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Abstract. As one of the most active nonlinear inversion methods in transient electromagnetic10

(TEM) inversion, the back propagation (BP) neural network has high efficiency because the11

complicated forward model calculation is unnecessary in iteration. The global optimization ability12

of the particle swarm optimization (PSO) is adopted for amending BP’s sensitivity on initial13

parameters, which avoids it falling into local optimum. A chaotic oscillation inertia weight PSO14

(COPSO) is proposed in accelerating convergence. The COPSO-BP algorithm performance is15

validated by two typical testing functions, then by two geoelectric models inversion and a field16

example. The results show that the COPSO-BP method has better accuracy, stability and relative17

less training times. The proposed algorithm has a higher fitting degree for the data inversion, and18

it is feasible in geophysical inverse applications.19

Keywords：transient electromagnetic inversion; BP neural network; particle swarm optimization;20

chaotic oscillation21

1 Introduction22

Transient electromagnetic (TEM) method applies the secondary receiving voltage induced by the23

rapid switching off pulse current, and then deduces the geoelectrical parameters consisting of the24

resistivities and thicknesses of the layers. The later is a typical TEM inversion issues with nonlinear25

feature. The linear inversion method was simple and widely used through linearization process,26

yet it is extremely dependent on initial parameters selection and resulting in poor inversion27

accuracy. Hence, the nonlinear inversion methods attract more geophysicists attention in recent28

years.29
 The artificial neural network(ANN) is one of the most active nonlinear inversion methods, it has30
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very high computation efficiency because the complicated forward model calculation is31

unnecessary in iteration. All the geoelectrical parameters and the forward model relations are32

implied in the weight and threshold parameters of ANN. And it is different from the non-linear33

Monte Carlo method with global space search solution (He et al., 2018; Jha et al., 2008; Pekşen et34

al., 2014; Sharma, 2012; Tran and Hiltunen, 2012). Srinivas et al. (2012) compared the inversion35

performance of BP, radial basis function(RBF) and generalized regression neural network (GRNN)36

in vertical electrical sounding data, then established a 1-D inversion model with BP and finally37

realized the parameters inversion. Maiti et al. (2012) proposed a Bayesian neural network training38

method in 1-D electrical sounding. Jiang et al. (2018) improved the training method for kernel39

principal component wavelet neural network and achieved the resistivity imaging. Jiang et al.40

(2016a) gave a learning algorithm based on information criterion (IC) and particle swarm41

optimization for RBF network which improves the global search ability. Johnson (2017) utilized42

neural network method to invert multi-layer georesistivity sounding. Jiang et al. (2016b) presented43

a pruning Bayesian neural network (PBNN) method for resistivity imaging and solved the44

instability, local minimization problems. Raj et al. (2014) solved non-linear apparent resistivity45

inversion problems with ANN. The ANN has been widely applied in electric prospecting data46

interpretation for its powerful fitting ability. However, the neural network method is sensitive to47

initial parameter settings and falls easily into local minimum. Lots improved methods were48

proposed for balancing the convergence rate and inversion quality. Zhang and Liu (2011) proposed49

ant colony optimization for ANN and applied in high density resistivity, acquired smaller50

inversion errors and higher determinant coefficients. Dai et al. (2014) suggested a differential51

evolution (DE) for BP which enhanced the global search ability. Marina et al. (2014) introduced52

the genetic algorithm for ANN.53

The Particle swarm optimization (PSO) has simple structure, fast convergence rate, high54

accuracy and global optimization ability. Fernández et al. (2010) successfully introduced the PSO55

in 1-D resistivity inversion. Godio and Santilano (2018) applied it in geophysical inversion and56

deduced a depth resistivity earth model. Since the PSO’s global searching performance, the BP’s57

initial weights and thresholds can be trained by PSO and then the BP’s global optimization ability58

can be improved. Comparing to the standard PSO (SPSO), a chaotic oscillation inertia weight PSO59

