
We thank the reviewers for their constructive comments. We have now prepared a new manuscript based on
their comments. The main changes we made are:

• the network architecture for the Lorenz63 model is now based on objective tuning,  and is more
similar to real-world architectures than the one in the original manuscript

• the analysis of extrapolation capabilities of the neural networks is now also done on the Lorenz95
model, in addition to the Lorenz63 model

• the forcing experiments have been re-designed to be more close to real applications
• the analysis  of  the importance of  different  regions of  the neural  network has been extended to

several different architectures

As you will see, thanks to these new experiments, the main result of the paper slightly changed. While the
result that the neural networks do not extrapolate to new phase-space regions in the Lorenz63 model still
holds, for the Lorenz95 this does not seem to be the case. Also, the new forcing experiments show that the
networks are to some extent learning external forcing, however only when given large ranges of forcing in
the training.

We provided point-by-point response to all reviewers’ comments below (in red).

Reviewer #1

The authors do not reference related work on generalization properties of neural networks to unseen data, or
other machine learning models designed for non-stationary time series.

We have added a new section in the introduction (“1.2 Related work on generalization properties of neural
networks”)  that  gives  a  better  overview of  the  general  literature  on  generalization  properties  of  neural
networks.

The argumentation in Section 2, about whether the network learns only one or many mappings for different
regions is inconsistent. The two representations are mathematically equivalent. The impression the reader
gets about what the authors are trying to express, is whether different parts of the network are responsible
for different (local dynamics) parts of the training data.

Yes, this is indeed what we had meant. Even though the two expressions are mathematically the same, we
think that they help explaining this idea. Therefore, we added “Even though mathematically equivalent, the
latter would imply that different parts of the network are responsible for different regions of the phase-space.”
to make this clearer. (p3 L15)

In the Lorenz-63 system, the authors try to answer the aforementioned question (identify specific parts of the
neural network that are responsible for capturing the dynamics locally), by analyzing the activation levels of
the neurons of the neural network, freezing neurons that are mostly active on specific regions, to check the
deterioration  of  performance  on  other  regions  (for  a  model  trained  on  the  whole  training  data).  This
argument,  that parts of the neural  network are responsible for local  models of the training data, is very
interesting. Especially for large (relative to the application) overparametrized models, this argument makes
sense. How-ever, it has to be tested systematically in larger models (maybe a large model applied to the
Lorenz-96), and in a more structured way to be accepted as a general attribute of neural networks, as the
small network used in this study might be misleading.

In the new manuscript,  we use a larger network throughout for the Lorenz63 (2 hidden layers with 128
neurons each).  Additionally,  we extended the analysis  regarding neuron activations to a wider  range of
architectures. (fig. 4 in the new manuscript).

The authors do not explain the training procedure and how they cope against overfitting in the CNN applied
to Lorenz-95. Especially in the low data regime, the absence of measures against overfitting can have a
detrimental influence on the performance on the test  dataset.  Since the neural network is forecasting a
deterministic system with full state information, the prediction accuracy reported in the Appendix on page 17,
seems quite low. In the provided plots, the networks seem to be forecasting inaccurately, as the difference in
the plots even at early timesteps is obvious.



We now added more detail  on the training procedures both in the method section and in the Appendix.
Additionally,  we changed the plot  you referred to.  The wave-plot  in the original  manuscript  showed the
evolution of the real system, and the evolution of a long run of the network. However, they were not initialized
from the same state, therefore giving the impression that the forecasts are very bad. The plot in the new
manuscript (fig. B1 c) now shows the same, but with the network run initialized from the same initial state as
the real system. From this, together with the other panels of fig. B1, it can now be seen that the network
forecasts are skillful.

The generalization of the study is problematic. The study is limited to feedforward neural networks, with a
one to one training scheme. By changing the loss to include some stability metric, or long-term performance,
trying  out  different  architectures,  regularization  techniques,  etc.  the  generalization  properties  might  be
improved. The first  problem of extrapolation is a general  pitfall  of data-driven approaches,  however, the
second problem of non-stationarity might be alleviated with more sophisticated architectures. As reported in
Section 3.4, many trainedCNN networks are not stable, because they were trained for single step forecasts.
This is expected, as the neural networks are not trained for long-term forecasting. RNNs can be used in
these low-dimensional systems, backpropagating the gradient many timesteps in the past to ensure stability.
The authors use a posteriori analysis of the networks to identify the stable ones. Moreover, the models are
applied to  non-stationary timeseries with  external  forcing,  which is  a really  challenging application.  The
selected  models  and  the  training  procedure  used  is  not  adequate  to  extract  general  conclusions.  For
example,  complex  RNN architectures  that  try  to  capture  multiple  time  scales,  or  Reservoir  Computing
approaches might work better. The conclusions of the paper should be specific only to feed-forward neural
networks. The arsenal of machine learning tools to counter these open problems is much wider.

We completely agree that our results are specific to feed-forward architectures only. We realize that we
should have made this clearer in the original manuscript. In the new manuscript, we now clearly mention this
in the abstract and the conclusion section. Also, we changed “neural networks” in the title to “feed-forward
neural networks”. Additionally, we discuss in the conclusion section that other methods might alleviate the
problems we found.

The second question the paper poses, is a very interesting one. Real time-series data are most of the time
non-stationary. Even though many neural architectures have been successfully used in seasonal or non-
stationary data, it is not clear if the networks can actually learn varying dynamics, or how efficient they are in
that. One solution could be to train networks on the fly as new data come in. There is available literature on
applying machine learning approaches for non-stationary data. Even though the model used in this study
appears to be incapable of generalizing, this might not hold for other models. For example, the forcing was
provided as an additional input to the network. However, we do know that this external forcing is not the
same type of input as the rest. This information could be provided in a different way to the network.

You are right  that  the forcing is not  of  the same type as the rest  of  the input.  We added the following
sentence in the conclusion: “Regarding model architectures, for the forcing experiments it  might also be
possible that presenting the forcing in another way than done here (e.g. designing into the network that the
forcing  variable  has  different  characteristics  than  the  state  variables)  may  improve  the  learning  of  the
influence  of  the  forcing.”  (p20  L3)  We have  further  significantly  updated  the  section discussing  varying
forcing, for both the Lorenz63 and Lorenz95 attractors.

The statement "... the trajectories of the network forecast simply point back towards the region included in
the training." Regarding the behavior of the neural network in regions of the phase space not included in the
training data, seems rather arbitrary. Since the neural network is not trained in these regions the behavior
can be anything.

What  we meant  to  say  is  that  we  actually  observe that  in  our  trained  networks:  the network  forecasts
initialized outside the training phase space do point back to the training phase space. You are of course right
that as an a-priori assumption this would be rather arbitrary. We now removed the word “simply” to make
clear that this is not simply a trivial a-priori assumption, but an observation.

The first problem of generalizing to unseen data is a well-known one. As a data-driven approach, neural
networks have a hard time to extrapolate to unseen regions in the dataspace. This is addressed in many



previous studies, not only related with dynamical systems. Regularization, coupling neural networks with
equations,  adding  constraints  etc.  are  known  measures  to  cope  with  this  deficiency.  Most  data-driven
methods suffer from this problem. It is not surprising to see that a small neural network trained on the left
wing of  the Lorenz-63 attractor cannot generalize to the vastly different  dynamics (in terms of  data,  not
equations) of the right wing. The situation is expected to worsen as the models grows bigger (overfitting
easier).

We now use a bigger network as our main architecture, and the situation is very similar to the architecture in
our original manuscript. We agree that the example of training on one wing and testing on the other wing is
quite “extreme” – which we indeed mention in the text – but we think it provides a good example that the
network does in fact not learn the underlying equations.

Implicitly, the authors state a very interesting question, whether the neural networks learn sub-networks that
are responsible for modeling the dynamics locally in parts of the training data. In the Lorenz-63 system, they
manage to demonstrate this in terms of identifying the neuron that seems to be responsible for a specific part
of  the  training  data  (right  or  left  wing).  Whether  this  argument  holds  for  large  models  or  other  more
complicated  dynamics  and  is  not  specific  to  this  study,  remains  open.  However,  it  is  an  original  and
interesting finding that needs to be tested for more general settings (large networks, more applications).

We agree that  in order to generalize our result,  one needs to test different  networks, and also different
applications. To address the first point, we have now extended our analysis to a wider range of network
architectures, training from shallow ones with few neurons, to deeper ones with wide layers. The finding of
different parts of the network controlling different regions of phase space also – at least to some extend –
holds for these architectures (see section 4.1.2). While it would indeed be very interesting to also look at
other applications, we think this is beyond the scope of this study. However, in the conclusion section we now
reference to a study in the field of image generation with Generative Adverserial Networks that had similar
results (https://arxiv.org/pdf/1811.10597.pdf) 

The second issue raised, is whether NN can learn dynamics that evolve based on external forcing. This is
connected with the known open problem of neural networks learning from non-stationary data/dynamics. The
architectures proposed in the study are not compared with other state-of-the art approaches, liker reservoir
computers, RNNs, ARIMA models, etc. and long-term results are not presented (from iterative forecasting) so
it is not straightforward to judge their efficiency.

Accept after the revision of the issues raised above, or at least referencing them in the text. Especially for the
argument about the sub-networks having learned local dynamics, a bigger model needs to be tested. I doubt
there is any model applied in practice with only 8 neurons. ML models applied in practice have thousands to
millions of parameters. In order to support this claim, it has to be tested on large models in a systematic way,
which is however, challenging to achieve.

As already mentioned above, we extended our analysis to a wider range of architectures. Also, our main
architecture is now a bigger network than in the old manuscript (2 layers with 128 neurons each), and we
discuss in the conclusion section that other methods might give different results.

Typos

Page 1, line 18, typo "... the widely studied ..."2.

fixed

Page 2, line 5, typo "... the widely In in this paper ..."3.

fixed

Page 4, line 24, typo "The neural networks are trained..."4.

Unfortunately, we were not able to find the typo.



Page 6, line 19, In order to avoid misconception, the following reformulation would help the reader: "Figure 2
shows the training data and the forecast error for a network …"

We changed to “Figure 1 a,b shows the training data and the attractor reconstructed by the neural network.”

5. Page 15 line 3, typo "... of how to test test the reconstruction at training time ..."C7

We deleted the sentence in the new manuscript

Reviewer #2

My overall opinion is that whilst the questions the paper addresses are interesting and important, and the
results  are  well-presented  on  the  whole,  the  experiments  performed are  not  very  close  to  how neural
networks  would  be  applied  in  reality,  so  it's  not  clear  if  they  have  real-world  applications  (even
notwithstanding the simplicity of the systems being studied). In particular,  the performance of the neural
networks on reproducing the training data often looks so poor that they would not be used in an application,
or the training performance is not presented in enough detail, so it's not clear that the results would apply to
real-world applications that would require good validation performance. Also, the changes in forcings applied
in the second part seem a lot larger than for applications that neural networks might be considered for. In
addition, the authors' experiments on the Lorenz '63 system have used a particular neural network design,
where the full state is predicted at every time step (it's not clear if this is the case for the Lorenz '95 system
as well) – this may be expected to work worse than other designs where only the change in the state is
predicted at each step, or where bias-correction of an approximate dynamical model is performed, and the
results here are not clearly generalisable to those set ups.

I  have  given  more  detailed  comments  below.  I  think  the  work  could  eventually  be  publishable,  if  the
comments are adequately addressed. Since my comments are quite substantial, it could be acceptable to
just include the L63 experiments on training on part of the attractor and the L95 experiments on response to
forcing – the L63 experiments on responding to a parameter change seem less applicable to real-world
cases like predicting climate change. I do encourage the authors to continue with this line of investigation,
which I think is potentially very valuable.

We thank you for your positive outlook on our study. We have decided to still include a “forcing” experiment
with the L63 system. Even though we agree that it  is  less applicable to real-world cases, we think it  is
interesting to include it so as to broaden the range of examples we provide in the study. The study now
addresses both questions (extrapolation to left-out phase space regions and learning of external forcing) on
both systems, which we think is the most logical and complete approach

Most significant comments:

1. Training performance of neural networks:
a. For the Lorenz '63 experiments, the ability of the trained neural network to reproduce the attractor appears
quite poor (fig.1), and much worse than in the results presented by Zhang (2017), whose work the authors
say they are following. A model with such performance would not be used in any real-world application I can
think of, and the later results may be much worse than for a well-trained system.We thank you for your
positive outlook on our study. We have decided to still include a “forcing” experiment with the L63 system.
Even though we agree that it is less applicable to real-world cases, we think it is interesting to include it so as
to  broaden the  range of  examples  we provide  in  the  study.  The  study  now addresses  both  questions
(extrapolation to left-out phase space regions and learning of external forcing) on both systems, which we
think is the most logical and complete approach
 It should probably be checked that all of the important steps in the prior work were followed, and if that does
not resolve the problem, different architectures tried (e.g. using more neurons) until a good simulation of the
attractor is produced.

In  the  new manuscript  we  have  abandoned  the  architecture  from Zhang (2017),  and  instead  used  an
objective tuning procedure (similar to the one we already used for the L95, see Appendix A in the new



manuscript). The network that came out of this tuning procedure produces a much better reconstruction of
the L63 attractor (fig.1 b)

b. More diagnostics for the performance of the Lorenz '95 networks on the training data and the equivalent
portion  of  the  test  data  should  be  presented  to  indicate  the  system's  performance  and  the  degree  of
overfitting e.g. MAE of single-timestep predictions relative to the variance of the system's tendencies.

We now included a plot that shows the distribution of MAE of 1 timesteps predictions, both on the training
and on the test data. For reference, we also included the distribution of the mean absolute tendency of the
model. (fig. B1c). As can be seen in the figure, the errors are much smaller than the tendencies, and there is
only very slight overfitting.

c. In the experiments testing how well the networks capture the response to a changing forcing, it needs to
be shown how well the networks reproduce the trend in the training data. For the results to be applicable to
predicting the path of global warming, for example, there should be a discernible trend in the training data
and the neural networks should reproduce it with an accuracy similar to what climate models achieve, else
they would be deemed to be unsuitable for use in prediction.

Our experiments were not designed to allow the network to predict any type of trend. The idea is to test
whether the networks can learn the influence of an external forcing (which might have a trend) on the short-
term dynamics. Indeed, in climate change, changes in variability are arguably as important as long-term
trends, even for temperature (e.g. https://journals.ametsoc.org/doi/full/10.1175/JCLI-D-18-0462.1).

2. Forcing experiments:
a.
▪ The changes in the forcing terms are rather large compared to the effects expected from anthropogenic
climate forcing, for example, and I'm not aware of another real-world case where neural networks would be
considered for modelling the effects of such large changes in forcing, so it's not clear to me that these results
have real-world applicability. For context, anthropogenic radiative forcing of the climate system is projected to
be up to a few percent of solar radiative forcing, and in the scenarios with the largest climate changes, total
global warming is around 5x what has been seen in the 20 th century, and comparable in size (though not
rate) to changes in between ice ages (so we arguably have some data for testing whether models can
simulate such large changes well). In the Lorenz '63 experiments here, the change in the sigma parameter
(meant  to  be  analogous  to  radiative  forcing  of  climate?)  changes  by  a  factor  of  2.  In  the  Lorenz  '95
experiments, the forcing change is enough to change the system from being periodic to highly turbulent,
which is a much larger
qualitative change than expected from climate change. I wouldn't have expected neural networks to perform
well at the tasks set, namely simulating systems that are very different from what they've been trained on, so
these results don't seem to provide much new information.

