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Abstract.

Forecasting the height of new snow (HN) is crucial for avalanche hazard forecasting, roads viability, ski resorts management

and tourism attractiveness. Meteo-France operates the PEARP-S2M probabilistic forecasting system including 35 members of

the PEARP Numerical Weather Prediction system, where the SAFRAN downscaling tool is refining the elevation resolution,

and the Crocus snowpack model is representing the main physical processes in the snowpack. It provides better HN forecasts5

than direct NWP diagnostics but exhibits significant biases and underdispersion. We applied a statistical post-processing to

these ensemble forecasts, based on Nonhomogeneous Regression with a censored shifted Gamma distribution. Observations

come from manual measurements of 24-hour HN in French Alps and Pyrenees. The calibration is tested at the station-scale

and the massif-scale (i.e. aggregating different stations over areas of 1000 km2). Compared to the raw forecasts, similar im-

provements are obtained for both spatial scales. Therefore, the post-processing can be applied at any point of the massifs. Two10

training datasets are tested: (1) a 22-year homogeneous reforecast for which the NWP model resolution and physical options

are identical to the operational system but without the same initial perturbations; (2) 3-year real-time forecasts with a hetero-

geneous model configuration but the same perturbation methods. The impact of the training dataset depends on lead time and

on the evaluation criteria. The long-term reforecast improves the reliability of severe snowfall but leads to overdispersion due

to the discrepancy in real-time perturbations. Thus, the development of reliable automatic forecasting products of HN needs15

long reforecasts as homogeneous as possible with the operational systems.

1 Introduction

Forecasting the height of new snow (HN, Fierz et al., 2009) is essential in the mountainous areas as well as in the northern

regions due to various safety issues and economic activities. For instance, avalanche hazard forecasting, roads viability, ski

1



resort management and tourism attractiveness rely on the forecasts of HN. Automatic predictions are increasingly developed

for that purpose, based on Numerical Weather Prediction (NWP) models output. Nevertheless, accurate forecasting of this

variable is still challenging for several reasons. First, the precipitation forecasts in NWP models have significant errors which

increase with longer lead times. These forecast uncertainties have to be considered. Second, the high variability of HN as a

function of elevation is difficult to describe in mountainous areas, even at the best spatial resolution available in NWP models5

(i.e. 1 or a few km). Finally, several processes such as density of falling snow, mechanical compaction during the deposition

and variations of the rain-snow limit elevation during some storm events are not or poorly represented in NWP models. Several

recent scientific advances can help to face these challenges:

– To estimate forecast uncertainty, ensemble forecasting has become an important method in NWP. Probabilistic forecasts

have been in operational use for number of years in several meteorological centres (Molteni et al., 1996; Toth and Kalnay,10

1997; Pellerin et al., 2003). Ensemble forecasting has increased the confidence of forecast users to predict possible future

occurrence, or non-occurrence, of unusually strong events (Candille and Talagrand, 2005). In many cases, an estimation

of the probability density of future weather-related variable may present more value for the forecast user than a single

deterministic forecast does (Richardson, 2000; Ramos et al., 2013). The forecast uncertainties depend on the atmospheric

flow and vary from day to day (Leutbecher and Palmer, 2008). Therefore, ensemble forecasting aims at estimating the15

probability density of the future state of the atmosphere.

– In NWP, snowpack modelling is necessary since the presence of snow on the ground has major impact on all the fluxes

taking place at the interface between Earth’s atmosphere and its surface. However, NWP models often use single-layer

snow schemes with homogeneous physical properties because they are relatively inexpensive, have relatively few param-

eters and capture first order processes (Douville et al., 1995). Models with more complexity have also been developed but20

are not yet implemented in most NWP systems. The most detailed ones are able to represent a detailed stratigraphy of the

snowpack with an explicit description of the time evolution of the snow microstructure (Lehning et al., 2002; Vionnet

et al., 2012). Snow Model Intercomparison Projects (Krinner et al., 2018) suggest that detailed snowpack models are

among the most accurate models in the reproduction of the snowpack evolution in various climates and environments.

Operationally, these snow models are sometimes forced by NWP outputs to forecast the risk of avalanche (Durand et al.,25

1999). Concerning the topic of this study, it is known that these models also provide better estimates of the height of new

snow than direct NWP outputs (Champavier et al., 2018). This is explained by the abililty of these schemes to simulate

the mechanical compaction of snow on the ground occurring during the snowfall, the possible impact of changes in pre-

cipitation phase during a storm event, the possible occurrence of melting at the surface or at the bottom of the snowpack

and the dependence of falling snow density on meteorological conditions.30

To benefit from both the advantages of ensemble NWP and detailed snowpack modelling, Vernay et al. (2015) devel-

oped the PEARP-S2M modelling system (PEARP: Prévision d’Ensemble ARPEGE; ARPEGE: Action de Recherche Petite

Echelle Grande Echelle; S2M: SAFRAN-SURFEX-MEPRA; SAFRAN: Système Atmosphérique Fournissant des Renseigne-

ments Atmosphériques à la Neige; SURFEX: SURFace EXternalisée; MEPRA: Modèle Expert pour la Prévision du Risque
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d’Avalanches). In this system, the Crocus detailed snowpack model (Vionnet et al., 2012) implemented in the SURFEX surface

modelling platform is forced by the ensemble version of the ARPEGE NWP model (Descamps et al., 2014), after an elevation-

adjustment of the meteorological fields by the SAFRAN downscaling tool (Durand et al., 1998). However, the PEARP-S2M

system still suffers from various biases and deficiencies (Vernay et al., 2015; Champavier et al., 2018). Biases in atmospheric

ensemble forecasts may be caused by insufficient model resolutions (Weisman et al., 1997; Mullen and Buizza, 2002; Szun-5

yogh and Toth, 2002; Buizza et al., 2003), suboptimal physical parameterizations (Palmer, 2001; Wilks, 2005) or suboptimal

methods for generating the initial conditions (Barkmeijer et al., 1998, 1999; Hamill et al., 2000, 2003; Sutton et al., 2006).

