
Study of the fractality in an MHD Shell model forced by solar wind
fluctuations
Macarena Domínguez1, Giuseppina Nigro2, Víctor Muñoz3, Vincenzo Carbone2, and Mario Riquelme1

1Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 8370449 Santiago, Chile
2Dipartimento di Fisica, Universita della Calabria, 87036 Rende CS, Italy.
3Departamento de Física, Facultad de Ciencias, Universidad de Chile, 7800003 Santiago, Chile.

Correspondence to: Macarena Domínguez (mdominguezv@ug.uchile.cl)

Abstract. The description of the relationship between interplanetary plasma and geomagnetic activity requires complex mod-

els. Drastically reducing the ambition of describing this detailed complex interaction, and if we are interested only in the

fractality properties of the time-series of its characteristic parameters, a magnetohydrodynamic (MHD) shell model forced

using solar wind data, might provide a possible novel approach. In this paper we study the relation between the activity of

the magnetic energy dissipation rate obtained in one such model, which may describe geomagnetic activity, and the fractal5

dimension of the forcing.

In different shell model simulations, the forcing is provided by the solution of a Langevin equation where a white noise is

implemented. This forcing, however, has been shown to be unsuitable at describing the solar wind action on the model. Thus,

we propose to consider the fluctuations of the product between the velocity and the magnetic field solar wind data as the noise

in the Langevin equation, the solution of which provides the forcing in the magnetic field equation.10

We compare the fractal dimension of the magnetic energy dissipation rate obtained, of the magnetic forcing term, and of

the fluctuations of v · bz , with the activity of the magnetic energy dissipation rate. We examine the dependence of these fractal

dimensions on the solar cycle. We show that all measures of activity have a peak near solar maximum. Moreover, both the

fractal dimension computed for the fluctuations of v · bz time series and the fractal dimension of the magnetic forcing have a

minimum near solar maximum. This suggests that the complexity of the noise term in the Langevin equation may have a strong15

effect in the activity of the magnetic energy dissipation rate.

Copyright statement. TEXT

1 Introduction

There are many investigations regarding the relation between interplanetary plasma parameters and the occurrence of geomag-

netic events in the Earth’s magnetosphere (Kane, 2005; Gonzalez et al., 1994, 2004; Tsurutani et al., 1988; Burton et al., 1975;20

Rathore et al., 2015; Snyder et al., 1963). Among these, Rathore et al. (2015); Kane (2005) show a decrease of the antiparallel
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geomagnetic field, Bs, before the occurrence of the minimum of Dst. While Gonzalez et al. (1994, 2004); Burton et al. (1975)

introduce an energy balance equation where the Dst index and the rectified interplanetary electric field (dv ·Bz) are related.

The study of the fractal dimension in various fields has contributed to understanding diverse phenomena, adding a new,

interdisciplinary perspective to nonlinear systems. For example, this approach has been used to study seismicity, to describe the

distribution of epicenter and hypocenters in a given geographical zone (Pastén et al., 2011), or by considering the relationship5

between the fractal dimension of the spatial distributions of the aftershocks and the faults (Nanjo and Nagahama, 2004; Sahimi

et al., 1993); in the study of various catastrophic events such as seismic and epileptic shocks, where the fractality of the relevant

time series has been analyzed to extract information on precursor activity (Eftaxias et al., 2006, 2008); in music, where the

characterization of musical pieces has been done through fractal dimensions (Gündüz and Gündüz, 2005; Hsü and Hsü, 1990;

Su and Wu, 2007); and in plasma physics, where the use of fractal dimensions to understand plasma properties is becoming10

increasingly common (Chang, 1999; Macek et al., 2005; Szczepaniak and Macek, 2008; Chang and Wu, 2008; Neto et al.,

2008; Materassi and Consolini, 2007; Zaginaylov et al., 2002; Carreras et al., 2000; Yankov, 1997; Dimitropoulou et al., 2009;

McAteer et al., 2010; Domínguez et al., 2014, 2017, 2018).

