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Abstract. The auroral oval boundary represents important physical process with implications for the ionosphere and 

magnetosphere. An automatic auroral oval boundary prediction method based on deep learning in this paper is applied to study 

the variation of auroral oval boundary, associated with different space physical parameters. We construct an auroral oval 

boundary dataset to train our proposed model, which consists of 184416 auroral oval boundary points extracted from 3842 10 

Ultraviolet Imager (UVI) image captured by Ultraviolet Imager of the Polar satellite and its corresponding 18 space physical 

parameters selected from OMNI dataset during December 1996 to March 1997. Furthermore, several statistical experiments 

and correlation analysis experiment are performed based on our dataset to explore the relationship between space physical 

parameters and the location of auroral oval boundary. The experiment results show that the prediction model based on deep 

learning method can estimate auroral oval boundary efficiently, and different space physical parameters have different effects 15 

on auroral oval boundary, especially interplanetary magnetic field (IMF), geomagnetic indexes and solar wind parameters. 

1 Introduction 

Auroral oval is a circular belt of auroral emission around magnetic poles (Loomis, 1890; Akasofu, 1964). The auroral oval 

poleward and equatorward boundaries are related to geophysical parameters, which can implicit for the coupling process 

among the solar wind, ionosphere and magnetosphere. For example, the polar cap ionosphere, which is considered as an area 20 

of opening magnetic field inside auroral oval poleward boundary. This area is closed related with energetic particle entrance 

from heliosphere to earth’s atmosphere. So, the segmentation and prediction for auroral oval boundary are very significant for 

studying on certain physical events. 

In the past few decades, scholars have constructed extensive researches on the relationship between location of auroral 

oval boundary and space physical parameters (Niu et al., 2015). In early research, Feldstein proposed that the position of 25 

auroral oval boundary is correlated with the Q-index of magnetic activity on the nightside of earth (Feldstein and Starkov, 

1967). Starkov and Holzworth expressed that inner and outer boundaries of auroral oval can change with geomagnetic indexes 

and IMF (Holzworth and Meng, 1975; Holzworth and Meng, 1984; Starkov, 1994(a)). The conclusions in this paper are based 

on mathematical statistics. Therefore, Starkov designed some simple formulas to describe the relationships between the 
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specific physical parameter and different type of aurora. Variations of the size of polar cap, auroral oval and diffuse aurora 

were regarded as three independent function variables of AL index (Starkov, 1994(b)). Since then, many scholars had been 

explored the connections between different physical parameters and auroral oval boundary or other auroral events. Carbary 

constructed a-Kp-related model of auroral oval boundary by binning UVI images from different months (Carbary, 2005). For 

describing the particle precipitation characteristics, Zhang proposed a-Kp-dependent model of the mean energy and energy 5 

flux precipitating electrons in auroral oval (Zhang and Paxton, 2008). Sigernes used a Kp-based function to calculate the size 

and position of auroral oval, and compared the Kp-dependent model with methods which proposed by Zhang and Starkov to 

explain the superiority of his proposed model (Sigernes et al., 2011). Milan proposed a model based on average proton and 

electron of auroral images from three years observed by the IMAGE spacecraft. The experiment demonstrated that Kp, solar 

wind parameters including solar wind velocity, density, and pressure, interplanetary magnetic field (IMF) magnitude and 10 

orientation have effect on the intensity and shape of auroral oval (Milan, 2010). After 2010, there are more and more new 

methods to construct connection between the position of auroral oval boundary and auroral oval boundary with the 

development of machine learning. Hu and Yang used the segmentation results of auroral oval obtained from UVI on Polar 

satellite to build connection between the position of auroral oval boundary and AE index, IMF and solar wind parameters by 

using multiple regression method (Hu et al., 2017; Yang et al., 2016). Ding presented a C-means clustering algorithm based 15 

on fuzzy local information to extract auroral oval poleward and equatorward boundaries from merged images with filled gaps 

captured from both GUVI and SSUSI (Ding et al., 2017). However, the position of auroral oval boundary is not determined 

by one space physical parameter, those methods mentioned above just only used one or several space physical parameters to 

explore the relationship between space physical parameters and auroral oval boundary. We can’t determine whether other 

space physical parameters can influence the location or size of auroral oval. And we also don’t know whether the mapping 20 

relationship between space physical parameters and auroral oval boundary is linear or nonlinear. 

As we know, machine learning has been applied to many fields, including medical, traffic, space physics and other 

interdisciplinary fields. Recently, deep learning models have led to a series of breakthroughs on image classification, object 

detection, image recognition and other fields. Conventional machine learning methods have some limitations for processing 

complex data, especially in space physics field. There are no suitable internal features, such as shape, colour and so on. 25 

Therefore, many effective machine learning methods can’t obtain satisfied performance on processing space physics data. 

