R1* is the first layer apparent resistivity conversion function which can be obtained by the164
following recurrence formula165

 
 

*
1 1

*
1 1

1

th

th

n

j j j j j
j

j j j j j

R

m R m m h
R

m m R m h



 

 
















(16)
166

There is no analytical solution for the time-domain response for layered model, it can only be167

solved by numerical calculation. The Hankel transform in formula (15) is calculated by an168

improved digital filtering algorithm with 47 points J1 filter coefficient, and then time response can169

be obtained using the Gaver-Stehfest transform as follows:170

N

1

ln2( , ) ( , )z n z n
n

H t K H s
t

 


  (17)171

where sn= (ln2/t)×n, Kn is the coefficient, N is determined by the computer bits, generally N=12.172

The ramp excitation current of TEM is
173
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1 1

1

0,        <0
( ) ,     0 <

1,     <  

t
I t t T t T

T t


 


(18)174

where T1 is the turn-off time, and the Laplace transform is
175

1 1
2 2 2

1 1 1

1 1 1( ) (1 )T s T sI s e e
T s T s T s

     (19)176

Therefore, for a specific layered model, the apparent resistivity conversion function R1* is firstly
177

calculated by recurrence formula (16) based on geoelectric structure parameters. And then the
178

frequency response at fixed point Hz(ω) is calculated by Hankel transform as formula (15). For
179

ramp excitation, the Laplace transform of Hz(s) should multiplied by I(s). Finally, the time
180

response Hz(t) is obtained by Gaver-Stehfest transform as formula (17). So the Hz(t) is obtained by
181

a Gaver-Stehfest transform, a Hankel transform and a recurrence calculation, and it is somewhat
182

heavy computational consuming.
183

However, the vertical magnetic field Hz(t) is the actual observed signal in transient
184

electromagnetic method in engineering applications. It is the inversion input and output is
185

geoelectric structure parameters. A method which can avoid the complicated forward model
186

calculation is of great importance in algorithm efficiency.
187

4.2 BP network design and COPSO algorithm188

For BP structure, the output nodes are determined by the number of inversion geoelectrical
189

parameters, the input nodes are determined by the samples number of Hz(t), the hidden nodes
190

varies according to approximation performance. As a three-layer or five-layer geoelectric model,
191

its geoelectrical parameters are 5 (three resistivity and two thickness parameters) or 9 (five
192

resistivity and four thickness parameters), the output nodes are 5 or 9 correspondingly. The
193

characteristic samplings of Hz(t) are chosen as 10 or 20, which are determined by the model’s
194

complexity, more layers mean mores sampling points needed. The 10 samplings were selected in
195

this paper hence with 10 input nodes. While for the hidden layer neuron, its number is related to
196

the weights and threshold parameters amount directly and affects the BP performance greatly. An
197

appropriate hidden nodes number is necessary and a determination coefficient R2 is defined for
198

evaluating as
199

2

2 1 1 1
2 2

2 2

1 1 1 1

ˆ ˆ

ˆ ˆ

n n n

i i i i
i i i

n n n n

i i i i
i i i i

n YY Y Y
R

n Y Y n Y Y

  

   

  
 

                  

  

   
(20)200

where Yi is the true value, îY is the predicted value for i-th training data, n is the training data
201

number. A larger determination coefficient means a better approximation performance. The
202
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simulations on hidden nodes effect were carried out for a three-layer and five-layer geoelectric
203

models. The BP structure is 10-s-5 and 10-s-9, its transfer, training and learning functions are ‘Log
204

sigmodial’, ‘Levenberg-Marquardt’ and ‘Gradient descent momentum’ respectively. The average,
205

minimum and maximum value of R2 were obtained after running 20 times for each simulation.
206

The R2 curves were shown in Fig.5.
207

208

（a）Three-layer geoelectric model （b）Five-layer geoelectric model209

Fig. 5 Influence of hidden layer nodes on R2 for different geoelectric model210

It can be seen that the optimal neural network structures were 10-2-5 and 10-5-9 for three and
211

five-layer models based on the maximum R2. Then, the PSO-BP algorithms with different inertia
212

weight were implemented and compared for three-layer model. The BP structure was chosen as
213

10-2-5, four types of inertia weight as Eq. (3~7) in PSO were compared in Table.3.
214