Fractal dimensions can be calculated from either time series or spatial patterns. For instance, the fractal dimension of the

time series of auroral electrojets (AE) or from spatial data such as solar magnetograms, has shown interesting properties,15

being generally a non-integer value and less than the Euclidean dimension (Aschwanden and Aschwanden, 2008a, b;

Kozelov, 2003; McAteer et al., 2005). Several studies have analyzed the relationship between the fractal and multifractal

dimension with physical properties, which has provided a tool to predict events on the surface on the Sun (solar flares), the

solar wind, and the Earth’s magnetosphere (Dimitropoulou et al., 2009; Aschwanden and Aschwanden, 2008a; McAteer et al.,

2010; Uritsky et al., 2006; Georgoulis, 2012; McAteer et al., 2005; Conlon et al., 2008; Chapman et al., 2008; Kiyani et al.,20

2007).

There are many different methods to calculate the fractal and multifractal dimensions. In a previous work, we have studied

the temporal evolution of solar and geomagnetic activity, by calculating a scatter box-counting fractal dimension from solar

magnetograms and Dst data (Domínguez et al., 2014). The fractal dimension of the Dst analysis decreases during magnetic

storms, an effect that is consistently observed across several time scales, from individual storms to a complete solar cycle. Our25

results suggest that this definition of fractal dimension is an interesting proxy for complexity in the Sun-Earth system, not only

for static data but also when the evolution of solar and geomagnetic activities are followed.

Moreover, in Domínguez et al. (2017), the authors show that the fractal dimension and the occurrence of the bursts in

magnetic energy dissipation rate εb(t) computed in a magnetohydrodynamic (MHD) shell model integration have correlations

similar to those observed in geomagnetic and solar wind data. In that work, the forcing terms of the MHD shell model are30

provided by the solution of the Langevin equation, where a white noise is employed. That forcing, previously adopted, shows

stationary statistical properties, hence revealing its inadequacy to describe the effect of solar wind on the magnetospheric

activity. In order to mimic the evolution of the magnetospheric forcing due to the solar wind, in Domínguez et al. (2018) the

MHD shell model has been forced using magnetic and velocity field data measured in the solar wind. This latter work shows a
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peak in the activity of εb(t) near solar maximum, whereas the fractal dimension of the forcing magnetic field time series has a

minimum near solar maximum.

Considering these results, in this paper we present an attempt to describe the complex interaction between solar wind and

magnetosphere using a very simple model, where we employ v · bz data to deduce a suitable forcing for the magnetic field

evolution. In particular the fluctuations of v ·bz values inferred from solar wind data are introduced as the noise in the Langevin5

equation. Then, the solution of this latter equation provides a forcing that we introduce in the magnetic field equation. Thus, by

using data that are related to the occurrence of geomagnetic activity, our aim is to investigate whether the statistical properties

described in this model evolve because of the evolution in the statistical properties of the forcing term. In particular, in this

paper we study whether there is a relationship between the fractality of the forcing, and the activity and the fractality of the

dissipation.10

The paper is organized as follows. In Sec. 2 we present the main features of the MHD shell model used to calculate the

magnetic energy dissipation rate εb(t), as well as the method used to modify the forcing term of the model. In Sec. 3 we

describe the method to calculate the fractal dimension of the fluctuation of v · bz used as noise term on the Langevin equation.

In Sec. 4 we describe the method to calculate the fractal dimension of the magnetic forcing term, and the energy dissipation

rate obtained from the shell model. In Sec. 5 we present the definitions of the activity parameters used to analyze the energy15

dissipation rate. In Sec. 6, the results obtained are presented and finally, in Sec.7 our conclusions are discussed.