While, deep learning methods are representation-learning methods with multiple levels of representation. It has turned out to 

be very good at discovering intricate structures in high dimensional data and multimodal data (LeCun et al., 2015). 

In this paper, a new automatic auroral oval boundary prediction model is proposed based on deep learning method. The 

experiment results show that the model proposed in this paper can predict aurora oval boundary accurately by using space 30 

physical parameters and the location of auroral oval boundary at the previous moment. In addition, we explore the effect of 

every space physical parameter on auroral oval boundary. The rest of this paper is organized as follows. Sect. 2 describes our 

proposed algorithm in detail. The experiment analysis and discussion are given in Sect. 3, including dataset construction, 
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subjective and objective evaluation, the selection of model parameters and the discussion about influence of every space 

physical parameter on auroral oval boundary. Finally, we draw several conclusions in Sect. 4. 

2 Prediction of auroral oval boundary based on deep learning method 

 

Figure 1: The flowchart of auroral oval boundary prediction model based on deep learning. 5 

The flowchart of auroral oval boundary prediction model is shown in Fig. 1. There are two major steps in our proposed model, 

pre-training on our dataset and online prediction. In the training phase, auroral oval images are usually affected by heavy noise 

and other interferences. So, the auroral oval boundary is blurred and it is difficult to find from background. Compared with 

other image segmentation methods, Maximal Similarity Based Region Merging (MRSM) (Liu et al., 2013) can eliminate the 

cumbersome process of adjusting parameters and has better segmentation accuracy. We use MRSM firstly to extract positions 10 

of auroral oval boundary. The center of auroral oval spatial distribution in magnetic local time-magnetic latitude coordinate 

(MLT-MLAT) is located in the geomagnetic pole. The magnetic latitude of auroral oval usually ranged from 57.5 degree to 

73.5 degree according to the statistic studies on previous work (King and Papitashvili, 2014). In order to unify the distribution 

of aurora oval boundary, the coordinates of those extracted boundary points are transformed into MLT-MLAT coordinate 

secondly. Finally, these transformed boundary points and its corresponding space physical parameters were input into deep 15 

learning network to train our prediction model. In the testing phase, we can obtain the corresponding boundary points of auroral 

oval by sending those space physical parameters and the position of auroral oval boundary points at the previous moment to 

our well-trained network. 

The deep learning network is constructed by a two-layer Restrict Boltzmann Machine (RBM) network (Hinton et al., 

2006; Yu and Deng, 2011) and a Radial Basis Function (RBF) network (Łukaszyk, 2004). The computational processing of 20 
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RBM and RBF are illustrated by Eq. (1)-(4). In the training phase, the input of RBM network are 18 space physical parameters 

from OMNI dataset and coordinate values of auroral oval poleward and equatorward boundaries extracted from segmented 

UVI images with MRSM. It can be represented as 𝑋 = [𝑥1, 𝑥2,⋅⋅⋅, 𝑥𝑚]𝑇 , where m is the number of network nodes. The first 

layer of RBM network is denoted as 𝜃1 = {𝑤𝑖1𝑗1
, 𝑎𝑖1

, 𝑏𝑗1
}, where 𝑤𝑖1𝑗1

 is the weight between the visible unit 𝑖1 and the hidden 

unit 𝑗1, 𝑎𝑖1
 is the bias of visible unit 𝑖1, 𝑏𝑗1

 is the bias of hidden unit 𝑗1. The hidden layer of the first layer in RBM network is 5 

the visible layer of the second layer in RBM network, which is denoted as 𝜃2 = {𝑤𝑗1𝑗2
, 𝑎𝑗1

, 𝑏𝑗2
}, where 𝑤𝑗1𝑗2

 is weight between 

the visible unit 𝑗1 and the hidden unit 𝑗2, 𝑎𝑗1
 is the bias of visible unit 𝑗1, 𝑏𝑗2

 is the bias of hidden unit 𝑗2. The output of the first 

layer of RBM network is denoted as 𝑌1 = [𝑦11,𝑦12,⋅⋅⋅, 𝑦1𝑛]𝑇, where n denotes the nodes number of the first layer in RBM 

network. 

𝑦1𝑗1
= ∑ 𝑥𝑖1

𝑤𝑖1𝑗1
+ 𝑏𝑗1

𝑚
𝑖=1     𝑗1 = 1,2,⋅⋅⋅, 𝑛                                                                                                                                (1) 10 

The output of the second layer of RBM network is denoted as 𝑌2 = [𝑦21, 𝑦22,⋅⋅⋅, 𝑦2𝑐]𝑇, where c denotes the nodes number 

of the second layer in RBM network. 