In case of HN forecasts, the errors origin also from the snow models (Essery et al., 2013; Lafaysse et al., 2017). Due to the

systematic biases in ensemble forecasts and the challenge of detecting and correcting their origins, many methods of statistical

post-processing have been developed that leverage archives of past forecast errors (Vannitsem et al., 2018). In the literature,10

these probabilistic post-processing methods are often referred as Ensemble Model Output Statistics (EMOS) as an extension

to ensemble approaches of the traditional Model Output Statistics (MOS) applied for several decades to deterministic forecasts

(Glahn and Lowry, 1972). EMOS are now routinely applied for meteorological predictands such as temperature, precipita-

tion and wind-speed. The techniques are for instance nonhomogeneous regression methods (Jewson et al., 2004; Gneiting

et al., 2005; Wilks and Hamill, 2007; Thorarinsdottir and Gneiting, 2010; Lerch and Thorarinsdottir, 2013; Scheuerer, 2014;15

Scheuerer and Hamill, 2015; Thorarinsdottir and Gneiting, 2010; Baran and Nemoda, 2016; Gebetsberger et al., 2017), logistic

regression methods (Hamill et al., 2004; Hamill and Whitaker, 2006; Messner et al., 2014), Bayesian model averaging (Raftery

et al., 2005), rank histogram recalibration (Hamill and Colucci, 1997), ensemble dressing approaches (i.e., kernel density)

(Roulston and Smith, 2002; Wang and Bishop, 2005; Fortin et al., 2006), and quantile regression forests (Taillardat et al., 2016,

2019).20

However, statistical post-processing of ensemble HN forecasts is rarely reviewed in the literature. Stauffer et al. (2018) and

Scheuerer and Hamill (2019) are the first studies to the best of our knowldege to present post-processed ensemble forecasts

of HN. However, they only considered direct ensemble NWP output as predictors (precipitation and temperature) and did

not incorporate physical modelling of the snowpack. It can be expected that physical modelling could capture some complex

features explaining the variability of HN. This variability is difficult to reach by multivariate statistical relationships, especially25

the common high temporal variations of temperature and precipitation intensity during a storm event with highly non-linear

impacts on the height of new snow. Furthermore, because they do not consider direct predictors of HN, these recent studies

partly rely on precipitation observations in their calibration procedure whereas solid precipitation are particularly prone to very

high measurement errors (Kochendorfer et al., 2017). The physical simulation of HN enables considering directly observations

of this variable for the postprocessing. This is a major advantage because HN measurement errors (typically 0.5 cm, WMO,30

2018) are considerably lower than errors in solid precipitation measurements.

The goal of this study is to test the ability of a nonhomogeneous regression method to improve the ensemble forecasts of

HN from the PEARP-S2M ensemble snowpack modelling system. More precisely, the regression method of Scheuerer and

Hamill (2015) based on the Censored Shifted Gamma Distribution was chosen in this work for the advantages identified by

the authors in the case of precipitation forecasts. In particular, this method allows to extrapolate the statistical relationship35
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between predictors and predictands from common events to more unusual events. Considering the specificities of the available

datasets in terms of predictands and predictors, two other scientific questions are considered: (1) can statistical postprocessing

be applied at a larger spatial scale than the observation points? (2) what are the requirements of a robust training forecast

dataset for statistical postprocessing?

The structure of the paper is as follows. Section 2 describes the model components of the PEARP-S2M system, the obser-5

vation and forecast datasets used in this study, the nonhomogeneous regression method chosen for post-processing and the

evaluation metrics. In Sect. 3, the results of the post-processing method are presented for different training configurations.

The discussion in Sect. 4 focuses on the implications of our study about the possibility to implement such post-processing in

operational automatic forecast products and recommendations for improvements.

2 Data and methods10

2.1 Models

2.1.1 PEARP ensemble NWP system

PEARP is a short-range ensemble prediction system operated by Météo-France up to 4.5 days, fully described in Descamps

et al. (2014). It includes 35 forecast members of the ARPEGE NWP model. In 2019, it is based on a 25-member ensemble

assimilation combined with the singular vectors perturbations methods (Buizza and Palmer, 1995; Molteni et al., 1996) to15

provide 35 initial states. The singular vector perturbations are designed to optimize the spread of the large-scale atmospheric

fields at a 24h lead time. Finally, the 35 members are randomly associated with 10 different sets of physical parameterizations

including different deep and shallow convection schemes, among others. The current horizontal resolution is about 10 km

over France (truncature T798C2.4) with 90 atmospheric levels. All these features have been improved over time with a new

operational configuration provided almost every year.20

2.1.2 SAFRAN downscaling tool

SAFRAN (Durand et al., 1993, 1998) is a downscaling and surface analysis tool specifically designed to provide meteorological

fields in moutainous areas (i.e. with high elevation gradients). The principle of SAFRAN is to perform a spatialization of the

available weather data in mountain ranges so-called "massifs" of about 1000 km2 where meteorological conditions are assumed

to depend only on altitude. SAFRAN variables include precipitation (rainfall and snowfall rate), air temperature, relative25

humidity, wind speed as well as incoming longwave and shortwave radiations. Although SAFRAN was initially designed to

work as an analysis system adjusting a guess from NWP outputs with the available meteorological observations, SAFRAN

also comes with a forecast mode which can be considered simply as a downscaling tool to convert NWP model grid (PEARP

in our case) to the massif geometry. The originality of this system is the use of different vertical levels of the NWP model to

obtain surface fields at different elevations.30
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2.1.3 Crocus snowpack model

Crocus (Vionnet et al., 2012) is a one-dimensional multilayer physical snow scheme which simulates the evolution of the

snow cover affected by both the atmosphere and the ground below. It is implemented in the SURFEX surface modelling

platform (Masson et al., 2013) as the most detailed snow scheme of the ISBA (Interactions between the Soil Biosphere and

Atmosphere) land surface model. Each snow layer is described by its mass, density, enthalpy (temperature and liquid water5

content) and age. The evolution of snow grains is described with additional variables (optical diameter and sphericity) using

metamorphism laws from Brun et al. (1992) and Carmagnola et al. (2014). Snow density is a particularly important property

for the height of new snow. It is mainly affected by two key processes: the density of falling snow and the compaction of snow

on the ground. Falling snow density was empirically parameterized as a function of air temperature and wind speed (Pahaut,

1975). This parameterization is associated with significant uncertainties (Lafaysse et al., 2017; Helfricht et al., 2018). Snow10

compaction is modelled with a visco-elastic scheme in which the snow viscosity of each layer is parameterized depending

mainly on the layer density and temperature. The parameterization of snow viscosity is also uncertain as various expressions

were formulated in the literature (Teufelsbauer, 2011). Furthermore, the compaction velocity actually has a high dependence

to snow microstructure (Lehning et al., 2002). This complex dependence cannot be described in Crocus by the visco-elastic

concept and microstructure-dependent models of compaction are only available for very specific conditions (Schleef et al.,15

2014). These limitations partly explain the errors of simulated HN identified by Champavier et al. (2018) in combination with

the known errors and underdispersion of precipitation input.