2 Shell Model

In general, shell models allow to deal with the nonlinear dynamics of fluid systems, reproducing relevant features of MHD

turbulence even for high Reynolds numbers, which involve a large computational cost in direct numerical simulations (Boffetta

et al., 1999). This is done by means of a set of equations —a simplified version of the Navier-Stokes system— which greatly20

reduce the available degrees of freedom (Obukhov, 1971; Gledzer, 1973; Yamada and Ohkitani, 1988).

In this work, we use the MHD Gledzer-Ohkitani-Yamada (GOY) shell model, which has been shown to be adequate to de-

scribe the dynamics of the energy cascade in MHD turbulence (Lepreti et al., 2004), dynamo effect (Nigro and Carbone, 2010;

Nigro and Veltri, 2011), statistics of solar flares (Boffetta et al., 1999; Lepreti et al., 2004; Nigro et al., 2004), finite-time singu-

larities in turbulent cascades (Nigro and Carbone, 2015) and to model the fractal features of a magnetized plasma (Domínguez25

et al., 2017, 2018).

This model is described in more detail in our previous works (Domínguez et al., 2017, 2018). Below we focus on the choice

of forcing terms, which is relevant for the present study.

In the model, the wave-vector space (k-space) is divided into N discrete shells of radius kn = k02n (n= 0,1, . . . ,N ). Then,

two complex dynamical variables un(t) and bn(t), representing, respectively, velocity and magnetic field increments on an30

eddy scale l ∼ k−1
n , are assigned to each shell.

The following set of ordinary differential equations describes the dynamical behavior of the model (Lepreti et al., 2004)
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dun
dt

=−νk2nun + ikn

{
(un+1un+2− bn+1bn+2)

−1

4
(un−1un+1− bn−1bn+1)

−1

8
(un−2un−1− bn−2bn−1)

}∗

+ fn , (1)

dbn
dt

=−ηk2nbn + ikn
1

6
{(un+1bn+2− bn+1un+2)

+(un−1bn+1− bn−1un+1)5

+(un−2bn−1− bn−2un−1)}∗ + gn . (2)

Here, ν and η are, respectively, the kinematic viscosity and the resistivity; fn and gn are external forcing terms acting,

respectively, on the velocity and magnetic fluctuations.

Initially, velocities in the 2nd and 4th shell are set to complex random numbers, whereas the initial magnetic field fluctuations

are set to zero, bn(t= 0) = 0. (Domínguez et al., 2017, 2018)10

Based on Domínguez et al. (2017), where a comprehensive analysis of the statistical properties of the shell model for

various values of ν and η is carried out, we set ν = η = 10−4, as it is in the range where the model is able to best reproduce

the intermittent behavior observed in magnetized plasmas. Given the values of the dissipative coefficients ν and η, we take

N = 19, also consistent with the choices in Refs. Domínguez et al. (2017, 2018), a value which guarantees a nonlinear range

sufficiently large to describe the system dynamics. We then numerically integrate the shell model Eqs. (1)–(2), we can calculate15

the magnetic energy dissipation rate defined as:

εb(t) = η

N∑
n=1

k2n
∣∣b2n∣∣ . (3)

Notice that a dissipation rate for the velocity field can also be defined. However, this is not relevant to our model, as it would

be related to heating, whereas there is no equation for temperature in our analysis. Magnetic storms, on the other hand, are

related to magnetic dissipation rates.20

In previous work (Domínguez et al., 2017; Lepreti et al., 2004; Nigro et al., 2004; Nigro and Carbone, 2010; Nigro and

Veltri, 2011; Nigro, 2013; Nigro and Carbone, 2015) the forcing terms were obtained from the Langevin equation

df̃n
dt

=− f̃n
τ0

+µ(t), (4)

where f̃n = fn or gn, τ0 is a correlation time introduced in a Gaussian white noise µ of width σ. This provides a stochastic

way to drive turbulence in the model. However, turbulence in space plasmas is not always subject to stationary drivers. Such is25

the case, for instance, of the Earth’s magnetosphere. This system is driven by the solar wind, which itself has its own dynamics

on short time scales due to local events such as CMEs, and on longer time scales as the solar cycle. In this paper we deal with

this property of the drivers, by considering a non-stationary forcing of the shell model.
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One possible way of characterizing the stationarity of the forcing given by Eq. (4) is by calculating its fractal dimension,

which is a simple measure of the complexity of the time series. Following Domínguez et al. (2014, 2017), a scatter plot is built

from the time series, and then the box-counting fractal dimension of this plot is calculated and associated to the time series.