𝑦2𝑗2
= ∑ 𝑥𝑗1

𝑤𝑗1𝑗2
+ 𝑏𝑗2

𝑛
𝑗=1   𝑗2 = 1,2,⋅⋅⋅, 𝑐                                                                                                                                  (2) 

Finally, since Contrastive Divergence (CD) (Hinton, 2002) is an approximation of the log-likelihood gradient what has been 

found to be a successful update rule for training RBM, we can obtain a well-trained RBM network by CD. 15 

The function of RBF network can make the output of RBM network infinitely approximate to the coordinate values of auroral 

oval boundary by a radial basis function. The input of RBF network is the output of second layer in RBM network. The output 

of RBF network is represented as 𝑌 = [𝑦1, 𝑦2,⋅⋅⋅, 𝑦𝑑]𝑇, where d denotes the number of the output layer nodes. 𝑤𝑗3𝑜
 is weight 

between hidden unit 𝑗3 and the output node o. l is the number of radial basis function. 𝜑𝑗3
 is the 𝑗𝑡ℎ radius basis function and 

𝑐𝑗3
 is the center of 𝑗𝑡ℎ radial basis function. 𝜎𝑗3

 is the center width of radial basis function. 20 

   𝑦𝑜 = ∑ 𝑤𝑗3𝑜
𝜑𝑗3

(||𝑌2 − 𝑐𝑗3
||)𝑙

𝑗3=1      𝑜 = 1,2,⋅⋅⋅, 𝑑                                                                                                                  (3) 

 𝜑𝑗3
(||𝑌2 − 𝑐𝑗3

||) = 𝑒𝑥𝑝(−
||𝑌2−𝑐𝑗3||2

𝜎𝑗3
2 )  𝑗3 = 1,2,⋅⋅⋅, 𝑙                                                                                                                 (4) 

3 Experiments and results analysis 

3.1 Dataset construction and evaluation criterion 

The auroral oval images used in this paper are captured by Ultraviolet Imager (UVI) which is a 2-D snapshot type camera on 25 

Polar satellite. The UVI on Polar satellite has acquired more than several millions of images during its entire mission. In April 

2008, it no longer works. There was no effective observation after 2000, because Polar satellite changed its view after 2000. 

In order to balance the relationship between spatial resolution and global coverage, the spatial resolution of UVI is 30KM at 

apogee, the CCD array on board has 224*220 pixels and the single pixel spatial resolution is 0.0036 degree and 0.04 degree 

in two directions respectively. The unilluminated edges of CCD are discarded, which results in the frame size of an auroral 30 
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oval image is 200 by 228 pixels, and the frame rate is 37s. There are 4 band sensors aboard satellite usually, UVI images in 

our dataset are derived from Lyman-Brige-Hopfield long band (160-180mm). In our experiments, each auroral oval image is 

divided into 24 magnetic regions centered on geomagnetic pole according to magnetic local time (MLT). As shown in Fig. 2, 

the intersection points between auroral oval boundary and division line are extracted. 48 boundary points are gathered from 

one auroral oval image. The poleward and equatorward boundary points are marked as red triangle and red circle respectively. 5 

 

Figure 2: The schematic of extracting auroral boundary points. 

The space physical parameters downloaded from NASA OMNI dataset with different time resolution. It is common knowledge 

that IMF, solar wind parameters, geomagnetic Indexes have a time resolution of 1 min, the other space physical parameters 

maybe have a higher time resolution. According to the effect derived from other circumstance factors, such as, the time to 10 

traverse magnetosphere and Alfven wave, not all the response time of auroral events are equal to its propagation time. We 

align the time of all space physical parameters with the time of UVI images in our dataset to avoid the problem of different 

time resolution between space physical parameters and auroral oval images. In OMNI dataset, we selected 18 space physical 

parameters including the common parameters which has been verified to be related to the position of auroral oval boundary 

(Holzworth and Meng, 1975; Starkov, 1994(a); Starkov, 1994(b); Milan et al., 2010; Hu et al., 2017) and some unfamiliar 15 

parameters which are never discussed in previous works. Therefore, our dataset includes 184416 auroral oval boundary points 

extracted from 3842 UVI images and its corresponding values of 18 space physical parameters. Table 1 shows 18 space 

physical parameters which we used in this paper. 

In order to evaluate the precision of predicted auroral oval boundary points by our model, we use the common metric 

MAE (Mean Absolute Error) to assess the error between predicted auroral oval boundary points and real auroral oval boundary 20 

points. The MAE (Mean Absolute Error) can be defined as Eq. (5). 

𝑀𝐴𝐸 =
1

24
∑ (

1

𝑘
∑ |𝐹𝑀𝐿𝐴𝑇

𝑖𝑗
− 𝑆𝑀𝐿𝐴𝑇

𝑖𝑗
|𝑘

𝑗=1 )24
𝑖=1                                                                                                                                 (5) 

𝑆𝑀𝐿𝐴𝑇
𝑖𝑗  represents MLAT of the 𝑗𝑡ℎ test sample at 𝑗𝑡ℎ MLT region obtained from the segmented image, and 𝐹𝑀𝐿𝐴𝑇

𝑖𝑗  indicates 

MLAT of the 𝑗𝑡ℎ test sample at 𝑖𝑡ℎ MLT region acquired by our prediction model. k is the total number of test samples. 

