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Abstract. The North Atlantic Oscillation (NAO) is the most prominent atmospheric seesaw phenomenon in the North Atlantic

Ocean. It has a profound influence on the strength of westerly winds as well as the storm tracks in North Atlantic, thus affecting

winter climate in Northern Hemisphere. Therefore, it is necessary to investigate the mechanism related to the NAO events.

In this paper, conditional nonlinear optimal perturbation (CNOP), which has been widely used in research on the optimal

precursor (OPR) of climatic event, is adopted to explore which kind of initial perturbation is most likely to trigger the NAO5

anomaly pattern in the Community Earth System Model (CESM). Since CESM does not have an adjoint model, we propose

an adjoint-free parallel principal component analysis (PCA) based genetic algorithm (GA) and particle swarm optimization

(PSO) hybrid algorithm (PGAPSO) to solve CNOP in such a high dimensional numerical model. It is demonstrated that the

OPRs obtained by CNOP trigger the references state into typical NAO mode, which provides the theoretical underpinning

in observation and prediction. Furthermore, the hybrid algorithm can accelerate convergence and avoid falling into a local10

optimum. After parallelization with Message Passing Interface (MPI) and Compute Unified Device Architecture (CUDA), the

PGAPSO algorithm achieves a speed-up of 40× compared with its serial version. The results as mentioned above indicate that

the proposed algorithm can efficiently and effectively acquire CNOP and can also be generalized to other complex numerical

models.

1 Introduction15

The North Atlantic Oscillation (NAO) refers to the continuous phase-reversing oscillation in the meridional direction of the sea

level pressure (SLP) field in the North Atlantic, which is mainly related to the interannual variation of the pressure over Azores

and Iceland. It represents large-scale alterations in the SLP differences between the subtropical and subpolar regions of the

North Atlantic (Haylock et al., 2007). As the dominant mode of atmospheric circulation variability in the northern hemisphere,

the NAO is the result of complex nonlinear interactions between many spatiotemporal scales (Önskog et al., 2018). The NAO20

can be viewed as a process with an e-folding time scale of about two weeks (Feldstein, 2000) and its life cycle may be closely

linked to the anticyclonic (cyclonic) Rossby wave breaking (Franzke et al., 2004). The NAO index (NAOI) is a quantified

indicator of the NAO, which is defined as the difference between normalized SLP over Iceland and Azores (Andersson, 2002).
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The NAO events fall into two categories, the positive phase (NAO+) and the negative phase (NAO�). During the NAO+,

there is a strengthening of either or both the Icelandic Low and the Azores High, resulting in an increased pressure gradient,

and NAO� is the opposite (Heape et al., 2013). In the past decade, the turbulence of the winter NAO has been quite extreme,

and it has contributed greatly to the warm winter phenomenon throughout Europe, the cold weather in the Northwest Atlantic

(Hurrell, 1995), the dipole precipitation pattern over northwest Europe and northwest Africa (Wassenburg et al., 2016) and5

the surface temperature variation (Pokorná and Huth, 2015), etc. It is also found that the winter NAO is the ultimate factor

affecting spring temperatures in Central Europe (Hubálek, 2016) and is closely related to the trend of warming in the northern

hemisphere (Iles and Hegerl, 2017). Moreover, the multidecadal variations of the NAO can induce multidecadal variations in

the Atlantic meridional overturning circulation, leading to the rapid melting of Arctic sea ice (Montreuil and Chen, 2018).

Research suggests that its seasonal variation is recognized to be mainly caused by unpredictable processes (Dunstone et al.,10

2016). It is, therefore, of widespread scientific research value to study the physical mechanism and enhance forecast skill for

the NAO.

Although the phase and amplitude of NAO are affected by numerous factors, including sea surface temperature, anomalies in

both the tropics and extratropics and stratospheric extreme events (Hansen et al., 2017), tropical atmospheric heat anomalies (Yu

and Lin, 2016) and intensity of geomagnetic activity (Bucha, 2014), the characteristics of the NAO events in the atmospherical15

process can be captured by the nonlinear models (Luo et al., 2007). The NAO can be regarded as a nonlinear initial value

problem (Woollings et al., 2008) to explore the nature of the initial perturbation that is most likely to develop into climate

events. Under some conditions, the above mentioned initial perturbation is called as the optimal precursor (OPR) (Mu et al.,

2014). Since the initial condition has a significant influence on the predictability of the decadal variability (Zhang et al.,

2016), the OPR can help us to understand the dynamical processes of the NAO state transition. The physical mechanism for20

triggering the NAO event is able to be discovered by investigating the developing process of the OPR. Moreover, the sensitive

areas determined by the spatial structure of the OPRs are beneficial to the intensive observations, thus improving the forecast

accuracy of the NAO state transition. Hence, it is of important meaning for exploring and optimizing the method to solve the

OPR.