When this method is applied to the output of Eq. (4) in various time windows, a value of D ∼ 1.7 is obtained. Its independence

of the used time window is a manifestation of the stationary character of the time series.5

A first method to change the fractality of the forcing terms was presented in Domínguez et al. (2018). In that case, from two

scalars —the flow speed and the average magnetic field of the solar wind as obtained by OMNI (https : //cdaweb.gsfc.nasa.gov/istp_public/),

two complex series f1 and g1 were built, which were used as forcing of the first shell in Eqs. (1)–(2). In this way, it was shown

that the activity of the resulting εb(t) time series has a peak near solar maximum. However, the magnetic field time series

seems to be the most sensitive, because its fractal dimension seems to correlate with the solar cycle much more than the fractal10

dimension of the velocity field time series. In fact, the latter does not show any particular sensitivity to the solar magnetic

activity.

We now explore a second possibility to change the fractality of the forcing terms, namely, changing the method to calculate

the stochastic term for magnetic forcing, which corresponds to µ(t) in Eq. (4). The conventional method to solve this equation,

as mentioned above, considers µ(t) as a white Gaussian noise (Nigro et al., 2004; Lepreti et al., 2004).15

Usually the forcing is applied only on the velocity equation, while in Domínguez et al. (2017) this forcing is considered for

both the velocity and magnetic field equation.

Here, we will preserve the Gaussian noise for the velocity field, while for the magnetic field forcing we will use the fluctua-

tions in v · bz ,

µ(t) = v · bz −〈v · bz〉, (5)20

where v and bz are the velocity and z-component magnetic field of the solar wind, respectively. This difference between the

velocity and magnetic field forcing is because, as mentioned before, the velocity time series does not show any relation with

the solar magnetic activity (Domínguez et al., 2018).

The data of the solar wind used in this work are obtained from the OMNIWeb Plus data an service (https : //cdaweb.gsfc.nasa.gov/istp_public/).

We consider this source because OMNI is a compilation of data obtained from many space missions (IMP 8, Geotail, Wind25

and ACE) of the magnetic field of the solar wind near the Earth. More specifically, we use data of v and bz at 1 AU of distance

with 1 minute of resolution. The coordinate system of the data are the Geocentric Solar Ecliptic, GSE. Thus, the z-axis is the

projection of the axis of the Earth’s magnetic dipole (positive to the north) on the plane perpendicular to the x-axis (towards

the Sun).

Given that the forcing term must be a complex number in Eq. (2), a random phase ϕ is needed for each datum that is30

calculated from equation (4) for the magnetic case. Then,

fb(t) = f̃b(t)e
2πiϕ, (6)
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where the amplitude f̃b(t) corresponds to the solution of the Langevin equation using the modified µ(t), and fb(t) is the force

term used in the shell model code.

In order to account for the variability with solar activity, we generate 13 time series of the magnetic energy dissipation, each

one using the data corresponding to the 13 years of the 23th solar cycle (1996 to 2008). Once the time series are generated, we

define four indices to measure the activity of the magnetic energy rate (εb) and analyze the relationship between these and the5

fractality of the data.

3 Box-counting dimension of the fluctuation of v · bz

In this work, we use the same definition as in Domínguez et al. (2014, 2017) for the scatter plot box-counting fractal dimension.