 25 
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Table 1: Space physical parameters selected from OMNI dataset. 

Parameter name Units 

Bx nT 

By nT 

Bz nT 

Flow Speed (Vp) Km s-1 

Proton density (Np) n cc-1 

Temperature K 

Flow pressure (pdyn) nPa 

Electric Field Mv m-1 

Plasma beta - 

Alfven mach number - 

AE-1-min AE-index - 

AL-1-min AL-index - 

AU-1-min AU-index - 

SYM/D-1-minute SYM/D index - 

SYM/H-1-minute SYM/H index - 

ASY/D-1-minute ASY/D index - 

ASY/H-1-minute ASY/H index - 

PC-1-minute Polar Cap index - 

3.2 Parameters setup of deep learning network  

Since the effectiveness of prediction model is influenced by the number of hidden layer nodes in RBM network (Hinton, 2012) 

and the training error of RBF network, we build two experiments to find the most suitable parameters for our network. For 

both experiments, space physical parameters and position of poleward and equatorward boundary points in 24 MLT regions 5 

of 3000 UVI images are selected as training samples, the remaining are regarded as test samples. In experiment 1, the training 

error of RBF network is set to 4 magnetic latitude and the number of hidden layer nodes in RBM network are 32, 64, 96 and 

128 respectively. We use the average MAE with 100 experiments to verify the stability of our model, because training samples 

and test samples were divided by random number. The corresponding MAE is shown in Fig. 3(a). From the Fig. 3(a), MAE 

reaches the smallest value when the number of hidden layer nodes are set to 32. In experiment 2, the number of hidden layer 10 

nodes are set to 32 according to the results in experiment 1. There often has overfitting problem when we train a neural network 

(Krizhevsky et al., 2012). Overfitting can be interpreted as a phenome-non, which is the model performs well on training set 

and unsatisfactorily on test set. We set different training error to avoid overfitting problem. So, the training error of RBF 
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network is set to 2, 4, 6 and 8 magnetic latitudes empirically. The corresponding MAE is shown in Fig. 3(b), and MAE reaches 

the minimum when the training error of RBF network is 4 magnetic latitudes. From the two experiment results above, we set 

the number of hidden layer nodes in RBM network and the training error of RBF network to 32 and 4 respectively as the 

optimal parameters of deep learning network in the following experiments. 

 5 

Figure 3: (a)The MAE value of different hidden layer node, (b) The MAE value of different training error. 

 

Figure 4: The different subjective results based on different methods. (a) The subjective results predicted by our method (b) The 

subjective results predicted by BP network (c) The subjective results predicted by Yang’s method 
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To demonstrate the availability of our proposed model, we compared the proposed model with Back Propagation (BP) network 

(Rumelhart, 1986) and Yang’s model (Yang et al., 2016). The subjective prediction results obtained by the three method are 

shown in Fig. 4, circles and squares stand for poleward boundary points and equatorward boundary points which are obtained 

from the segmented image, ‘＋’ and ‘×’ marks represent poleward boundary points and equatorward boundary points 

respectively which are obtained from our prediction model. Although these three methods have similar prediction results in 5 

most areas on auroral oval boundary, it is obviously that our method can obtain more accurate boundaries than the other two 

compared methods, where marked by blue rectangle and red rectangle in Figure 4. In more detail, the results of BP model and 

our model are shown in Fig. 4(a) and Fig. 4(b) respectively, we can clearly see that the distances between auroral oval boundary 

points predicted by our method and real auroral oval boundary points are smaller than the distances between BP model’s results 

and real auroral oval boundary points in red rectangle areas. From Fig. 4(a) and Fig. 4(c), our prediction points are closer to 10 

real auroral oval boundary points compared with Yang’s prediction points in blue rec-tangle area. Meanwhile, the MAE of 

different methods are shown in Table 2. From this table, our method has the smallest MAE not only in poleward boundary bur 

also in equatorward boundary, because our model can extract more useful information and feature from auroral oval images 

than the other two models. As a consequence, we can draw the conclusion that the proposed model in this paper is more suitable 

for predicting auroral oval boundary. 15 

Table 2: The MAE value of different methods. 