Research has shown that the OPR can be solved by conditional nonlinear optimal perturbation (CNOP) approach, which25

describes the initial perturbation that satisfies a specific constraint condition and causes the largest prediction error at the

prediction time. It applies to the study of the predictability of the numerical models, simulating nonlinear motions of oceans

and atmospheres (Mu et al., 2003). CNOP approach was originally adopted to identify the OPRs of ENSO (Duan et al., 2004),

and gradually applied in research on the onset of blocking events (Mu and Jiang, 2011), Kuroshio large meander (Zhang et al.,

2017b), and Indian Ocean dipole events (Mu et al., 2017b).30

Recently, Jiang et al. explore the optimal precursors that trigger the NAO events using CNOP, demonstrating that the ampli-

tude induced by the self-interaction of perturbations in the onset of the NAO� is stronger than that in the onset of the NAO+

(Jiang et al., 2013). On this basis, Dai et al. investigate the relationship between the OPR and optimally growing initial error

(OGE) using CNOP (Dai et al., 2016). It is indicated that the two types of OGEs and the OPRs corresponding to the two types

of NAO events have similar structures, and both of them can develop into dipole NAO anomaly patterns. These studies provide35
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evidence that CNOP is a useful method to investigate the onset of the NAO event. In their studies, the T21L3 quasigeostrophic

global spectral model, which is a simple three-level model designed by Marshall and Molteni, is applied under ideal conditions

(Marshall and Molteni, 1993). Due to the feature of the T21L3 model, they adopted geopotential height as the characterized

variable and selected potential vorticity as the input variable. For solving CNOP, they all used spectral projected gradient 2

(SPG2) algorithm (Birgin et al., 2001). The SPG2 was designed to solve the minimum problem with restraints by determin-5

ing the gradients of the cost function (Guo-Dong, 2009). Several similar approaches have been also adopted to calculate the

CNOP, such as the sequential quadratic programming (SQP) algorithm (Barclay et al., 1998) and the limited memory Broyden-

Fletcher-Goldfarb-Shanno (L-BFGS) algorithm (Liu and Nocedal, 1989). These traditional methods of numerical optimal have

been widely applied in the studies of the CNOP in the early years (Duan and Mu, 2006; Wang et al., 2012; Bo et al., 2014).

Since these algorithms rely on gradient information, the corresponding adjoint model needs to be called to obtain the gradients10

of the initial condition in the solving process.

However, the traditional adjoint-based algorithms are not feasible to solve CNOP in complicated operational models that do

not have an adjoint available (Wang, 2010). In addition, the past research suggests that the adjoint-based method would fail

with large initial disturbance or long prediction time due to the strong nonlinearity of the dynamical model. The local CNOPs

would be produced by the adjoint-based method with high probability when the objective function has multiple extreme values.15

In recent years, the swarm intelligence algorithms are gradually put forward to the research of the CNOP (Zheng et al., 2012;

Yang et al., 2017). These algorithms determine the search directions and obtain the extremum by updating the position of

the particles. Since the search process of these algorithms does not need any gradient information, they can be extended

to the implementation of the CNOP using numerical models without the adjoint model. It is also indicated that the swarm

intelligence method still achieves global CNOP and has a shorter run time in the situation of larger initial perturbations,20

longer prediction times, multiple extrema values (Zheng et al., 2017) and discontinuous objective functions (Mu et al., 2015).

Although the above algorithms are effective, it is very time-consuming to calculate CNOP in the original space. To enhance

the performance of solving CNOP with complex numeric models, the researchers proposed intelligent algorithms based on

feature extraction. The algorithms transform the problems in original input space with high dimensions into the problems in

low dimension space. At present, the tentative application of intelligent algorithms based on feature extraction in solving CNOP25

yielded considerable achievements. The principal component analysis based genetic algorithm (PCAGA) (Zhang et al., 2017a),

the Modi�ed Arti�cial Bee Colony Algorithm (MABC) (Ren et al., 2016), the dynamic search Fireworks Algorithm with

linearly decreased dimension number strategy (ld-dynFWA) (Mu et al., 2017a) and PCA based Flower Pollination (PCAFP)

(Yuan et al., 2016) have been successfully adopted in tropical cyclone adaptive observations, El Niño-Southern Oscillation and

double-gyre variation. The CNOPs obtained by these methods have similar patterns and larger �tness values in comparison30

to the adjoint method. It is illustrated that the PCA-based intelligent algorithm is appropriate for high dimensional numerical

models, especially the models without the adjoint model.