We agree that  our  original  experiments  were rather  extreme.  We have now completely  redesigned the
forcing experiments. Instead of relatively arbitrarily picking out a “high” and a “low” forcing, we now trained
the networks on 6 different training regimes (3 relatively narrow, and 3 broader forcing regimes). For each
training regime, the network is then tested on a wide range of new regimes. (see fig 7 and 8 in the new
manuscript).  We believe  that  these  new experiments  provide  much better  insights  in  the  abilities  (and
inabilities) of the networks to learn external forcings.

▪ It seems reasonable to think that neural networks could perform better at simulating the effects of smaller
forcing changes, that are more comparable to those in real situations. It would be interesting to test whether
the neural networks can reproduce the effects of forcing at the level seen at the end of their training period
(relevant for attributing observed weather events to climate change, for example e.g. National Academy of
Sciences, 2016, “Attribution of Extreme Weather Events in the Context of Climate Change”) and if so, how
far beyond the range of forcing they were trained on can they make good predictions for? (c.f. the Paris
climate agreement global warming targets of 1.5C and 2C, which are ~1.5x and ~2x the observed warming –
it would be interesting to know if neural networks could provide results that are at all useful for predicting the
effects of forcing changes of that magnitude.)

As mentioned in our comment above, our forcing experiments have been completely redesigned. These
experiments now address similar questions as you proposed (in the scope of the simplified systems we are
using).



▪ As a further comment, it doesn't seem likely that neural networks could learn the effects of forcings outside
the range of the training data without having additional information about the effects of larger forcings e.g.
the radiative effects of CO2 in the climate change context. So it seems a priori likely that for the given setup
the
performance will deteriorate as the forcing becomes larger. Perhaps the experiments here could demonstrate
this, but I don't think it would be that surprising.

We understand your point, but in a purely data-driven approach, this is exactly what one would want to do,
e.g. to extrapolate the influence of CO2 forcing to higher values outside the training regime. We don’t think it
is possible to a-priori answer this question. As our new forcing experiments show, the networks are to some
extend able to extrapolate the influence of large forcings, albeit only when trained on wide ranges of forcing.

b. The finding that including information about the forcing as an input often worsens performance seems
surprising. One reason could be that the network architecture was tuned to optimise performance without the
forcing input, and a larger architecture may be needed to perform well with this information. To be a fair test,
the network architecture search should be repeated for the networks using forcing as an input – this may be
especially relevant for the L63 case, where the network used is quite small. The statement in the discussion
that “it may be better not to include the forcing variable as network input” does not seem well-justified due to
this, and also because I do not see how in principle a neural network could predict the effect of a change in
forcing if it is not given information about the forcing.

We have now repeated the network architecture search for the L95 model also using the forcing as input.
Also, due to our new forcing experiments, we removed the statement “it may be better not to include the
forcing variable as network input”.
Finally, in our new setup, we use the networks not using the forcing information as input only as baseline, as
indeed is not expected that they could learn the influence of any forcing.

3. It should be made clear in the abstract and conclusions that the results apply for a particular choice of
neural network design, namely feedforward networks predicting the system state at time t+1 given the state
at time t (it's not clear if this is also the case for the L95 experiments, and this should be clearly stated). Also,
the L63 experiments testing whether neural networks could represent the system in one wing of the attractor
having been trained on the other wing only used sigmoid activation functions.

We completely agree that our results do only apply for feed-forward networks. We now mention this both in
the abstract and the discussion sections. , and we also changed the manuscript title accordingly. We indeed
used a full-state prediction also for the L95. This is now mentioned in the manuscript. The new architecture
we chose for the L63 model uses ReLU activation functions. We repeated some of the experiments also with
networks that forecast tendencies instead of full states. This leads to similar results (see Appendix C1).

• Predicting the whole state at every time step may be expected to work worse than other designs where only
the change in the state is predicted at each step (e.g. Dueben and Bauer, 2018), or where bias-correction of
an approximate dynamical model is performed (Watson, 2019, https://doi.org/10.1029/2018MS001597). This
is because in these cases, a lot of the variance in the quantity being predicted is removed, so minimising the
RMSE in training may work better to give a system that is capturing the important aspects of the variability.
These different methods should also be discussed, and the abstract and conclusions should say that the
results may not apply to methods like these.

We now mention this in the discussion section. However, as already mentioned, we repeated part of the
experiments with networks predicting tendencies, and these were comparable to the ones predicting full
states.

• The choice of sigmoid activation functions for the L63 network may be relevant for the result  that the
network will not make predictions outside of the range of its training data because sigmoids saturate, and
may have trained to saturate at prediction values that are not far outside the boundaries of the training data
region, making it difficult for the neural network to predict values outside this region. It would be good to
check what happens when using an activation function that does not saturate e.g. ReLu. (Though I still



wouldn't  expect it  to work well  when so much data is left  out  from training – but I'd  still  find the result
interesting, particularly if done with a system that predicted the tendency rather than the whole state).

Our new architecture uses ReLu functions. Also, as already mentioned, we repeated part of the experiments
with networks predicting tendency.

Other comments

1. p.1 L19 It would seem relevant to include citations to other recent studies using neural
networks to simulate the Lorenz 95/6 system (Chattopadhyay et al., 2019,
https://doi.org/10.31223/osf.io/fbxns; Watson, 2019,
https://doi.org/10.1029/2018MS001597).

We now mention these 2 studies in the introduction, and we also refer to the latter in the discussion section.

2. p.2 L10 - Perhaps also mention Lorenz '95 is sometimes called Lorenz '96
we now mention this in section 3.1

3. p.2 L10-12 – Some context here may be useful. For paleoclimate variability and the oceans over multiple
decades, yes, but it's less likely to be the case for the atmosphere that unforced variability would be far
outside what we've observed.

we  now  added  “Our  knowledge  of  the  high-frequency  evolution  of  the  climate  system  issues  from
comparatively short timeseries, which only explore a small subset of the possible states of the system. This
is particularly true for the ocean, which has much longer characteristic timescales than the atmosphere, and
for applications to paleoclimatic variability.” in the introduction in order to give more context (p.2 L20).

4. p.3 L9-10 Training where no large regions of phase space is left out seems to be the most realistic case
for atmospheric modelling, which is what is referred to. The experiments may be relevant for e.g. ocean
modelling, where time scales are much longer. (I do think they are inherently interesting, as well.)

Thanks for pointing out that in ocean modelling the problem of not having all phase space covered in training
is a realistic case. We now added “ In a climate science context, this would for example be relevant for the
ocean. The latter's long characteristics timescales imply that observational datasets may cover only part of
the phase-space. It is also relevant in forecasting extreme events in the atmosphere.” in the introduction. (p.4
L7).

5. p.3 L25 I'm not sure if all readers would be familiar with the Lorenz butterfly - perhaps refer to a figure.

We now refer to fig. 1a which shows a long L63 integration

6. p.3 L26 A better description of the solver is needed e.g. what software package is this from?
Reference?

We used the  implementation  provided  by  scipy.  We now refer  both  to  scipy  and  to  the  original  paper
describing ODEPACK.

7. p.4 L1 Lorenz95 seems to be more often used to describe the 2-level model Lorenz introduced in the
same paper. Perhaps use a different name to make it clear you are considering the 1-level version. (As an
aside, the 2-level model could be used to test how well neural networks perform compared to a “truncated”
model of the system i.e. the 1-level model – this would address whether neural networks can improve upon
other reasonable
dynamical models, which is a key question.)

We now mention that the Lorenz95 model is sometimes referred to as Lorenz96, and also explicitly mention
that we use the simple version of the Lorenz95 model (without additional levels). 

https://doi.org/10.1029/2018MS001597


Also, we added “Additionally, it  would be interesting to extend the analysis to the 2-level version of  the
Lorenz95 model, which would allow to also compare the networks to ``truncated''” in the conclusion section.
(p.20 L33).

8. p.4 L4 What is the behaviour of the system like with N=40? A plot of a time series or similar
may be helpful.

An example of a Lorenz95 model integration is shown in fig. B1 c (left panel). We now explicitly refer to this
figure in section 3.1

9. p.4 L8-12 More detail  seems necessary to make the results reproducible -  e.g. Were input  variables
normalised? Regularisation? Minibatch size? Learning rate? Stopping rule?
  
All input variables were normalized to zero mean and unit variance. We used no regularization techniques
except for early stopping (after the validation loss has not increased for 4 epochs). Mini-batch size is 32. This
is now all mentioned in the methods section and the appendix.

10. p.4 L21-22 Why not give F as one value in the L95 system? (Analogous to using CO2 concentration as
an input to a climate model.)

This is not possible in a purely convolutional architecture such as we use. It is standard practice to provide
inputs that do not have a spatial pattern (such as our forcing) in the way we do, namely extending it to all
points and adding it as an additional layer. For example, it is used to represent the binary game state in
googles AlphaGo Zero (https://www.nature.com/articles/nature24270.pdf), and to feed the day of the year in
addition to 3d fields in https://www.geosci-model-dev.net/12/2797/2019/

11. p.5 L8 – how big are the grid boxes being used?

They have a size of 0.3x0.3x0.3 on the normalized data. We now mention this in section 3.4

12. p.5 L8-9 – what does “normalized data” mean here?

We added “(normalization based on the training set, the output of the networks is always in the normalized
domain).” to make this clearer. (p.6 L10)

13. p.5 L22 For testing 1), the trajectory will tend to the fixed point and only reach it after infinite time, so it's
not clear that it could be identified by looking for two points to be exactly equal - perhaps set a threshold on
how small a tendency is acceptable and check if the tendency magnitude falls below this and does not rise
above it again?

In the new manuscript, we do not use this type of selection any longer.

14. p.5 L23-24 What is the motivation behind 2? To identify periodic behaviour? But couldn't points on a
periodic orbit fall at slightly different points on that orbit and so avoid detection?

In the new manuscript, we do not use this type of selection any longer

15.  p.6  L1-2 The  information  on training here  could  perhaps be merged with  the earlier  section  about
training.

We prefer to leave it in this section, as we believe it follows well the logical flow of the paragraph.

16. p.6 L5 what does "consecutive forecasts" mean as opposed to just "forecasts"?

https://www.nature.com/articles/nature24270.pdf


With this we want to point out that we use one forecast to initialize the next one. We now added “(via feeding
the forecast back to the input)” to make this clearer. (p.6 L28)

17. p.6 L5-6 See earlier comment about the simulated attractor not looking reasonable.

Due to our new main network architecture, the simulated attractor now closely resembles the true one (fig.
1b).

18. p.6 L9 How big are these errors compared to an average tendency magnitude? Also, could errors on the
wings be larger because tendencies are typically larger? Perhaps showing a relative error would be more
useful.

We now included a plot of the typical tendencies in (fig. 1d) and refer to it in the text (“To put forecast errors
throughout the paper in context, panel d) shows the tendency (change between successive timesteps) of the
model in different regions of phase space.”) (p7 L3).

19. p.6 L14-15 I didn't get the meaning of “the points...included point”.

If we simply remove points from the Lorenz63 model run, and then split  our training set into inputs and
targets (via shifting by 1 timestep), then there would be input-target pairs were the model “jumps”, because a
piece of the trajectory in-between had been cut out. We added “(this is necessary because we removed parts
of the models’ trajectory)” to clarify this. (p8 L1).

20. p.8 L11-12 The errors look quite a bit smaller to me, particularly for the case of fig.3f.

We discuss this in more detail in the new manuscript, since with our new network architecture it is possible to
switch off more neurons at once, and the results are more complicated.

21. p.8 L12-14 I don't feel convinced by this analysis. Even if the neural network had learnt to fit the whole
attractor well, there may be some neurons whose activations only vary in part of the phase space due to the
values of the inputs, and fixing their values would of course be expected to degrade forecasts in areas of the
phase space where they do matter.

We think this might have been a misunderstanding. In this analysis, we inspect the network that was trained
on the whole attractor, and that also works well on the whole attractor. So we actually know that the network
has learned the whole attractor. To make clearer that we analyzed the network trained on the whole attractor,
we added “For this, we inspect the network that was trained on the whole attractor (and forecasts well on the
whole attractor).” in section 4.1.2 (p8 L20).

22. p.11 L5-6 This experiment is not really like rising anthropogenic climate forcing because the sign of the
“forcing”  depends  on  whether  y  is  larger  than  x.  An  additive  forcing  term  like  that  used  for  the  L95
experiments and by Palmer (1999, “A nonlinear dynamical perspective on climate prediction”, J. Clim.) would
be a better analogy.

We removed the corresponding sentence. Additionally, we now discuss in the conclusion section that our
experiments are only very remotely related to climate forcings.

23. p.11 L6-7 Changing the number of time steps looks to change the rate of change in the forcing as well.
This is something that should be made clear. The results will conflate the effects of changing the amount of
training data and the rate of change of the forcing. Perhaps a test could be done for the case with a lower
rate of change of forcing with the lower number of time steps used in training to see the effect of changing
each aspect of the set up.

In our new forcing experiments, we use a fixed number of training timesteps, so this is not an issue anymore.



24. p.11 L17 It's not clear to me if different training and testing runs are produced for each experimental
repeat.

No, only the training is repeated (with exactly the same datasets). We now explicitly mention this.

25. p.13 L2 Given that the performance of the Lorenz systems with fixed F also vary between the situations
with different training data lengths, could the different rates of forcing change in each case be affecting the
system's behaviour in some important way?

In the new manuscript, we use only the long training length, so this is not an issue anymore.
In  the old  manuscript  it  might  have had an influence,  but  since the network was trained on short-term
forecasts, even for the shorter training sets the individual samples can be seen as having nearly fixed F,
because the forcing varied over a long time period only.

26. p.15 L25 - “layers” should be “neurons”?

Yes indeed, thanks for pointing this out. We changed “layers” to “neurons”.

27. fig.2 - It should be pointed out clearly that the colour scales are different.

This is now pointed out in the caption

28. fig.3 - It's a bit unclear to compare the distributions across panels b and e to see which neurons change
behaviour more - it might be better to put the values side by side on the same axes.

Thanks for this suggestion, we have now put the distributions for both wings on the same axis, with different
colors.

29. fig.3 – panel references are wrong in the caption. It also needs to be clearer about what the distributions
in b and e are.

We changed the figure to accommodate the distribution plots for the now larger network.  Also, we now
explain the distributions better in the caption (“boxplots showing the distribution of neuron activations per
neuron ….”)

30. fig.5 - It needs to be made clear that single-timestep prediction errors are being shown. It would be more
interesting to see metrics of longer-range forecast skill and how well theattractor is simulated, since in the
end single-timestep predictions are not the target and may not indicate that well the performance on longer
time scales.
31. fig.5a - I suggest using a different colour for the vertical lines.
32. fig.5 - It would be better to write "Ntrain" in exponential notation.
33. fig.5 - The orders of the Lorenz systems could be reversed so they go start to end, the same as for the
neural networks.
34. fig.5 - There are no bars on the simulations with the Lorenz system, so have you used the same Truth
runs for each experiment, so you could only run the Lorenz systems once, or are the bars just not visible? It
would be good to make small bars visible by giving their ends a width so they stick out.