The fractal dimension for each time series of the fluctuation of solar wind data [see Eq. (5)] is estimated from their scatter

diagram. If µ̄i is the i-th µ̄ datum in the series, and N̄ is the total number of data, the scatter diagram is a plot of µ̄1+(i+1)j10

versus µ̄1+i·j , for 0≤ i≤ (N̄ − 1)/j and with j integer.

Then, the scatter diagram is divided in square cells of a certain size ε, and we count the number N̄(ε) of cells which contain

a point. Next, we consider several values of ε, and we find the range of ε where log(N̄(ε)) scales linearly with logε. If the

slope in this region is given by −Dj , then in this region,

N̄(ε)∝ ε−Dj . (7)15

Figure 1 illustrates the three steps to calculate the fractal dimension, using data for year 2000. Two values of j are used as

an example, j = 1 and j = 10.
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Figure 1. Left: v · bz −〈v · bz〉 for the year 2000. Center: Scatter diagram. Right: log-log plot of Eq. (7). Results for two values of the data

sampling are shown: j = 1 (red points) and j = 10 (blue points).

4 Box-counting dimension of the magnetic forcing term and the energy dissipation rate

We used the same definition as in the previous section to calculate the fractal dimension of f̃b(t) and εb(t). Using one year-data

of v · bz fluctuations as magnetic field forcing term, we obtain a f̃b(t), and an energy dissipation rate time series. Then, for a20
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given data window in this series, we construct the scatter plot and calculate its box-counting fractal dimension as described in

Sec. 3.

Figure 2 illustrates these three steps to calculate the fractal dimension of the εb time series. We can see that due to the very

high time resolution in our computer simulation, necessary to properly solve the shell model equations, the change in εt(t) at

each iteration is very small. This leads to a scatter plot for j = 1 which is essentially a straight line of slope 1, and thus to a5

box-counting dimension equal to 1 as well. However, for larger values of j the scatter diagram presents a nontrivial structure.
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Figure 2. Left: εb for the year 2000. Center: Scatter diagram. Right: log-log plot of Eq. (7). Results for three values of the data sampling are

shown: j = 1 (red points), j = 500 (blue points), and j = 1000 (black points).

5 Activity parameters

Some studies have reported a variation in the (multi)fractal features of the solar wind within the solar cycle (Szczepaniak and

Macek, 2008; Macek, 2006, 2007; Macek and Wawrzaszek, 2009). On the other hand, it is well established that geomagnetic

activity increases during solar maximum, and various models attempt to correlate specific features of the solar wind with10

geomagnetic activity (Gonzalez et al., 2004; Rathore et al., 2014; Kane, 2005; Huttunen et al., 2002; Rangarajan and Barreto,

2000; Echer et al., 2004). In this section we investigate whether the amount of complexity in the shell model forcing (as

measured by its fractal dimension) somehow correlates with the level and complexity of the dissipation activity.

To this end, we need to define activity parameters for the output time series. We use the same parameters as in Domínguez

et al. (2018). First, a threshold ε̃ is chosen, so that an “active state” is said to appear whenever εb(t)> ε̃. Then, four activity15

parameters are defined:

– N : is the number of data above that threshold.

– 〈εb〉: is the average of the data.

– 〈εb〉up: is the average of the data above the threshold.

– max(εb): Is the maximum value of εb.20
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The threshold was defined as:

ε̃b = 〈εb〉+n ·σ, (8)

where σ is the standard deviation of the time series and n is a number between 1 and 10. (In Domínguez et al. (2017) only

n= 5 and n= 10 were considered.)

6 Results5

We first study the fractal dimension of the noise term used to solve the magnetic Langevin equation, namely µ(t). In general,

the fractal dimension of the time series is expected to depend on the value of the time delay j. Thus we study its dependence

on j, as well as its dependence on the solar cycle. Results are shown in Fig. 3.
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Figure 3. Box-counting dimension of µ(t) for different values of j. Left: Curves for each year of the 23rd solar cycle. Right: curves are

distinguished for years corresponding to maximum (black lines, years 1998 to 2005) or minimum (red lines, years 1996, 1997, 2006 to 2008)

of the solar cycle.