methods BP Yang’s ours 

Poleward boundary 2.20 2.01 1.69 

Equatorward boundary 2.19 1.91 1.51 

3.3 The influence of space physical parameters on auroral oval boundary 

As we known, the location of auroral oval boundary is affected by a variety of space physical parameters. Variation of auroral 

oval boundary in different MLT sectors are related to different space physical parameters. For sake of exploring the influence 

of space physical parameters on poleward and equatorward boundaries specifically, the boundary points are further processed 20 

as follows (Hu et al., 2017). Firstly, all poleward and equatorward boundary points are divided into 24 subsets of poleward 

and equatorward boundary points according to 24 MLT sectors. Secondly, in every MLT subset, we sort boundary data with 

respect to the value of all space physical parameters, and divide boundary data into 10 groups evenly. In order to observe the 

variation tendency of each parameter in different MLT sectors clearly, in every MLT sectors, the relationship between each 

space physical parameter and the location of auroral oval boundary was represented as a Quadratic Equation based on the 25 

principles of the least square conic fitting (Fitzgibbon et al., 1999). Then, we calculate the location of poleward and 

equatorward boundary points for each space physical parameter using this function. Finally, we use the boundary data which 

calculated by Quadratic Equation to discuss the influence of space physical parameters on auroral oval boundary. In this section, 

we build 3 statistical experiments to discuss how IMF, solar wind parameters and geomagnetic indexes influence on auroral 
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oval boundary. An auroral oval boundary prediction experiment by inputting every single space physical parameter to explore 

the relationship between auroral oval boundary and 18 space physical parameters. And a correlation analysis experiment is 

constructed to study the connection between combination of different space physical parameters and auroral oval boundary. 

 

Figure 5: Response of magnetic latitude of poleward (top row) and equatorward (bottom row) boundaries to Bx, By and Bz 5 
respectively at 0030,0060,0090,1200,1500,1800,2100 and 2400 MLT. 

3.3.1 Experiment 1: Influence of different IMF components on Aurora oval boundary 

The IMF can affect auroral oval boundary through different space processes. In this experiment, response of different IMF 

components to auroral oval boundary are shown in Fig. 5. The different colour and shape markers represent different MLT 

sector. The vertical error bars represent one eighth of standard deviation from mean value of auroral oval boundary position, 10 

and the horizontal error bars represent standard deviation from mean value of different IMF components in each binned data. 

Therefore, the length of vertical error bar is fixed, the length of the horizontal error bars is changeable because of different 

standard deviation in each binned data. 

From Fig.5, we can see that the poleward and equatorward boundaries in each MLT sector show a step-by-step poleward 

displacement with the increase of IMF Bz component. It has been widely accepted that IMF Bz controls the energy coupling 15 

between the solar wind and the magnetosphere (Cho et al., 2010; Makita et al., 1983). During a period of southward IMF (Bz 

< 0), poleward motion of auroral oval boundary is due to a higher reconnection rate in the process of dayside reconnection. 

However, most poleward motion of auroral oval boundary occurred during northward IMF (Bz > 0). Under northward IMF 
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(Bz > 0) condition, poleward activity of auroral oval boundary often related to IMF By component (Xing et al., 2013). The 

poleward and equatorward boundaries in 09:00-15:00 MLT show a gradually poleward displacement with the rise of IMF By 

component, and the poleward and equatorward boundaries in 18:00-06:00 MLT gradually approaches to pole with the decrease 

of absolute of IMF By component from Fig.5. This statistical discovery proves previous studies on IMF By component. Such 

as, Karlson’s observations suggested that IMF By component is related to prenoon-postnoon asymmetry of poleward activity 5 

(Karlson et al., 1996). And it is well known that ionospheric convection is mainly controlled by IMF Bz and By components 

(Cowley and Lockwood, 1992; Huang et al., 2000), which implies the prenoon-postnoon asymmetry of pole-ward activity is 

similar to the procedure of ionospheric plasma convection. Both two space activities mentioned above are affected by the 

variety of IMF By component (Provan et al., 1999). The poleward and equatorward boundaries in 21:00-06:00 MLT show a 

gradually poleward motion with the ascent of IMF Bx component observed from Fig.5, which is consistent with IMF By and 10 

Bz. 

 

Figure 6: Response of magnetic latitude of poleward (top row) and equatorward (bottom row) boundaries to Np, Pdyn and Vp 

respectively at 0030,0060,0090,1200,1500,1800,2100 and 2400 MLT. 

3.3.2 Experiment 2: Influence of different solar wind parameters on Aurora oval boundary 15 

For sake of finding the variation trend of auroral oval boundary with the change of solar wind parameters, including solar wind 

density (Np), solar wind speed (Vp) and solar wind dynamic pressure (Pdyn) respectively, experiment 2 is performed. Fig.6 

shows the response of different solar wind parameters on auroral oval boundary. 
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From Fig.6, both poleward boundary and equatorward boundaries shrink in 21:00-06:00 MLT when the value of Np rises. 