Answer to all comments above regarding fig.5: We do not use the former fig.5 anymore. We believe that the
figures  for  the  new  forcing  experiments  are  clearer,  and  they  also  include  two  metrics  of  attractor
reconstruction (mean and standard deviation).

35. References – some references have repeated DOIs.

Fixed



Reviewer #3

General comments:

A first remark is that the first experiment seems quite artificial. The Lorenz 63 model is an extremely idealized
model with a very peculiar bifurcation structure and distinct symmetries, making it less than ideal to represent
a realistic general circulation model. A more realistic model which also displays regimes such as that of
Charney and Straus (1980),  would  probably  have been more suitable  for  this  particular  experiment.  Of
course, the authors mention these caveats, but in the end there are so many caveats that it seems that no
conclusion can be drawn at all related to realistic climate models. Moreover, it is not because some insights
related to machine learning map to more complex models, that this is a universal property. I’m not sure how
the authors can address this issue without performing the analysis for a more realistic model. Nevertheless, I
appreciate the value of this experiment, albeit in a more theoretical context of dynamical systems theory.

We completely agree that the Lorenz63 model is a highly idealized system. We have chosen it due to its
widespread use in the study of chaotic dynamical systems, and the fact that it is very easy to visualize and
inspect.  However, we have now also extended our first experiment to the Lorenz95 system. While this
system is also highly idealized, one may argue that it is more closely related to geophysical systems. We
agree that it would be interesting to extend the analyses to more complex systems such as the Charney and
Straus model, or to simple GCMs. However, considering the difficulty (not at least the required computation
time), we think that this is not in the scope of the current study, which we designed for the Lorenz systems.
We believe that even when focusing only on the Lorenz systems, this study provides valuable information for
the use in more complex systems.

Secondly, the result of the forcing experiment of the Lorenz 95 model seems hardly surprising, as the forcing
parameter is varied from the periodic regime to the turbulent regime. One cannot expect a neural network to
predict qualitatively completely different behaviour.

We agree that  our  original  experiments  were rather  extreme.  We have now completely  redesigned the
forcing experiments. Instead of relatively arbitrarily picking out a “high” and a “low” forcing, we now trained
the networks on 6 different training regimes (3 relatively narrow, and 3 broader forcing regimes). For each
training regime, the network is then tested on a wide range of new regimes. (see fig 7 and 8 in the new
manuscript).  We believe  that  these  new experiments  provide  much better  insights  in  the  abilities  (and
inabilities) of the networks to learn external forcings.

Finally, it seems to me that similar studies must have been performed in the literature on neural networks,
though not necessarily in the context of geophysics. I would encourage the authors to explore the literature
on this. The recent groundbreaking success of deep learning was only possible thanks to the move from few
to  many  hidden  layers,  and  it  appears  that  large  deep  learning  networks  have  better  generalization
properties
than smaller ones. It would therefore also be interesting to repeat the exercise for a deep neural network.
See for example the work by Novak et al. (2018) or Wu et al. (2017) who investigate the source of these
generalization properties, and references therein.

We have added a new section in the introduction (“1.2 Related work on generalization properties of neural
networks”)  that  gives  a  better  overview of  the  general  literature  on  generalization  properties  of  neural
networks. We have further tested several architectures, including ones with wider layers, in our experiments.

Specific comments and typographical errors:

p.1, L 9-10:  In the abstract,  the authors conclude that  "These results outline challenges for a variety of
machine-learning applications. [...]". The word "outline" (in the sense of summarize) goes a bit too far since
the results shown are for two highly specific models and a very artificial set-up (an entire wing missing,
training in periodic regime). I would just say that the results provide some examples.

We changed it to “point to potential limitations”



Figure 3: Labels in the caption don’t match with the relevant subfigures.

fixed

p. 11, L 16: lorenz -> Lorenz (2x)

fixed

p. 15, L 1: However, also the alternative methods suffer -> However, the alternative methods also suffer

We changed the paragraph to reflect the new results, and the sentence does not appear anymore.

p. 15, L 3: test test -> test

We changed the paragraph to reflect the new results, and the sentence does not appear anymore.

Check spelling consistency: throughout the manuscript, generalize / generalise are both used

we changed all to generalize

References:
Charney J G, Straus DM (1980) Form-Drag Instability, Multiple Equilibria and Propagat-
ing Planetary Waves in Baroclinic, Orographically Forced, Planetary Wave Systems. J
Atmos Sci 37: 1157-1176.
Roman Novak, Yasaman Bahri, Daniel A. Abolafia, Jeffrey Pennington, Jascha Sohl-
Dickstein (2018) Sensitivity and Generalization in Neural Networks: an Empirical Study.
arXiv:1802.08760.
Lei Wu, Zhanxing Zhu, Weinan E (2017) Towards Understanding Generalization of
Deep Learning: Perspective of Loss Landscapes. arXiv:1706.10239.
Interactive comment on Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-
2019-23, 2019.
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Abstract. Neural networks are able to approximate chaotic dynamical systems when provided with training data that covers

all relevant regions of the system’s phase space
::::::::::
phase-space. However, many practical applications diverge from this idealised

scenario. Here, we investigate the ability of
::::::::::
feed-forward

:
neural networks to: 1) learn the behaviour of dynamical systems

from incomplete training data, and 2) learn the influence of an external forcing on the dynamics.
::::::
Climate

::::::
science

::
is
::

a
::::
real

:::::
world

:::::::
example

:::::
where

:::::
these

::::::::
questions

::::
may

::
be

:::::::
relevant:

::
it
::
is

:::::::::
concerned

::::
with

:
a
::::::::::::
non-stationary

::::::
chaotic

:::::::
system,

::::::
subject

::
to

:::::::
external5

::::::
forcing

:::
and

::::::
whose

::::::::
behaviour

::
is

::::::
known

:::
only

:::::::
through

::::::::::::
comparatively

::::
short

::::
data

::::::
series. Our analysis is performed on the Lorenz63

and Lorenz95 models. We show that
:::
for

:::
the

::::::::
Lorenz63

:::::::
system,

:
neural networks trained on data covering only part of the

system’s phase space
:::::::::
phase-space

:
struggle to make skillful short-term forecasts in the regions missed during

:::::::
excluded

:::::
from

the training. Additionally, when making long series of consecutive forecasts, the networks mostly do not
::::::
struggle

::
to

:
reproduce

trajectories exploring regions beyond those seen in the training data. We also find that it is challenging for the standard network10

architectures ,
::::::
except

:::
for

:::::
cases

:::::
where

:::::
only

:::::
small

::::
parts

:::
are

:::
left

::::
out

:::::
during

::::::::
training.

:::
We

::::
find

:::
this

::
is
::::
due

::
to

:::
the

::::::
neural

:::::::
network

:::::::
learning

:
a
::::::::
localised

:::::::
mapping

:::
for

::::
each

::::::
region

::
of

::::::::::
phase-space

::
in
:::

the
:::::::

training
::::
data

:::::
rather

::::
than

::
a
:::::
global

::::::::
mapping.

:::::
This

::::::::
manifests

::::
itself

::
in

::::
that

:::::
parts

::
of

:::
the

::::::::
networks

:::::
learn

::::
only

:::::::::
particular

::::
parts

:::
of

:::
the

:::::::::::
phase-space.

::
In

::::::::
contrast,

:::
for

:::
the

::::::::
Lorenz95

:::::::
system

:::
the

:::::::
networks

:::::::
succeed

:::
in

::::::::::
generalising

::
to

::::
new

:::::
parts

::
of

:::::::::::
phase-space

:::
not

::::
seen

::
in

:::
the

:::::::
training

:::::
data.

:::
We

::::
also

::::
find

::::
that

:::
the

::::::::
networks

::
are

::::
able

:
to learn the influence of a slowly changing

::
an

:
external forcing, highlighting the limitations of a network trained on15

a specific forcing regime for generalising
::
but

::::
only

:::::
when

::::::
given

::::::::
relatively

::::
large

::::::
ranges

:::
of

:::
the

::::::
forcing

:::
in

:::
the

:::::::
training.

::::::
These

:::::
results

:::::
point

::
to
::::::::

potential
:::::::::
limitations

:::
of

:::::::::::
feed-forward

::::::
neural

::::::::
networks

::
in

:::::::::::
generalizing

:
a system’s behaviour . These results

outline challenges for a variety of machine-learning applications. An example is climate science, which is concerned with a

non-stationary chaotic system whose behaviour is known only through comparatively short data series.
::::
given

::::::
limited

::::::
initial

::::::::::
information.

:::::
Much

::::::::
attention

::::
must

::::::::
therefore

::
be

:::::
given

::
to

::::::::
designing

::::::::::
appropriate

::::::::
train-test

::::
splits

:::
for

:::::::::
real-world

:::::::::::
applications.20

Copyright statement. TEXT

1



1 Introduction

1.1
:::::

Neural
:::::::::
networks

:::
for

:::::::
weather

::::
and

:::::::
climate

::::::::::
applications

Neural networks are a series of interconnected – potentially nonlinear – functions, whose mutual relations are “learned” by the

network by training on data. One of their many applications is predicting
:::::::::
forecasting

:
the time-evolution of dynamical systems.

In this context, the neural networks are trained on long timeseries issued from the dynamical system of interest, and can then5

in principle be used to predict
::::::
forecast

:
the system’s evolution from new initial conditions. Examples of applications include

classical physical systems like the double pendulum (Bakker et al., 2000), and the widely studies
::::::
studied Lorenz toy-models

of the atmosphere (e.g. Vlachas et al. (2018); Dueben and Bauer (2018)).

In recent years, neural networks have enjoyed growing attention in climate science. Applications include parameterization

schemes in numerical weather prediction and climate models (Krasnopolsky and Fox-Rabinovitz, 2006; Krasnopolsky et al.,10

2013; Rasp et al., 2018), postprocessing
::::::::::::
post-processing

:
of numerical weather forecasts (Rasp and Lerch, 2018),

::::::::
empirical

::::
error

:::::::::
correction

::::::::::::
Watson (2019),

:
predicting weather forecast uncertainty (Scher and Messori, 2018) and doing actual weather

forecasts and climate model emulations in simplified realities (Dueben and Bauer, 2018; Scher, 2018; Scher and Messori,

2019),
:::
as

::::
well

::
as

::::::
doing

:::::
actual

:::::::
weather

::::::::
forecasts

::::::::::::::::
(Weyn et al., 2019). These increasingly widespread practical applications

warrant a more systematic evaluation of the possibilities and limitations of neural networks for the simulation of complex15

dynamical systems.

In in this paper, we
::::
focus

::::::::::
specifically

:::
on

:::
the

::::::
widely

::::
used

:::::::::::
feed-forward

::::::
neural

::::::::
networks

::::
and address two open questions

related to using neural networks
::::
their

:::
use for approximating the dynamics of chaotic systems:

1) Can neural networks infer system behaviour in regions of the phase space
::::::::::
phase-space

:
not included in the training dataset?

2) Can neural networks “learn” the influence of
::
an

:
external forcing driving slow changes in the system they are trained on?20

We adopt an empirical approachto answer these questions. Namely,
:
: we generate long time-series with numerical models,

and then perform experiments with neural networks on this data. The first question will be investigated using the Lorenz63

system (Lorenz, 1963); the second using both
:::
We

:::::::::
specifically

:::
use

:
the Lorenz63

:::
(?) and Lorenz95 systems (Lorenz, 1996) and

simulating external forcing as a slow change in the parameters of the models. Both
:::
(?)

::::::
models.

::::::
These

::::
(and

:::::
other

::::::
variants

:::
of

::
the

:::::::::
Lorenz95

:::::::
system)

:::
are

::::::
widely

::::
used

:::
as

:::::::::
toy-models

:::
for

::::::::
studying

::::::::::::::
atmosphere-like

:::::::
systems,

::::
also

::
in

:::
the

:::::::
context

::
of

::::::::
machine25

:::::::
learning

::::
(e.g.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Vlachas et al. (2018); Watson (2019); Lu et al. (2018); Chattopadhyay et al. (2019))

::::
and

::::::::
parameter

:::::::::::
optimization

::::
(e.g.

::::::::::::::::::::::::::
Schevenhoven and Selten (2017)

:
).
:

::::
Both

:::
the

::::::::
questions

:::
we

::::
raise

:
are of direct relevance to climate applications. Our knowledge of the high-frequency evolution

of the climate system issues from comparatively short timeseries, which only explore a small subset of the possible states of

the system. Finally
::::
This

:
is
::::::::::
particularly

::::
true

::
for

:::
the

::::::
ocean,

:::::
which

:::
has

:::::
much

::::::
longer

:::::::::::
characteristic

:::::::::
timescales

::::
than

:::
the

::::::::::
atmosphere,30

:::
and

:::
for

::::::::::
applications

::
to

:::::::::::
paleoclimatic

:::::::::
variability.

::::::::
Moreover, the accelerating anthropogenic forcing will likely lead to significant

changes in the climate’s future evolution. The two points we raise are therefore crucial in the context of using neural networks

for weather forecasting and for emulating climate models. They could be reformulated in more practical terms as: do neural

networks have the potential to reproduce unprecedented states of the climate system? Similarly, could they learn the influence

2



of unprecedented greenhouse-gas concentrations on the dynamics of the climate system, given a past record of the system

subjected to varying greenhouse-gas levels?

1.2
::::::

Related
:::::
work

:::
on

::::::::::::
generalization

:::::::::
properties

:::
of

::::::
neural

::::::::
networks

:::
The

::::::::
question

::
of

::::::::::::
generalization

::
is

:
a
:::::::

central
:::::
aspect

::
in
::::::::::::::::

machine-learning,
:::
and

::
is

::
a

::::
well

::::::
studied

:::::
topic

:::
for

::::::
neural

::::::::
networks

::::
(e.g.5

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Hochreiter and Schmidhuber (1995); Hardt et al. (2015); Zhang et al. (2016)

:
).
::::
One

::
of

:::
the

::::::::::
remarkable

::::::::
properties

::
of

::::
deep

::::::
neural

:::::::
networks

::
is

::::
that,

:::::::
contrary

::
to

::::::::
statistical

:::::::
learning

::::::
theory,

::
in

:::::
many

:::::
cases

::::
they

::::::::
generalise

:::::
better

:::::
when

::::::
having

::::
more

::::
free

::::::::::
parameters.

:::
The

::::::
recent

::::::
success

:::
of

::::
deep

::::::
neural

::::::::
networks

:::
in

:
a
::::::
variety

:::
of

::::::::::
applications

::::
and

::::
their

::::::::::
empirically

::::::::::::
demonstrated

::::::::::::
generalisation

::::::
abilities

:::::
have

::::::::
stimulated

::::::::::::
investigations

::::
into

::
the

::::::::::
underlying

:::::::::::
mechanisms.

:::
For

::::::::
example,

::::::::::::::
(Wu et al., 2017)

::::::
argued

:::
that

:::
the

::::::
reason

::
for

:::::
their

::::
good

::::::::::::
generalization

:::::::::
properties

:::
are

:::
the

:::::::::
landscape

::::::::::::
characteristics

::
of

:::
the

::::
loss

::::::::
function.