(COPSO) which can accelerate the convergence rate in the early stage was proposed naturally(Shi60

et al., 2009).61

The paper structure is as following: the principle of PSO algorithm with different inertia62

weights schemes, the BP neural network and the proposed COPSO-BP algorithm are given in63

section 2. Then, the COPSO-BP algorithm performance is validated by two typical testing64

functions in section 3. And in later section, inversion simulations of a three-layer and five-layer65

http://dict.cnki.net/javascript:showjdsw('jd_t','j_')
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geoelectric models are carried out, the hidden layer neuron numbers determining method is put66

forward and algorithms performance is compared.67

2 Principle of COPSO-BPAlgorithms68

2.1 Chaotic Oscillation PSO algorithm69

For N-dimensional optimization problem, supposing the position (resistivity and thickness for70

layered model parameters inversion) and velocity(update speed) of the i-th particle (global search71

group number) at time t are xi= (xi1, xi2,…, xiN) and vi= (vi1, vi2,…, viN) respectively. Then, at time72

t+1 ,they can be calculated by the iterations as73

1
1 1 2 2( ) ( )t t t t t t

id id id id gd idv v c r p x c r p x       (1)
74

1 1t t t
id id idx x v   (2)

75

where r1,r2 are random value evenly distributed in the interval (0,1), c1,c2 are learning factors76

(usually equal to 2). And pid, pgd means the individual and global maximum.77

The inertia weight parameter ω affects the algorithm performance seriously. A fixed weight78

always was used in the early time, and then various dynamic weights were proposed. Shi et al.79

(2010) have summarized several methods as80

1 s s e max( ) ( )t t T      (3)81

2
2 s s e max( ) ( )( )t t T      (4)82

2
3 s s e max max( ) ( ) 2 ( )t t T t T          (5)83

Where ωs and ωe are the start and end weight. The t, Tmax are the current and maximum iteration.84

The above weights are of smooth and monotonically decreasing. In this paper, we proposed a85

decreasing oscillation weights scheme which was based on chaotic logistic equation. Its specific86

calculation formula as87

 1 1t t tx x x   0,1,2, ,t n  (6)88

     c e s e 0.99t tt x       (7)89

where μ is the control parameter. A complete chaos state is established for x∈(0,1) and μ = 4, an90

inertia weight is then obtained from Eq.(7). Numerical experiments were carried out91

correspondingly and showed that the initial value of x0 has little effect on inertia weight ω. The92

inertia weights comparison was shown in Fig.1 where x0 = 0.234 and μ = 4 for chaotic oscillation.93
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94

Fig. 1 Inertial weight curves comparison95

2.2 BPNeural Network96

BP neural network is multi-layer feed forward structure, and a typical three-layer network is97

shown in Fig. 2 (Yong et al., 2009).98

99
Fig. 2 Three-layer BP neural network structure100

where x1,x2,…,xn are the input value, y1,y2,…,ym are the predicted output, wij,wjk are the network101

weights. The threshold parameter α is defined in hidden layer with its output102

1

n

j ij i j
i

H f w x 


   
 
 1,2, ,j l  (8)103

where l is the hidden layer nodes numbers, f is the activation function with different expressions,104

and the most widely used is sigmoid type function. The predicted output for the k-th unit is105

calculated by106

1

l

k j jk k
j

O H w b


  (9)
107

And parameter b means the output threshold. Then the prediction error can be determined based108

on predicted output Ok and the expected output Tk as ek = (Tk-Ok)Ok(1-Ok). The updating formula109

for weights and thresholds are as following110
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(10)111

where i=1,2,…,n; j=1,2,…,l; k=1,2,…,m; and η is the learning rate.112

2.3 BPNeural Network with COPSO algorithm113

The initial parameters are chosen randomly, which affects the convergence rate, learning114

efficiency and perhaps falling into local minimum. The Chaotic Oscillation PSO (COPSO) has a115

much better global optimization capability, therefore, the COPSO algorithm is proposed to optimize116

the initial weight and threshold of BP. The COPSO-BP pseudo-codes were briefly described as117

following:118

119

Table.1 Pseudo-codes of COPSO-BP algorithm120

1: BP network structure definition (neuron numbers n,l,m, and activation function)

2： COPSO initialization for BP (weights, threshold as X. PSO parameters as Vmin,Vmax,ɷc,c1,c2, size M, Tmax)

3： Initializing BP with Xi (i=1,2,…,M) and evaluating fitness by Eq.(11) for each individual

4： Setting the pid and pgd

5: While iter< Tmax do

6: updating inertia weight by Eq.(7)