The left panel of Fig. 3 shows that there is a general trend for the fractal dimension to decrease with j. Previous results based

on the shell model simulation (Domínguez et al., 2017) show that active and quiet states can be distinguished by their different10

behavior with j (decreasing or increasing its fractal dimension for intermediate values of j, respectively). However, all curves

in the left panel of Fig. 3 have the same trend, so it would seem that the fractal properties of the time series does not depend on

the stage of the solar cycle.

However, adding the information on sunspot activity, results are more clear. In order to show that, we take sunspot number

data obtained from National Geophysical Data Center, prepared by U.S. Dept. of Commerce, NOAA, Space Weather Prediction15

Center (SWPC) (ftp : //ftp.swpc.noaa.gov/pub/weekly/RecentIndices.txt). By inspection, we notice that the yearly

average number of sunspots near solar minimum is below 40, whereas it quickly increases above 50 when approaching solar

maximum, reaching 178 in 2002. Thus we set Ns = 40 as the threshold. If the number of sunspots in a year is greater that

Ns, the year is classified as closer to solar maximum; if the number of sunspots is less than Ns, it is classified as closer to
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Figure 4. N and 〈εb〉up calculated from the 13 time series of µ(t) for different values of n. For clarity, separate plots are shown for two sets

of values for n: from 0 to 5 [panels (a), (c)], and from 5 to 10 [panels (b) , (d)]. Grey region corresponds to years of maximum solar activity,

as described in the text.

solar minimum. With this criterion, years 1996, 1997, 2006–2008 are classified in the minimum, and years 1998–2005 in the

maximum of the solar cycle. The result is shown in the right panel of Fig. 3, where we clearly see that, on average, the fractal

dimension of the fluctuations µ(t), discriminates between solar cycle minimum and maximum curves. The right panel of Fig. 3

also shows that, when j increases, the distinction between the minimum and maximum years improves. Then, henceforward

we use j = 100 to illustrate our findings.5

We intend to compare the degree of complexity of the input time series with the level of activity in the dissipated magnetic

energy. We have proposed four ways to measure activity in Sec. 5. For each year of the 23rd solar cycle, the solar wind

fluctuation time series µ(t) is used to force the shell model, and the resulting activity in the output is measured.

As stated in Sec. 5, there are two parameters of the activity that depend of the threshold ε̃b. With the aim to select the

appropriate value of n in Eq. (8), in Fig. 4 we first show the results for two of the activity parameters N and 〈εb〉up. We note10

that for n= 5, 〈εb〉up has a clear peak near the solar maximum [year 2002, Fig. 4(c)]. If the threshold is too large [Fig. 4(d)],

sometimes no data are found above it, and the activity parameter drops to zero. In the case of N [Figs. 4(a,b)], the curves

for all values of n yield similar results. No curve has a clear maximum near solar maximum, suggesting that this parameter

is rather insensitive to solar activity. Notice that in Domínguez et al. (2018), N was the parameter that showed the strongest

correlation with the solar cycle. This highlights the complexity in the definition of a suitable metric for activity. On the other15

hand, Fig. 4 shows that the model does respond to various activity levels in the forcing time series, regardless of whether such

forcing involves the fields themselves (Domínguez et al., 2018) or their fluctuations (this work).

Based on the previous discussions, we conclude that a moderate value of n is appropriate when defining the activity param-

eters, so that the anomalous behavior in Figs. 4(b,d) is avoided. We will take n= 5.
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We now compare the various activity parameters with the fractal dimension of µ(t). Figures 5 and 6 show the fractal

dimension of µ(t), and one of the activity parameters for each time series. We see that, in general (except for N ) the maximum

of the activity parameters computed for εb(t), approximately occurs in the years around the solar maximum. Moreover, the

fractal dimension of µ(t) decreases during the same period.
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Grey region corresponds to years of maximum solar activity, as described in the text.
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We perform a similar analysis, but for the fractal dimension of the magnetic forcing term, f̃b(t) in Eq. (6). That is, we5

calculate the dependence of the fractal dimension on j for the f̃b(t) time series, and relate it to the stage within the solar cycle

as was done in the right panel of Fig. 3. Results are shown in Fig. 7.