2.2 Data

2.2.1 Study area

The study area covers the French Alps and Pyrenees. In all operational productions of avalanche hazard forecasting, these20

regions are divided respectively in 23 and 11 massifs (Fig. 1) indentical to the ones used in SAFRAN discretization (Sect.

2.1.2). The climate is contrasted, colder and wetter in Northern Alps, much drier in Southern Alps and Eastern Pyrenees due

to the Mediterranean influence (Durand et al., 2009). White dots correspond to stations where daily meteorological and snow

observations are available in winter in the so-called "nivo-métérologique" observation network.

2.2.2 Predictors25

Two separate sets of training data for the statistical postprocessing were used in this study as predictors. Their specificies

detailed below are also summarized in Table 1.

Reforecasts used for training

First, the PEARP reforecasts consist of 10 members including one control member and were issued in 2018. The reforecasts

(Boisserie et al., 2016) are based on a homogeneous model configuration identical to the operational release of 5th December30

2017 (same resolution and physical parametrizations), but they only include physical perturbations and no perturbation of
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Table 1. Summary of predictors dataset used for training and evaluation

Predictor Use Members Perturbation of

initial conditions

Model physics

and resolution

Snow simulations geometry Period

HN reforecasts Training 10 no constant stations (Alps and Pyrénées) 1994-2016

HN real-time forecasts Training 35 yes variable 300 m elevation bands (Alps) 2014-2017

HN real-time forecasts Evaluation 35 yes constant stations (Alps and Pyrénées) 2017-2018

the initial state, contrary to operational PEARP forecasts. The initial states are built with ERA-Interim reanalysis (Dee et al.,

2011) for the atmospheric variables and by the 24h standalone coupled forecasts of the SURFEX/ARPEGE model for the earth

parameters. These reforecasts were downscaled with SAFRAN for all stations in the French Alps and Pyrenees where snow

observations are available. These downscaled forecasts were used to force the Crocus snowpack model to provide simulated

heights of new snow. The training period length is 22 seasons (from 1994 till 2016).5

Real time forecasts used for training

Second, the real-time forecasts of PEARP consist of 35 members including a control member. In contrast to the reforecasts,

model configuration has changed over time and the earlier versions were different from the currently operational version (lower

horizontal and vertical resolution, different set of model physics). Both physical perturbations and initial state perturbations

are included in the real-time forecasts. These forecasts have experimentally forced the S2M snowpack modelling chain in real-10

time since 2014. However, these real-time snow forecasts were only issued for the French Alps massifs at specific elevations

of 1200, 1500, 1800, 2100, 2400 and 2700 meters. They are used for training over the 2014-2017 period.

Real time forecasts used for verification

Statistical methods have to be evaluated on datasets independent from the ones used for the calibration. Hence, the 35-

member real time forecasts of PEARP-S2M covering the 2017-2018 winter were used as predictors for verification (last line15

of Table 1). The version of PEARP is homogeneous over the verification period and identical to the reforecast configuration

(resolution and physics), but it also accounts for the initial perturbations. Thus, there are more members than in the reforecasts.

These verification forecasts were downscaled and forced the Crocus snowpack model for all the stations available in the snow

reforecasts. These verification forecasts were used to evaluate all the training scenarios described in Sect. 2.5.

Common features20

Note that in all cases (snow reforecasts and real-time snow forecasts used for training and verification), each snow forecast

is initialized by a SURFEX/ISBA-Crocus run forced by SAFRAN analysis (assimilating meteorological observations) from

the beginning of the season. For each season, the snow reforecasts and real-time forecasts were issued only for months from

November to April. Months outside of this time window were neglected due to insufficient observation data. In this study, we

consider only HN snow reforecasts and real-time forecasts at four different lead times (+24h, +48h, +72h and +96h).25

Summary

These two training datasets correspond to two different approaches to estimate the operational model statistical properties.

The real-time forecasts represent the closest version to the operational system but on a short period so that unusual events

7



cannot be taken into account. The reforecasts are a simpler version of the ensemble system which do not contain all sources of

error of the system but over a long climatological period. The theoretical version of a reforecast would be the exact reproduction

of the operational system over a long period, but it is currently not performed within the computing facilities of any national

weather service.

2.2.3 Observations5

The observation data used in this study have been collected from a network of stations mainly localised in French ski resorts.

These observation-stations are illustrated as white dots in Fig. 1. All the observations have been manually measured by the staff

members of these resorts. Measurement of the variable of 24h height of new snow (HN24) is done daily by measuring the fresh

snow height on top of a measuring board. After each measurement, the board is cleaned. These observations are usually carried

out every morning. They can be compared directly to the snow reforecasts which are available at each station. This yielded a10

total of 113 stations in French Alps and Pyrenees. However, since the real-time snow forecasts used for training are issued only

at specific elevations with a 300 m resolution, the observations were in this case associated with the closest standard elevation

level in the simulations when the altitude difference was lower than +/- 100 meters, and were ignored for higher differences.

This procedure yielded a total of 47 stations only in French Alps.

2.3 Post-processing method15

Nonhomogeneous Gaussian Regression (NGR) is one of the most commonly used EMOS methods. NGR was first proposed

by Jewson et al. (2004); Gneiting et al. (2005); Wilks and Hamill (2007). In these early applications of nonhomogeneous re-

gression, the predictive (i.e. post-processed) distributions are specified as Gaussian. The mean and variance of the Gaussian

distribution are typically modelled with a linear regression model using the raw ensemble mean and variance as predictors.

Unlike in ordinary regression-based methods, the dependence of the predictive variance on the ensemble variance in nonhomo-20

geneous regressions allows to exhibit less uncertainty when the ensemble dispersion is small, and more uncertainty when the

ensemble dispersion is large (Vannitsem et al., 2018). The regression coefficients can be estimated from the training data by

using optimization techniques based on the maximum likelihood or minimum Continuous Ranked Probability Score (CRPS)

(Gebetsberger et al., 2018). However, Gaussian predictive distributions are not adequate for certain meteorological predictands

such as precipitation. This can be solved by transforming the target predictand and its predictors such that it is approximately25

normal (Baran and Lerch, 2015, 2016) or using non-Gaussian predictive distributions. Many alternative predictive distribu-

tions have been proposed. Messner et al. (2014) applied logistic distribution for modelling square-root transformed wind

speeds. Generalized Extreme-Value distributions were used by Lerch and Thorarinsdottir (2013) for forecasting the maximum

daily windspeed and by Scheuerer (2014) for precipitation. Scheuerer and Hamill (2015) proposed also a nonhomogeneous

regression with gamma distribution. Nonnegative predictands such as precipitation have high probability mass at zero, and30

thus the use of a transformation comes with a number of problems. To address this, nonhomogeneous regression methods

based on truncating and censoring of predictive probabilities have been developed. For example, Thorarinsdottir and Gneiting

(2010) applied nonhomogeneous regression approach with zero-truncated Gaussian distributions for wind speed forecasting.
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A zero-truncated distribution is a distribution where random variable have nonzero probability only for positive values and the

negative values are excluded. Censoring instead allows a probability distribution to represent values falling below a chosen

threshold. Commonly, in case of ensemble postprocessing of precipitation forecasts, the censoring threshold is set to zero and

any negative probability is assigned to zero, providing a probability spike at zero. Scheuerer (2014) used zero-censored GEV

predictive distribution in nonhomogeneous regression model for precipitation. Similar approach with zero-censored shifted-5

gamma distribution (CSGD) for nonhomogeneous regression was introduced by Scheuerer and Hamill (2015, 2018) and Baran

and Nemoda (2016).