7: for i=1:M (all particles) do

8: updating velocity Vi by Eq.(1)

9: updating particle position Xi by Eq.(2)

10: Initializing BP with new Xi and calculating fitness by Eq.(11)

11: if Xi is better than pid

12: Set Xi is to be pid

13: End if

14: if Xi is better than pgd

15: Set Xi is to be pgd

16: End if

17: End for i

18: iter = iter+1

19: End While

20: Initializing BP with pgd

21: Inputting and obtaining the predicted output

The formula for calculating the i-th particle fitness is defined as121
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  (11)122

where S is the number of training set samples, m is the output neurons number, Ysj is the j-th true123

output of the s-th sample, and
ŝjY is the corresponding predict output.124

3 Algorithm Testing125

In order to investigate the COPSO-BP performance and reliability, Rosenbrock and Bohachevsky126

testing functions were adopted, which are typical non-convex functions and mainly to evaluate the127

performance of unconstrained algorithms. However, due to the random nature of the function, it is not128

easy to solve and has a global minimum function value of zero.129

(1) Rosenbrock function：130

     2 22
1 1 2 1( ) 100 1 , 10,10 , 1, 2if x x x x x i       

(12）131

(2) Bohachevsky function：132

       2 3 2 2
2 1 2 1 2 3 3 2 1 3sin cos , 2 ,2 , 1,2,3if x x x x x x x x x x x i          (13)133

The standard PSO-BP (SPSO-BP) with linear decreasing inertia weight as Eq.(3), the134

COPSO-BP were carried out respectively. The three-layer BP of n-s-1 structure is constructed with135

different hidden nodes. The PSO parameters are population size M = 60, learning factors c1 = c2 =136

2.0, the maximum iteration Tmax = 30, inertia weight ωs = 0.9, ωe = 0.4, x0 = 0.234 and μ = 4 for137

chaotic parameters, the search dimension D = n×s+s×1+s+1 which includes all the neuron138

weights and thresholds. For BP network, 150 training samples and 50 testing samples were139

randomly produced within the variable range. The training error is defined as140

 
21 S

s s
s

E T O
S

  (14)141

where S is the training samples number, Ts , Os are the expected and predicted output for training142

sample s respectively. The network structures with minimum training errors for Rosenbrock and143

Bohachevsky functions are 2-7-1 and 3-6-1 respectively. The simulation performs 20 times for144

each testing function with SPSO-BP and COPSO-BP algorithms. The numerical result was shown145

in Table.2. One of the evolutionary training error curves (select one in 20 times randomly) were146

shown in Fig.3, and the fitting curves of COPSO-BP algorithm were shown in Fig.4.147

Table.2 Comparison of SPSO-BP and COPSO-BP algorithm for testing functions148

Testing functions
SPSO-BP COPSO-BP

Average value Optimal value Average value Optimal value

Rosenbrock 2.375e-3 2.300e-5 1.201e-3 2.410e-06

Bohachevsky 0.225 1.024e-3 0.193 3.360e-4
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149
Fig. 3 Training error curves of SPSO-BP and COPSO-BP algorithms150

151
Fig. 4 Fitting curves of COPSO-BP algorithm152

It can be seen in Table.2 that both the SPSO-BP and COPSO-BP algorithms can acquire a153

relative high accuracy for testing functions, the COPSO-BP is a slightly better than SPSO-BP.154

However, the COPSO-BP has better convergence rate and optimization efficiency in the early155

stage in Fig.3. Therefore, the SPSO-BP and COPSO-BP algorithms have strong learning ability,156

good stability and generalization ability, which will be suitable for TEM inversion.157

4 Layered model and parameter analysis158

4.1 Forward Model159

According to Kaufman’s derivation (1983), the frequency response of central loop source for the160

layered model takes the following Hankel transform161

 
2

10
1 1

( , ) dz
mH Ia J m m

m m R
  




 (15)162

where a is the radius of transmitting coil, I is the excitation current, ρ is the center distance163
between the transmitting coil and the receiving coil, J1(mρ) is the first-order Bessel function, m is164
integral variable, m1 = (m2-k12)1/2, k1 is the conduction current, σ1 is the conductivity, k1 = -iωμσ1,165
and R1* is the first layer apparent resistivity conversion function which can be obtained by the166
following recurrence formula167
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168
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There is no analytical solution for the time-domain response for layered model, it can only be169

solved by numerical calculation. The Hankel transform in formula (15) is calculated by an170

improved digital filtering algorithm with 47 points J1 filter coefficient, and then time response can171

be obtained using the Gaver-Stehfest transform as follows:172

N

1

ln2( , ) ( , )z n z n
n

H t K H s
t

 