Meanwhile, poleward and equatorward boundaries in 09:00-18:00 MLT gradually approaches equator when the value of Np 

rises. Besides, we can obtain the following conclusions: The poleward and equatorward boundaries in 03:00-18:00 MLT 

expand to equator clearly with the increase of Pdyn. And equatorward boundary in 21:00-24:00 MLT has a poleward motion 

with the increase of Pdyn. There has an obvious poleward motion in nightside sector impacted by the increscent Pdyn and Np 5 

according the conclusions above. We can draw a coincident inference with previous studies. For examples, poleward 

displacement of auroral oval boundary along with the increscent Pdyn, which results from the shrunken polar cap (Cho et al., 

2010). By extension, there must have some dependencies between the varying size of polar cap and nightside reconnection 

(Boudouridis et al., 2003). Compared with the change of auroral oval boundary in nightside sector, both poleward and 

equatorward boundaries are enlarged when the value of Pdyn and Np rise, which observed from Fig.6. Previous explorations 10 

and simulations shown that enlarged Pdyn can enhance ionospheric potential and the corresponding field-direction current 

intensity, which can lead to increasement of global auroral activity intensity. Meanwhile, the position of auroral oval boundary 

will ex-tend to low latitudes (Peng et al., 2011). From Fig.6, it appears a distinct equatorward movement with increase of Vp 

in 24:00-06:00 MLT for both poleward boundary and equatorward boundary. This changing pattern of Vp and auroral oval 

boundary which we illustrate above is consistent with Hu’s study in 2017 (Hu et al., 2017). 15 

 

Figure 7: Response of magnetic latitude of poleward (top row) and equatorward (bottom row) boundaries to AE, AU and AL 

respectively at 0030,0060,0090,1200,1500,1800,2100 and 2400 MLT. 
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3.3.3 Experiment 3: Influence of geomagnetic indexes on Aurora oval boundary 

In this experiment, the average tendency of poleward and equatorward boundaries influenced by geomagnetic indexes (AE, 

AL, AU) shows in Fig.7.  

As we can see from Fig.7, in every MLT sector, pole-ward and equatorward boundary move to low magnetic latitude 

with the ascending AE and AU index. While, poleward and equatorward expand to high magnetic latitude with the ascending 5 

of AL index. AE index is often used to characterize the strength of substorm activity in magneto-sphere. Therefore, it can be 

considered that auroral oval expands to equator due to the enhancive substorm activity. Furthermore, the amount of energy 

enters magnetotail along with the strengthening of substorm activity. It means that AE index will increase when energy in 

magnetotail re-leased through substorm, which is coincident with our found about AE from Fig.7. 

Table 3: The MAE influenced by different space physical parameters. 10 

Parameter name MAE(poleward/equatorward) 

Bx 1.6222/1.4448 

By 1.6134/1.4462 

Bz 1.6139/1.4476 

Flow Speed (Vp) 1.6117/1.4485 

Proton density (Np) 1.6285/1.4451 

Temperature 1.6129/1.4458 

Flow pressure (pdyn) 1.6242/1.4463 

Electric Field 1.6113/1.4430 

Plasma beta 1.6118/1.4435 

Alfven mach number 1.6193/1.4473 

AE-1-min AE-index 1.6183/1.4562 

AL-1-min AL-index 1.6325/1.4668 

AU-1-min AU-index 1.6117/1.4517 

SYM/D-1-minute SYM/D index 1.6187/1.4500 

SYM/H-1-minute SYM/H index 1.6197/1.4581 

ASY/D-1-minute ASY/D index 1.6137/1.4550 

ASY/H-1-minute ASY/H index 1.6079/1.4500 

PC-1-minute Polar Cap index 1.6120/1.4512 

3.3.4 Experiment 4: Influence of all 18 space physical parameters on Aurora oval boundary 

As we know, most of studies on how the space physical parameters affect auroral oval boundary are focus on solar wind 

parameters, geomagnetic indexes and IMF components. There are lots of corresponding conclusions about the influence of 
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those space physical parameters on auroral oval boundary up to now. Nonetheless, how the other space physical parameters 

not mentioned above affect the auroral oval location has not been addressed. In order to further explore the variation of auroral 

oval boundary influenced by different space physical parameters, the experiment 4 is performed. In experiment 4, we send one 

physical parameter selected from Table 1 at the present moment and the coordinates of auroral oval boundary points at the 

previous moment to our prediction model. And the output of our model are 48 coordinates values of auroral oval boundary 5 

points and the MAE between real boundaries and predicted boundaries. The MAE of poleward and equatorward boundaries 

influenced by different space physical parameters are given in Table 3. We can infer the response of auroral oval boundary to 

18 space physical parameters through the different MAE of these space physical parameters. 

The MAE of boundary position are 1.6076 and 1.4545 respectively when we only use boundary positions at the previous 

moment to predict poleward and equatorward boundaries. We take this MAE as standard, called S-MAE. Compared with the 10 

S-MAE, we can see that the MAE increase about 1.9% for poleward boundary by adding anyone space physical parameters 

into input of our model from Table 3. Meanwhile, the variety of MAE for equatorward boundary is between -0.7% and 0.7%. 