Indeed, as precipitation occurrence/non-occurrence and quantity are modelled together, Scheuerer and Hamill argued for

using a continuous distribution that permits negative values and left-censoring it at zero. According to their exploratory data

analysis, a predictor variable which often takes small values (e.g. the ensemble-mean precipitation forecast) calls for strongly10

right-skewed distribution. But as the magnitude of this predictor variable increases, the skewness becomes smaller. This sort of

behaviour can be reproduced to some extent by using gamma distributions. The gamma distributions can be defined by a shape

parameter k and a scale parameter θ, which are related to the mean µ and the standard deviation σ of the distribution (Wilks,

2011):

k =
µ2

σ2
;θ =

σ2

µ
(1)15

Scheuerer and Hamill (2015) introduce an additional parameter, the shift δ > 0. The purpose of this parameter is to deal with

the nonnegativity of gamma distribution by shifting the CDF of gamma distribution somewhat to the left. Therefore, the CSGD

model is defined by:

G̃k,θ,δ(y) =

Gk(y−δθ ) for y > 0

0 for y < 0
(2)

where Gk denotes the Cumulated Distribution Function of a gamma distribution with unit scale and shape parameter k. This20

distribution can be parameterized with µ, σ and δ by using Eq. (1).

In the non homogeneous regression model defined by Scheuerer and Hamill (2018), when the predictability becomes weak,

the forecast CSG distribution converges towards a CSG distribution of mean µcl, standard deviation σcl, and shift δcl, corre-

sponding to the best fit of the gamma law with the climatological distribution of observations. The validity of the adjustment

of the climatology with a gamma law was verified over the whole observations dataset in Fig. 2. It only exhibits a small25

underestimation of extreme values (for frequencies of exceedance lower than 1/1000).

Thus, for a given day, µ, σ and δ are linked to the raw ensemble forecasts with the regression model of Scheuerer and Hamill

(2018):

µ=
µcl
α1

log1p[expm1(α1)(α2 +α3POP +α4
x̄

x̄cl
)] (3)
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Figure 2. Distribution functions of positive HN observations over all dates and stations. Left: Frequency histogram of the raw data (gray)

and Probability Density Function of the fit with a gamma law (blue). Right: Cumulative Distribution Functions of observations (black) and

gamma law (blue) with a focus on the distribution tail.

σ = β1σcl

√
µ

µcl
+β2MD (4)

δ = δcl (5)

In Eq. (3), log1p(u) = log(1 +u) and expm1(u) = exp(u)− 1. In this regression model, the ensemble forecasts are sum-

marized by the ensemble mean x̄ (normalized by the climatological mean of the forecasts x̄cl), the probability of precipitation

POP, and the ensemble mean difference MD (a metric of ensemble spread), as defined by Eq. (6), (7) and (8):5

x̄=
1

M

M∑
m=1

xm (6)

POP =
1

M
Ixm>0 (7)

MD =
1

M2

M∑
m=1

M∑
m′=1

|xm−xm′ | (8)

with xm the forecast of each member m among the M members, and Ixm>0 = 1 if xm > 0, 0 otherwise.
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The regression coefficients α1, α2, α3, α4, β1 and β2 are estimated by the optimization process used by Scheuerer and

Hamill (2015) as described in next section.

In addition to the convergence of this model towards the climatological distribution for weak predictability, this model also

include several advantages compared to standard non-homogeneous regressions. First, the POP predictor can improve the

forecast distribution compared to models based only on the ensemble mean by providing complementary information about5

the expected precipitation occurrence. Then, the links between µ and x̄ and between µ and POP are not supposed to be linear

in Eq. (3) (the model tends to the linear case when α1→ 0). Finally, Eq. (4) introduces an explicit heteroscedasticty (σ does not

only depend on MD but also on µ). This important property for precipitation (or snowfall) may not be sufficiently reproduced

by the spread of the raw ensemble. Extended justifications of the form of this regression model are provided in Scheuerer and

Hamill (2015, 2018).10

2.4 Evaluation metrics

It is commonly admitted that reliability and resolution are the two main properties to qualify the skill of a probabilistic predic-

tion system (Candille and Talagrand, 2005). Reliability is defined as a statistical consistency between the predicted probabilities

and the subsequent observations. For instance, a probabilistic prediction system is reliable if a given snowfall occurs with fre-

quency p when it is predicted to occur with the probability p ∀p ∈ [0,1]. A system can be reliable if it would always predict the15

climatological distribution of the atmospheric variable under consideration. However, that would lack practical usefulness and

therefore the second property, resolution, implies that the individual spread of the predicted distributions must be smaller than

the climatological spread.

2.4.1 CRPS

The Continous Ranked Probability Score (CRPS) is one of the most common probabilistic tools to evaluate the ensemble20

skill both in terms of reliability (unbiased probabilities) and resolution (ability to separate the probability classes) (Candille

and Talagrand, 2005). For a given forecast, the CRPS corresponds to the integrated quadratic distance between the CDF of

ensemble forecast and the CDF of observation. Commonly, the CRPS is averaged overN available forecasts following Eq. (9):

CRPS =
1

N

N∑
i=1

∫
R

(Fi(x)−H(x− oi))2dx (9)

where Fi(x) is the cumulative distribution function of the ensemble simulation at time i, oi the observation at time i, and H(y)25

is the Heaviside function (H(y) = 0 if y ≤ 0; H(y) = 1 if y > 0). CRPS value has the same unit as the evaluated variable and

tends towards 0 for a perfect system. Note that in the case of a CSG distribution (when Fi = G̃k,θ,δ), an analytic expression of

CRPS allows to directly compute the score from the parameters k, θ and δ (Scheuerer and Hamill, 2015). In this study, CRPS

is used to optimize the 6 regression parameters (α1, α2, α3, α4, β1, β2) of Eq. (3) and (4), by minimizing this score on the

training data. We remind that the correspondence between (µ, σ) and (k, θ) is given by Eq. (1). Then, CRPS is also used to30
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evaluate the overall skill of the HN raw forecasts of the PEARP-S2M system. Finally, to assess the improvement obtained by

the post-processing compared to the raw forecasts, we compute the Continuous Ranked Probability Skill Score:

CRPSS = 1− CRPS

CRPSref

(10)

where CRPSref is the reference mean CRPS of the raw ensemble forecasts. Therefore, positive CRPSS values indicate an

improvement compared to the raw forecasts. In this work, CRPS and CRPSS were computed separately for each station and5

we present the distribution of these scores among stations.

