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[bookmark: OLE_LINK10][bookmark: OLE_LINK6][bookmark: OLE_LINK7]Abstract. As one of the most active nonlinear inversion methods in transient electromagnetic (TEM) inversion, the back propagation (BP) neural network has high efficiency because the complicated forward model calculation is unnecessary in iteration. The global optimization ability of the particle swarm optimization (PSO) is adopted for amending BP’s sensitivity on initial parameters, which avoids it falling into local optimum. A chaotic oscillation inertia weight PSO (COPSO) is proposed in accelerating convergence. The COPSO-BP algorithm performance is validated by two typical testing functions, and then by two geoelectric models inversion and a field example. The results show that the COPSO-BP method has better accuracy, stability and relative less training times. The proposed algorithm has a higher fitting degree for the data inversion, and it is feasible in geophysical inverse applications.
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1  Introduction  
Transient electromagnetic (TEM) method applies the secondary receiving voltage induced by the rapid switching off pulse current, and then deduces the geoelectric structure parameters. The later is a typical TEM inversion issues with nonlinear feature. The linear inversion method was simple and widely used through linearization process, yet it is extremely dependent on initial parameters selection and resulting in poor inversion accuracy. Hence, the nonlinear inversion methods attract more geophysicists attention in recent years. 
[bookmark: OLE_LINK13][footnoteRef:0] The artificial neural network(ANN) is one of the most active nonlinear inversion methods, it has very high computation efficiency because the complicated forward model calculation is unnecessary in iteration. All the geoelectric parameters and the forward model relations are implied in the weight and threshold parameters of ANN. And it is different from the non-linear Monte Carlo method with global space search solution (He et al., 2018; Jha et al., 2008; Pekşen et al., 2014; Sharma, 2012; Tran and Hiltunen, 2012). Srinivas et al. (2012) compared the inversion performance of BP, radial basis function(RBF) and generalized regression neural network (GRNN) in vertical electrical sounding data, then established a 1-D inversion model with BP and finally realized the parameters inversion. Maiti et al. (2012) proposed a Bayesian neural network training method in 1-D electrical sounding. Jiang et al. (2018) improved the training method for kernel principal component wavelet neural network and achieved the resistivity imaging. Jiang et al. (2016a) gave a learning algorithm based on information criterion (IC) and particle swarm optimization for RBF network which improves the global search ability. Johnson (2017) utilized neural network method to invert multi-layer georesistivity sounding. Jiang et al. (2016b) presented a pruning Bayesian neural network (PBNN) method for resistivity imaging and solved the instability, local minimization problems. Raj et al. (2014) solved non-linear apparent resistivity inversion problems with ANN. The ANN has been widely applied in electric prospecting data interpretation for its powerful fitting ability. However, the neural network method is sensitive to initial parameter settings and falls easily into local minimum. Lots improved methods were proposed for balancing the convergence rate and inversion quality. Zhang and Liu (2011) proposed ant colony optimization for ANN and applied in high density resistivity, acquired smaller inversion errors and higher determinant coefficients. Dai et al. (2014) suggested a differential evolution (DE) for BP which enhanced the global search ability. Marina et al. (2014) introduced the genetic algorithm for ANN.  [0:  Conflicts of Interests
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The Particle swarm optimization (PSO) has simple structure, fast convergence rate, high accuracy and global optimization ability. FernándezFernndez et al. (2010) successfully introduced the PSO in 1-D resistivity inversion. Godio and Santilano (2018) applied it in geophysical inversion and deduced a depth resistivity earth model. Since the PSO’s global searching performance, the BP’s initial weights and thresholds can be trained by PSO and then the BP’s global optimization ability can be improved. Comparing to the standard PSO (SPSO), a chaotic oscillation inertia weight PSO (COPSO) which can accelerate the convergence rate in the early stage was proposed naturally(Shi et al., 2009).
The paper structure is as following: the principle of PSO algorithm with different inertia weights schemes, the BP neural network and the proposed COPSO-BP algorithm are given in section 2. Then, the COPSO-BP algorithm performance is validated by two typical testing functions in section 3. And in later section, inversion simulations of a three-layer and five-layer geoelectric models are carried out, the hidden layer neuron numbers determining method is put forward and algorithms performance is compared.
2  Principle of COPSO-BP Algorithms
2.1  Chaotic Oscillation PSO algorithm
[bookmark: OLE_LINK3]For N-dimensional optimization problem, supposing the position (resistivity and thickness for layered model parameters inversion) and velocity(update speed) of the i-th particle (global search group number) at time t are xi= (xi1, xi2,…, xiN) and vi= (vi1, vi2,…, viN) respectively. Then, at time t+1 ,they can be calculated by the iterations as