Table.3 Comparison of different inertia weights in PSO algorithms ( ωs = 0.9, ωe = 0.4)215

inertia weight iteration number minimum fitness average fitness convergence time(s)

ω1 9 1.3914e-3 1.3982e-3 65.21

ω2 29 1.4406e-3 1.4418e-3 204.97

ω3 25 1.4168e-3 1.4224e-3 189.17

ωc 6 1.3846e-3 1.3925e-3 44.34

The simulation was implemented on Core (TM) i5-7500 with 8GB memory. It is obviously216

found in Table.3 that the COPSO algorithm has much faster convergence rate, less iteration217

number and time consuming.218

4.3 Layered model inversion219

A 3-layered and 5-layered geoelectric models were investigated, which the PSO parameter values220

are the same as those of the Algorithm Testing parts in the paper. In order to simulate actual TEM221

applications, the ramp turn-off is taken into account. Considering the probability distribution222

characteristic of above algorithms, the average of 20 simulation results is chosen. The BP,223

SPSO-BP, COPSO-BP algorithms and non-linear programming genetic algorithm (NPGA) (Li et224

al., 2017) were compared.225

(1) 3-layered H type model226
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The central loop TEM parameters are set as following, transmitting coil radius a = 100 m, ramp227

emission current is 100 A, turn-off time is 1 μs. In the geoelectric model, the resistivity ρ1 = 100228

Ω·m, ρ2 = 10 Ω·m, ρ3 = 100 Ω·m and thickness h1 = 100 m, h2 = 200 m.229

The BP training samples which is a series of Hz(t) for different geoelectrical parameters were230

generated by TEM forward model. The resistivity ranges were ρ1∈(50,150), ρ2∈(5,15),231

ρ3∈(50,150), the thickness range were h1∈(50,150), h2∈(100,300), and choosing 1000 random232

groups. The resistivity and thickness distributions of ρ1 and h1 were shown in Fig.6. The relative233

error is defined as234

* *
_cal _ref

_rel *
_ref

T -O
Err

O
 (21)235

where T*_cal , O*_ref are the calculated and reference value for the geoelectric models.236

237

Fig. 6 Distribution of resistivity ρ1 and thickness h1 in training samples238

The inversion results were shown in Table.4. and Fig.7~8. The BP type algorithms were239

superior to the NPGA inversion in Table.4. Moreover, the inversion accuracy, convergence rate240

and optimization ability of the COPSO-BP algorithm were better than others.241

Table.4 Inversion comparison of three-layer H type geoelectric model242

H type
resistivity ρ (Ω·m) thickness h(m)

total relative error(%)
ρ1 ρ2 ρ3 h1 h2

true values 100 10 100 100 200 --

BP relative error(%) -0.275 -0.625 0.765 -0.968 -0.649 3.284

SPSO-BP relative error(%) 0.062 -0.322 -0.737 -0.579 -0.970 2.672

COPSO-BP 100.031 9.991 99.310 100.234 200.886 --

COPSO-BP relative error(%) 0.031 -0.087 -0.689 0.234 0.443 1.487

NPGA relative error(%) 0.133 -0.034 3.450 -7.305 -0.401 11.323



11

243
Fig. 7 Fitness curves of SPSO-BP and COPSO-BP Fig. 8 Mean square error curves comparison244

Additional results showed that the solution range of ρ1 and h1 in 20 times simulations for above245

algorithms were ρ1∈(97.980,103.102), h1∈(96.962,102.480) for BP, ρ1∈(98.954,101.137),246

h1∈(96.955,101.829) for SPSO-BP, ρ1∈(99.382,100.989), h1∈(97.877,101.044) for COPSO-BP247

respectively. Therefore, the COPSO-BP can acquire higher accuracy and is more stable.248

(2) 5-layered KHK type model249

A 5-layered KHK type geoelectric model was adopted and its resistivity were ρ1 = 100 Ω·m, ρ2 =250

300 Ω·m, ρ3 = 50 Ω·m, ρ4 = 200 Ω·m, ρ5 = 30 Ω·m and thickness were h1 = 100 m, h2 = 200 m, h3251

= 300 m, h4 = 500 m.252

The training samples with parameter ranges were ρ1∈(50,150), ρ2∈(150,450), ρ3∈(25,75),253