2.4.2 Rank histograms and quantile-quantile plots

Statistical post-processing are mainly expected to improve the reliability of ensemble forecasts systems. Therefore, we chose

to present complementary diagnostics to better illustrate the improvement obtained by the postprocessing in terms of reliability

compared to the raw forecasts. For that purpose, we used rank histograms and quantile-quantile plots.10

Rank histograms (Hamill, 2001) illustrate the occurrence frequency of the different possible ranks of the observations ok

among the sorted ensemble members. The flatness of this histogram is a condition of the system reliability (if the simulated

probabilities are unbiased regardless of the probability level, the different ranks should have a uniform occurrence frequency).

It is also an indicator of the spread-skill as underdispersion will result in a U-shaped rank histogram and overdispersion in a

bell-shaped rank histogram. Rank histograms are commonly computed for the whole forecast dataset, but this can hide con-15

trasted behaviours between the different parts of the distribution. Forecast stratification (Broecker, 2008), as the process of

dividing the whole dataset into different subsets and computing verification metrics for each subset, has been introduced as

a way to better diagnose where the deficiencies of the forecast system lie. Bellier et al. (2017) compared different strategies

for the stratification criteria, based on either the observations or the forecasts, and justified the use of a forecast-based strati-

fication criteria for verification rank histograms. Indeed, they showed that conditioning the rank histogram to observations is20

likely to draw erroneous conclusions about the real behaviour of ensemble forecasts. Therefore in this study, a forecast-based

stratification is used by considering three HN intervals [0cm,10cm[, [10cm,30cm[ and [30cm,+∞[ for the ensemble mean.

To guarantee a sufficient sample size for rank histograms, they are computed for the whole evaluation dataset by considering

all dates and stations as independent.

To understand the connection between forecast errors and the magnitude of observed HN, quantile-quantile plots of sorted25

observations as a function of the forecast quantiles for the equivalent frequency levels are also presented. Contrary to the rank

histograms, quantile-quantile plots do not discriminate the probability classes in the ensemble forecasts but they allow one to

verify that the postprocessing removes the biases for any value of the forecast variable, with a reduced constraint on sample

size compared to the stratified rank histogram. Similarly to the rank histograms, quantile-quantiles plots are computed for the

whole evaluation dataset (all dates and stations).30

12



2.5 Experiments

The post-processing method described in Sect. 2.3 was calibrated on the data listed in Sect. 2.2.2. Several experiments were

performed. First, for each station, the predictor is the simulated HN from the snow reforecast, and the predictand is the ob-

served HN at the station. This leads to a different calibration for each station. Then, for each massif, the same predictors and

predictands of all stations inside the massif boundaries are mixed in the same training vectors as independent events. This5

method will be further referred as massif-scale calibration because it leads to a unique calibration for each massif. The results

of these two first experiments are described in Sect. 3.2.1. Finally, the same massif-scale calibration is applied by using the

real-time forecasts as predictors. The comparison of both training dataset is analysed in Sect. 3.2.2. The skill of the raw forecast

and all postprocessing experiments is assessed with the independent evaluation dataset described in Sect. 2.2.2 with the metrics

of Sect. 2.4.10

3 Results and discussion

3.1 Evaluation of raw forecasts

Raw HN real-time forecasts of winter 2017-2018 (Sect. 2.2.2) are evaluated. The CRPS at different lead times of the raw

forecast is given in Fig. 3a. The boxplots represent the variability of the score between stations, which is relatively large at all

lead times. The mean CRPS slightly deteriorates with longer lead times.15

The rank histogram of the raw forecast is presented in Fig. 3b and stratified according to the ensemble mean with three

different categories (low subset in blue: 0-10 cm, medium subset in green: 10-30 cm, high subset in red: above 30 cm) . The

raw HN forecasts are biased with high underdispersion on all three subsets (U-shape). Above 10 cm forecasts, about 50% of

the observed values are not included in the ensemble (rank 1 or rank 36). Note that the small sample size of the high subset (79

events) causes a high sampling variability in the different probability classes.20

To understand the link between forecast errors and the magnitude of HN, Q-Q plot of sorted observations as a function of the

forecast quantiles for the equivalent probability levels is presented in Fig. 3c. The systematic bias in the forecast increases as

the observed HN increases. However, since the sample size of high observed HN is small, we can expect significant sampling

variability in the upper tail.
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Figure 3. Evaluation of raw HN forecasts from PEARP-S2M during winter 2017-2018. a) CRPS of HN as a function of prediction lead

time. The boxplot represents the variability of scores between the 113 stations. b) Ranks histograms of HN forecasts for three classes of HN

ensemble mean (indigo: [0cm,10cm[, cyan: [10cm,30cm[, red: [30cm,+∞[). c) Quantile-Quantile plot: the black dots represent sorted

observations as a function of the forecast quantiles for the equivalent frequency levels. Red line illustrates the ideal distribution.
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3.2 Evaluation of post-processed forecasts

3.2.1 Comparison of local-scale and massif-scale training

In this section, we present only the results obtained by using the reforecast dataset as training and we compare the impact of a

local-scale calibration for each station to a massif-scale calibration where all observations in the same massif are mixed in the

same training vector in order to obtain only one set of parameters by massif for Eq. (3) and (4), that can be applied at any point5

in the massifs. The evaluation is performed on 113 stations in 30 different massifs.

CRPSS of each station for the verification period and with the raw forecast as a reference are presented in Fig. 4a and 4b.

Postprocessing with both local-scale and massif-scale training significantly improves the CRPS in the majority of the stations

(positive skill scores for a large majority of stations), although in both cases, the improvement decreases with longer lead

times. The CRPSS of local-scale training is slightly better than the CRPSS of massif-scale training on smaller lead times (24h10

and 48h), but for longer lead times (72h and 96h), the difference between local-scale and massif-scale decreases. Overall, the

difference between local-scale and massif-scale training according to the CRPSS is limited.