The objective of this paper is to �nd the OPRs which produce the NAO anomaly pattern and explore the effect of the

nonlinear process. We study the case using the Community Earth System Model (CESM), which is an ocean-atmosphere

coupled model without an adjoint model. Thus, traditional algorithms like SPG2 are inappropriate for this case. In this paper,35
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we select the particle swarm optimization (PSO) and genetic algorithm (GA) hybrid algorithm (PSO-GA), which is an effective

swarm algorithm that has been previously proposed (Chang et al., 2013; Nik et al., 2016; Kumar and Vidyarthi, 2016; Agarwal

and Srivastava, 2018), to solve CNOP for the NAO events. The parallel adjoint-free algorithm called PGAPSO is combined

PSO-GA with the principal component analysis (PCA) strategy and is optimized with multiple frameworks. The OPRs obtained

by the proposed algorithm steadily produce the SLP anomaly mode and trigger the high NAOI. Compared to the PCA-based5

PSO (PPSO), the algorithm is improved to avoid falling into the local optimum and accelerates convergence. After parallelized

with MPI and CUDA, the speed-up ratio of the intelligent solution system reaches 40� compared with its serial version.

The structure of this paper is organized as follows: Section 2 describes the CESM, and section 3 presents the CNOP method,

the PGAPSO algorithm and the parallelization technique. Experiments and results are displayed in section 4. This paper ends

with a conclusion and future work in section 5.10

2 Community Earth System Model

The CESM (Kay et al., 2015) is a new generation of fully coupled climate models developed in 2010. It has been widely used to

simulate the carbon cycle (Lehner et al., 2015), ocean currents (Large and Caron, 2015), soil moisture (Swenson and Lawrence,

2012), precipitation (Hagos et al., 2016) and other climate phenomena. As shown in Figure 1, the CESM is composed of seven

geophysical model components, respectively Atmospheric (Community Atmosphere Model, CAM), Sea- ice (CICE), Land15

(Community Land Model, CLM), River-runoff (River Transport Model, RTM), Ocean (Parallel Ocean Program, POP), Land-

ice (CISM), Ocean-wave (XWAV). The CESM also has a Coupler (CPL) that coordinates the time evolution of geophysical

models and delivers information between these components.

Figure 1. Main components of CESM.

The atmospherical component in CESM 1.2.2 is used to simulate the NAO in this work. CAM version 5.3, which is a

global atmospherical general circulation model developed from the NCAR CCM3, is released as the atmosphere component of20

CESM 1.2. The CAM incorporates an interactive aerosol model where aerosols interact with the tropospheric chemistry. The

component set we selected isF_2000that includes CAM, CLM and CICE(prescribed mode) activated with SST data mode,
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and the CAM component is stand-alone. The parameternhtfrq is set to -24, which denotes the daily average. We perform the

experiments on a0:9� � 1:25� horizontal grid with 26 levels in the vertical. The region we focus on, which is also the NAO

mainly located at, is a two-dimensional domain consisting of 65� 105 grids with the North Atlantic area between20� N and

80� N and between90� W and40� E.

3 CNOP and PGAPSO5

3.1 CNOP

The CNOP is a natural extension of the linear singular vector into the nonlinear regime, and is proposed to study predictability

problems of weather and climate in numerical models (Mu et al., 2009). OPR is a kind of initial perturbation that can trigger

the largest uncertainty in prediction, and it can be solved by the CNOP method. Speci�cally, the objective function achieves

the maximum under the constraint condition at prediction time by superimposing OPRs on the basic state. In this experiment,10

we choose a blocking indicator proposed by Liu (Liu, 1994) to quantify the extent of the NAO events. The NAOI is de�ned as

the projection of the SLP �eld on the NAO anomaly pattern:

NAOI =
hSLPNAO ;SLPd i

hSLPNAO ;SLPNAO i
(1)

whereSLPd is obtained by subtracting the climatological mean from SLP output, andhi denotes the inner product operation of

vectors.SLPNAO denotes the NAO anomaly pattern acquired by the empirical orthogonal function (EOF) analysis. The EOF15

is a widely used tool to decompose the spatial-temporal distribution features in geonomy (Baldwin and Dunkerton, 1999). The

procedures of EOF are listed as follows:

– Process the SLP historical data into anomaly values by subtracting the mean climate state of 10-year SLP time series

data, recorded asX m � n . m denotes the number of spatial points, and n denotes the length of the time series.