	                   	                   (1)

                                                                (2)
[bookmark: OLE_LINK26][bookmark: OLE_LINK25]where r1,r2 are random value evenly distributed in the interval (0,1), c1,c2 are learning factors (usually equal to 2). And pid, pgd means the individual and global maximum.
The inertia weight parameter ω affects the algorithm performance seriously. A fixed weight always was used in the early time, and then various dynamic weights were proposed. Shi et al. (2010) have summarized several methods as

                                                    (3)

                                                  (4)

                                    (5)
Where ωs and ωe are the start and end weight. The t, Tmax are the current and maximum iteration. The above weights are of smooth and monotonically decreasing. In this paper, we proposed a decreasing oscillation weights scheme which was based on chaotic logistic equation. Its specific calculation formula as


                                               (6)

                                              (7)
[bookmark: OLE_LINK15]where μ is the control parameter. A complete chaos state is established for x∈(0,1) and μ = 4, an inertia weight is then obtained from Eq.(7). Numerical experiments were carried out correspondingly and showed that the initial value of x0 has little effect on inertia weight ω. The inertia weights comparison was shown in Fig.1 where x0 = 0.234 and μ = 4 for chaotic oscillation.
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Fig. 1 Inertial weight curves comparison
2.2  BP Neural Network
BP neural network is multi-layer feed forward structure, and a typical three-layer network is shown in Fig. 2 (Yong et al., 2009).


Fig. 2 Three-layer BP neural network structure
where x1,x2,…,xn are the input value, y1,y2,…,ym are the predicted output, wij,wjk are the network weights. The threshold parameter α is defined in hidden layer with its output 


                                            (8)
where l is the hidden layer nodes numbers, f is the activation function with different expressions, and the most widely used is sigmoid type function. The predicted output for the k-th unit is calculated by

                                                          (9)
And parameter b means the output threshold. Then the prediction error can be determined based on predicted output Ok and the expected output Tk as ek = (Tk-Ok)Ok(1-Ok). The updating formula for weights and thresholds are as following

                                           (10)
where i=1,2,…,n; j=1,2,…,l; k=1,2,…,m; and η is the learning rate.
2.3  BP Neural Network with COPSO algorithm
The initial parameters are chosen randomly, which affects the convergence rate, learning efficiency and perhaps falling into local minimum. The Chaotic Oscillation PSO (COPSO) has a much better global optimization capability, therefore, we proposed the COPSO algorithm for BP parameters’ training. The COPSO-BP pseudo-codes were briefly described as following:

Table.1 Pseudo-codes of COPSO-BP algorithm
	1:
	BP network structure definition (neuron numbers n,l,m, and activation function)

	 2：
	COPSO initialization for BP (weights, threshold as X. PSO parameters as Vmin,Vmax,ɷc,c1,c2, size M, Tmax)

	 3：
	Initializing BP with Xi (i=1,2,…,M) and evaluating fitness by Eq.(11) for each individual

	 4：
	Setting the pid and pgd 

	5:
	While iter< Tmax do

	6:
	   updating inertia weight by Eq.(7)

	7:
	   for i=1:M (all particles) do

	8:
	      updating velocity Vi by Eq.(1)

	9:
	      updating particle position Xi by Eq.(2)

	10:
	      Initializing BP with new Xi and calculating fitness by Eq.(11)