The rank histograms of the postprocessed ensembles with local-scale and massif-scale snow reforecast training are presented

in Fig. 4c and 4d. In both cases the shape of the histograms are similar, and show that the reliability has been greatly improved

compared to the raw forecast (Fig. 3b). This is the expected behavior of the postprocessing and obtaining such a result on the15

validation period independent from the training period proves the robustness of the model. However, a relative overdispersion

of the post-processed can be noticed (slight bell-shape of the histograms). As for the rank histogram of the raw forecast, the

sample size of the high subset is small and causes variability in the corresponding rank histogram (red bars).

Q-Q plots of both postprocessing training scenarios with the snow reforecast are presented in Fig. 4e and 4f. In both cases,

a significant improvement compared to the raw Q-Q plot (Fig. 3c) can be noted over all quantiles. Indeed, the Q-Q plot shows20

that the postprocessed forecasts and the observations have almost the same climatological distribution. Again, the sample size

of high observed HN is small, and causes sampling variability in the upper tail.

Examples of raw and postprocessed ensembles with the snow reforecast training in local-scale and massif-scale are given in

Fig. 5. In all four cases, the CRPSS are around +30%, showing a clear improvement of the forecasts by the postprocessing over

January 2018. Note that the scores over this short period are provided for the example but only the previous scores computed25

over the whole evaluation period (Fig. 4) should be considered for robust conclusions. The better improvement is obtained

with the local scale training in the first example (Fig. 5a and 5b) but with the massif scale training in the second example (Fig.

5c and 5d). These examples show that some differences can be observed between the skill of the local-scale and the massif-

scale training but with variability between stations and no systematic improvement or deterioration. This is consistent with the

similar scores presented before between both spatial scales. In both examples and regardless the spatial scale of training, the30

post-processing increases the median and the spread compared the raw ensemble, consistently with the systematic negative

bias and underdispersion of the raw forecast observed in Fig. 3b and 3c. Thus, for most days with observed snowfall, the

observations fall inside the EMOS quantiles whereas they frequently fall outside the raw ensemble. Nevertheless, the method
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causes overdispersion especially visible by adding spread even for the days when all the raw forecast members are predicting

no snowfall.

3.2.2 Comparison of real-time snow forecast and snow reforecast training

In this section, we present only the results obtained with a massif-scale training and we compare the impact of using the

reforecast dataset or the real-time forecast dataset as training, which do not have the same advantages and disadvantages.5

As mentioned in Sect. 2.2.2, only 47 stations in 21 different massifs were included in this comparison. Note that the results

obtained in Sect. 3.1 and 3.2.1 are not significantly different between the 113 stations and this subset of 47 stations, as shown

by the similar diagnostics obtained for massif-scale reforecast training in both sections (Fig. 4b, 4d and 4f just differ from Fig.

6a, 6c and 6e by the number of stations considered.) CRPSS of each station for the verification period, with the raw forecast as

a reference, are presented in Fig. 6a and 6b. In both cases, the CRPS is improved in the majority of the stations. Similarly to10

Sect. 3.2.1, the CRPSS is decreasing with longer lead times. However, this decrease is smaller with the real-time snow forecast

training and it performs better at 96h lead time compared to the snow reforecast training. As can be noted, the variability of

mean CRPSS among the stations is generally higher with the real-time snow forecast training.

The rank histograms of post-processed forecasts for both training scenarios are given in Fig. 6c and 6d. The calibration of

the postprocessed ensembles between these two different training scenarios is different. In case of a snow reforecast training,15

similar overdispersive behaviour for the low subset (blue) can be noted as was in the previous comparison with a higher number

of stations, whereas such issue is not obtained with the real-time snow forecast training. However, the real-time snow forecast

training causes a significant positive bias for the medium and high subsets which is not observed with the snow reforecast

training.

Q-Q plots with the snow reforecast and the real-time snow forecast are presented in Fig. 6e and 6f. Similar as with the Q-Q20

plots in the previous comparison, there is a significant improvement over all quantiles compared to the raw Q-Q plot (Fig. 3c).

The biases in the ranks from Fig. 6d are not translated in a bias in the simulated quantiles.

Examples for two different stations and lead times of postprocessed ensembles with snow reforecast massif-scale training

and the real-time snow forecast massif-scale training are given in Fig. 7. In both examples with the snow reforecast training

(Fig. 7a and 7c), postprocessing increases the spread by stretching the distribution below and above the raw ensemble whereas25

with the real-time snow forecast training (Fig. 7b and 7d), the distribution is mostly stretched above the raw ensemble. In

the example of Fig. 7c and 7d, the real-time snow forecast training performs better since the raw forecast underestimates the

snowfall magnitude. However, in the example of Fig. 7a and 7b, postprocessing is improved with the snow reforecast training

because the raw forecast overestimates the magnitude of the snowfall and the observations fall multiple times below the raw

forecast. In this example, the postprocessing based on the real-time snow forecast training deteriorates the raw forecast by30

only stretching the distribution towards higher values. Similarly to the impact of the spatial scale on the training data, there is

not any systematic positive or negative impact of the training dataset on the skill of the postprocessing. The main advantages

and disadvantages of the real-time snow forecast vs. the snow reforecast training identified in the rank histograms are also

emphasized in these examples. First, the overdispersion on dry days obtained by the snow reforecast training can be again

16



observed in Fig. 7c. This issue disappears with the real-time snow forecast consistently with the satisfactory shape of the low

subset (blue bars) in the rank histograms. However, the reliability of the forecasts for severe snowfall events is better with the

reforecast training in the example of Fig. 7a and 7b, consistently with the systematic bias of the medium and high subsets

(green and red bars) obtained in Fig. 6d.
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Figure 4. Comparison of postprocessing skill between local-scale training (left column) and massif-scale training (right column) for post-

processed HN forecasts calibrated with the reforecast dataset (1994-2016) and evaluated during winter 2017-2018. a) b) CRPS of HN (cm)

as a function of prediction lead time ; the boxplot represents the variability of scores between the 113 stations. c) d) Ranks histograms ; the

three HN classes are the same as in Fig. 3b. e) f) Quantile-Quantile plot.
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Figure 5. Time series of the raw (blue) and postprocessed (gray) ensemble forecasts during January 2018 from a training based on the snow

reforecasts. The envelopes represent the interval between the 10th and the 90th percentiles and the solid lines represent the median. These

ensemble forecasts are compared to time series of HN observations (red lines). a, b: Example of station 73034400 (Arêches) at the +48h lead

time. c, d: Example of station 73235400 (Saint-François-Longchamp) at the +96h lead time. Left column (a,c): Local scale training. Right

column (b,d): Massif scale training.
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Figure 6. Comparison of postprocessing skill between a training with the reforecasts dataset (1994-2016, left column) and a training with

the real-time forecasts dataset (2014-2017, right column) for postprocessed HN forecasts calibrated at the massif-scale and evaluated during

winter 2017-2018. a) b) CRPS of HN (cm) as a function of prediction lead time ; the boxplot represents the variability of scores between the