The conclusion from Fig. 7 is similar to the one deduced in the previous analysis for µ(t) (Fig. 3). The general trend of the

fractal dimension is to decrease with j, and the fractal dimension of the magnetic forcing during years close to solar minimum

is, in general, larger than the one measured during the years near solar maximum. In Fig. 7, this is more clear for j > 300.10

Considering the above results, we now choose j = 500 for the following figures. In Figs. 8 and 9, we compare the fractal

dimension of the magnetic forcing term f̃b(t) with j = 500 for each year, with the same activity parameters of Figs. 5 and 6.

We can see that, like the previous analysis, the fractal dimension of the magnetic forcing term has a minimum in the years of

maximum activity. Also, consistent with Figs. 5 and 6, results for N are less clear, as seen in Fig. 8.
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Figure 7. Box-counting dimension of magnetic forcing term f̃b(t) for different values of j. Curves are distinguished for years corresponding

to maximum (black lines, years 1998 to 2005) or minimum (red lines, years 1996, 1997, 2006 to 2008) of the solar cycle.
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Figure 8. Box-counting dimension of magnetic forcing term for j = 500 with respective activity of εb(t) (red lines): N (left) and max(εb)

(right), with n= 5. Grey region corresponds to the maximum period of the solar cycle, as described in the text.
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Figure 9. Box-counting dimension of magnetic forcing term for j = 500 with respective activity of εb(t) (red lines): 〈εb(t)〉 (left) and 〈εb〉up
(right), with n= 5. Grey region corresponds to the maximum period of the solar cycle, as described in the text.

Finally, we perform the analysis of the fractal dimension of the magnetic energy dissipation rate εb(t) for different values of

j. This latter fractal dimension, depicted in Fig. 10, does not show any particular dependence on the solar cycle, at least during

the 23rd solar cycle here considered.

It is important to note that for small values of j, the fractal dimension is essentially constant. In fact, for j = 1 the fractal

dimension is always one for all years, due to the scatter diagram being exactly a line (see figure 2). Unlike Fig. 7, Fig. 10 does5

not suggest a robust correlation between the fractal dimension of εb(t) and the solar cycle, for any value of j.

Therefore, the time-dependent fractal dimension that characterized the forcing here adopted, leads to noticeable variations

in the intermittency of the magnetic energy dissipation rate, as measured by the activity parameters above defined. On the
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Figure 10. Box-counting dimension of energy dissipation rate for different values of j. Curves are distinguished for years corresponding to

maximum (black lines, years 1998 to 2005) or minimum (red lines, years 1996, 1997, 2006 to 2008) of the solar cycle.

other hand, the same quantity, namely magnetic energy dissipation rate, does not show any significant variations of its fractal

dimension during the cycle considered.

It is interesting to discuss Figs. 10, 3, and 7, in the light of comparative studies of complexity in the solar wind and the

magnetosphere, although this work attempts to make a very simplified model of the interaction between the solar wind and the

Earth’s magnetosphere. In effect, Figs. 3 and 7 show the complexity of the drivers of the shell model, which we may loosely5

associate with the solar wind driving the magnetosphere, whereas Fig. 10 shows the complexity of the output of the shell

model, which may represent the magnetospheric activity, following the analogy.