	11:
	      if  Xi is better than pid

	12:
	         Set Xi is to be pid

	13:
	       End if

	14:
	       if  Xi is better than pgd

	15:
	           Set Xi is to be pgd

	16:
	        End if

	17:
	    End for i

	18:
	         iter = iter+1

	19:
	End While

	20:
	Initializing BP with pgd

	21:
	Inputting and obtaining the predicted output


The formula for calculating the i-th particle fitness is defined as

                                                      (11)

where S is the number of training set samples, m is the output neurons number, Ysj is the j-th referencetrue output of the s-th sample, and is the corresponding predict output.
[bookmark: OLE_LINK150][bookmark: OLE_LINK149]3  Algorithm Testing
[bookmark: OLE_LINK158][bookmark: OLE_LINK162]In order to investigate the COPSO-BP performance and reliability, two typical testing functions were adopted and simulations were performed in MATLAB.
(1) Rosenbrock function：

                                  (12)
(2) Bohachevsky function：

              (13)
The standard PSO-BP (SPSO-BP) with linear decreasing inertia weight as Eq.(3), the COPSO-BP were carried out respectively. The three-layer BP of n-s-1 structure is constructed with different hidden nodes. The PSO parameters are population size M = 60, learning factors c1 = c2 = 2.0, the maximum iteration Tmax = 30, inertia weight ωs = 0.9, ωe = 0.4, x0 = 0.234 and μ = 4 for chaotic parameters, the search dimension D = n×s+s×1+s+1 which includes all the neuron weights and thresholds. For BP network, 150 training samples and 50 testing samples were randomly produced within the variable range. The training error is defined as

                                                        (14)
[bookmark: OLE_LINK14]where S is the training samples number, Ts ,k, Osk are the expected and predicted output for training sample s respectively. The network structures with minimum training errors for Rosenbrock and Bohachevsky functions are 2-7-1 and 3-6-1 respectively. The simulation performs 20 times for each testing function with SPSO-BP and COPSO-BP algorithms. The numerical result was shown in Table.2. One of the evolutionary training error curves were shown in Fig.3, and the fitting curves of COPSO-BP algorithm were shown in Fig.4.
Table.2 Comparison of SPSO-BP and COPSO-BP algorithm for testing functions
	 Testing functions
	SPSO-BP
	COPSO-BP

	
	Average value
	Optimal value
	Average value
	Optimal value

	Rosenbrock 
	2.375e-3
	2.300e-5
	5.226e-3
	2.410e-06

	Bohachevsky
	0.225
	1.024e-3
	0.193
	3.360e-4


[image: ][image: ][image: ]
Fig. 3 Training error curves of SPSO-BP and COPSO-BP algorithms
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Fig. 4 Fitting curves of COPSO-BP algorithm
It can be seen in Table.2 that both the SPSO-BP and COPSO-BP algorithms can acquire a relative high accuracy for testing functions, the COPSO-BP is a slightly litter better than SPSO-BP. However, the COPSO-BP has better convergence rate and optimization efficiency in the early stage in Fig.3. Therefore, the SPSO-BP and COPSO-BP algorithms have strong learning ability, good stability and generalization ability, which will be suitable for TEM inversion.
[bookmark: OLE_LINK18]4  Layered model and parameter analysis
4.1  Forward Model
[bookmark: OLE_LINK225][bookmark: OLE_LINK258][bookmark: OLE_LINK259][bookmark: OLE_LINK224]According to Kaufman’s derivation (1983), the frequency response of central loop source for the layered model takes the following Hankel transform

                                             (15)
[bookmark: OLE_LINK235][bookmark: OLE_LINK236][bookmark: OLE_LINK245][bookmark: OLE_LINK244]where a is the radius of transmitting coil, I is the excitation current, ρ is the center distance between the transmitting coil and the receiving coil, J1(mρ) is the first-order Bessel function, m is integral variable, m1 = (m2-k12)1/2, k1 is the conduction current, σ1 is the conductivity, k1 = -iωμσ1, and R1* is the first layer apparent resistivity conversion function which can be obtained by the following recurrence formula