:::::::::::::::::
Novak et al. (2018)

::::
argue

::::
that10

:::::::::::
generalization

::
is
::::::::

favoured
:::
by

::::
high

:::::::::
robustness

::
to

:::::
input

:::::::::::
perturbations

:::
of

:::
the

::::::
trained

::::::::
networks

::
in

:::
the

:::::::
vicinity

::
of
:::::

their
:::::::
training

::::::::
manifold,

::::::
despite

::::
their

:::::
large

:::::::
numbers

::
of
::::::::::

parameters.
:::::::
Another

:::::::::::
well-studied

::::::
aspect

:
is
::::::::

machine
:::::::
learning

:::::
under

::::::::::::
covariate-shift

::
–

::
the

::::::::
situation

:::::
where

:::
the

:::::::::
probability

::::::::::
distribution

::
of

:::::::
training

:::
and

:::
test

::::
data

::
is

:::
not

:::
the

::::
same

::::
(e.g.

::::::::::::::::::::::::::::
(Sugiyama and Kawanabe, 2012)

:
).

::::
This

:::::::
amounts

::
to

:
a
::::::
special

::::
class

:::
of

:::::::::::::
non-stationarity

::::::::
problems,

:::
and

::
is
:::::
partly

::::::
related

::
to

:::
our

::::::::
question

:
2
::::::::
(learning

:::::::
external

::::::::
forcings).

15

:::
The

::::
bulk

::
of

:::
the

::::::::
literature

:::
on

:::
the

:::::
above

:::::
topics

:::
has

::::::::
focussed

:::
on

:::::
image

::::::::::
recognition

:::
and

::::::
related

:::::
fields,

::::
and

:::
the

:::::
extent

::
to

::::::
which

::::
these

::::::
results

::::
may

:::::
apply

::
to

:::::::::
dynamical

:::::::
systems

::
is
:::::::
unclear.

:::
To

:::
the

:::::::
authors’

::::::::::
knowledge,

:::
the

::::::::::::
generalization

:::::::::
properties

::
of

::::::
neural

:::::::
networks

:::::::
applied

::
to

:::::::::
dynamical

:::::::
systems,

:::
and

::::::::::
specifically

::
to

::::::
Lorenz

:::::::
systems,

:::
are

:::
yet

::
to
:::
be

::::::
studied

::
in

::::::
detail.

2 Emerging Challenges in Neural Networks for Dynamical Systems

Question 1) we framed above, relates to whether the network learns a “global” function mapping the state vector x from one20

timestep to the next:

f (x) : xt 7→ xt+1 (1)

or whether it learns N individual functions for N different regions of the phase space
::::::::::
phase-space:

f (x) =



f1 (x) x ∈ region1

f2 (x) x ∈ region2
...

...

fN (x) x ∈ regionN

(2)

::::
Even

::::::
though

:::::::::::::
mathematically

:::::::::
equivalent,

:::
the

::::
latter

::::::
would

:::::
imply

:::
that

:::::::
different

:::::
parts

::
of

::
the

:::::::
network

:::
are

::::::::::
responsible

::
for

::::::::
different25

::::::
regions

::
of

:::
the

:::::::::::
phase-space.

:
For some applications this may be irrelevant, as long as the network forecasts work. However, it

3



has major implications for how the network generalizes to regions of the phase space
::::::::::
phase-space

:
that are not covered in the

training data.

Neural networks can tend to overfit – meaning they work very well on the training data, but do not generalize and therefore

do not work on new data. Therefore, they are usually tested on data not used for the training. Given a dataset, it is not trivial to5

decide how to split the data into a training and test set. For data without auto-correlation, a random split on a sample-by-sample

basis may be suitable. For autocorrelated time-series, it is common to split the data into continuous blocks (e.g. using the first

80% of a timeseries for training, and the last 20% for evaluation). In a real-world application to the atmosphere, one could train

the network on the first years of available observations, and then test on the remaining available years (e.g. Rasp and Lerch

(2018); Scher and Messori (2018)). For the Lorenz63 model
:::::
Lorenz

:::::::
models, the train-test splits are typically designed such that10

samples in the test set are not contained in the training set, but at the same time ensure that both the training and the test set

:::
sets

:
cover all regions of the phase space

::::::::::
phase-space

:
with some reasonable density. That is, no large contiguous regions of the

phase space
::::::::::
phase-space are left out of either set of data.

:::
(e.g.

::::::::::::::::::::::::::::::::::::::
Pasini and Pelino (2005); Vlachas et al. (2018)

:
).
:

Here, we consider the opposite situation, namely a scenario where the training data covers only part of the system’s phase

space
::::::::::
phase-space. We know from the definition of the Lorenz63 model

:::
and

::::::::
Lorenz95

::::::
models

:
that the underlying equations are15

invariant across the phase-space. If the network can truly learn the system’s dynamics, and thus successfully approximates the

underlying equations, then it should be able to provide useful information concerning the system’s behaviour in those regions

of the phase space
::::::::::
phase-space

:
not included in the training data. More generally, for a long series of successive forecasts the

network should thus be able to reconstruct the full attractor. However, should the network instead learn a set of functions each

applicable locally, then one would expect the network to fail in regions not explored during the training.
:
In

::
a
::::::
climate

:::::::
science20

::::::
context,

::::
this

:::::
would

:::
for

:::::::
example

:::
be

:::::::
relevant

:::
for

:::
the

:::::
ocean.

::::
The

::::::
latter’s

::::
long

::::::::::::
characteristics

:::::::::
timescales

:::::
imply

:::
that

::::::::::::
observational

::::::
datasets

::::
may

:::::
cover

::::
only

::::
part

::
of

:::
the

:::::::::::
phase-space.

:
It
::
is
::::
also

:::::::
relevant

::
in

:::::::::
forecasting

:::::::
extreme

::::::
events

::
in

:::
the

::::::::::
atmosphere.

:::::::
Question

:::
2)

:::::
relates

:::
to

::::
how

::::
well

:
a
:::::::
network

::::
can

::::
learn

:::
the

::::::::
influence

:::
of

:
a
::::::
slowly

:::::::
varying

:::::::
variable

:::
(the

:::::::::
"forcing"

::
in

:
a
:::::::
general

:::::
sense)

:::
on

:::
the

::::::::
evolution

::
of

::::
the

::::::::::
fast-varying

::::::::
variables

::::
(the

::::::
system

:::::
state).

::::
The

::::::::
influence

:::
of

:::
the

::::::::::::
slowly-varying

:::::::
forcing

:::
on

:::
the

::::::::
short-term

:::::::::
dynamics

::
is

:::::::::
potentially

::::
very

:::::
small

::::::::
compared

::
to

:::
the

::::::
typical

:::::::::
variability

::
of

:::
the

::::::::
systems,

::::::
making

::::
the

:::
task

:::
of

:::::::
learning25

::::::::::::
simultaneously

:::
the

:::::::::
dynamics

:::
and

::::
the

::::::::
influence

::
of

::::
the

:::::::
external

::::::
forcing

:::::::::::
challenging,

::::
even

:::::
when

::::
the

::::::
forcing

::
is
::::::::

provided
:::

as

::::::::
additional

:::::
input

::
to

:::
the

:::::::
network.

:

3 Methods

3.1 The Lorenz63 and Lorenz95 models

The Lorenz63 model
:::
(?) is a 3-variable system defined by the following ordinary differential equations:30
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ẋ= σ (y−x)

ẏ = x(ρ− z)− y (3)

ż = xy−βz

We use σ = 10, β = 8/3 and ρ= 28, the standard parameter combination with which the system – despite its simplicity

– generates chaotic behavior (the characteristic “butterfly” shape
:
,
:::
see

::::
Fig.

::
1a). We integrate the system with a timestep of5

t= 0.01 with the LSODA solver from ODEPACK
:::::::::::::::
(Hindmarsh, 1983)

::
as

::::::::
provided

:::
by

::::
scipy

::::::::::::::::
(Jones et al., 2001). While the

Lorenz63 model is a very rough approximation of atmosphere-like dynamics, the fact that it has only
::::
only

:::
has

:
3 variables

allows to easily visualize the complete phase space
::::::::::
phase-space and define regions that can be excluded from the training data.

This makes it ideally suited to tackle the first question we pose (generalization to unseen phase-space regions).

The Lorenz95 model
:::
((?)

:
,
:::
also

:::::
often

:::::::
referred

::
to

::
as

:::
the

::::::::
Lorenz96

::::::
model)

:
is a 1-d model that approximates the atmosphere as10

a series of N gridpoints wrapped around a circular domain:

ẋi = (xi+1−xi−2)xi−1−xi +F (4)

with i= 1...N and (xN+1 = x1). Here we choose N = 40. F is a forcing term. With F = 4 the system shows periodic

behaviour; with increasing F the behaviour becomes increasingly chaotic, and with F = 16 it is highly turbulent.
::
An

::::::::
example

::
of

:
a
::::::::
Lorenz95

::::::
model

:::::::::
integration

::
is

::::::
shown

::
in

:::
the

:::
left

:::::
panel

::
of

::::
Fig.

:::
B1

::
d.

::::
Note

::::
that

::::
there

::
is
::::
also

::
a

::::::
second

:::::
model

:::::
often

:::::::
referred15

::
to

::
as

:::
the

::::::::
Lorenz95

::
or

::::::::
Lorenz96

::::::
model,

::::::
which

::::
uses

:
a
::::::
second

::::
(and

:::::::::
sometimes

::
a
:::::
third)

:::::::::
dimension.

::::
This

::::::
model

:
is
::::
not

:::::::::
considered

::::
here. Like the Lorenz63 model, we integrate the system with the LSODA solver from ODEPACK.

3.2 Neural Network for Lorenz63

We use a shallow network with 1 fully-connected hidden layer, 8 neurons with a sigmoid activation function, and 3 linear

output neurons. This has previously been identified as a suitable architecture for the20

:::
For

:::
the

:
Lorenz63 system by Zhang (2017)

:::::
model

:::
we

:::
use

:::::::::::::
fully-connected

::::::::
networks

:::::
with

:::::
ReLu

::::::::
activation

::::::::
functions

:::
in

:::
the

:::::
hidden

::::::
layers

::::
and

:
a
:::::
linear

::::::
output

:::::
layer.

::::
The

:::::
main

:::::::::::
configuration

:::::
used

::
in

::::
this

:::::
study

::::
was

:::::::::
determined

::::
via

:
a
::::::
tuning

:::::::::
procedure

:::::::::
(Appendix

:::
A).

:
It
:::::::

consists
:::
of

:
2
::::::
hidden

:::::
layers

::::
with

::::
128

:::::::
neurons

::::
each. The network takes as input all 3 Lorenz63 variables, and

outputs all 3 variables one timestep later. The training is done with the adam optimizer (Kingma and Ba, 2015). Due to the small

size of the hidden layer, controlling overfitting via early stopping is not necessary
:::::::::
Overfitting

::
is

:::::::::
controlled

::
via

:::
an

::::::::::::
early-stopping25

::::
rule.

:::
The

:::::::
training

::
is

::::::
stopped

:::::
when

:::
the

::::
skill

:::
on

:
a
::::::::
validation

::::::
dataset

::::
(last

::::
10%

:::
of

::
the

:::::::
training

::::
set)

:::
has

:::
not

::::::::
increased

:::
for

:
4
:::::::
training

::::::
epochs,

::::
with

::
a
:::::::::
maximum

::
of

::::
100

::::::
epochs. For the forcing experiments, we additionally use a second architecture, where the

network has 4 input parameters (the 3 Lorenz63 variables and the parameter σ, see Eq. 3), and the same 3 output variables

as the standard setup.
::
No

::::::::::::
regularization

:::::::::
techniques

:::
are

:::::
used.

:::
Part

:::
of

:::
our

::::::::::
experiments

:::
are

:::::::
repeated

:::::
with

:::
the

::::
same

:::::::::::
architecture,
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:::
but

::::::
trained

::
on

::::::::::
forecasting

:::
the

::::::::
tendency

:::::::::
(difference

:::::::
between

::::
the

::::::::
following

:::
and

:::::::
current

::::::
states)

:::::
rather

::::
than

:::
the

::::::::
following

:::::
state30

::::::
directly.

:

3.3 Neural Network for Lorenz95

For the Lorenz95 model, we use a convolutional network that works on the periodic domain. Convolutional networks have

already successfully been used on gridded data from simplified general circulation models in Scher (2018) and Scher and

Messori (2019). The configuration used here was tuned with an exhaustive gridsearch over different network configurations.

The tuning procedure is described in Appendix A
:
B. We tuned the network for forecasting 1, 10 and 100 timesteps, where5

each timestep corresponds to 0.01 time units of the Lorenz95 model. The network trained for 10 timestep-forecasts (a 2-layer

convolution network with a kernel-size of 5, see Appendix A
::
B) worked best for virtually all lead-times (see fig. A1

::::
Fig.

:::
B1),

and we use this architecture in our analysis. For the forcing experiments, the parameter F at each timestep was expanded to

the number of gridpoints of the Lorenz95 model and added as an additional input channel to the network.
::
As

:::
for

:::
the

::::::::
Lorenz63

::::::
model,

::::
the

:::::::
network

:::::::
directly

:::::::
forecasts

::::
the

::::
next

::::
state

::
of

::::
the

::::::
system.

::::::::::
Overfitting

::
is

:::::::::
controlled

:::
via

::
an

:::::::::::::
early-stopping

::::
rule.

::::
The10

::::::
training

::
is
:::::::

stopped
:::::

when
::::

the
::::
skill

::
on

::
a
:::::::::
validation

::::::
dataset

::::
has

:::
not

::::::::
increased

:::
for

::
4
:::::::
training

:::::::
epochs,

::::
with

::
a
:::::::::
maximum

::
of

:::
30

::::::
epochs.

:::
No

::::::::::::
regularization

:::::::::
techniques

:::
are

::::
used.

:

3.4 Evaluating the reconstruction of the Lorenz63 attractor

The neural networks is
::
In

::::
most

:::
of

:::
our

:::::::::::
experiments,

:::
the

:::::
neural

::::::::
networks

:::
are

:
trained by minimizing errors of single-step (and

thus short-term) forecasts. Therefore, it might be that the network cannot
::::
they

::::
may

:::
not

:::::::
always reproduce a stable system15

when making a long series of consecutive forecasts , which is
:
–
:
a known issue when applying neural networks to chaotic

systems (e.g. Bakker et al. (2000)). In our experiments
::
For

:::
the

::::::::
Lorenz63, the trained network often made very good short-term

predictions
:::::::
forecasts, but when attempting to produce long series of iterative forecasts (which, in the context of climate science,

would be analogous to producing a “climate run” from successive meteorological forecasts), the system collapsed into a fixed

point. Since the training of our network is computationally inexpensive, we use a brute force method to find a network that20

yields both skillful short-term forecasts and a realistic long-term system evolution. We simply repeat the training until we find

a network that has the desired characteristics. While beyond the scope of this study, it would be of interest to investigate which

specific features of the training process may affect the short-term versus long-term characteristics of the network output. In

order to evaluate the different networks, and provide a quantitative definition of what we mean by “realistic”, we compare the

density of the trajectories in phase space between the reconstructed system and
:::
train

:::
10

::::::::
networks,

::::
and

::::
then

:::::
select

:::
the

:::::::
network25

:::
that

::::
best

:::::::::
reproduces

:::
the

:::::::
attractor

:::::
when

::::::
started

::::
from

:
a
:::::::
random

:::::
point

::
in

:::
the

::::::
training

:::::::
dataset.