– Calculate the covariance matrixCm � m via: Cm � m = 1
n X � X T .20

– Solve the eigenvalues (� 1;:::;m ) and eigenvectors (Vm � m ) of Cm � m with the constraint condition:Cm � m � Vm � m =

Vm � m � � m � m .

– The eigenvectors corresponding to� k is thekth column ofVm � m , that is,EOFk = V(:;k).

In general, the �rst mode decomposed by EOF is chosen as the NAO anomaly pattern, which is illustrated in Figure 2. The

NAO spatial pattern is manifested as a typical meridional dipole mode, which consists of the Iceland low pressure along with25

the North Atlantic subtropical high. In Figure 2, it is a positive phase of the NAO, presenting the mode with the negative

anomalies in high latitude and the positive anomalies in low latitude.
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Figure 2. The �rst mode of the EOF in SLP anomaly �eld concentrated in the North Atlantic region between90� W - 40� E , 20� N - 80� N .

The procedure for solving CNOP can be regarded as the following extrema problem:

J (u�
0)NAO + = max

ku 0 k� �
J (u0) = NAOI (NAO + )CNOP � NAOI refer (2)

J (u�
0)NAO � = min

ku 0 k� �
J (u0) = NAOI (NAO � )CNOP � NAOI refer (3)

whereu0 is the vector of physics variables listed in Table 1.J (u0) is the objective function de�ned by the difference between

NAOI triggered by perturbationu0 in the �nal state and NAOI in the reference state. In formula (2) and (3), the perturbation5

u�
0(NAO + ) makesJ (u0) achieve the maximum, whereasu�

0(NAO � ) makesJ (u0) achieve the minimum. According to the

de�nition of the OPR,u�
0(NAO + ) is the OPR of theNAO + , andu�

0(NAO � ) is the OPR of theNAO � .

Table 1.The related variables included in the perturbations.

Variable name Description Units

U Zonal wind m=s

V Meridional wind m=s

T Temperature K

Q Speci�c humidity kg=kg

PS Surface pressure Pa

PHIS Surface geopotential m2=s2

� denotes the constraint condition of the OPRs. The constraint condition we used in this paper is consulted from a similar

study in the �eld of the atmosphere. In the study of the identi�cation of the sensitive areas for tropical cyclone using CNOP,
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the summation of kinetic energy is chosen as the objective function, available relative potential and surface potential energy in

the veri�cation areasD (Zhang et al., 2017a):

J (u0)T rop =
1
D

Z

D

1Z

0

[u
02 + v

02 +
Cp

Tr
t

02 + RaTr (
�

0

� r
)2]d�dD (4)

whereJ (u0)T rop is the objective function in the research of tropical cyclone.u
0
, v

0
, t

0
and�

0
are the initial perturbations of

zonal wind, meridional wind, temperature and surface geopotential respectively.Cp is the speci�c heat at the constant pressure5

which is set to 1005.7J � kg� 1K � 1 and Tr is the reference temperature with a value of270K . Ra denotes the ideal gas

constant, and its value is set to 287.05J � kg� 1K � 1. � r is the reference static pressure with a value of 1000hPa. In order to

ensure the perturbations within a reasonable range, the constraint is set to 10% of the dry energy norm in the basic state, that

is:

� = 10% �
1
D

Z

D

1Z

0

[U0
2 + V0

2 +
Cp

Tr
T0

2 + RaTr (
�
� r

)2]d�dD (5)10

We adopt the above constraint� since our work and the research of tropical cyclone have the same variables. The constraint

is to ensure the reasonability of these variables and avoid the appearance of abnormal values. The feasibility of restraining these

variables using this constraint has been proved in (Zhou and Mu, 2011; Zhang et al., 2017a, 2018). Combining the formula (1),

(2) and (3), the objective function is described as follows:

J (u0) = � NAOI

=
hM t 0 ! T (U0 + u0) � M t 0 ! T (U0);SLPNAO i

hSLPNAO ;SLPNAO i

(6)15

whereM t 0 ! T represents the nonlinear propagator that "propagates" the initial state in timet0 to the prediction timeT, andU0

denotes the initial basic state. Therefore,M t 0 ! T (U0) denotes the reference state at prediction timeT. The objective function

is the projection of the SLP �eld difference between the �nal state and the reference state on the NAO anomaly pattern.