                                                     (16)
[bookmark: OLE_LINK68][bookmark: OLE_LINK67]There is no analytical solution for the time-domain response for layered model, it can only be solved by numerical calculation. The Hankel transform in formula (15) can beis calculated by fast algorithm as an improved digital filtering algorithm with 47 points J1 filter coefficientfilter method, and then time response can be obtained using the Gaver-Stehfest transform as follows:

                                                 (17)
[bookmark: OLE_LINK5]where sn = (ln2/t)×n, Kn is the coefficient, N is determined by the computer bits, generally N=12.
The ramp excitation current of TEM is

                                                     (18)
where T1 is the turn-off time, and the Laplace transform is

                                       (19)
Therefore, for a specific layered model, the apparent resistivity conversion function R1* is firstly calculated by recurrence formula (16) based on geoelectric structure parameters. And then the frequency response at fixed point Hz(ω) is calculated by Hankel transform as formula (15). For ramp excitation, the Laplace transform of Hz(s) should multiplied by I(s). Finally, the time response Hz(t) is obtained by Gaver-Stehfest transform as formula (17). So the Hz(t) is obtained by a Gaver-Stehfest transform, a Hankel transform and a recurrence calculation, and it is somewhat heavy computational consuming.
However, the vertical magnetic field Hz(t) is the actual observed signal in transient electromagnetic method in engineering applications. It is the inversion input and output is geoelectric structure parameters. A method which can avoid the complicated forward model calculation is of great importance in algorithm efficiency.
4.2  BP network design and COPSO algorithm
For BP structure, the output nodes are determined by the number of inversion geoelectric parameters, the input nodes are determined by the samples number of Hz(t), the hidden nodes varies according to approximation performance. As a three-layer or five-layer geoelectric model, its geoelectric parameters are 5 (three resistivity and two thickness parameters) or 9 (five resistivity and four thickness parameters), the output nodes are 5 or 9 correspondingly. The characteristic samplings of Hz(t) are chosen as 10 or 20, which are determined by the model’s complexity,  more layers mean mores sampling points needed. The 10 samplings were selected in this paper hence with 10 input nodes. While for the hidden layer neuron, its number is related to the weights and threshold parameters amount directly and affects the BP performance greatly. An appropriate hidden nodes number is necessary and a determination coefficient R2 is defined for evaluating as

                            (20)

where Yi is the reference valuetrue value, is the predicted value for i-th training data, n is the training data number. A larger determination coefficient means a better approximation performance. The simulations on hidden nodes effect were carried out for a three-layer and five-layer geoelectric models. The BP structure is 10-s-5 and 10-s-9, its transfer, training and learning functions are ‘Log sigmodial’, ‘Levenberg-Marquardt’ and ‘Gradient descent momentum’ respectively. The average, minimum and maximum value of R2 were obtained after running 20 times for each simulation. The R2 curves were shown in Fig.5.
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（a）Three-layer geoelectric model               （b）Five-layer geoelectric model
Fig. 5 Influence of hidden layer nodes on R2 for different geoelectric model
It can be seen that the optimal neural network structures were 10-2-5 and 10-5-9 for three and five-layer models based on the maximum R2. Then, the PSO-BP algorithms with different inertia weight were implemented and compared for three-layer model. The BP structure was chosen as 10-2-5, four types of inertia weight as Eq. (3~7) in PSO were compared in Table.3.
[bookmark: OLE_LINK17]Table.3 Comparison of different inertia weights in PSO algorithms ( ωs = 0.9, ωe = 0.4)
	inertia weight
	iteration number
	minimum fitness
	average fitness
	convergence time(s)