::::
This

::
is

::::::::
evaluated

:::
via

:::::::::
comparing

:::
the

:::::::::::
reconstructed

:::::::
attractor

::
to the training data from the original Lorenz attractor. If the difference is below a pre-defined threshold,

6



we accept the network as valid, and use it in our analysis (a standard approach, eg. Bakker et al. 2000). Our evaluation metric

is
:::::
using:

rmse(ρ) =

√
(ρi,j,k,model− ρi,j,k,network)

2 (5)30

where ρi,j,k is the density of discrete data points in the gridbox i, j,k. As threshold for rmse(ρ) we chose 0.04 (on

normalized data). This somewhat arbitrary value was selected based on a visual inspection of the reconstructed attractors. We

will hereafter term this the “density-selection” approach.
:::
The

::::::::
gridboxes

::::
have

::::
size

:::::::::::::
0.3× 0.3× 0.3

::
on

::::
the

:::::::::
normalized

:::::::
domain

::::::::::::
(normalization

:::::
based

::
on

:::
the

:::::::
training

:::
set,

:::
the

::::::
output

::
of

:::
the

::::::::
networks

::
is

::::::
always

::
in

:::
the

:::::::::
normalized

::::::::
domain).

This approach is somewhat problematic when training the network on specific regions of the phase-space. In principle,

we could apply exactly the same procedure to compare the densities of the reconstructed attractor and of the training data.

However, for incomplete training data – for example, only one wing of the butterfly – then a perfect reconstruction of the5

full attractor would fail this test, since the training data includes no information beyond the one wing. If the neural network

learned
::::
were

::
to
:::::
learn

:
a “wrong” attractor, namely one that only covers regions close to the wing included in the training, this

network would pass the test and be selected, even though it clearly has undesirable characteristics. An alternative approach is

to compare the reconstructed attractor with the full attractor. This solves the aforementioned problems, yet is flawed in terms

of information availability at time of training. In a real world setting, we would not know what the full attractor of a complex10

system – for example our atmosphere – looks like. Nonetheless, in our idealised setting this approach allows to verify whether

the network learns regional or global dynamics. We will hereafter term it the “density-full approach”.

A third approach would be to set some a priori objective selection criteria for the desirable characteristics of the reconstructed

attractor. We use the following: 1) the reconstructed attractor does not collapse into a fixed stable point. To test this, we verify

that no two consecutive points in time are collocated down to machine-precision. 2) The reconstructed attractor does not have15

any two points in the reconstructed attractor that are equal down to machine-precision. While these two approaches leak less

information from the underlying (and presumably unknown) attractor, there are still issues. In a general setting, one cannot

strictly assume that there are no regions where the system collapses to a fixed point or becomes periodic. In the case of the

Lorenz63 systemwe know that our assumptions are reasonable only because we know the full attractor. Additionally, the results

of these two test might depend strongly on the length of the reconstructed attractor. We expand on these considerations in the20

discussion section.

4 Experiments and Results

4
:::::::::::::
Reconstructing

:::::::
Lorenz

:::::::
systems

:::::
using

::::
only

::::
part

::
of

:::
the

:::::::::::
phase-space

4.1 Reconstructing Lorenz 63 with Neural Networks

We train a network25
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4.1
::::::::

Lorenz63

4.1.1
:::::::
Training

::::
the

::::::::
networks

:::
We

:::
first

:::::
verify

::::
that

:::
our

::::::::
networks

:::
can

::::::::::
successfully

::::::::
reproduce

:::
the

::::::::
Lorenz63

::::::::
attractor

::::
given

:::::::
training

::::
data

::::
from

::::::
across

::
the

::::::::
system’s

::::::::::
phase-space.

:::
We

::::
train

:::
10

::::::::
networks on a long Lorenz63 simulation (1e6 timesteps) meant to explore all regions of the butterfly,

and make forecasts 0.01 time-units ahead. The network is
::::::::
networks

:::
are then initialized with a random state out of the test

dataset, and we make 1e6 consecutive forecasts . The Lorenz63 run and the network run are shown in fig. ??
:::
(via

:::::::
feeding

:::
the

::::::
forecast

:::::
back

:::
into

:::
the

::::::
input).

::::::
Figure

::
1

:::
a,b

:::::
shows

:::
the

:::::::
training

::::
data

::::
and

:::
the

:::::::
attractor

:::::::::::
reconstructed

:::
by

:::
the

:::::
neural

::::::::
network. The

network attractor looks visually reasonable: it has
:::::::::
reproduces

:
the typical “butterfly” shape and, most importantly, it neither

drifts into a periodic orbit nor collapses into a fixed point. The main deficiency in the network
::
Its

::::
main

:::::::::
deficiency

:
is that the5

inner regions of the wings are
::::::
slightly

:
underpopulated. Figure ??

:
1
:
c) shows the mean absolute error (MAE) of 1-step network

forecasts initialized at every point in the test set. The forecasts typically display small errors (<0.03). The highest errors occur

in the edges of the wings, where recurrences are rare and the intrinsic predictability of the system is low (Faranda et al., 2017).

::
To

:::
put

:::::::
forecast

:::::
errors

::::::::::
throughout

:::
the

:::::
paper

::
in

:::::::
context,

:::::
panel

::
d)

:::::
shows

:::
the

::::::::
tendency

:::::::
(change

::::
over

::
1

::::::::
timestep)

::
of

:::
the

::::::
model

::
in

:::::::
different

::::::::::
phase-space

:::::::
regions.

4.2 Training on incomplete data5

Here we take a drastic approach towards
:::
We

::::
next

::::::::
consider

:::
the

:::::::
question

:::
of training on incomplete data: namely, we select

training .
:::
We

::::
take

::
a

::::::::
somewhat

::::::
drastic

::::::::
approach

:::
and

:::
we

:::::
select

:
data that explores only limited regions of the phase-space. This

selection is done via "cutting out" chunks out
::::::::
contiguous

:::::::
regions of the phase-space. Since the training is done in

::
on

:::
data

:
pairs

(timesteps ti and ti+1), the points at the locations where the trajectories are truncated are removed from the training data to

avoid artificial “jumps” towards the next included point
:::
(this

::
is

::::::::
necessary

:::::::
because

:::
we

:::::::
removed

:::::
parts

::
of

:::
the

::::::
model’s

:::::::::
trajectory).10

First, we investigate whether neural networks trained on different phase space
::::::::::
phase-space

:
regions are able to make short-term

predictions
::::::::
forecasts in other parts of the attractor. Then, we assess whether it may be possible to reconstruct the full attractor

with these neural networks.

4.1.1 Short-term forecasting

Figure 2 shows the short-term forecast error for a network trained only on the left wing (a,d), only on the right wing (b,e)15

and on a butterfly with a truncated right wing tip (c, f). In the wing where training data was present, the forecast error is very

similar to the error of the network trained on the full attractor (fig. ??
:::
Fig.

::
1 c). In the wing that was excluded during training,

the forecast error is much higher. It is in fact so high (mean absolute error on the order of 0.7) that the forecasts have little to do

with the real system. Closer examination reveals that when initialized in the “missing” wing, the forecasts point back towards

the “training” wing (fig. B1, fig.5 f,i
::
see

::::
Sect

:::::
4.1.3). When excluding only the tip of the right wing, the network manages to20

make somewhat reasonable forecasts in the “missing” region, but still the forecast error here is roughly 10 times
:::
and

:::::
does

8



a) b)

c)

a) b)

c) d)

Figure 1. a) A long integration of the Lorenz63 model. b) Timeseries produced with a neural network optimized on short-term forecast error,

initialized from a random initial state not used in the training. c) Short-term forecast errors of the neural network initialised at a large number

of points not used for training.
::
d)

::::::::
tendencies

::
for

::
1
::::::
timestep

:::::::::
(ti+1 − ti).

::::
Note

:::::::
different

::::::::
colorscales

::
in

::
c)

:::
and

::
d).

:
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a) b) c)

d) e) f)

Figure 2. Truncated sets of Lorenz63 training data (a-c) and short-term forecast error (MAE) of neural networks trained on these sets (d-f).

Note the different colorscales in (d-f).

:::
not

::::::::::::
systematically

::::
point

:::::
back

::
to

:::
the

::::::
region

::::
seen

::
in

:::
the

:::::::
training.

:::::::::::
Nonetheless,

:::
the

:::::::
forecast

:::::
errors

::
in
:::
the

::::::::
“missing

::::::::
wingtip”

:::
are

::::::
roughly

:::
an

:::::
order

::
of

:::::::::
magnitude

:
higher than in the regions included in the training (fig

:::
Fig. 2 c,f). These findings suggest that

the network does not learn a global mapping, but a localized one which fails in previously unexplored regions. The
:::::
results

::
are

:::::::
similar

::::
when

:::::
using

::::::::
networks

::::
that

:::::::
forecast

:::
the

:::::::
tendency

::::
only

:::::::
instead

::
of

:::
the

::::::::
following

::::
state

:::::
(Fig.

::::
C1).

::::
The

::::
main

:::::::::
difference25

:
is
::::
that

:::::
when

:::::::
training

::
on

:::::
only

:::
one

:::::
wing,

:::
the

:::::
error

::
in

:::
the

:::::
other

:::::
wing

::
is

::::::
roughly

::::::
halved

:::::::
relative

::
to

::::
Fig.

::
2,

:::::
albeit

::::
still

:::::
orders

:::
of

::::::::
magnitude

::::::
higher

::::::::
compared

:::
to

::::::
training

:::
on

:::
the

:::::
whole

::::::::
attractor.

:::::
When

:::::::::
initializing

::::::::
forecasts

::
in

:::
the

::::::
left-out

:::::
wing,

:::
the

::::::::::
trajectories

::
are

::::::::
unstable

:::
and

::::
drift

:::::::
outside

::
of

:::
the

:::::::
training

:::::::
domain

::::
(not

:::::::
shown).

::
In

:::
this

:::::::
respect,

:::
the

::::::::::
architecture

::::
that

::::::::
forecasts

::::::::
tendency

::
is

:::::
doing

::::
even

:::::
worse

::::
than

:::
the

::::::::::
architecture

:::::::::
forecasting

:::
the

:::::
state.

::::
The simplicity of the system allows us to examine this behaviour

::
the

::::::
above

::::::
results further by looking at the activation of the individual neurons in the network.

:::
For

::::
this,

:::
we

::::::
inspect

::
a

:::::::
network30

:::
that

::::
was

::::::
trained

::
on

:::
the

:::::
whole

::::::::
attractor

::::
(and

:::::::
provides

:::::
good

:::::::
forecasts

:::
on

:::
the

:::::
whole

::::::::
attractor).

:

a )b)c)

d)e)f)

Figure 3
::
a,b

:
shows the distribution of activations (i.e. output) of the hidden neurons for the network trained on the whole

attractor, when fed with input from the left wing only (a,b,c
::::
green) and from the right wing only (d,e,f). The numbering of the

neurons is arbitrary, but is consistent within the figure
:::::::
orange).

::::::
Shown

:::
are

:::
the

::
20

:::::::
neurons

::::
with

:::
the

:::::
largest

:::::::
absolute

::::::::::
differences

::
in

::
the

::::::::
standard

::::::::
deviation

::
of

:::::::::
activations

::
in

:::
the

:::
two

::::::
wings.

:::
The

::::::::::
distribution

::
of

:::::::::
activations

:::
for

::
all

:::::::
neurons

:::::::
(without

:::::::
specific

::::::::
ordering)

10



:
is
::::::
shown

::
in

::::
Fig.

:::
C2

::
in

:::
the

::::::::
appendix. Some neurons have very similar activations in both wings, whereas the distributions of

other neurons change significantly. In both wings, some of the neurons have very little spread in activation, meaning that their5

output is relatively independent of the exact location within the wing. However, these “low-variance” neurons are not the same

in the two wings. We hypothesize that they correspond to a localized mapping that the network learned for the other wing.

::::
This

:::::
would

:::::
mean

::::
that

:::
the

:::::::
neurons

::::::
learned

::
to

::::::::
correctly

::::
map

:::
the

::::::
system

::
in

::::
one

::::
wing

::
–
:::
and

::::
are

:::
thus

::::::
active

:::
and

:::::::::::
contributing

::
to

::
the

::::::::
forecasts

::
in

::::
that

::::
wing

::
–

:::
but

::::
they

:::
are

::::::
inactive

::
in

:::
the

:::::
other

::::
wing

::::
(i.e.

:::
do

:::
not

::::::::
contribute

::
to

:::
the

:::::::::
forecasts). To test this,

:::
for

::::
each

::::
layer we identify the neuron

:
n
:::::::
neurons with least spread in activation (defined here as standard-deviation

:::::::
standard

::::::::
deviation of10

the activation) for all points on each wing. These are neuron 7 in the left wing and neuron 5 in the right wing. The magnitudes

of the activation values of the two neurons are not of concern to our argument here. We then create modified networks by

fixing the output of each of these neuron
::::::
neurons

:
in turn at their mean activation level for the relevant wing.

::::
Note

:::
that

:::::
there

::
are

::::
also

:::::
some

::::::
"dead"

:::::::
neurons,

::::::
which

::::::
always

::::
have

::::
zero

:::::::
activity

::
in

::::
both

::::::
wings.

:::::
These

:::
we

::::::
ignore.

:
With this modified network,

we make predictions
:::::::
forecasts

:
on the whole attractor. The result

:::
for

::::::
n= 20 is shown in the right-hand column of fig. 3 . The15

main
:::
Fig.

:
3
::::

c,f.
:::
The

:
effect of fixing the output of the neuron that has

:::::::::
activations

::
of

:::
the

:::::::
neurons

::::
that

::::
have

:
low spread in the

left wing is that the forecast error in part of the right wing increases sharply. A similar behaviour is seen ,
:::::::
whereas

:::
the

:::::
error

::
in

:::
the

:::
left

::::
wing

::
is
::::::
nearly

::::::::::
unchanged.

:::
The

:::::
same

::
is

::::
seen

:::
for

::::::::
forecasts

::
in

:::
the

:::
left

:::::
wing when fixing the activation of the neuron

that has
::::::::
activations

:::
of

:::
the

::::::
neurons

::::
that

::::
have

::::
low

::::::
spread

::
in

:::
the

::::
right

:::::
wing.

::::
The

:::::::
structure

:::
of

:::
the

:::::
errors

::
is

::::
very

::::::
similar

::
to

::::
that

:::
of

::
the

::::::::
networks

:::::::
trained

::::
only

::
on

::::
one

::::
wing

:::::
(Fig.

:::
2).

:::::
Panels

::
3
:::
e,f

::::
give

:
a
:::::
more

:::::::::
systematic

::::::::
overview.