  (17)173

where sn= (ln2/t)×n, Kn is the coefficient, N is determined by the computer bits, generally N=12.174

The ramp excitation current of TEM is
175

1 1

1

0,        <0
( ) ,     0 <

1,     <  

t
I t t T t T

T t


 


(18)176

where T1 is the turn-off time, and the Laplace transform is
177

1 1
2 2 2

1 1 1

1 1 1( ) (1 )T s T sI s e e
T s T s T s

     (19)178

Therefore, for a specific layered model, the apparent resistivity conversion function R1* is firstly
179

calculated by recurrence formula (16) based on geoelectric structure parameters. And then the
180

frequency response at fixed point Hz(ω) is calculated by Hankel transform as formula (15). For
181

ramp excitation, the Laplace transform of Hz(s) should multiplied by I(s). Finally, the time
182

response Hz(t) is obtained by Gaver-Stehfest transform as formula (17). So the Hz(t) is obtained by
183

a Gaver-Stehfest transform, a Hankel transform and a recurrence calculation, and it is somewhat
184

heavy computational consuming.
185

However, the vertical magnetic field Hz(t) is the actual observed signal in transient
186

electromagnetic method in engineering applications. It is the inversion input and output is
187

geoelectric structure parameters. A method which can avoid the complicated forward model
188

calculation is of great importance in algorithm efficiency.
189

4.2 BP network design and COPSO algorithm190

For BP structure, the output nodes are determined by the number of inversion geoelectrical
191

parameters, the input nodes are determined by the samples number of Hz(t), the hidden nodes
192

varies according to approximation performance. As a three-layer or five-layer geoelectric model,
193

its geoelectrical parameters are 5 (three resistivity and two thickness parameters) or 9 (five
194

resistivity and four thickness parameters), the output nodes are 5 or 9 correspondingly. The
195

characteristic samplings of Hz(t) are chosen as 10 or 20, which are determined by the model’s
196

complexity, more layers mean mores sampling points needed. The 10 samplings were selected in
197

this paper hence with 10 input nodes. While for the hidden layer neuron, its number is related to
198

the weights and threshold parameters amount directly and affects the BP performance greatly. An
199
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appropriate hidden nodes number is necessary and a determination coefficient R2 is defined for
200

evaluating as
201

2

2 1 1 1
2 2

2 2

1 1 1 1

ˆ ˆ

ˆ ˆ

n n n

i i i i
i i i

n n n n

i i i i
i i i i

n YY Y Y
R

n Y Y n Y Y

  

   

  
 

                  

  

   
(20)202

where Yi is the true value, îY is the predicted value for i-th training data, n is the training data
203

number. A larger determination coefficient means a better approximation performance. The
204

simulations on hidden nodes effect were carried out for a three-layer and five-layer geoelectric
205

models. The BP structure is 10-s-5 and 10-s-9, its transfer, training and learning functions are ‘Log
206

sigmodial’, ‘Levenberg-Marquardt’ and ‘Gradient descent momentum’ respectively. The average,
207

minimum and maximum value of R2 were obtained after running 20 times for each simulation.
208

The R2 curves were shown in Fig.5.
209

210

（a）Three-layer geoelectric model （b）Five-layer geoelectric model211

Fig. 5 Influence of hidden layer nodes on R2 for different geoelectric model212

It can be seen that the optimal neural network structures were 10-2-5 and 10-5-9 for three and
213

five-layer models based on the maximum R2. Then, the PSO-BP algorithms with different inertia
214

weight were implemented and compared for three-layer model. The BP structure was chosen as
215

10-2-5, four types of inertia weight as Eq. (3~7) in PSO were compared in Table.3.
216

Table.3 Comparison of different inertia weights in PSO algorithms ( ωs = 0.9, ωe = 0.4)217

inertia weight iteration number minimum fitness average fitness convergence time(s)