3.2 PGAPSO

Under the resolution off09_g16with an approximate grid spacing of0:9� � 1:25� , the total dimensions of variables involved in20

the objective function are 5861376. It is dif�cult for the algorithm to solve the optimization problem in such high dimensions.

Thus, we need to extract the feature of samples to reduce the data scale.

PCA is a traditional method for feature extraction and has been widely used in signal separation (Kasban et al., 2016),

environment forecasting (ULSAUFIE et al., 2013) and pattern classi�cation (Li et al., 2017), etc. In this paper, we adopt PCA

to implement dimension reduction for sample data. After running 10-year integration (only in winter) on a daily average using25
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CESM, we extract the variables displayed in Table 1 from the model �les. The size ofU, V , T andQ is 26 (layer)� 192

(latitude)� 288 (longitude), and the size ofPS andPHIS is 192� 288. Each piece of sample is handled into a vector with

one dimension (1� 5861376), and the original sample is a matrix of 900� 5861376 (containing 900 days). Then subtract the

climatological mean of the 10-year data from each sample, and the obtained sample is weighted according to the area of the

grid:5

Si = ( Si �
1
n

X
Si ) � cos(lat (i )) ( i = 1 ;2; : : : ;n) (7)

whereSi denotes thei th sample data andn is the number of the samples.lat (i ) is the latitude of thei th row in the grid,

and the weight is calculated approximately via the cosine value of the grid's latitude. Then the eigenvalues (� 1; : : : ; � n ) and

eigenvectors of the covariance matrixSST are calculated to obtain principal components:

SST L = L � (8)10

whereL is the eigenvector matrix, and� is a diagonal matrix whose entries in the main diagonal are the corresponding

eigenvalues. The topm columns of the eigenvectorsL sorting by their eigenvalues are selected as the principal components.

The value ofm is determined by the contribution rate, which is de�ned as:

r =
P m

i =1 � iP n
i =1 � i

(9)

In this work,m is set to the minimum number of columns that meet the contribution rate of 95%. The reduced space withm15

dimensions is far smaller than the original one.

To obtain the extremum of the objective function, we adopt a hybrid algorithm improved from two classical algorithms, PSO

and GA. The PSO is a type of intelligent heuristic algorithm to solve the problem with NP property (Kennedy, 2011). The

position with the best �tness value is searched by tracing individual optimal positions and the optimal global position in the

meantime. The �ow of the algorithm is described in brief: (1) Initialize the speed (V ) and position (X ) of particle swarm with20

random values. The random values obey the normal distribution and ensure the perturbations satisfy the constraints. (2) For

each particlei , the position vectors in reduced space need to be restored into original space viaX
0

i = X i � L 1;:::;m , thereinto,

L is an m times m eigenvector matrix. Then superpose the perturbationX i
0 on the basic state. When the model integration is

�nished, calculate the �tness value of each particle through the formula (6) and record its optimal position (X pb) along with

the global optimal position (X gb). (3) Update the position and speed of each particle. The updating formula is as follows:25

8
<

:

V k+1
i = ! k V k

i + c1r 1(X k
pb � X k

i ) + c2r 2(X k
gb � X k

i )

X k+1
i = X k

i + V k+1
i

(10)

8



whereV k
i is the speed of particlei for stepk andV k+1

i is for stepk + 1 . c1 is the self-awareness coef�cient for the historical

self-optimal position andc2 is the social-awareness coef�cient for global optimal position of all particles. The empirical value

of c1 andc2 are both set to 2.r 1 andr 2 are random �oat numbers with uniform distribution in[0;1]. X k
pb refers to the position

of particle i where objective function acquires the maximum(minimum) ink steps, andX k
gb represents the position where

objective function achieves global extrema ink turns. Both position vectors and speed vectors are in reduced space withm5

dimensions.! k is the weight parameter and calculated by:

! k = ! max �
! max � ! min

iter max
� iter (11)

whereiter is the current number of step, anditer max is set to 100.