:::::
They

::::
show

::::
the

::::::
forecast

::::::
errors

::
of

:::
the

::::::::
modified

::::::::
networks

::
on

:::
the

::::
left

::::
wing

:::::::
(green)

:::
and

:::
the

:::::
right

:::::
wing

::::::::
(orange),

:::::
when

:::::
fixing

:::
the

::::::::
1,2,...100

:::::::
neurons

:::
the

:::::
have5

lowest variance in the right wing, for forecasts in the left wing . In fact, the errors this activation-fixing procedure introduces

are almost comparable to those of the networks trained only on one wing (fig. 2). This
:::
left

:::
and

::::
right

::::::
wings,

::::::::::
respectively.

::::::
When

:::::
fixing

:::
the

:::
left

:::::
wing

::::::::::::
“low-variance”

::::::::
neurons,

:::
the

::::
error

:::
in

:::
the

::::
right

:::::
wing

::::::::
increases

::::
with

::::
even

::
a

:::::
single

::::::::::
deactivated

::::::
neuron,

::::
and

::::
rises

::::::::::::
monotonically

::::
with

:::::
every

::::::::
additional

::::::::::
deactivation

:::::
(Fig.

:
3
:::
e).

::
In

:::
the

:::
left

:::::
wing,

:::
on

:::
the

::::
other

:::::
hand,

:::
the

:::::
error

::::
stays

::::
very

:::::
close

::
to

:::
the

::::
error

::
of

:::
the

::::::::::
unmodified

:::::::
network,

::::
and

::::
only

:::::
starts

::
to

:::::::
increase

::::::
beyond

::::
20

:::::::::
deactivated

::::::::
neurons.

::::::::::::
Corresponding

::::::
results

:::
are10

:::::
found

::::
when

::::::
fixing

::::::::::
low-activity

:::::::
neurons

::
in

:::
the

::::
right

::::
wing

:::::
(Fig.

:
3
:::
f).

:::
The

:::::
above

:
suggests that these

::::::
roughly

::
20

:
neurons correspond to the localized mapping part of the network we had speculated

about earlier, and deactivating them forces the network to fall back to its global mapping, which we have seen is poor. We have

tested this analysis on several different training realizations. In some cases, the lowest-variance neuron contributes also to some

extent to the skill of the forecasts in the wing where it has low variance, and sometimes 2 neurons have very low variance in the15

same wing
::::
This

:::
test

::::
was

:::::::
repeated

:::
for

:::::::
different

:::::::
network

:::::::::::
architectures

::::::::
(different

:::::::
number

::
of

::::::
hidden

::::::
layers,

:::
and

::::::::
different

::::::
hidden

::::
layer

:::::
sizes).

:::
In

::
all

:::
we

:::::
tested

::
20

:::::::
different

:::::::::::
architectures

::::::::
(smallest:

::
1

::::::
hidden

::::
layer

::::
with

:
8
::::::::
neurons,

::::::
largest:

:
8
::::::
hidden

:::::
layers

::::
with

::::
128

::::::
neurons

::::::
each).

:::
The

:::::
result

:::
for

:::::
eight

::
of

::::
these

:::::::::::
architectures

:::::::
(ranging

:::::
from

::::::
shallow

::::::::
networks

::::
with

::::::
narrow

::::::
layers

::
to

::::
deep

::::::::
networks

::::
with

::::
wide

::::::
layers)

:::
are

::::::
shown

::
in

::::
Fig.

::
4.

:::
The

:::::::::
behaviour

::
is

::::
very

::::::
similar

::
to

:::
that

:::::
seen

::
in

:::
Fig.

::
3,
::::::
except

::::
that

::
in

:::::
some

::::
cases

:::
the

:::::
error

::::
does

:::
not

:::::
grow

::::::::::::
monotonically

::::
with

:::::::::
increasing

::::::
number

:::
of

:::::::::
deactivated

::::::::
neurons.

:::
The

::::::
results

:::
for

:::
the

:::::::::
additional

:::::::::::
architectures

:::
we20

:::::
tested

::::
were

::::::
similar

:
(not shown). Thus, the result that part of the network learns a specific part of the phase-space may apply

11
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Figure 3. a,b: what we refer to as “left” and “right” wings of
::::::
Boxplots

:::::::
showing the Lorenz63 attractor. c,d:

::::::::
distribution

::
of

:
neuron activations

::
per

::::::
neuron for the two wings. e

:::::
hidden

::::
layer

::
1

::
(a)

:::
and

:::::
hidden

::::
layer

::
2
::
(b), f: short-term

:::
split

::
by

::::
wing

:::::
(color

:
in
:::::

plot).
::::::::
Short-term forecast errors

(MAE) for the networks with
::
in

::::
which

::
in

::::
each

::::
layer the activation levels

:::
level

:
of

:::
the

::
20 neurons 7 and 5 (“low-variance neurons”)

::::
with

:::::
lowest

::::::
variance

:::
are fixed everywhere at their

::
its mean values

:::
value

:
for the left

::
(c) and right

::
(d)

:
wings.

:::::::::
Short-term

::::::
forecast

::::
errors

::
of

:::
the

::::::
network

::::
with

:::::
1–100

:::::::::
low-variance

:::::::
neurons

::
per

:::::
layer

::
in

::
the

:::
left

:::
(e)

:::
and

::::
right

::
(f)

:::::
wings

:::::::::
deactivated, respectively

:::
split

:::
up

::
by

::::
wing

:::::
(solid

:::::
lines).

:::
The

::::::
dashed

:::
lines

:::::
show

::
the

::::::
forecast

:::::
errors

::
of

:::
the

::::::::
unmodified

:::::::
network.

to both individual or multiple neurons
:::
The

::::
only

::::::::
exception

::
is

:::
the

::::::
deepest

::::::::::
architecture

::::
with

:::::
very

::::::
narrow

:::::
layers

:
(
::
8

:::::
layers

::::
with

::
8

::::::
neurons

::::::
each),

::
in

:::::
which

::::::::::
deactivating

::
a

:::::
single

::::::::::
low-activity

::::::
neuron

:::
per

:::::
layer

:::::::
degrades

::::::::
forecasts

::
in

::::
both

:::::
wings

::::
(not

::::::
shown).

12



a) b)

c) d)

e) f)

Figure 4.
::
As

::::
Fig.

::
3e,

:::
but

:::
for

::::::
different

:::::
neural

:::::::
network

::::::::::
architectures.

::
a)

::::::
shallow

:::
and

::::::
narrow

::
(1

:::::
hidden

::::
layer

::::
with

:
8
::::::::
neurons);

::
b)

::::::
shallow

:::
and

:::
wide

::
(1
::::::
hidden

::::
layer

:::
with

:::
128

::::::::
neurons);

::
c)

:::::::::
intermediate

::
(2

:::::
hidden

:::::
layers

:::
with

:::
32

::::::
neurons

:::::
each);

::
d)

:::::
deeper

:::::::::
intermediate

::
(4

:::::
hidden

:::::
layers

::::
with

::
32

::::::
neurons

:::::
each);

::
e)

:::
deep

::::
and

:::
wide

::
(4
:::::
layers

::::
with

:::
128

::::::
neurons

:::::
each);

::
f)

:::
very

::::
deep

:::
and

::::
wide

::
(8

:::::
layers

:::
with

::::
128

::::::
neurons

:::::
each).
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4.1.2 Reconstructing the full attractor

We next attempt to use the networks outlined in Sect. 4.1.1
:::::
neural

::::::::
networks

::::::
trained

:::
on

:::::::::
incomplete

::::
data to reconstruct the full25

attractorby making a long series of iterative forecasts with the networks. We already showed
::
in

::::
Sect.

:::::
4.1.1 that this is possible

when training on the whole attractor. When we remove only a small part of the attractor from the training data (the tip of the

right wing, fig
:::
Fig.5 a), the networks are able to reproduce a reasonable attractor regardless of whether they are selected using

the density selection criterion (fig
:::::::::::::
density-selection

::::
(Fig.5 b) or the density-full criterion (fig

::::::::
approach

::::
(Fig.5 c) – see Sect. 3.4.

In this case
::
As

::::::
could

::
be

:::::::
inferred

:::::
from

:::
the

:::::::::
short-term

:::::::
forecasts, the neural networks are

::::
thus able to explore also the regions30

that are not explored
:::::
visited

:
by any of the trajectory segments in the training data. However, networks trained on single wings

fail to reconstruct the full attractor (fig
::
Fig.5 e, f

:
h), independent of the selection criterion used. These networks either failed the

selection tests, or produced trajectories that populate only the wing used in the training. The networks also fail to explore the

other wing when they are initialized from states within it. In this case, the trajectories immediately point back to the wing the

network was trained on, and reach it after a couple of iterative forecasts (fig
::
Fig.5 f, i), implying that the network reproduces a

dynamics that populates only the wing that was included in the training.5

4.2 Learning external forcings of the system
::::::::
Lorenz95

We next address the second question raised in the introduction: can our neural networks learn the influence of slowly varying

external forcing on the system? We explore this on the Lorenz63 and the
::
In

:::
the

:
Lorenz95 systems.

4.2.1 Lorenz63

As external forcing scenario we consider a gradual linear increase of the σ parameter (eq. 3). This may be conceptually likened10

to
::::::
system,

:::::
which

::
in
::::
our

::::
setup

:::
has

::
a

::::::::::::
dimensionality

::
of

:::
40,

::
it

:
is
::::::
harder

::
to

:::::
define

:::::::::
reasonable

:::::::
regions

::
of

::::::::::
phase-space

::
to

::
be

::::::::
excluded

::::
from

:::::::
training

::::
than

::
in

:::
the

:::::::::::::
3-dimensional

::::::::
Lorenz63

:::::::
system.

::
A

::::::
logical

::::
step

::
to

::::::
tackle

:::
this

::::::::
problem

:::::
would

:::
be

::
to

:::
use

::
a
:::::::
method

:::
like

::::::::
principal

:::::::::
component

:::::::
analysis

::
to

::::::
reduce

:::
the

::::::::::::
dimensionality

::
of

:::
the

::::::
system

::::::
before

::::::::::
partitioning

::
its

:::::::::::
phase-space.

::::::::
However,

:::
the

::::::
leading

::::::::
principal

:::::::::
component

::
of

:::
the

::::::::
Lorenz95

::::::
system

::::
can

::::
only

::::::
explain

::
8
::
%

::
of

:::
the

:::::::
variance

::::
(not

:::::::
shown),

::::::::
meaning

:::
that

::
it

::
is

:::
not

:::::::
possible

::
to

:::::
reduce

:::
the

::::::
system

::
to
::
a
:::::
small

::::::
number

::
of
::::::::
principal

::::::::::
components

:::::
while

::::
still

::::::::
capturing

::::
most

::
of

:::
its

:::::::
variance.

::
A
::::::::
different15

:::::::
approach

::
is
:::
to

::::
look

::
at

:::::::
Poincaré

::::::::
sections.

:::::
These

::::
are

::::::::::::
2-dimensional

:::::::::
projections

:::
of

:::
the

::::::::::
phase-space

:::::::
spanned

:::
by

:::
two

:::::::::
variables,

::::
often

::::
used

:::
in

:::
the

:::::::
analysis

::
of

:::::::::
dynamical

:::::::
systems.

::::::
While

:::
this

::::::::
approach

::::::
seems

::::::::
intuitive,

:
it
::
is
::::::::::
problematic

:::
in

:::
our

:::::::
context.

::
If

:::
we

:::::
define

:
a
::::::
region

::
of

:::
the

::::::::::
phase-space

::
to
:::::
leave

:::
out

::
of

:::
the

:::::::
training

:::
(by

:::::::
defining

::
a
:::::
region

::::::::
spanned

::
by

::
2

::::::::
variables)

:::
we

:::
can

:::
cut

:::
out

:::
all

::::
states

:::
of

:::
the

:::::
model

:::
run

::::
that

:::
fall

::::::
within

:::::
these

:::::::
regions.

::::::::
However,

::
if

::::
there

:::::
were

:::::::
identical

:::::
states

::
to

:::::
these,

:::
but

::::::
shifted

::::
one

::
or

:::::
more

:::::::::
gridpoints,

::::
then

::::
these

:::::
states

::::::
would

:::
not

::
be

::::::::
excluded.

::::
The

::::::::
symmetry

::
of

:::
the

::::::
system

::::::
(which

::::
also

::::::::
translates

::
to

:::
the

:::::::::
symmetry

::
in

:::
the20

::::::
circular

::::::::::::
convolutional

:::::::
network

::::::::::
architecture

:::::
used),

:::::::
implies

:::
that

:::
the

::::::::
network

:::
can

:::::::
forecast

:::::
states

::::::::
excluded

::::
from

:
the continuous

anthropogenic forcing on the climate system. In this experiment, we run the model for 5e5 (experiment 1) and 5e6 (experiment

2)timesteps, and increase σ from 7 at the start of the run to 15 at the end. This is repeated twice with different initial conditions,

creating a training and a testing run
::::::
training

::::
data

:::::::
without

:::::::
learning

::::
any

:::::::::::
extrapolation,

:::
as

::::
long

::
as

:::::::::::::
(near-)identical

::::
but

::::::
shifted

14
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Figure 5. Reconstruction of the Lorenz63 system with neural networks trained on truncated data. a,d,g) Truncated sets of Lorenz63 training

data. Reconstructed attractors with networks trained on (a) and selected using the density-selection
:::::::::
density-full (b) and density-full selection

::::::::::::
density-selection

:
(c) criteria

::::::::
approaches. e,h) Reconstructed attractors trained on (d,g) respectively, selected based on having no repeated

points. f,i) trajectories initialized with random points from the region of the attractor that was left out in the training data in (d) and (g),

respectively. The points in
:
(f,i)

:
indicate single forecast steps.
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::::
states

:::
are

::::
seen

:::::
while

:::::::
training.

:::::::
Indeed,

:::
due

::
to

:::
the

:::::::
circular

::::::::::
convolution,

:::::::
original

:::
and

::::::
shifted

:::::
states

:::
are

:::::::::
equivalent

::
for

:::
the

::::::::
network.25

:::::
Based

::
on

:::::
these

:::::::::::::
considerations,

::
we

::::
use

::::::
another

:::::::
method

::
to

:::::
define

::::::::
Poincaré

:::::::
sections

::
of

:::
the

::::::::
Lorenz95

:::::::
system.

:::
We

:::
first

:::::::::
transform

::
the

:::::::
system

:::::
states

::
to

:::::::
spectral

:::::
space

::::
with

:
a
::::

Fast
:::::::

Fourier
:::::::::
Transform

:::::
(FFT). We then train the neural networks on the first 20%

(hereafter: initial period)of the training run, and test it on the last 20% (hereafter: final period) of the testing
:::::::
compute

:::
the

::::::::
amplitude

::
of

::::
each

:::::::::::
wavenumber

::::::::
(absolute

:::::
value

::
of

:::
the

:::::::
complex

:::::::::::
wavenumber

::::::::::
coefficients),

::::
thus

::::::::
removing

:::
all

::::::::::
information

:::::
about

::
the

:::::::
position

::
of

:::
the

::::::
waves.

:::
We

::::
next

::::
find

:::
the

:::
pair

::
of

::::::::::::
wavenumbers

:::::
whose

:::::::::
amplitudes

:::::
have

::::
least

:::::::::
correlation,

::::
and

:::::
define

:
a
::::::::
Poincaré30

::::::
section

:::::
based

::
on

:::::
these.