	ω1
	9
	1.3914e-3
	1.3982e-3
	65.21

	ω2
	29
	1.4406e-3
	1.4418e-3
	204.97

	ω3
	25
	1.4168e-3
	1.4224e-3
	189.17

	ωc
	6
	1.3846e-3
	1.3925e-3
	44.34


The simulation was implemented on Core (TM) i5-7500 with 8GB memory. It is obviously found in Table.3 that the COPSO algorithm has much faster convergence rate, less iteration number and time consuming. 
4.3  Layered model inversion
A 3-layered and 5-layered geoelectric models were investigated, which the PSO parameter values are the same as those of the Algorithm Testing parts in the paper.. In order to simulate actual TEM applications, the ramp turn-off is taken into account. Considering the probability distribution characteristic of above algorithms, the average of 20 simulation results is chosen. The BP, SPSO-BP, COPSO-BP algorithms and non-linear programming genetic algorithm (NPGA) (Li et al., 2017) were compared.
[bookmark: OLE_LINK34](1) 3-layered H type model
The central loop TEM parameters are set as following, transmitting coil radius a = 100 m, ramp emission current is 100 A, turn-off time is 1 μs. In the geoelectric model, the resistivity ρ1 = 100 Ω·m, ρ2 = 10 Ω·m, ρ3 = 100 Ω·m and thickness h1 = 100 m, h2 = 200 m. 
The BP training samples which is a series of Hz(t) for different geoelectric parameters were generated by TEM forward model. The resistivity ranges were ρ1∈(50,150), ρ2∈(5,15), ρ3∈(50,150), the thickness range were h1∈(50,150), h2∈(100,300), and choosing 1000 random groups. The resistivity and thickness distributions of ρ1 and h1 were shown in Fig.6. 
[image: ][image: ]
Fig. 6 Distribution of resistivity ρ1 and thickness h1 in training samples 
The inversion results were shown in Table.4. and Fig.7~8. The BP type algorithms were superior to the NPGA inversion in Table.4. Moreover, the inversion accuracy, convergence rate and optimization ability of the COPSO-BP algorithm were better than others.
Table.4 Inversion comparison of three-layer H type geoelectric model
	H type
	resistivity ρ (Ω·m)
	thickness h(m)
	total relative error(%)

	
	ρ1
	ρ2
	ρ3
	h1
	h2
	

	reference valuetrue values
	100
	10
	100
	100
	200
	--

	BP relative error(%)
	-0.275
	-0.625
	0.765
	-0.968
	-0.649
	3.284

	SPSO-BP relative error(%)
	0.062
	-0.322
	-0.737
	-0.579
	-0.970
	2.672

	COPSO-BP
	100.031
	9.991
	99.310
	100.234
	200.886
	--

	COPSO-BP relative error(%)
	0.031
	-0.087
	-0.689
	0.234
	0.443
	1.487

	NPGA relative error(%)
	0.133
	-0.034
	3.450
	-7.305
	-0.401
	11.323


[image: ][image: ]
Fig. 7 Fitness curves of SPSO-BP and COPSO-BP   Fig. 8 Mean square error curves comparison
Additional results showed that the solution range of ρ1 and h1 in 20 times simulations for above algorithms were ρ1∈(97.980,103.102), h1∈(96.962,102.480) for BP, ρ1∈(98.954,101.137), h1∈(96.955,101.829) for SPSO-BP, ρ1∈(99.382,100.989), h1∈(97.877,101.044) for COPSO-BP respectively. Therefore, the COPSO-BP can acquire higher accuracy and is more stable.
(2) 5-layered KHK type model
A 5-layered KHK type geoelectric model was adopted and its resistivity were ρ1 = 100 Ω·m, ρ2 = 300 Ω·m, ρ3 = 50 Ω·m, ρ4 = 200 Ω·m, ρ5 = 30 Ω·m and thickness were h1 = 100 m, h2 = 200 m, h3 = 300 m, h4 = 500 m. 
The training samples with parameter ranges were ρ1∈(50,150), ρ2∈(150,450), ρ3∈(25,75),  ρ4∈(100,300) , ρ5∈(15,45) for resistivity, and h1∈(50,150), h2∈(100,300), h3∈(150,450), h4∈(250,750) for thickness. The 1000 groups training samples were generated within above ranges. The inversion results were shown in Table.5 and Fig.9~10. As can be seen that the COPSO-BP algorithm has better global optimization performance. 
Table.5 Inversion comparison for five-layer KHK type geoelectric model
	KHK type
	resistivity ρ(Ω·m)
	thickness h(m)
	Total relative error(%)