ρ4∈(100,300) , ρ5∈(15,45) for resistivity, and h1∈(50,150), h2∈(100,300), h3∈(150,450),254

h4∈(250,750) for thickness. The 1000 groups training samples were generated within above255

ranges. The inversion results were shown in Table.5 and Fig.9~10. As can be seen that the256

COPSO-BP algorithm has better global optimization performance.257

Table.5 Inversion comparison for five-layer KHK type geoelectric model258

KHK type
resistivity ρ(Ω·m) thickness h(m) Total relative

error(%)ρ1 ρ2 ρ3 ρ4 ρ5 h1 h 2 h 3 h 4

true values 100 300 50 200 30 100 200 300 500 --

BP relative error(%) -1.006 -0.862 -1.014 -0.030 1.119 -0.362 -0.298 -0.575 -0.376 5.645

SPSO-BP relative error(%) 0.429 1.040 -0.577 -0.071 -0.883 -0.002 0.657 -0.655 -0.316 4.634

COPSO-BP 99.594 299.469 50.082 199.092 29.937 99.501 200.481 301.800 497.670 --

COPSO-BP relative error(%) -0.405 -0.176 0.164 -0.453 -0.209 -0.498 0.240 0.600 -0.465 3.214

NPGA relative error(%) -6.211 -0.008 -0.974 3.930 3.083 -0.691 0.505 -2.900 -3.370 19.062
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259

Fig. 9 Fitness curves of SPSO-BP and COPSO-BP Fig. 10 Mean square error curves comparison260

(3) Inversion comparison261

Three kinds of BP methods as traditional BP, the SPSO-BP and the COPSO-BP algorithms were262

compared in Table.6. Hence, the training times of COPSO-BP was obviously less than SPSO-BP263

and was almost equal to BP, it can obtain better precision especially for its global optimization264

performance.265

Table.6 Simulation comparison for different algorithms266

inversion

method

three-layer H type model five-layer KHK type model

training

times

minimum

training error

test relative

error rate(%)

training

times

minimum

training error

test relative

error rate(%)

BP 3 0.2882 3.284 5 0.3013 5.645

SPSO-BP 7 0.2832 2.672 15 0.2992 4.634

COPSO-BP 5 0.2725 1.487 6 0.2900 3.214

The inversion of COPSO-BP and NGPA were compared in Fig.11. The fitting ability of267

COPSO-BP was much better than NPGA.268

269

(a) Three-layer H type geoelectric model (b) Five-layer KHK type geoelectric model270

Fig. 11 Inversion comparison for different geoelectric models271

(4) Robust performance analysis272
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In order to verify the algorithm robustness, 5%(26dB) and 10%(20dB) Gaussian random noise273

was added in TEM data for three-layer geoelectric model. Three kinds of inversions were274

implemented respectively. The results and comparison were shown in Table.7. The Hz(t) and data275

with 5% noise were shown in Fig.12.276

Table 7 Comparison of inversion results for three-layer H type (with noise) model277

model

parameters

resistivity ρ(Ω•m) thickness h(m) Total relative

error(%)ρ1 ρ2 ρ3 h1 h2

true value 100 10 100 100 200 --

without noise
BP 99.724 9.937 100.765 99.031 198.701 3.284

COPSO-BP 100.031 9.991 99.310 100.234 200.886 1.487

5% noise
BP 101.374 9.966 98.283 101.255 199.282 5.039

COPSO-BP 100.252 9.977 98.222 101.206 199.228 3.847

10% noise
BP 90.525 9.931 99.481 101.748 203.105 13.976

COPSO-BP 104.472 9.96050 101.345 100.570 199.437 7.064

278

Fig.12 Forward data of Hz and data with 5% noise279

As can be seen from Table 3, after applying 5% and 10% Gaussian noise the COPSO-BP280

inversion has higher robust ability. The accuracy was obviously improved based on the total281

relative error data.282

4.4 Field example283

In order to test the effectiveness of the method, a transient electromagnetic vertical magnetic field284

(Hz) with 10 measuring points at the 380m to 1280m of the No. 1 line from a mining area in285

Anhui Province was selected. After the data processing, the inversion was performed using the286