:

::::
Since

:::
the

:::::::::
Lorenz95

:::::
model

::
is

::::
very

:::::
cheap

::
to

::::
run,

::
we

::::
can

:::
also

::
–
::
in

:::::::
analogy

::
to

:::
the

::::::::
Lorenz63

:::::::::
experiment

::
–
:::::
define

::
a

::::::::::
phase-space

:::::
region

:::
via

::::::
setting

:
a
::::::
certain

:::::
range

:::
for

:::
all

::
40

:::::::::
variables.

:::
Due

:::
to

:::
the

:::
low

::::::
density

:::
of

:::
data

::::::
points

::
in

::::
such

::
a

::::::::::::::
high-dimensional

::::::
space,

:::
this

::::::
would

:::::::
exclude

::::
only

::::
very

::::
few

:::::
points

:::::
from

:::
our

::::::::
standard

::::
1e5

::::::::
timesteps

:
run, and vice versa (trainingon final period and

testing on initial period). We also use the networks
:::::::
likewise,

::::
only

::::
few

:::::
points

::
in

:::
the

::::
test

::
set

::::::
would

::
lie

::
in

::::
this

::::::
region.

:::::::::
Therefore,

::
for

::::
this

::::::::
approach

:::
we

:::::::
generate

:::
an

::::::::
additional

:::::::
test-set.

:::
We

:::
run

:::
the

::::::
model

::::
until

:::
we

::::
have

::::
1e3

:::::
points

::::
that

:::
lie

::
in

:::
the

:::::
region

:::
cut

::::
our

::::
from

:::::::
training.

::::
Due

::::
due

::
to

:::
the

::::::::
symmetry

::::::::::::
considerations

:::::::::
mentioned

::::::
above,

:::
we

:::
do

:::
this

::
in

:::
the

:::::::::::::
20-dimensional

:::::
space

::
of
::::::::

absolute

:::::::::::
wave-number

::::::::::
coefficients.

:

::
To

:::::::::
implement

:::
the

::::
first

::::::
method

:::
we

::::
"cut

::::
out"

:::::::
squares

::
of

:::
the

:::::::
spectral

:::::::
Poincaré

:::::::
section,

::::
and

::::
train

:
a
:::::::
network

:::
on

:::
the

:::
rest

:::
of

:::
the5

::::
data.

:::
We

::::
then

:::
use

:::
the

:::::::
network

::
to

::::::
forecast

:::
the

:::::
whole

::::::::
attractor

::
on

:
a
:::
test

::::
set,

:::
and

:::::::
compare

::
it

::
to

:::
the

:::
skill

::
of

:::
the

:::::
same

:::::::
network trained

on the initial and final periods of a training run to forecast
:::::
whole

:::::::
attractor

::::::
(which

:::
has

:::::
good

:::::::
forecast

::::
skill,

:::
see

::::::::
Appendix

::
B
::::
and

:::
Fig

::::
B1).

::::
Each

:::::::
training

::
is

::::
done

:::
10

:::::
times,

::::
and

:::
the

:::::::
forecast

:::::
errors

::::::::
averaged

::::
over

:::::
these

::
10

::::::::::
realizations.

::::
The

::::::
results

:::
are

::::::
shown

::
in

:::
Fig.

::::
6a,b.

::::
The

:::::::::
short-term

::::::
forecast

:::::
errors

::
in
:::
the

:::::::
left-out

:::::
region

:::
are

::::::::::::::
indistinguishable

::::
from

:::
the

:::::
errors

::
in

:::
the

:::::
other

::::::
regions,

::::::::
meaning

:::
that

:::
the

:::::::
network

::::
does

:::::::
succeed

::
in

:::::::::::
generalizing

::
to

::::::
regions

:::
not

::::
seen

::
in

:::::::
training.

:::::
This

:
is
::::
also

:::
the

::::
case

:::
for

:::::
other

::::::
choices

::
of

:::::::
left-out

::::::
regions

::::
(not

::::::
shown).

:

:::
For

:::
the

::::::
second

:::::::
method,

:::
we

:::::::
remove

::
all

:::::::
training

::::::
points

:::
that

:::
lie

::::::
within

::::
than

:::::
range

:::::
[0,10]

:::
for

:::::
every

::::::::::::
wavenumber.

::::::
Again, the5

same periods of the testing run. We do this with: 1) our standard network configuration, as described in Sect.
:::::::::
experiment

::
is

:::::::
repeated

::
10

::::::
times.

:::
The

:::::
result

::
is
::::::
shown

::
in

::::
Fig.

:
6
::::
c,d.

::::::
Again,

:::
the

:::::::::
short-term

:::::::
forecast

:::::
errors

::
in

:::
the

::::::
region

:::
left

:::
out

::
in

:::
the

:::::::
training

::
are

:::::::::::::::
indistinguishable

::::
from

:::::
errors

::
in
:::::
other

:::::::
regions.

:::::
Also,

:::
the

::::::::
difference

::::::::
between

:::
the

:::::
errors

::
of

:::
the

:::::::
network

::::::
trained

:::
on

::
all

::::::
points

:::
and

:::::
those

::
of

:::
the

:::::::
network

::::::
trained

::
on

:::
the

::::::::
truncated

:::
set

::
is

::::::
smaller

::::
than

:::
the

:::::::::
difference

:::::::
between

:::::::
different

:::::::
training

::::::::::
realizations

::::
(not

::::::
shown).

:::::::
Finally,

:::
we

:::
test

:::::::
whether

:
a
::::
long

::::
run

::
of

:::
1e4

::::::::::
consecutive

::::
NN

:::::::
forecasts

:::::::
explores

:::
the

:::::::
regions

::
of

::::::::::
phase-space

:::
left

:::
out

:::::
from10

::
the

:::::::
training

:::::
data.

:::
The

::::
runs

::::
were

::::::::
intialized

:::::
from

:
a
:::::::
random

::::
state

::
of

:::
the

:::
test

:::
set

:::
not

:::::
lying

::
in

:::
the

::::::
left-out

::::::
region.

::::
For

::
all

:::
10

::::::
trained

::::::::
networks,

:::
the

::::
runs

:::
did

::::::
explore

:::
the

:::::::
left-out

:::::
region

::::
(not

:::::::
shown).

5
::::::::
Learning

:::::::
external

::::::::
forcings

::
of

::::::
Lorenz

::::::::
Systems

5.1
::::::::
Lorenz63

::
As

:::::::
external

::::::::
“forcing”

:::::::
scenario

:::
we

:::::::
consider

:
a
:::::::
gradual

::::
linear

:::::::
increase

::
of

:::
the

::
σ

::::::::
parameter

::::
(eq.

::
3).

:::
We

::::
train

:::
the

:::::::
network

::::::::::
architecture15

::::
using

::
σ
:::
as

::::
input

::::
(see

:::::::
section 3.2and 2)with the same configuration, but using

:
)
:::
on

::::::::
Lorenz63

::::
runs

::::
with

::::
1e5

::::::::
timesteps,

:::::
with
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a) b)

c) d)

Figure 6.
:::::::
Networks

::::::
trained

::::
only

::
on

:::
part

::
of

:::
the

:::::::
Lorenz95

::::::::::
phase-space.

::::::::
Short-term

::::::
forecast

:::::
errors

::
of

:::
the

::::::
network

::::::
trained

::
on

:::
full

::::::
training

:::
set

::
(a)

:::
and

:
a
::::::::

truncated
::
set

:::::::
selected

::
on

:
a
:::::::
Poincaré

::::::
section

::
in

::::::
spectral

::::
space

:::
(b),

:::::::
projected

::::
onto

::::
said

::::::
Poincaré

:::::::
section.

:::
The

:::::::
rectangle

::::::
denotes

:::
the

:::::
region

::
of

:::::::::
phase-space

:::
left

::
out

::::
from

:::::::
training.

:::
c,d)

:::::
Short

:::
term

:::::::
forecast

::::
errors

::
of
:::::::
network

:::::
trained

::
on

::
a
:::::::
truncated

::
set

:::::::
selected

::
on

::
all

:::
20

::::::
spectral

:::::::::
components.

::
c)

:::::
shows

::
all

:::::
points

::
in

:::
the

::
test

:::
set,

::
d)
::::
only

:::
the

::::
points

::::
that

::
lie

::
in

::
the

:::::
region

:::
cut

:::
out

::::
from

::::::
training.
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::::::
linearly

:::::::::
increasing

:
σ as additional input to the network. As baseline forecast for the both the initial and final periods, we

consider the
::::
over

:::
the

:::::
whole

::::
run.

::::
We

:::::::
perform

:
6
::::::::
different

::::
runs,

::::::::::::
encompassing

::::::::
different

::::::::
σ-regimes

::::::::
regimes:

:::
two

::::
runs

:::
in

:
a
::::
low

:::::::
(varying

::
σ

::::
from

::
7

::
to

:
8
::::
and

:
6
::
to
:::

9),
::::
two

::
in

::
an

:::::::::::
intermediate

:::
(10

::
to

:::
11

:::
and

::
9
::
to

::::
12),

:::
and

::::
two

::
in

:
a
:::::

high
::::::
regime

:::
(12

::
to

:::
13

:::
and

:::
11

::
to

:::
14).

::::
The

::::::::
networks

:::
are

::::
then

::::::::
evaluated

:::
on

:
a
:::
set

::
of

:::
10 Lorenz63 system with

:::
test

::::
runs

::::::
(length

:::
1e5

:::::::::
timesteps)

::::
with

:
σ fixed to20

the mean value from the initial and final periods of the runs . This provides for each period four networkforecasts (standard

::::
fixed

::
at

::
4,

::
5,
::
6,
:::

7,
::
8,

:::
8.5,

:::
9,

:::
10,

::
12

::::
and

:::
14,

:::::::::::
respectively.

::
In

:::::::
addition

::
to

:::
the

:::::
main

::::::::
network,

:::
two

:::::::::
references

:::
are

:::::
used.

::::::
Firstly,

::
a

network trained on same period, standard network trained on other period, network including
::
the

:::::::::
Lorenz63

:::
run

::::
with

:::::::
varying

::
σ,

:::
but

:::
not

:::::
using σ trained on same period, network including

:
as

:::::
input

:::::::
(termed

:::
“no

:::::::
input”).

::::
This

:::::::
network

::
is

::::
then

::::::::
evaluated

:::
on

::
the

::::::
above

::::
fixed

:
σ trained on other period) and two baseline measures (lorenz system with

::::
runs.

::::::::
Secondly,

:::
for

::::
each

::::
run

::::
with25

::::
fixed

::
σ,

:::
an

:::::::
identical

::::
run

:::
but

::::
with

:::::::
different

::::::
initial

:::::::::
conditions

::
is

:::::
made.

:::::
Then,

::
a
:::::::
network

:::
not

:::::
using

::
σ

::
as

:::::
input

::
is

::::::
trained

:::
on

:::
the

::::
latter

::::
run,

:::
and

::::::::
evaluated

:::
on

::
the

::::::
former

:::
run

::::
with

:::
the

::::::::::::
corresponding

:
fixed σ from same period, lorenz system with

::::::
(termed

::
“fixed

σfrom other period). These experiments are
::
”).

::::
The

:::::::::
short-term

:::::::
forecast

::::::
quality

::
is
::::::::
assessed

::
by

::::::::::
initializing

:::::::
one-step

::::::::
forecasts

::::
from

:::::
every

::::
state

::
in

:::
the

::::
test

::::
runs,

::::
and

:::::::::
computing

:::
the

::::::
MAE.

::::
Each

::::::::::
experiment

::
is repeated 10 timesand the mean forecast skill

as well as the standard deviation for the individual networks is computed
:
,
:::::
using

:::
the

:::::
same

::::::
training

::::
and

:::
test

:::::
data,

::
to

:::::::
capture30

:::::::
potential

:::::::::
influences

::
of

::::::
random

:::::::::::
components

::
in

:::
the

::::::
training.

The results are shown in fig. ??. For the run with 5e5 timesteps (resulting in 1e5 training timesteps), using
:
7.

:::::
Each

:::::
panel

::::::::
represents

:
a
::::::
certain

:::::::
training

:::::
range

::
in

:::
the

::::::
forcing

::::::::
(indicated

:::
by

:::
the

::::
grey

:::::
area),

:::
and

:::
the

::::
lines

:::::
show

::
the

:::::
MAE

::
of
::::::::
one-step

::::::::
forecasts.

:::
The

::::::
“fixed σas additional input does not improve the forecasts in either the initial or the final periods. In the final period, all

networks perform comparably, and adding σ as additional information if anything appears to slightly degrade the networks’

performance. A similar result holds when considering forecast of the initial periods, with the difference that the loss of skill

due to the variable
:
”
::::::::
networks

:::::
(green

:::::
lines)

:::
can

:::
be

::::
seen

::
as

:
a
::
an

:::::
upper

::::::::
baseline,

::
as

::::
their

::::
skill

::
is

:::
that

:::::::
obtained

:::::
when

:::::::
training

::
in

:::
the

::::
same

::::::
forcing

:::::::
regime

::
as

::::
used

:::
for

:::::::::
evaluation.

::
It

::
is

:::
not

::::::::
expected

:::
that

:::
the

:::::
main

:::::::
network

:::
(the

::::
one

:::::
using σ in the case of networks5

::
as

::::
input

::::
and trained on the final period is very large (Fig. ??b).

This changes somewhat when using the run with 5e6 timesteps, which has 10 times more training samples (fig. ??c) .

Including
:::
run

::::
with

:::::::
linearly

:::::::::
increasing

::
σ)

::::::
would

::
do

:::::
better

::::
than

::::
this

::::::::
reference.

::::
The

::::
“no

:::::
input”

::::::::
networks

:::::::
(yellow

:::::
lines)

:::
can

:::
be

::::
used

::
as

:
a
:::::
lower

::::::::
baseline,

::
as

:::
this

::::::
should

::
be

:::
the

::::
skill

:::
that

::::
can

::
be

:::::::
achieved

:::::::
without

::::::
having

:::
any

:::::::::
knowledge

::
of

:::
the

::::::::
changing

:::::::
forcing.

:::::
When

::::::
trained

::
on

:::
the

::::::
narrow

::::::
forcing

::::::::
regimes,

::
the

::::::::
networks

::::
have

:::::::
trouble

::::::
making

::::
good

::::::::
forecasts

::::::
outside

:::
the

:::::::
training

::::::
regime.

::::
The

:::::::
forecasts

:::
are

::::::
indeed

:::
so

::::
poor

::::
that

::::
even

:::
the

:::
“no

::::::
input”

::::::::
networks

::::::::::
outperform

:::::
them.

::
In

:::::
other

::::::
words,

:::
the

:::::::::
additional

::::::::::
information

:::::::
provided

:::
by σ as input still provides no advantage, but at least it does not significantly degrade the forecasts for the initial

period relative to the no-
:::::::
actually

::::
leads

::
to
::
a
::::::::::
deterioration

::
in
:::::
skill.

::::
This

:::::::
changes

::::::
slightly

:::::
when

:::::::
training

::
on

:::::::
broader

:::::::
regimes.