ω1 9 1.3914e-3 1.3982e-3 65.21

ω2 29 1.4406e-3 1.4418e-3 204.97

ω3 25 1.4168e-3 1.4224e-3 189.17

ωc 6 1.3846e-3 1.3925e-3 44.34

The simulation was implemented on Core (TM) i5-7500 with 8GB memory. It is obviously218

found in Table.3 that the COPSO algorithm has much faster convergence rate, less iteration219

number and time consuming.220
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4.3 Layered model inversion221

A 3-layered and 5-layered geoelectric models were investigated, which the PSO parameter values222

are the same as those of the Algorithm Testing parts in the paper. In order to simulate actual TEM223

applications, the ramp turn-off is taken into account. Considering the probability distribution224

characteristic of above algorithms, the average of 20 simulation results is chosen. The BP,225

SPSO-BP, COPSO-BP algorithms and non-linear programming genetic algorithm (NPGA) (Li et226

al., 2017) were compared.227

(1) 3-layered H type model228

The central loop TEM parameters are set as following, transmitting coil radius a = 100 m, ramp229

emission current is 100 A, turn-off time is 1 μs. In the geoelectric model, the resistivity ρ1 = 100230

Ω·m, ρ2 = 10 Ω·m, ρ3 = 100 Ω·m and thickness h1 = 100 m, h2 = 200 m.231

The BP training samples which is a series of Hz(t) for different geoelectrical parameters were232

generated by TEM forward model. The resistivity ranges were ρ1∈(50,150), ρ2∈(5,15),233

ρ3∈(50,150), the thickness range were h1∈(50,150), h2∈(100,300), and choosing 1000 random234

groups. The resistivity and thickness distributions of ρ1 and h1 were shown in Fig.6. The relative235

error is defined as236

* *
_cal _ref

_rel *
_ref

T -O
Err

O
 (21)237

where T*_cal , O*_ref are the calculated and reference value for the geoelectric models.238

239

Fig. 6 Distribution of resistivity ρ1 and thickness h1 in training samples240

The inversion results were shown in Table.4. and Fig.7~8. The BP type algorithms were241

superior to the NPGA inversion in Table.4. Moreover, the inversion accuracy, convergence rate242

and optimization ability of the COPSO-BP algorithm were better than others.243

Table.4 Inversion comparison of three-layer H type geoelectric model244

H type
resistivity ρ (Ω·m) thickness h(m)

total relative error(%)
ρ1 ρ2 ρ3 h1 h2
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true values 100 10 100 100 200 --

BP relative error(%) -0.275 -0.625 0.765 -0.968 -0.649 3.284

SPSO-BP relative error(%) 0.062 -0.322 -0.737 -0.579 -0.970 2.672

COPSO-BP 100.031 9.991 99.310 100.234 200.886 --

COPSO-BP relative error(%) 0.031 -0.087 -0.689 0.234 0.443 1.487

NPGA relative error(%) 0.133 -0.034 3.450 -7.305 -0.401 11.323

245
Fig. 7 Fitness curves of SPSO-BP and COPSO-BP Fig. 8 Mean square error curves comparison246

Additional results showed that the solution range of ρ1 and h1 in 20 times simulations for above247

algorithms were ρ1∈(97.980,103.102), h1∈(96.962,102.480) for BP, ρ1∈(98.954,101.137),248

h1∈(96.955,101.829) for SPSO-BP, ρ1∈(99.382,100.989), h1∈(97.877,101.044) for COPSO-BP249

respectively. Therefore, the COPSO-BP can acquire higher accuracy and is more stable.250

(2) 5-layered KHK type model251

A 5-layered KHK type geoelectric model was adopted and its resistivity were ρ1 = 100 Ω·m, ρ2 =252

300 Ω·m, ρ3 = 50 Ω·m, ρ4 = 200 Ω·m, ρ5 = 30 Ω·m and thickness were h1 = 100 m, h2 = 200 m, h3253

= 300 m, h4 = 500 m.254

The training samples with parameter ranges were ρ1∈(50,150), ρ2∈(150,450), ρ3∈(25,75),255