Although different space physical parameters have different influences on auroral oval boundary, compared to other space 

physical parameters in Table 3, the MAE of auroral oval boundary can display the greatest impact when AL, Bx, Np, Pdyn are 

used as the input of our model respectively, which suggests that these 4 space physical parameters mentioned above have a 15 

great influence on the position of auroral oval boundary. 

Table 4: The Pearson correlation coefficient of all 18 space physical parameters from Dec. 1996 to Mar. 1997. 

Parameter name Correlation coefficient 

Vp-Np -0.5970 

Vp-SYM/H -0.5120 

Np-Pdyn 0.7662 

Np-SYM/H 0.5584 

AE-AL -0.9437 

AE-AU 0.7139 

AE-PC 0.8067 

AL-PC -0.7079 

AU-PC 0.6924 

3.3.5 Experiment 5: Correlation analysis of all 18 space physical parameters 

In order to analyse the influence of space physical parameters on auroral oval efficiently, we not only consider the effect of 

each space physical parameter on auroral oval boundary, but also take the effect on auroral oval boundary with different 20 

combinations of space physical parameters into account in experiment 5. As a result, we first calculate the correlation of all 18 

space physical parameters using Pearson correlation coefficient, which is a statistic value that reflects the degree of linear 
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correlation between two variables. The Pearson correlation coefficient of two variables (𝑋, 𝑌) equals the covariance of the two 

variables (𝑋, 𝑌) divided by the product of their standard deviations (𝜎𝑋𝜎𝑌). The formula of Pearson correlation coefficient can 

be represented as Eq. (6), and the Pearson correlation coefficient of all 18 space physical parameters are given in Table 4.  The 

process of experiment 5 is similar to experiment 4 and the MAE of different space physical parameter combinations are given 

in Table 5. 5 

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋,𝑌)

𝜎𝑋𝜎𝑌
=

𝐸[(𝑋−𝜇𝑋)(𝑌−𝜇𝑌)]

𝜎𝑋𝜎𝑌
                                                                                                                                               (5) 

The MAE of poleward and equatorward boundaries by using three components of IMF and auroral oval boundary 

positions at the pervious moment as the input of proposed model are 1.6313 and 1.4759 severally in Table 5. The MAE of 

three components of IMF combination is bigger than S-MAE. When the input of our model includes Bx, By and Bz, it is 

obviously that the MAE of poleward and equatorward boundaries both have significant increasement compared with the MAE 10 

of poleward and equatorward boundaries by inputting anyone IMF components to our model, which suggests that the three 

components of IMF have similar influence on auroral oval boundary. Previous investigations illustrated that auroral oval 

boundary is connected with the variation of IMF Bx, By, Bz (Huang et al., 2000; Provan et al., 1999). Our experiment results 

also demonstrate that the auroral oval boundary should be related with the three components of IMF. Whether the northward 

or southward IMF direction are input to the proposed model, the MAE have marked change in both poleward and equatorward 15 

boundaries. Nevertheless, we can observe the more evident increasement of MAE in equatorward boundaries compared with 

the MAE of poleward boundaries by using northward IMF direction as the input of our model. Meanwhile, there has an 

opposite result under southward IMF direction condition. The variation of MAE in poleward boundaries are bigger than 

equatorward boundaries when the input of our model is southward IMF direction. Therefore, we can know that the northward 

IMF direction has a great influence on the equatorward boundaries, and the southward IMF direction has a significant effect 20 

on poleward boundaries. 

We can see that AE has strong positively correlation to AU and PC, and AL has strong negative correlation to AE, AU 

and PC from Table 4. The linear correlation coefficient between AE and AL is -0.9437, which verified that AL index has the 

opposite effect on auroral boundary compared with AE index. In contrast, the impact of AU index on auroral boundary is 

similar to the impact of AE index on auroral boundary because of the strong positive correlation between AE and AU. Those 25 

conclusions mentioned above is consistent with the conclusions of the statistical experiment 3. In addition, the correlation 

coefficient between AE and PC is 0.8067, which implies PC should have homologous trend with AE in every MLT section. 

Fig.8 shows the response of poleward and equatorward boundaries to PC respectively. The PC index can serve as an indicator 

of auroral electrojet activity. Vennerstrøm found that PC is sensitive to electrojet activity and substorm intensifications of the 

westward electrojet in the midnight or post-midnight sector (Vennerstrøm et al., 1991). This conclusion matches to what we 30 

found about the impact of PC on auroral oval boundary in Fig.8. When the input of our model only included the three 

geomagnetic indices (AE, AL, AU) and auroral oval boundary positions at the previous moment, the MAE of equatorward and 

poleward boundaries are 1.6569 and 1.5124 severally from Table 5. we can clearly know that the MAE of poleward and 
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equatorward boundaries are both enlarged compared with S-MAE. As a result, we can draw the conclusion that the three 

geomagnetic indexes strengthen each other’s effect when the combination of three geomagnetic indexes are inputted into our 

model. Beyond that, in Table 5, when AE, AU, AL, and PC are used as the input of our model, the MAE of poleward and 

equatorward boundaries are 1.6734 and 1.5275 respectively, which shows that the combinations of those parameters have the 

important influence on the location of aurora oval boundary. 5 

Table 5:  The MAE influenced by different combinations of space physical parameters. 