3-layer neural network model in the previous section, and the results of BP and COPSOBP287

inversion were compared.Figure 13 shows the comparison between the surveyed data and the288

inversion data at 380m of the No. 2 line in the mining area.Figure 14 displays the pseudo-sections289
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of the 10 sets of inversion data combined with the geological data interpolation smoothing.It can290

be seen from Fig. 14 that the first layer is a low resistivity (100~200 Ω·m), which is inferred to be291

the second layer (T2g22) gray dolomite of the Middle Triassic old Malague section, with a292

thickness of about 200 m; the second layer is the second highest resistivity (300~400 Ω·m), which293

is surmised to be the first layer (T2g21) dolomite of the Middle Triassic old Malaga section, with a294

thickness of about 400m; the third layer is high resistivity (600~800Ω·m), which is speculated to295

be the 6th layer (T2g16) limestone dolomite of the Middle Triassic old group. The results are296

basically consistent with the geological conditions of the mining area, indicating the feasibility297

and effectiveness of the neural network method.And the results of COPSO-BP inversion are better298

than those of BP, which the inversion position is more accurate, the shape and spacing are clearer,299

and the resistivity of each layer is more consistent with the those of the actual geological model.300

301

(a) BP (b) COPSOBP302

Figure 13. 1D inversion forward results. (a) BP; (b) COPSOBP.303

304

(a) BP (b) COPSO-BP305

Figure 14. Inversion results of BP (a) and COPSO-BP (b).306

5 Discussion307

The inversion is performed for 3-layered (H-type) and 5-layered (KHK-type) geoelectric models308

in this paper. The results show that the BP neural network is better than the NPGA algorithm,309
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because the BP method does not need to use the forward algorithm repeatedly, and its calculation310

time is short, which is different from the nonlinear heuristic method based on global space search311

solution.312

The BP main advantage is that it can interpret the transient electromagnetic sounding results313

quickly after training the network. Furthermore, BP algorithm could automatically obtain the314

"reasonable rules" between input and output data by learning, and it can adaptively store the315

learning content in the network weight, which the BP neural network has the high self-learning316

and self-adaptation ability. In addition, the superior simulation results of the test function indicate317

that the BP algorithm can approximate any nonlinear continuous function with arbitrary precision,318

which means it has strong nonlinear mapping ability; the inversion results of the layered319

geoelectric model with uncorrelated noise data prove that the BP algorithm has strong robustness,320

which means it has the ability to apply learning results to new knowledge. However, the BP neural321

network weight is gradually adjusted by the direction of local improvement, which causes the322

algorithm to fall into local extremum, and the weight converges to a local minimum that leads to323

the network training failure; Moreover, BP is very sensitive to the initial network weight, and the324

initialization network with different weight values tends to converge to different local minimums,325

so that obtains different results each time; In addition, the BP algorithm is a gradient descent326

method essentially, which leads to a slow convergence rate.327

From the results of the layered model and parametric analysis part, it can be seen that single328

BP algorithm has higher error value than SPSO-BP, because BP method is sensitive to initial329

weight and easy to fall into local minimum values, thus a heuristic global search particle swarm330

optimization algorithm with simple structure, rapid convergence and high precision is applied to331

optimize the weight and threshold of BP neural network, which improves the global optimization332

performance of the algorithm. Furthermore, the PSO algorithm adjusts the inertia weight333

adaptively based on the chaotic oscillation curve that is similar to the annealing process in the334

simulated annealing algorithm (SA), which jumps out the local extremum faster in the early stage335

and accelerates the convergence and reduces the training times. Therefore, compared with336

SPSO-BP and BP algorithm, the inversion results of COPSO-BP are closer to the theoretical data337

with smaller error fluctuations, stronger anti-noise, better generalization performance and higher338

stability, which it is effective in solving geophysical inverse problems.339

From the simulation experiment, it is not clear how the weight organization affects the BP340

neural network weight learning process. It is necessary to conduct a more systematic study on this341

problem to improve our understanding of how BP neural network handles training data.342

6 Conclusion343

The nonlinear COPSO-BP method was proposed for TEM inversion. The BP’s initial weight and344

threshold parameters were trained by COPSO algorithm which makes it not easy to fall into local345
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optimum. The chaotic oscillation inertia weight for PSO was proposed so as to improve the PSO’s346

global optimization ability and fast convergence in early stage. The layered geoelectric model347

inversion showed that the COPSO-BP method has better accuracy, stability and relative less348

training times.349
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