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1 Review
The paper presents a study of the overfitting properties of feed-forward and 1-d convolutional neural
networks and whether they can capture the dynamics along with the influence of an external forcing
parameter, in a 40-dimensional (grid-points of the discretized spatial state) Lorenz-95/96 and a
three-dimensional Lorenz-63 system. In Lorenz-63, they show that neural networks struggle to
extrapolate the dynamics on attractor regions under-represented in the training data, even in short-
term predictions. Long-term predictions starting from these regions do not resemble the ones from
the system equations. Moreover, the authors train a small neural network on the whole data and
identify neurons of the neural network that are responsible for capturing the dynamics of specific
parts in the training data. Thus, they argue that there the neural network learns subnetworks
responsible for the dynamics locally and does not learn a global model for the dynamics, which
would probably generalize better. In Lorenz-95, they find that including the information of the
external forcing variation might degrade performance and argue that the hypothesis and quest to
identify models that work on past climate data, expecting them to work well on future data might
be erroneous.

Quality

• The quality of the paper is good.

• The authors do not reference related work on generalization properties of neural networks to
unseen data, or other machine learning models designed for non-stationary time series.

• They do raise two important open problems in data-driven prediction of dynamical systems.
Namely how well neural networks generalize and if they can learn from non-stationarity data.

• The code and data used to generate the results are publicly accessible which enables repro-
duction of the research.

• The argumentation in Section 2, about whether the network learns only one or many map-
pings for different regions is inconsistent. The two representations are mathematically equiv-
alent. The impression the reader gets about what the authors are trying to express, is
whether different parts of the network are responsible for different (local dynamics) parts of
the training data.

• In the Lorenz-63 system, the authors try to answer the aforementioned question (identify
specific parts of the neural network that are responsible for capturing the dynamics locally),
by analyzing the activation levels of the neurons of the neural network, freezing neurons
that are mostly active on specific regions, to check the deterioration of performance on other
regions (for a model trained on the whole training data). This argument, that parts of
the neural network are responsible for local models of the training data, is very interesting.
Especially for large (relative to the application) overparametrized models, this argument
makes sense. However, it has to be tested systematically in larger models (maybe a large
model applied to the Lorenz-96), and in a more structured way to be accepted as a general
attribute of neural networks, as the small network used in this study might be misleading.
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• The authors do not explain the training procedure and how they cope against overfitting in
the CNN applied to Lorenz-95. Especially in the low data regime, the absence of measures
against overfitting can have a detrimental influence on the performance on the test dataset.

• Since the neural network is forecasting a deterministic system with full state information, the
prediction accuracy reported in the Appendix on page 17, seems quite low. In the provided
plots, the networks seems to be forecasting inaccurately, as the difference in the plots even
at early timesteps is obvious.

• The generalization of the study is problematic. The study is limited to feedforward neu-
ral networks, with a one to one training scheme. By changing the loss to include some
stability metric, or long-term performance, trying out different architectures, regularization
techniques, etc. the generalization properties might be improved. The first problem of ex-
trapolation is a general pitfall of data-driven approaches, however, the second problem of
non-stationarity might be alleviated with more sophisticated architectures. As reported in
Section 3.4, many trained CNN networks are not stable, because they were trained for single
step forecasts. This is expected, as the neural networks are not trained for long-term fore-
casting. RNNs can be used in these low-dimensional systems, backpropagating the gradient
many timesteps in the past to ensure stability. The authors use a posteriori analysis of the
networks to identify the stable ones. Moreover, the models are applied to non-stationary
timeseries with external forcing, which is a really challenging application. The selected mod-
els and the training procedure used is not adequate to extract general conclusions. For
example, complex RNN architectures that try to capture multiple time scales, or Reservoir
Computing approaches might work better. The conclusions of the paper should be specific
only to feedforward neural networks. The arsenal of machine learning tools to counter these
open problems is much wider.

• The second question the paper poses, is a very interesting one. Real time-series data are most
of the time non-stationary. Even though many neural architectures have been successfully
used in seasonal or non-stationary data, it is not clear if the networks can actually learn
varying dynamics, or how efficient they are in that. One solution could be to train networks
on the fly as new data come in. There is available literature on applying machine learning
approaches for non-stationary data. Even though the model used in this study appears to
be incapable of generalizing, this might not hold for other models. For example, the forcing
was provided as an additional input to the network. However, we do know that this external
forcing is not the same type of input as the rest. This information could be provided in a
different way to the network.

• The statement "... the trajectories of the network forecast simply point back towards the
region included in the training." regarding the behavior of the neural network in regions of
the phase space not included in the training data, seems rather arbitrary. Since the neural
network is not trained in these regions the behavior can be anything.

Clarity

• Good. The results of the paper and the conclusions are clearly explained.

Originality

• The first problem of generalizing to unseen data is a well-known one. As a data-driven
approach, neural networks have a hard time to extrapolate to unseen regions in the datas-
pace. This is addressed in many previous studies, not only related with dynamical systems.
Regularization, coupling neural networks with equations, adding constraints etc. are known
measures to cope with this deficiency. Most data-driven methods suffer from this problem. It
is not surprising to see that a small neural network trained on the left wing of the Lorenz-63
attractor cannot generalize to the vastly different dynamics (in terms of data, not equations)
of the right wing. The situation is expected to worsen as the models grows bigger (overfitting
easier).

• Implicitly, the authors state a very interesting question, whether the neural networks learn
sub-networks that are responsible for modeling the dynamics locally in parts of the training
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data. In the Lorenz-63 system, they manage to demonstrate this in terms of identifying the
neuron that seems to be responsible for a specific part of the training data (right or left
wing). Whether this argument holds for large models or other more complicated dynamics
and is not specific to this study, remains open. However, it is an original and interesting
finding that needs to be tested for more general settings (large networks, more applications).

• The second issue raised, is whether NN can learn dynamics that evolve based on external
forcing. This is connected with the known open problem of neural networks learning from
non-stationary data/dynamics. The architectures proposed in the study are not compared
with other state-of-the art approaches, like reservoir computers, RNNs, ARIMA models, etc.
and long-term results are not presented (from iterative forecasting) so it is not straightforward
to judge their efficiency.

Confidence

• The reviewer is confident but not absolutely certain.

Recommendation

• Accept subject to major revisions.

• Accept after the revision of the issues raised above, or at least referencing them in the
text. Especially for the argument about the sub-networks having learned local dynamics, a
bigger model needs to be tested. I doubt there is any model applied in practice with only
8 neurons. ML models applied in practice have thousands to millions of parameters. In
order to support this claim, it has to be tested on large models in a systematic way, which is
however, challenging to achieve.

2 Typos
1. Page 1, line 18, typo "... the widely studied ..."

2. Page 2, line 5, typo "... the widely In in this paper ..."

3. Page 4, line 24, typo "The neural networks are trained..."

4. Page 6, line 19, In order to avoid misconception, the following reformulation would help the
reader: "Figure 2 shows the training data and the forecast error for a network ..."

5. Page 15 line 3, typo "... of how to test test the reconstruction at training time ..."
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