Parameter name MAE(poleward/equatorward) 

IMF 1.6313/1.4759 

IMF(Bz>0) 1.6365/1.7595 

IMF(Bz<0) 1.7163/1.6193 

Solar wind index 1.6495/1.4877 

Geomagnetic index 1.6569/1.5124 

AE, AU, AL, PC 1.6734/1.5272 

Vp, Np, Pdyn, SYM/H 1.6611/1.4919 

 

Figure 8: Response of magnetic latitude of poleward (left column) and equatorward (right column) boundaries to PC at 0030, 0060, 

0090, 1200, 1500,1800,2100 and 2400 MLT 

According to Table 4, there has obvious correlation among the following space physical parameters. For the solar wind 10 

parameters, Vp and Np are positive correlations, while Np and Pdyn are negative correlation, and the three parameters all are 

related to SYM/H. Firstly, we can obtain the similar inference on the three geomagnetic indices to solar wind parameters (Vp, 

Np, Pdyn) according to the MAE of three solar wind parameter combinations from Table 5 and the strong correlation between 

them. In other words, the three solar wind parameters also strengthen each other’s effect on auroral oval boundary when the 

combination of them are sent into our model. Secondly, when Np, Vp, Pydn and SYM/H are as input to our model, the MAE 15 
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of auroral oval boundaries are 1.6611 and 1.4919 in poleward and equatorward respectively in Table 5, which is bigger than 

the MAE of auroral oval boundaries when the inputs are Np, Vp and Pydn. So, we can conclude that the combinations of these 

four parameters strengthen mutual influence on the location of aurora oval boundary. According to the statistics from Table 6, 

the physical variables that appears most frequently are Bx, By, Vp and SYM/H. When the inputs of our model are the 

combination of these four variables or the combination of Bx and By, the MAE of auroral oval boundary reaches the minimum, 5 

which proves that these four parameters have great influence on the location of aurora oval boundary. 

As a summary, it can be seen that these space physical parameters, which include Bx, By, Vp and SYM/H, play a crucial 

role in determining the location of auroral oval boundary based on the above conclusions. 

Table 6:  The MAE influenced by different combinations of space physical parameters 

Parameters name MAE (poleward/equatorward) 

Bx, By 1.6145/1.5003 

Bx, Vp, SYM/H 1.6359/1.5129 

Bx, By, Vp, SYM/H 1.6118/1.5056 

Bx, By, Vp, Pdyn, PC 1.6242/1.5084 

Bx, By, Np, AU, SYM/H 1.6154/1.5181 

Bx, By, Vp, Np, SYM/H, PC 1.6324/1.5017 

Bz, Vp, Pydn, AE, AU, AL, SYM/H 1.6282/1.5125 

Bx, By, Bz, Vp, Np, Pdyn, AE, AU 1.6149/1.5044 

Bx, By, Bz, Vp, Np, Pdyn, AE, AU, PC 1.6994/1.5028 

Bx, By, Bz, Vp, Np, Pdyn, AL, AU, SYM/H, PC 1.6771/1.5716 

Bx, By, Bz, Vp, Np, Pdyn, AE, AL, AU, SYM/H, PC 1.6669/1.5743 

4 Conclusion 10 

In this paper, we establish a model to measure the relationship between space physical parameters from OMNI dataset on 

NASA website and poleward and equatorward auroral oval boundaries based on deep learning network. Our model overcomes 

some drawbacks in this field. Such as, some prediction method based on statistics and a few space physical parameters. Those 

methods are not very suitable for the complex and changeable space physical data. For our model, the inputs are 18 space 

physical parameters and the 48 coordinates value of aurora oval boundary points at the previous moment, and we can obtain 15 

position of poleward and equatorward boundaries at 24 MLTs from our well-trained model. At last, our experiment results 

show that the model proposed in this paper can better reflect the relationship between space physical parameters and auroral 

oval boundary. Therefore, it should be useful to predict the position of auroral oval boundary. In addition, we analyse the effect 

of all 18 space physical parameters on the location of auroral oval boundary based on several statistical and prediction 
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experiments. It can be show that different parameters have different effect on auroral oval boundary from our experiments. 

Some space physical parameters, Bx, By, Vp and SYM/H, have a great influence on the position of auroral oval boundary. 
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