47 stations. c) d) Ranks histograms ; the three HN classes are the same as in Fig. 3b. e) f) Quantile-Quantile plot.
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Figure 7. Time series of the raw (blue) and postprocessed (gray) ensemble forecasts during January 2018 from a massif-scale training. The

envelopes represent the interval between the 10th and the 90th percentiles and the solid lines represent the median. These ensemble forecasts

are compared to time series of HN observations (red lines). a, b: Example of station 73235400 (Saint-François-Longchamp) at the +24h lead

time. c, d: Example of station 73023401 (Aussois) at the +72h lead time. Left column (a,c): Training with the snow reforecasts. Right column

(b,d): Training with the snow real-time forecasts.
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4 Discussion

4.1 Implications for operational automatic forecasts

4.1.1 Added value of postprocessed HN forecasts

Evaluations of the HN raw forecast from the PEARP-S2M ensemble snowpack modelling system in Sect. 3.1 exhibit a signif-

icant underdispersion over all subsets as well as an increasing systematic bias as a function of the height of new snow. It is5

the result of a bias and underdispersion of the PEARP precipitation forecasts (Vernay et al., 2015) but also of errors in recent

snow density in the Crocus snowpack model (Sect. 2.1.3) and lack of accounting for uncertainty in the associated processes in

the raw forecasts. Therefore, we recommend to avoid the development of automatic products of HN forecasts based on the raw

simulations.

Statistical processing can help improving the reliability of the forecasts in such products while the correction of these errors10

and underdispersion is too challenging to be quickly solved in the NWP and snowpack models. According to the results of

this study, we can state that the use of statistical postprocessing with CSGD method in case of ensemble HN forecasts is

beneficial in most of the evaluated stations in all of the experiments conducted. The extent of these improvements was more or

less similar to what had already been found by several authors in case of statistical postprocessing of ensemble precipitation

forecasts (Gebetsberger et al., 2017; Scheuerer and Hamill, 2015, 2018). However, since statistical postprocessing of ensemble15

forecasts had never been applied in the literature on the outputs of a detailed snowpack model, the findings of this study are

very promising in terms of automatic HN forecast developments. Thanks to many advantages of the physical modelling of the

snowpack, the method represents an alternative to the more complex statistical frameworks developed by Stauffer et al. (2018)

and Scheuerer and Hamill (2019) from direct NWP diagnostics as predictors.

4.1.2 Spatial scale20

Due to the similar improvements whether training data were considered at local-scale or massif-scale (Sect. 3.2.1), the use of

massif-scale training is justified. Indeed, it means that the postprocessing can be applied at any point of the massifs because

homogeneous sets of calibration parameters are obtained for each massif. This is especially interesting for the operational

HN forecasting which has no reason to be limited to observation stations. Note that a potential limitation for applying the

postprocessing anywhere is the relatively limited elevation range of observations used in the evaluations (50% of observation25

stations are between 1400 and 2000 m.a.s.l.). Nevertheless, local-scale postprocessing is interesting as well and can be applied

especially if the objective is to gain more reliable HN forecasts for specific locations (e.g. ski resorts).

4.1.3 Training dataset

Even though local-scale and massif-scale trainings resulted in similar postprocessing performances, that was not exactly the

case when training forecasts with different lengths and characteristics were compared in Sect. 3.2.2. This comparison resulted30

in large differences between the snow reforecast training and the real-time snow forecast training. The reliability of severe
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Figure 8. Qualification of snow coverage at 1800 m on north aspects in French Northern Alps: for each winter (November-April), percentage

of days with total snow depth much below average (lower than 20th climatological percentile), below average (between 20th and 40th

percentiles), near average (between 40th and 60th percentiles), above average (between 60th and 80th percentiles), much above average
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snowfalls was not satisfactory with the real-time snow forecast training. This may be due to the small training length, making

highly possible the fact that the climatology of the training period differs from the climatology of the verification period.

To understand this issue, Fig. 8 shows the differences in terms of the amount of snow coverage in Northern Alps at 1800

m between the successive seasons. As can be noted, the difference between the snow coverage during the evaluation period

(2018) and the training period (2015, 2016 and 2017) is significant. Even when compared to all of the winters in Fig. 8, the5

year of 2018 is exceptional. Figure 9 presents a rank histogram obtained by cross-validation of three different postprocessing

calibrations in which the training periods were 3 years of the 2014-2018 period excluding the evaluation year, repeating this

process with 2015, 2016 and 2017 as evaluation year. The rank histogram is the mean of the ranks frequencies of these three

simulations. Such cross-validation procedure reduces the impact of seasonal differences in the shape of rank histogram. The

shape of the highest subset (red bars) in the cross validated rank histogram of 2014-2017 (Fig. 9) is completely different from10

the rank histogram obtained for the verification period of 2017-2018 (Fig. 6d). Instead of positive bias, the cross validated

verification rank histogram indicates a negative bias. Such behaviour supports the previous arguments about the impact of the
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Figure 9. Cross-validated ranks histograms of the postprocessed HN forecasts from local-scale calibration with the real-time forecasts

dataset. The evaluation is done separately for winters 2014, 2015, 2016 with the training period 2014-2018 excluding the evalution year. The

three HN classes are the same as in Fig. 3b.