ρ4∈(100,300) , ρ5∈(15,45) for resistivity, and h1∈(50,150), h2∈(100,300), h3∈(150,450),256

h4∈(250,750) for thickness. The 1000 groups training samples were generated within above257

ranges. The inversion results were shown in Table.5 and Fig.9~10. As can be seen that the258

COPSO-BP algorithm has better global optimization performance.259

Table.5 Inversion comparison for five-layer KHK type geoelectric model260

KHK type
resistivity ρ(Ω·m) thickness h(m) Total relative

error(%)ρ1 ρ2 ρ3 ρ4 ρ5 h1 h 2 h 3 h 4

true values 100 300 50 200 30 100 200 300 500 --

BP relative error(%) -1.006 -0.862 -1.014 -0.030 1.119 -0.362 -0.298 -0.575 -0.376 5.645

SPSO-BP relative error(%) 0.429 1.040 -0.577 -0.071 -0.883 -0.002 0.657 -0.655 -0.316 4.634
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COPSO-BP 99.594 299.469 50.082 199.092 29.937 99.501 200.481 301.800 497.670 --

COPSO-BP relative error(%) -0.405 -0.176 0.164 -0.453 -0.209 -0.498 0.240 0.600 -0.465 3.214

NPGA relative error(%) -6.211 -0.008 -0.974 3.930 3.083 -0.691 0.505 -2.900 -3.370 19.062

261

Fig. 9 Fitness curves of SPSO-BP and COPSO-BP Fig. 10 Mean square error curves comparison262

(3) Inversion comparison263

Three kinds of BP methods as traditional BP, the SPSO-BP and the COPSO-BP algorithms were264

compared in Table.6. Hence, the training times of COPSO-BP was obviously less than SPSO-BP265

and was almost equal to BP, it can obtain better precision especially for its global optimization266

performance.267

Table.6 Simulation comparison for different algorithms268

inversion

method

three-layer H type model five-layer KHK type model

training

times

minimum

training error

test relative

error rate(%)

training

times

minimum

training error

test relative

error rate(%)

BP 3 0.2882 3.284 5 0.3013 5.645

SPSO-BP 7 0.2832 2.672 15 0.2992 4.634

COPSO-BP 5 0.2725 1.487 6 0.2900 3.214

The inversion of COPSO-BP and NGPA were compared in Fig.11. The fitting ability of269

COPSO-BP was much better than NPGA.270

271
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(a) Three-layer H type geoelectric model (b) Five-layer KHK type geoelectric model272

Fig. 11 Inversion comparison for different geoelectric models273

(4) Robust performance analysis274

In order to verify the algorithm robustness, 5%(26dB) and 10%(20dB) Gaussian random noise275

was added in TEM data for three-layer geoelectric model. Three kinds of inversions were276

implemented respectively. The results and comparison were shown in Table.7. The Hz(t) and data277

with 5% noise were shown in Fig.12.278

Table 7 Comparison of inversion results for three-layer H type (with noise) model279

model

parameters

resistivity ρ(Ω•m) thickness h(m) Total relative

error(%)ρ1 ρ2 ρ3 h1 h2

true value 100 10 100 100 200 --

without noise
BP 99.724 9.937 100.765 99.031 198.701 3.284

COPSO-BP 100.031 9.991 99.310 100.234 200.886 1.487

5% noise
BP 101.374 9.966 98.283 101.255 199.282 5.039

COPSO-BP 100.252 9.977 98.222 101.206 199.228 3.847

10% noise
BP 90.525 9.931 99.481 101.748 203.105 13.976

COPSO-BP 104.472 9.96050 101.345 100.570 199.437 7.064

280

Fig.12 Forward data of Hz and data with 5% noise281

As can be seen from Table 3, after applying 5% and 10% Gaussian noise the COPSO-BP282

inversion has higher robust ability. The accuracy was obviously improved based on the total283

relative error data.284

4.4 Field example285

In order to test the effectiveness of the method, a transient electromagnetic vertical magnetic field286

(Hz) with 10 measuring points at the 380m to 1280m of the No. 1 line from a mining area in287