Thus, these plots show that the complexity of the driven system (Fig. 10) is more similar to the complexity of the driver

(Figs. 3, 7) during solar maximum, than during solar minimum; and that the complexity of the driven system is typically

lower than the complexity of the driver. This is different from results in Balasis et al. (2006), where a study in terms of Hurst10

exponents was made, finding that complexity in the magnetosphere is larger than in the solar wind. However, it should also be

noticed that in our work, longer term trends are studied (1-year windows), instead of timescales of the order of the duration

of geomagnetic storms. The different timescales, and the use of different metrics for complexity, could be relevant to compare

both results.

7 Conclusions15

In this paper we present the results of an MHD shell model where we force differently the velocity field fluctuations and the

magnetic field fluctuations. In particular, while the forcing employed in the velocity equation is a time-correlated Gaussian

noise, for the magnetic field equation we adopt the solution of a Langevin equation where the fluctuations of v · bz , computed

using solar wind data, are introduced in this equation instead of a stochastic term. This produces a forcing on the magnetic field

equation that mimics the time-dependent solar wind action on Earth’s magnetosphere during a solar cycle. This description20

is certainly an oversimplification of the complex dynamics that determines the interaction between solar wind and Earth’s

12



magnetosphere, but it provides a possible approach if we are interested only in the fractal properties of the time series of the

characteristic parameters.

In this framework, we have analyzed the relationships of the activity of the magnetic energy dissipation rate obtained in

the shell model, with the fractal dimension of its input and output time series. Specifically, our defined activity parameters are

compared with the fractal dimension of: the fluctuations of the solar wind v · bz data, the magnetic force term, and the time5

series of the magnetic energy dissipation rate.

Both the fluctuation term, µ(t), and the resulting forcing term [Eqs. (5) and (6)] have a fractal dimension which is well

correlated with the solar cycle, as shown in Figs. 3 and 7, indicating that information on solar activity is actually present in the

fractal dimension of µ(t) and resulting forcing. This is not the case for the magnetic energy dissipation rate, as can be seen in

Fig. 10. Thus, this complexity measure produces signatures of the corresponding solar activity when applied to the input of the10

shell model, but does not produce them when applied to the output of the model.

For the quantities which possess a time-dependent fractal dimension, namely µ(t) and the forcing term, this dimension

exhibits a minimum near solar maximum. As to the activity of the output, all proposed metrics —except N— seem to correlate

with the solar cycle, showing a peak near the solar maximum. This suggests that the complexity of the noise term of Langevin

equation may have, within the simulation, a noticeable effect in the activity of the magnetic energy dissipation rate, although15

the fractal dimension, as calculated here, is not a suitable metric for that output activity.

Despite this, it is interesting to see that some results are consistent with previous studies, based directly on data. Frac-

tal dimensions in Figs. 3 and 7 measure the complexity of the drivers of the shell model, which we may loosely associate

with the solar wind driving the magnetosphere, whereas Fig. 10 measures the complexity of the output of the shell model,

which may represent the magnetospheric activity, following the analogy. Results are similar to those calculated for the solar20

wind (Domínguez et al., 2018) and for the Dst index (Domínguez et al., 2014), in the sense that values of the fractal dimen-

sions suggest that the complexity of the solar wind is larger that the complexity of the magnetosphere, mesured using the same

box-counting approach as presented here.

Given the complex dynamics in the system studied, we should not expect that a single metric contains all the information,

and thus results may depend on the method used. For instance, Hurst exponents are used in Balasis et al. (2006), which suggests25

that complexity in the magnetosphere is larger than in the solar wind. On the other hand, timescales observed are also different

in our work and in Balasis et al. (2006), and this can also be relevant to evaluate complexity in a physical system.

Nevertheless, it is interesting that various studies have considered the use of fractal dimensions, using several strategies,

as a means to extract information on solar wind-magnetosphere interaction, either in the sense of precursor activity (Donner

et al., 2018; Balasis et al., 2006), or longer-term trends (Domínguez et al., 2014, 2018). Simulation-based studies may help to30

understand to what extent complexity measures may be relevant for this task.
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