In PGAPSO, PSO is viewed as the main body of the search process, and the GA further optimizes the position. As a meta-

heuristic algorithm, the GA derives from natural selection (Goldberg and Holland, 1988). When the �tness value is obtained in10

step (2) of PSO, the particles are fed into GA for further search. A portion of particles in the existing population are selected

according to their �tness value to breed a new generation. The selection operation is performed on roulette strategy, that is to

say, the probability that each individual is selected is equal to the ratio of its �tness value to the total �tness value of the entire

population:

ps =
J (uX 0

i
)

� J (uX 0)
(12)15

After that, the selected parents generate new individuals via crossover:

X
0

a f xs; : : : ;xeg = X bf xs; : : : ;xeg

X
0

bf xs; : : : ;xeg = X a f xs; : : : ;xeg
(13)

Then the new generation mutates with probabilitypm in a single position to avoid genetic drift. The �tness value of each

new generation is compared against its parents, and the best position is recorded. If the new individual has a better �tness value

compared with the global best position, the global best position (X k
gb) would be replaced by the new position. With the optimal20

local position and global optimal position, the speed and position of particles are updated using formula (10). The �nal global

�tness value is obtained until theiter reachesiter max or the norm of particles' speed reaches the speci�c threshold.

3.3 Parallelization

The computation of CNOP in CESM is quite time-consuming. With 48 CPU cores, 30 particles and 100 iterations, it takes about

13.75 days to obtain the OPRs in the serial program. For PGAPSO to operate more effectively, multiple parallel techniques25

and frameworks are adopted in this work.
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3.3.1 CESM Parallelization

The role of the CAM component in CESM is to simulate the variation of atmosphere, and the largest variation can be discovered

by objective function using PGAPSO. With high resolution, the input data handled for integration in nonlinear processes of

CAM possess the features as massive variables, high dimensions and complexity, which makes the invocation for CAM become

the primary time-consuming task in the whole program. Although CESM has already been parallelized using Message Passing5

Interface (MPI) and Open Multi-Processing (OpenMP), it is still time-consuming.

Recently, the Graphics Processing Unit (GPU) has been widely used in accelerating numerical models. Since GPU is suitable

for parallel computing on a large scale, it can signi�cantly improve the execution performance of climate models. A parallel

scheme for Community Climate System Model (CCSM) has been proposed to shorten the runtime of climate prediction by

porting the radiation module onto GPUs (Coleman and Feldman, 2013). The module was parallelized using the inline method10

and communicated with MPI routines. A cloud analysis scheme called Goddard Cumulus Ensemble (GCE) in Weather Re-

search and Forecasting (WRF) was highly expedited using NVIDIA Tesla K40 with 2880 cores (Huang et al., 2015). Compared

to the CPU-based parallel version running on 4 nodes, the GPU-based scheme performed faster. As for CESM, the novel asyn-

chronous execution strategy has provided signi�cant performance bene�ts (Korwar et al., 2013). The most time-consuming

routines have been accelerated via OpenACC directives and achieved a speedup of 1.19� -1.53� for the entire model. Another15

attempt for accelerating CESM was to port CESM along with a rewritten vertical remapping scheme onto GPUs (Carpenter

et al., 2013). The results indicated that the performance of the optimized subroutine was improved substantially. Related works

show that GPU is an alternative approach to enhance the performance of the climate model.

In this work, we port several time-consuming subroutines in CAM onto GPUs through the PGI CUDA Fortran interface.

After analysis run time usingpref, shown in Figure 3, subroutineradclwmxandradabsboth consume longer runtime com-20

pared with other subroutines. These two subroutines are both optimized with the CUDA platform. Simultaneously, kernel

directives and OpenACC directives are used to implement the simpli�cation of speci�c operations on the device. The function

execution and data replication are overlapped using asynchronous streams. Moreover, the loops in subroutines are merged and

reconstructed to minimized I/O transfer times. During the compilation phase, the compiler option� O4 is selected to perform

the optimization of the highest level. The command-fastand-fastsseare also utilized to launch the 64-bit Single Instruction25

Multiple Data (SIMD) instruction and implement cache alignment and �ush.

3.3.2 PGAPSO Parallelization

In the process of solving CNOP using PGAPSO, the calculation of �tness value for each particle in each iteration is relatively

independent. Thus it is suitable for multi-process techniques to execute these tasks concurrently. Here we adopt MPI as the

parallel framework to accelerate the algorithm. MPI enables the parallelization of the program via launching multiple processes30

with supporting communication and broadcasting between nodes. Assume thatn particles are initialized, then we assign one

process for each particle so that the objective function along with the climate model can be called in parallel. Then the master
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Figure 3. Execution time division of CAM routines.

process compares the current particles according to �tness value, and the position and speed of particles are updated at the end

of each iteration. With the help of MPI, the performance of PGAPSO can be signi�cantly enhanced.