−20

0

20

40

24h 48h 72h 96h
Lead time

C
R

P
S

S
 [%

]

a   Predictors for verification:
     Reforecasts

−20

0

20

40

24h 48h 72h 96h
Lead time

C
R

P
S

S
 [%

]

b   Predictors for verification:
     Real−time forecasts

Figure 10. CRPS of HN (cm) as a function of prediction lead time for postprocessed forecasts from local-scale calibration with the reforecast

dataset (1994-2016) and applied during winter 2015-2016. a: predictors for the verification are taken from the reforecast, b: predictors for the

verification are taken from the real-time forecasts. The boxplot represents the variability of scores between the 47 stations in French Alps.

seasonal differences which is especially problematic for operational use in case only short training periods are available for the

postprocessing. Indeed, it is highly possible that the upcoming season is significantly different from the past few seasons. Such

issue can be avoided or minimized by using longer training periods when reforecasts are available. This conclusion is fully

consistent with a significant decrease of the forecast skill obtained by Scheuerer and Hamill (2015) for the highest precipitation

amount when reducing the training data length among the same reforecast dataset.5
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However, the main limitation to the use of the PEARP-S2M reforecast instead of the real time forecasts is the overdispersion

generated in the postprocessed forecast. It may be due to the discrepancy in the perturbations and model configurations between

these two forecasts. As explained in Sect. 2.2.2, the snow reforecast and the real-time snow forecast have different perturbations

and model configurations. The snow reforecast accounts only for the physical perturbations and thus, it has 10 members

whereas the real-time snow forecast accounts for both physical and initial perturbations making it a 35-member forecast. Due5

to the discrepancy in the perturbations, the real-time snow forecast has higher spread than the snow reforecast. Hence, this can

lead to an overcorrection of the spread in case the model is trained with the snow reforecast (lower spread) and verified with

the real-time snow forecast (higher spread). To understand the importance of homogeneity between training and verification

forecasts, Fig. 10 shows CRPSS comparison between two cases where the postprocessing was applied with the same training

data (the snow reforecast local-scale) and for the same verification period (winter 2015-2016), but first the postprocessing was10

verified with the snow reforecast as predictor and in the second case the verification was done with the real-time snow forecast

as predictor. For this analysis, the verification period had to be included in the training period due to the limited recovery

between both datasets. According to the skill scores, the difference between these two forecast evaluations was significant

considerable. At all lead times, the skill score with the snow reforecast verification is higher than with the real-time snow

forecast verification: the improvement of the median CRPSS is about 0.12. Similar skill scores were also obtained for different15

seasons when the snow reforecast was used for verification. Hence, the ideal training forecast for statistical postprocessing

should be as homogeneous as possible with the verification (operational) forecast. This is an important feedback of this work

for research teams in charge of atmospheric modelling: even if the numerical costs are higher, applications of ensemble NWP

need reforecasts which include all perturbations implemented in the operational system. Before such dataset is available, it

is difficult to choose whether an operational postprocessing should be based on the snow reforecast or on the real-time snow20

forecast training as it depends if we prefer to optimize for severe events with high socio-economic impacts or to optimize the

spread during dry days (which can be an important factor of confidence for the end-user in an automatic product).

4.2 Possible refinements

To maximize the performance of the statistical postprocessing method used in this study, some refinements or extensions

could be considered. According to the personal communications with the forecasters of Météo-France, the systematic biases25

in NWP models may depend on circulation regimes. Hence, categorising the training data by weather types and computing

the regression parameters accordingly may be interesting. However, this would decrease the training length and could be

problematic especially in the case of the real-time snow forecast training which already had a relatively short training period.

Another extension of the method could be the addition of new predictors. The use of a physical snowpack model reduces

the need of considering both precipitation and temperature variables compared to Stauffer et al. (2018) and Scheuerer and30

Hamill (2019). Indeed, situations close to the critical threshold of 0oC are likely to already result in an increased spread in the

raw ensemble forecasts (some members are going to forecast rain, some other to forecast snow). Therefore the post-processed

forecasts are naturally exhibiting more spread in this case as it is linked to ensemble spread by Eq. (4). Nevertheless, it is

still true that the system may not have the same biases and skill scores depending on various meteorological variables such as

25



temperature or wind speed, or even depending the month of the year. These variables might be able to improve the statistical

relationship in more complex statistical models. Quantile Random Forests for instance could be tested (Taillardat et al., 2016) as

they do not need to presume the required predictors in advance and because they could allow combining the different available

training datasets by adding a categorical variable. Taillardat et al. (2019) showed that hybrid forest-based procedures produce

the largest skill improvements for forecasting heavy rainfall events over France.5

5 Conclusion

Various weather services are trying to increase the part of automatic forecasts in their production. This includes the challenging

forecast of the height of new snow. The PEARP-S2M modelling system, designed for avalanche hazard forecasting, can also

help for this application. Indeed, the PEARP ensemble Numerical Weather Prediction (NWP) model quantifies the uncertainty

of the forecast, the SAFRAN downscaling tool refines the elevation resolution, and the Crocus snowpack model represents the10

main physical processes responsible for the variability of the height of new snow. However, the raw outputs of PEARP-S2M are

biased and underdispersive. The origins of these biases in atmospheric ensembles and snow models are challenging to detect

and correct, and hence, a statistical postprocessing of the HN output is necessary. In this study, a nonhomogeneous regression

method based on censored shifted gamma distributions was tested to calibrate HN forecasts. The predictands are snow boards

measurements of the height of 24-hour new snow from a network of stations localised in the French Alps and Pyrenees.15

HN outputs from the PEARP-S2M model chain were statistically postprocessed by considering local-scale and massif-scale

training vectors. The method was applied with two different predictor datasets for training (snow reforecast and real-time snow

forecast).

The chosen statistical postprocessing method was found to be successful as the forecast skills were improved for the majority

of the stations in all the conducted experiments. Local-scale and massif-scale trainings had similar improvements and therefore20

the use of massif-scale training can be prefered for its ability to be applied at a larger spatial scale than the observation points.

However, a potential limitation comes with the relatively limited elevation range of the observations since most of the stations

are between 1400 and 2000 m.a.s.l. Comparison between the snow reforecast training and the real-time snow forecast training

revealed two main challenges. First, due to the higher spread in the verification (operational) forecast than in the snow reforecast

training, the statistical postprocessing ended up overcorrecting the spread. This was found to be especially problematic in case25

of dry days when it was nearly certain that no snowfall would occur, but still the postprocessed forecast indicated a small

probability for snowfall. Second, because of the short training length of the real-time snow forecast, the impact of seasonal

differences was found to be significant. In this case, as the training period for the statistical postprocessing was significantly

drier than the verification period, the statistical postprocessing did not perform well with higher snowfall events.

An ideal training forecast was identified to be as homogeneous as possible with the operational forecast and to have a30

long training length. However, such dataset was not available in our case, and before it becomes available, it is difficult to

choose if an operational application of postprocessing should be based on the snow reforecast or on the real-time snow forecast

since both have advantages and disadvantages. The possibility to initialize an incoming version of PEARP reforecast with an

26



ensemble of initial states coming for instance from ERA5 reanalyses should be investigated in the future. This should reduce

the discrepancy with the operational ensemble system and encourage to prefer postprocessing based on the reforecast than

on real-time forecasts. The main limitation remains the high computational time consumption of these reforecasts (Vannitsem

et al., 2018) and the balance to find with the frequency of operational changes in NWP and snowpack modelling systems.
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