Anhui Province was selected. After the data processing, the inversion was performed using the288
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3-layer neural network model in the previous section, and the results of BP and COPSOBP289

inversion were compared.Figure 13 shows the comparison between the surveyed data and the290

inversion data at 380m of the No. 2 line in the mining area.Figure 14 displays the pseudo-sections291

of the 10 sets of inversion data combined with the geological data interpolation smoothing.It can292

be seen from Fig. 14 that the first layer is a low resistivity (100~200 Ω·m), which is inferred to be293

the second layer (T2g22) gray dolomite of the Middle Triassic old Malague section, with a294

thickness of about 200 m; the second layer is the second highest resistivity (300~400 Ω·m), which295

is surmised to be the first layer (T2g21) dolomite of the Middle Triassic old Malaga section, with a296

thickness of about 400m; the third layer is high resistivity (600~800Ω·m), which is speculated to297

be the 6th layer (T2g16) limestone dolomite of the Middle Triassic old group. The results are298

basically consistent with the geological conditions of the mining area, indicating the feasibility299

and effectiveness of the neural network method.And the results of COPSO-BP inversion are better300

than those of BP, which the inversion position is more accurate, the shape and spacing are clearer,301

and the resistivity of each layer is more consistent with the those of the actual geological model.302

303

(a) BP (b) COPSOBP304

Figure 13. 1D inversion forward results. (a) BP; (b) COPSOBP.305

306

(a) BP (b) COPSO-BP307

Figure 14. Inversion results of BP (a) and COPSO-BP (b).308
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5 Discussion309

The inversion is performed for 3-layered (H-type) and 5-layered (KHK-type) geoelectric models310

in this paper. The results show that the BP neural network is better than the NPGA algorithm,311

because the BP method does not need to use the forward algorithm repeatedly, and its calculation312

time is short, which is different from the nonlinear heuristic method based on global space search313

solution.314

The BP main advantage is that it can interpret the transient electromagnetic sounding results315

quickly after training the network. Furthermore, BP algorithm could automatically obtain the316

"reasonable rules" between input and output data by learning, and it can adaptively store the317

learning content in the network weight, which the BP neural network has the high self-learning318

and self-adaptation ability. In addition, the superior simulation results of the test function indicate319

that the BP algorithm can approximate any nonlinear continuous function with arbitrary precision,320

which means it has strong nonlinear mapping ability; the inversion results of the layered321

geoelectric model with uncorrelated noise data prove that the BP algorithm has strong robustness,322

which means it has the ability to apply learning results to new knowledge. However, the BP neural323

network weight is gradually adjusted by the direction of local improvement, which causes the324

algorithm to fall into local extremum, and the weight converges to a local minimum that leads to325

the network training failure; Moreover, BP is very sensitive to the initial network weight, and the326

initialization network with different weight values tends to converge to different local minimums,327

so that obtains different results each time; In addition, the BP algorithm is a gradient descent328

method essentially, which leads to a slow convergence rate.329

From the results of the layered model and parametric analysis part, it can be seen that single330

BP algorithm has higher error value than SPSO-BP, because BP method is sensitive to initial331

weight and easy to fall into local minimum values, thus a heuristic global search particle swarm332

optimization algorithm with simple structure, rapid convergence and high precision is applied to333

optimize the weight and threshold of BP neural network, which improves the global optimization334

performance of the algorithm. Furthermore, the PSO algorithm adjusts the inertia weight335

adaptively based on the chaotic oscillation curve that is similar to the annealing process in the336

simulated annealing algorithm (SA), which jumps out the local extremum faster in the early stage337

and accelerates the convergence and reduces the training times. Therefore, compared with338

SPSO-BP and BP algorithm, the inversion results of COPSO-BP are closer to the theoretical data339

with smaller error fluctuations, stronger anti-noise, better generalization performance and higher340

stability, which it is effective in solving geophysical inverse problems.341

From the simulation experiment, it is not clear how the weight organization affects the BP342

neural network weight learning process. It is necessary to conduct a more systematic study on this343

problem to improve our understanding of how BP neural network handles training data.344
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6 Conclusion345

The nonlinear COPSO-BP method was proposed for TEM inversion. The BP’s initial weight and346

threshold parameters were trained by COPSO algorithm which makes it not easy to fall into local347

optimum. The chaotic oscillation inertia weight for PSO was proposed so as to improve the PSO’s348

global optimization ability and fast convergence in early stage. The layered geoelectric model349

inversion showed that the COPSO-BP method has better accuracy, stability and relative less350

training times.351
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