	
	ρ1
	ρ2
	ρ3
	ρ4
	ρ5
	h1
	h 2
	h 3
	h 4
	

	reference valuetrue values
	100
	300
	50
	200
	30
	100
	200
	300
	500
	--

	BP relative error(%)
	-1.006
	-0.862
	-1.014
	-0.030
	1.119
	-0.362
	-0.298
	-0.575
	-0.376
	5.645

	SPSO-BP relative error(%)
	0.429
	1.040
	-0.577
	-0.071
	-0.883
	-0.002
	0.657
	-0.655
	-0.316
	4.634

	COPSO-BP
	99.594
	299.469
	50.082
	199.092
	29.937
	99.501
	200.481
	301.800
	497.670
	--

	COPSO-BP relative error(%)
	-0.405
	-0.176
	0.164
	-0.453
	-0.209
	-0.498
	0.240
	0.600
	-0.465
	3.214

	NPGA relative error(%)
	-6.211
	-0.008
	-0.974
	3.930
	3.083
	-0.691
	0.505
	-2.900
	-3.370
	19.062


[image: ][image: ]
Fig. 9 Fitness curves of SPSO-BP and COPSO-BP     Fig. 10 Mean square error curves comparison
(3) Inversion comparison
Three kinds of BP methods as traditional BP, the SPSO-BP and the COPSO-BP algorithms were compared in Table.6. Hence, the training times of COPSO-BP was obviously less than SPSO-BP and was almost equal to BP, it can obtain better precision especially for its global optimization performance.
Table.6 Simulation comparison for different algorithms
	inversion method
	three-layer H type model
	five-layer KHK type model

	
	training times
	minimum training error
	test relative error rate(%)
	training times
	minimum training error
	test relative error rate(%)

	BP
	3
	0.2882
	3.284
	5
	0.3013
	5.645

	SPSO-BP
	7
	0.2832
	2.672
	15
	0.2992
	4.634

	COPSO-BP
	5
	0.2725
	1.487
	6
	0.2900
	3.214


The inversion of COPSO-BP and NGPA were compared in Fig.11. The fitting ability of COPSO-BP was much better than NPGA. 
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(a) Three-layer H type geoelectric model              (b) Five-layer KHK type geoelectric model
Fig. 11 Inversion comparison for different geoelectric models
(4) Robust performance analysis 
In order to verify the algorithm robustness, 5%(26dB) and 10%(20dB) Gaussian random noise was added in TEM data for three-layer geoelectric model. Three kinds of inversions were implemented respectively. The results and comparison were shown in Table.7. The Hz(t) and data with 5% noise were shown in Fig.12.
Table 7 Comparison of inversion results for three-layer H type (with noise) model
	model parameters
	
	resistivity ρ(Ω•m)
	thickness h(m)
	Total relative error(%)

	
	