The �ow of the parallel PGAPSO is described by the pseudocode:

Algorithm 1 Pseudo code for PGAPSO

1: transform training data through PCA to obtain principal componentsL d with m dimensions

2: initialize population

3: for iter = 1 to iter max do

4: for each processdo

5: restore solution matrixX i into original space viaX i � L d

6: calculate �tness valueJ (u0) = F (kM t 0 ! T (U0 + P � L d )k) under the constraint�

7: end for

8: gather results from each process

9: if norm of particle speed� � then

10: select individuals according to
J ( u

x
0
i

)

� J ( u
x

0 )

11: crossover and mutate with probabilitypm

12: compare �tness values between new generation and parent individuals

13: end if

14: update particle speed viaV k +1
i = ! i 0V k

i + c1r 1(X k
pb � X k

i ) + c2r 2(X k
gb � X k

i )

15: update particle position viaX k +1
i = X k

i + V k +1
i

16: end for
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Figure 4 demonstrates the parallel architecture of PGAPSO for solving CNOP. The processes are divided into two groups:

the master process and slave processes. At each iteration, the master process allocates calculation tasks to slave processes.

For each process, perturbations under constraint condition are superimposed on CESM. Then CESM, which is paralleled with

MPI, OpenMP and CUDA, is called to perform the integration. The �tness values of each process are calculated by projecting

SLP output on the NAO anomaly pattern. When all the �tness values are acquired, the master process gathers the �tness values5

from slave processes and broadcasts the optimal global value to slave processes via MPI. Then the crossover and mutation

operations are performed if the norm of particles' speed is less than the threshold value.

4 Experiments and Results

4.1 Experimental Environment

We conduct experiments on the Tianhe-2 supercomputer, which is located in the National Supercomputer Center in Guangzhou,10

China. Each node consists of 2 Intel Ivy Bridge Xeon processors connected by Intel QuickPath Interconnect. NVIDIA Tesla

K80 GPUs on Tianhe-2 are used in our GPU-based scheme for CESM acceleration. Each Tesla K80 GPU has 4992 CUDA

cores, and its double-precision performance is up to 2.91TFLOPS. Data transmission between CPUs and GPUs depends on

PCI-e 3.0 bus with 40 lanes.

4.2 Experimental Procedures and Results15

The �rst step is to decompose the principal component from the original sample. We run a 10-year integration (only in winter)

using CESM, and the samples are obtained by subtracting the winter climatological mean to eliminate the linear correlation.

The dimension of the principal component is determined by the cumulative variance proportion. Table 2 reports the cumulative

variance proportion at a different number of eigenvalue. The sum of variance proportion increases as the dimension of principal

components increases. To balance the computation result and performance, we select the top 50 eigenvectors as the principal20

components corresponding to the cumulative explained variance ratio of 95%.

Table 2.The variance proportion at different number of eigenvalues.

Number of eigenvalue 10 20 30 40 50 60

Variance ratio 82.05% 89.70% 92.66% 94.34% 95.45% 96.21%

The purpose of this paper is to explore the mechanism of the nonlinear system and to �nd which type of perturbation can

trigger NAO events. In other words, we aim to �nd out the OPR for NAO events. According to the de�nition of OPR, OPR

is the state most likely to lead to the pattern with the highest NAOI. The incremental value of the NAOI, which is de�ned by

NAOI pert � NAOI refer , is the way to measure the extent of the NAO events. Thereinto,NAOI refer stands for the �nal25

NAOI acquired without perturbations at prediction time. Since the time scale of NAO events is about two weeks, we select

5 days, 7 days and 15 days as the simulation time to observe the variation of index amplitude. The number of particles is

12



Figure 4. The parallel architecture of PGAPSO for solving CNOP.

set to 30, and the times of iteration is set to 100. The perturbations are superimposing on the Arctic region (60� N - 90� N ),

and consist of six variables listed in Table 1. Here we adoptCNOPP O andCNOPNE to express the OPRs corresponding

to the positive-phase NAO and the negative-phase NAO respectively. Figure 5 displays the trends of the NAOI amplitude
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for CNOPP O (red line),CNOPNE (blue line) and reference �ow (black dashed line). Figure 5 portrays the change of the

index for the reference state and perturbation state. As can be seen from the diagram, the reference state �ow �uctuates on a

small scale and sustains positive value. TheCNOPP O and theCNOPNE both contribute to a high anomaly index state, and

j� NAOI � j is signi�cantly greater thanj� NAOI + j. In the �nal days of the simulation time, rapid variation occurs, and the

increment value reaches greater than 1 or less than -1. It is illustrated that the nonlinear process plays a role mainly in the last5

stage of the evolutionary period.

Figure 5. The trends of the index amplitude forCNOPP O , CNOPNE and the reference �ow.