	ρ1
	ρ2
	ρ3
	h1
	h2
	

	true value
	
	100
	10
	100
	100
	200
	--

	without noise
	BP
	99.724
	9.937
	100.765
	99.031
	198.701
	3.284

	
	COPSO-BP
	100.031
	9.991
	99.310
	100.234
	200.886
	1.487

	5% noise
	BP
	101.374
	9.966
	98.283
	101.255
	199.282
	5.039

	
	COPSO-BP
	100.252
	9.977
	98.222
	101.206
	199.228
	3.847

	10% noise
	BP
	90.525
	9.931
	99.481
	101.748
	203.105
	13.976

	
	COPSO-BP
	104.472
	9.96050
	101.345
	100.570
	199.437
	7.064


[image: ]
Fig.12 Forward data of Hz and data with 5% noise
As can be seen from Table 3, after applying 5% and 10% Gaussian noise the COPSO-BP inversion has higher robust ability. The accuracy was obviously improved based on the total relative error data.
4.4 Field example
In order to test the effectiveness of the method, a transient electromagnetic vertical magnetic field (Hz) with 10 measuring points at the 380m to 1280m of the No. 1 line from a mining area in Anhui Province was selected. After the data processing, the inversion was performed using the 3-layer neural network model in the previous section, and the results of BP and COPSOBP inversion were compared.Figure 13 shows the comparison between the surveyed data and the inversion data at 380m of the No. 2 line in the mining area.Figure 14 displays the pseudo-sections of the 10 sets of inversion data combined with the geological data interpolation smoothing.It can be seen from Fig. 14 that the first layer is a low resistivity (100~200 Ω·m), which is inferred to be the second layer (T2g22) gray dolomite of the Middle Triassic old Malague section, with a thickness of about 200 m; the second layer is the second highest resistivity (300~400 Ω·m), which is surmised to be the first layer (T2g21) dolomite of the Middle Triassic old Malaga section, with a thickness of about 400m; the third layer is high resistivity (600~800Ω·m), which is speculated to be the 6th layer (T2g16) limestone dolomite of the Middle Triassic old group. The results are basically consistent with the geological conditions of the mining area, indicating the feasibility and effectiveness of the neural network method.And the results of COPSO-BP inversion are better than those of BP, which the inversion position is more accurate, the shape and spacing are clearer, and the resistivity of each layer is more consistent with the those of the actual geological model.
[image: ][image: ]
(a) BP                             (b) COPSOBP
Figure 13. 1D inversion forward results. (a) BP; (b) COPSOBP.
[image: ][image: ]
(a) BP                               (b) COPSO-BP
Figure 14. Inversion results of BP (a) and COPSO-BP (b).
5 Discussion
The inversion is performed for 3-layered (H-type) and 5-layered (KHK-type) geoelectric models in this paper. The results show that the BP neural network is better than the NPGA algorithm, because the BP method does not need to use the forward algorithm repeatedly, and its calculation time is short, which is different from the nonlinear heuristic method based on global space search solution.
The BP main advantage is that it can interpret the transient electromagnetic sounding results quickly after training the network. Furthermore, BP algorithm could automatically obtain the "reasonable rules" between input and output data by learning, and it can adaptively store the learning content in the network weight, which the BP neural network has the high self-learning and self-adaptation ability. In addition, the superior simulation results of the test function indicate that the BP algorithm can approximate any nonlinear continuous function with arbitrary precision, which means it has strong nonlinear mapping ability; the inversion results of the layered geoelectric model with uncorrelated noise data prove that the BP algorithm has strong robustness, which means it has the ability to apply learning results to new knowledge. However, the BP neural network weight is gradually adjusted by the direction of local improvement, which causes the algorithm to fall into local extremum, and the weight converges to a local minimum that leads to the network training failure; Moreover, BP is very sensitive to the initial network weight, and the initialization network with different weight values tends to converge to different local minimums, so that obtains different results each time; In addition, the BP algorithm is a gradient descent method essentially, which leads to a slow convergence rate.
   From the results of the layered model and parametric analysis part, it can be seen that single BP algorithm has higher error value than SPSO-BP, because BP method is sensitive to initial weight and easy to fall into local minimum values, thus a heuristic global search particle swarm optimization algorithm with simple structure, rapid convergence and high precision is applied to optimize the weight and threshold of BP neural network, which improves the global optimization performance of the algorithm. Furthermore, the PSO algorithm adjusts the inertia weight adaptively based on the chaotic oscillation curve that is similar to the annealing process in the simulated annealing algorithm (SA), which jumps out the local extremum faster in the early stage and accelerates the convergence and reduces the training times. Therefore, compared with SPSO-BP and BP algorithm, the inversion results of COPSO-BP are closer to the theoretical data with smaller error fluctuations, stronger anti-noise, better generalization performance and higher stability, which it is effective in solving geophysical inverse problems.
From the simulation experiment, it is not clear how the weight organization affects the BP neural network weight learning process. It is necessary to conduct a more systematic study on this problem to improve our understanding of how BP neural network handles training data.
65  Conclusion
The nonlinear COPSO-BP method was proposed for TEM inversion. The BP’s initial weight and threshold parameters were trained by COPSO algorithm which makes it not easy to fall into local optimum. The chaotic oscillation inertia weight for PSO was proposed so as to improve the PSO’s global optimization ability and fast convergence in early stage. The layered geoelectric model inversion showed that the COPSO-BP method has better accuracy, stability and relative less training times. 
[bookmark: _Hlk518825836]
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