The trends for these three states at another start date are shown in Figure 6. This �gure also illustrates for 5-day optimization,

7-day optimization and 15-day optimization. In Figure 6, similar to Figure 5, the NAOI triggered by CNOP always has a big

gap with the reference �ow and achieves an abnormal high value in the �nal period. Similarly, the �ows ofNAO + andNAO �

both noticeably deviate from the reference �ow in the last few days.10

Figure 6. Same as Figure 5, but for another start date.

To evaluate the NAOI of CNOPs more visually, Table 3 reports the incremental values of the NAOI with different simulation

time in Figure 5 and Figure 6. From Table 3, the difference between the NAOI in the �nal state and the NAOI in reference state

increases when the integration time becomes longer. We can also �nd that the result depends on the start date. Although large

discrepancy exists between the� NAOI with a simulation time of 15 days in Figure 5 and Figure 6, the algorithm can always

�nd the CNOPs that can cause the abnormal state, andj� NAOI j is far greater than 1.15
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Table 3.The increment value of NAOI with different simulation time in Figure 5 and Figure 6.

Simulation time � NAOI + � NAOI �

5 days 0.3 / 0.41 -0.36 / -0.50

7 days 0.59 / 0.58 -0.65 / -0.73

15 days 1.81 / 3.24 -2.80 / -1.49

Taking the senario in Figure 5 as an example, Figure 7 shows the two types of SLP patterns triggered by OPRs for 5 days, 7

days and 15 days. The left column displays the positive phase, and the right column displays the negative phase. The SLP �eld

is obtained bySLPpert � SLPrefer , and theSLPrefer denotes the �nal SLP �eld without superimposing the perturbations.

The typical pattern of NAO is the dipole mode located near Iceland and Azores. For 5-day optimization, several positive centers

and negative centers are concomitant and overlapping in the region, with the negative (positive) core arising at the north of5

60� N . In the evolution of 7 days, positive (negative) cores move to the position around the Davis Strait and western Europe.

Both of the 5-day �nal state and 7-day �nal state haven't developed into NAO events. The dipole mode, which has a strong

negative (positive) pressure center situates on Iceland with positive (negative) SLP �eld over the middle latitudes of the North

Atlantic Ocean, forms in a 15-day integration. Under the in�uence of the nonlinear process, the dipole centers migrate across

the Atlantic Ocean.10

In summary, the difference betweenNAOI CNOP P O andNAOI CNOP NE increases when simulation time growth within

15 days, and the increment value of NAOI in 15-day optimization reaches the maximum. In Figure 7, the 15-day integration

forms the typical NAO pattern. These above diagrams demonstrate that the 15-day optimization can evidently trigger the NAO

events. Besides, under the action of CNOPs, the basic state can evolve into both the positive and negative phases of the NAO

events. Therefore, we choose 15 days to perform model integration in this case.15

To observe the evolution process of NAO events in 15 days, we plot the SLP �eld on day 1, day 5, day 10 and day 15 in

Figure 8. ForNAO � in the right column, the negative-pressure difference increases through the whole process, with positive-

pressure difference occur and strengthen during day 10-15. The basic dipole structure forms on day 10, and gradually develops

into the NAO anomaly event. As forNAO + , with a complicated process, a strong positive center locates on the Norwegian

Sea on day 10, compensating for the enhanced southward oceanic heat transport. On day 15, the sense of the gyre will change20

the sign to become negative on the region we focused, and develop into an anomalous pattern. It is consistent with the right

subgraph of Figure 5, showing that the NAOI ofCNOPNE is under a sustained downward trend. ForCNOPP O , the NAOI

sinks to the lowest point on day 10 then rises quickly in the �nal 5 days.

The above evolutions are triggered by superimposing perturbations in the Arctic region with multiple variables. We �nd out

that the NAO events can also be triggered by a single variable, like temperature. Following the above procedure, the temperature25

perturbations are limited under a constrained condition ofT
02 � 100and superimposing on the25th layer of the atmosphere

(near the surface) in the same region. By using PGAPSO, the NAOI converge to optimized values. The perturbations are

illustrated in Figure 9. As seen in Figure 9, the pattern ofCNOPP O and CNOPNE has an almost opposite structure in

the North Atlantic sector. There exist an obvious pressure difference between Greenland and Iceland, with several centers in
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Figure 7. TheNAO + (a) (NAO � (b)) mode at SLP �eld (Pa) triggered byCNOPP O (CNOPNE ) with the simulation time of 5 days, 7

days and 15 days.
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