:::::
Here,5

::
the

:::::::
forecast

:::::
errors

:::
of

:::
the

:::::::
networks

:::::
using

:
σ case. However, it does lead to a significant degradation of the forecasts for the final

period, for the networks trained on the initial period
::
as

::::
input

:::
are

::::::
similar

::
to

:::
the

::::
“no

:::::
input”

::::::::
networks,

::::::::
although

::
in

::::
most

:::::
cases

::::
they

::
are

::::
still

:::
far

::::
from

::::::::
matching

:::
the

:::::
“fixed

:::
σ”

::::::::
networks.
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Figure 7. Experiments simulating external
::::::::
Short-term

::::::
forecast

:::::
errors

:::
for

::
“forcing

:
”

:::::::::
experiments

:
with varying σ in the Lorenz63system.

:::::::
Networks

:::
are

:::::
trained

::
on

:
a ) Forcing vs

:::
run

::::
with

:::
1e5 timesteps . The vertical lines indicate where

::::
with

::::::
linearly

:::::::
increasing

::::::::
parameter

::
σ

::::
from

the “start” part (first 20%) ends and where
::::
lower

::
to the “

::::
upper end ” part (last 20%) starts. b,c) Mean absolute error of the network forecasts

and of
:::
grey

::::::
shaded

:::
area

::
in the baseline forecasts (Lorenz63 equations

:::::
panels,

:::
and

::::
then

::::
tested

:::
on

:::
runs

:
with fixed σ) for runs with 1e5 and 1e6

training timesteps, respectively. The left group of bars denotes
:::

blue
:::
lines

:::::
show the skill on forecasting on

:::::
errors

::
for

:::::::
networks

:::
that

::::::
include

::
σ

:
as
:::::

input.
:::
The

::::::
yellow

::::
lines

::::
show the

:::::::
networks

::::::
without

:
σ
::
as

::::
input

:
(“start

::
no

::::
input” part,

:::::::
networks

::
in the right bars

::::
text).

:::
The

:::::
green

:::
lines

:::::
show

:::::::
reference

:::::::
networks

::::::
without

:
σ
::
as

::::
input

:::
that

:::
are

::::::
trained on

:::
runs

::::
with

::
σ

::::
fixed

:
to
:
the

::::
same

::::
value

::
as
:::
the

:::
test

::::
runs

:
(“end

::::
fixed

:
σ” part. Some of the

forecast errors are so small that the bars are barely visible. The black bars show
:::::::
networks

::
in the standard deviation over 10 iterations of each

experiment
:::
text).
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5.1.1 Lorenz95

5.2
::::::::

Lorenz9510

We next consider a variable forcing scenario for the Lorenz95 system, by changing the parameter F . The procedure we adopt

is conceptually identical to that for .
::::

The
:::::
setup

::
is

:::::::::
analogous

::
to the Lorenz63 scenario, with

::::::
forcing

::::::::::
experiment,

:::
but

::::
here

:::
we

::::::
change F substituting

::::::
instead

::
of σand .

:::::
With

::::::
F = 4,

:::
the

::::::
system

:::::
shows

:::::::
periodic

:::::::::
behaviour;

::
as

::
F

::::::::
increases,

:::
the

::::::
system

::::::::
becomes

::::
more

::::
and

::::
more

:::::::::
turbulent.

:::
We

::::::::
consider

:::
two

::::
low

:::::::
(varying

:
F varying

::::
from

::
5

::
to

:
6
::::

and
:
from 4 (periodic regime)to 16 (highly

turbulent regime).
::
7),

:::
two

:::::::::::
intermediate

::
(8

::
to

::
9

:::
and

:
7
:::
to

:::
11),

::::
and

:::
two

::::
high

::::::
forcing

:::::::
regimes

:::
(12

::
to

:::
13

:::
and

:::
11

::
to

:::
14).

::::
The

::::
runs

:::
are15

::::::::
evaluated

::
for

:::
F

::::
fixed

::
at

::
4,

::
5,

::
6,

::
7,

::
8,

::::
8.5,

::
9,

:::
10,

::
12

::::
and

:::
14.

::
In

:::::::
addition

::
to

:::::::::
evaluating

:::::::::
short-term

:::::::
forecast

::::::::::
performance

:::
as

::
in

:::
the

::::::::
Lorenz63

::::::
forcing

::::::::::
experiment,

:::
for

:::
the

::::::::
Lorenz95

:::
we

::::
also

:::::
asses

:::
the

::::::
ability

::
of

:::
the

::::::
trained

::::::::
networks

::
to

::::::::::
reconstruct

:::
the

::::::::
"climate"

::
(or

::::::::
attractor)

::
of

:::
the

::::::
model

::
by

:::::::
making

:
a
:::
1e5

::::::::
timesteps

:::::::
climate

:::
run

::::
with

:::
the

:::::::
network,

::::
and

:::
then

:::::::::
computing

:::
the

:::::
mean

:::
and

::::::::
standard

:::::::
deviation

:::
of

:::
the

:::
run

::::::::
(averaged

::::
over

::
all

::::::::::
gridpoints).

:

The results are shown in fig. ??. The networks perform considerably worse
:::
Fig.

::
8.

::::
Each

::::
row

:::::::::
represents

:
a
:::::::
specific

:::::::
training20

::::
range

:
in the forcing regimes they were not trained on. Like in the Lorenz63 system, including the forcing term in the networks

does not necessarily improve the forecasts. Rather, the changes in MAE between the different networksappear to be heavily

dependent on the length of the training data. For intermediate training length (fig. ?? c), including
::::::::
(indicated

::
by

:::
the

:::::
grey

::::
area).

::::
The

:::
left

::::::
panels

:::::
show

:::
the

:::::
MAE

::
of

:::::::::
short-term

::::::::
forecasts,

:::::
while

:::
the

::::
right

::::::
panels

:::::
show

:::::
mean

:::
and

::::::::
standard

:::::::
deviation

:::
of

:::
the

:::::::::::
reconstructed

:::::::
climates,

:::
as

::::
well

::
as

:::::
mean

:::
and

:::::::
standard

::::::::
deviation

:::
of

:::
the

::::::::
Lorenz95

::::::
model.

::::
Each

::::
line

::::::::
represents

:::
on

::
of

:::
the

:::
10

::::
runs25

::::
made

:::
for

::::
each

::::::::::
experiment.

::::
For

:::
the

::::
three

:::::::::::
experiments

:::
that

:::
are

::::::
trained

:::
on

::::::
narrow

::::::
forcing

:::::::
regimes

::
(5
:::

to
::
6,

:
8
::
to

::
9
:::
and

:::
12

::
to

::::
13),

::
the

:::::
main

::::::::
networks

::
do

:::
not

:::::
seem

:::
able

::
to
:::::
learn

:::
the

::::::::
influence

::
of

:::
the

::::::
forcing

:::
and

::::::::::
extrapolate

::
to

:::
new

::::::::
regimes.

::
In

::
all

:::::::::::
experiments,

:::
the

::::
main

:::::::
network

:::
has

:::::
much

::::::
higher

::::::::
short-term

:::::
MAE

::::
than

:::
the

:::::
“fixed

:
Fprovides a clear benefit for forecasting the forcing ranges the

network was not trained on . However, for shorter or longer trainingsets, this improvement vanishes or even reverses (fig.?? b,

d).
:
”

::::::::
networks.

:::::
When

::::::
trained

:::
on

:::
the

:::
low

::
or

::::::
middle

:::::::
regimes,

:::
the

::::::::
forecasts

:::
are

::::
even

:::::
worse

::::
than

:::::
those

::
of

:::
the

:::
“no

::::::
input”

::::::::
networks30

:
.
::
As

:::
for

::::
the

::::::::
Lorenz63,

::::
the

::::::::
additional

:::::::::::
information

:::::::
provided

:::
by

:::
the

:::::::
forcing

::::
term

::::::::
therefore

:::::
leads

::
to

::
a

::::::
poorer

::::::::::
performance

:::
of

::
the

::::::::
network.

::::
This

::::::
picture

:::::::
changes

:::::
when

:::::::
training

:::
on

::::::
broader

:::::::
forcing

:::::::
regimes

:::::
(lower

::
3
::::
rows

::
in
::::

Fig.
:::
8).

:::::
Even

::::::
though

::::
there

::
is
::
a

::::
large

::::::::
variation

:::::::
between

:::
the

::::::::
individual

:::::::
training

::::::::::
realizations

::
of

:::
the

:::::
main

:::::::
network,

:::::
both

:::
the

::::
ones

::::::
trained

:::
on

:::
the

::::
high

:::
and

:::
on

:::
the

::::::::::
intermediate

::::::
forcing

:::::::
regimes

::::::::::
outperform

:::
the

::::
“no

:::::
input”

:::::::::
networks.

::::
This

::::::
implies

::::
that,

:::::
given

::
a
::::
wide

:::::::
enough

::::::
forcing

:::::::
regime

::
in

::
the

::::::::
training,

:::
the

:::::::
network

::
is

::::
able

::
to

::::
learn

::
–
::
at

::::
least

::::
part

::
of

::
–

:::
the

::::::::
influence

::
of

:::
the

::::::
forcing

:::
on

:::
the

::::::::
dynamics,

::::
and

:::::::::
extrapolate

::::
this

:::::::
influence

::
to
::::
new

::::::
forcing

:::::::
regimes

:

6 Discussion and conclusion5

In this study, we explored how well
:::::::::::
feed-forward

:
neural networks can 1) generalize the behaviour of a chaotic

:::::::::
dynamical

system to its full phase-space when trained only on part of said phase-space, and 2) learn the influence of a slow external

forcing on a chaotic dynamical system. Both points are of direct relevance to the application of neural networks in climate
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Figure 8. Same as fig. ??, but
:::::::

Short-term
:::::::

forecast
:::::

errors
::::

and
:::::::
network

::::::
attractor

::::::::::::
reconstructions

:
for forcing experiments with the

Lorenz95model varying the parameter F .
:::::::
Networks

:::
are

::::::
trained

::
on

:
a ) Forcing vs timesteps. b,c

:::
run

::::
with

::::::
linearly

::::::::
increasing

::
F

::::
from

:::
the

::::
lower

::
to

:::
the

:::::
upper

:::
end

::
of

:::
the

:::
grey

::::::
shaded

::::
area

::
in

::
the

:::::
plots, d

::
and

::::
then

:::::
tested

::
on

::::
runs

::::
with

::::
fixed

::
F.

:::
The

::::
blue

::::
lines

::::
show

:::
the

::::::
network

::::
that

:::::
include

::
F

::
as

::::
input.

::::
The

:::::
yellow

::::
lines

::::
show

:::
the

:::::::
networks

:::::
without

::
F
::
as

::::
input

::::
(“no

:::::
input”

:::::::
networks

:
in
:::

the
:::
text)results for .

:::
The

:::::
green

::::
lines

::::
show

:::::::
reference

:::::::
networks

::::::
without

:
F
:::

as
::::
input

:::
that

:::
are

:::::
trained

:::
on runs with 2e3

:
F
::::
fixed

::
to
:::

the
::::
same

:::::
value

::
as

:::
the

:::
test

:::
runs

::::
(“no

:::
F ”

:::::::
networks

::
in

:::
the

::::
text).

:::
The

:::
left

:::::
panels

::::
show

::::::::
short-term

::::::
forecast

::::
error, 2e4

::
the

::::
right

:::::
panels

::::
show

:::::
mean and 2e5, training steps, respectively.

::::::::::::::
standard-deviation

:
of
::::::

climate
::::
runs

::::::::
performed

:::
with

:::
the

:::::::
networks

:::
and

:::::::::
additionally

::
the

:::::
mean

:::
and

::::::::::::::
standard-deviation

:
of
::::::::
Lorenz95

:::
runs

::::
with

:
F
::::
fixed

::
to

:::
the

:::::::
reference

:::::
values

::::::
(orange

::::
lines)
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science. The climate system is highly chaotic, our observational data likely includes only a small portion of the possible states

of the system and we are subjecting the system to a slowly varying forcing by emitting large amounts of greenhouse gases.10

To address these points, we used two
:::::
highly

:
idealised representations of atmospheric processes, namely the Lorenz63 and the

Lorenz95 models. We used
::::::::::
feed-forward

:
neural network architectures that are shown to work well on these systems when

trained on the full phase space
:::::::::
phase-space

:
and without external forcing.

For the first point
::
we

:::::
raise, we showed that in general networks trained on only part of the Lorenz63 attractor are

::::::
largely

unable to reproduce trajectories outside the regions they were trained on. When making short-term forecasts initialized from15

points in the unknown phase space
::::
these

::::::::
unknown

::::::::::
phase-space regions, the trajectories of the network forecast simply

:::::::
forecasts

point back towards the region included in the training. This makes the forecasts so poor as to be practically useless. Similar

issues arise when running a large number of iterated forecasts, so as to reproduce a long trajectory of the system using the

neural networks. Again, the network trajectories do not explore regions of the phase space
:::::::::
phase-space

:
that were not included

in the training. The only exception
:::::::::
exceptions are cases where very small regions are excluded from the training data (and20

determining what is the limiting size of "very small" remains an open question). This implies that using neural networks for

emulating climate models, as proposed in Scher (2018) and Scher and Messori (2019), may be more challenging than expected.

The same goes for making forecasts of unprecedented
::::::
weather

::
or

:::::::
climate events, or of events originating from unprecedented

atmospheric configurations.
:
or
:::::::

oceanic
:::::::::::::
configurations.

::
In

:::::::
contrast

::
to

:::
the

::::::
results

:::
for

:::
the

::::::::
Lorenz63

::::::
system,

::::
our

::::::::::
experiments

:::
for

::
the

:::::::::
Lorenz95

::::::
system

:::::::
indicate

:::
that

:::
the

::::::::
networks

::::
can

:::::::::
succesfully

:::::
make

::::::::
forecasts

::
in

::::::::::
phase-space

:::::::
regions

:::
left

:::
out

::::
from

::::::::
training,25

:::
and

::::
also

::::::
explore

:::::
these

::::::
regions

:::::
when

::::::
making

::::
long

::::::::::
simulations.

::
In

::::
this

::::::
respect,

:::
we

::::
have

::
to

::::
note

:::
the

::::::::
difficulty

::
of

:::::::
defining

:::::::
sensible

::::::
regions

::
of

::::::::::
phase-space

:::
for

:::
the

::::::::
Lorenz95

::::::
system

::::
with

::
its

:::
40

::::::::::
dimensions.

:::::
These

:::::::::
difficulties

::::::
would

::
be

::::
even

:::::
more

:::::
severe

:::
for

:::::
more

::::::
realistic

:::::::
systems

::::
like

::::::::
numerical

:::::::
general

:::::::::
circulation

::::::
models.

:::::
Still,

:::
this

:::::
result

::
is

:::::::::
somewhat

::::::::::::::
counter-intuitive,

::
as

:::
one

::::
may

:::::::
naively

:::::::
consider

:::
the

::::::::
Lorenz95

::::::
system

::
to

::
be

:::::
more

:::::::
complex

::::
than

:::
the

::::::::
Lorenz63

::::::
system.

:::::::::
Therefore,

:::
our

::::::
results

:::::::
indicate

:::
that

:::::
using

:::::::
intuitive

::::::::
definitions

:::
of

:::
the

:::::::::
complexity

::
of

::
a

::::::
system

::
to

:::::
reason

:::
on

:::
the

::::::::::
performance

:::
of

:::::::::::
feed-forward

:::::
neural

::::::::
networks

::
is

::::::::::
problematic.

:
30

We
:::
For

:::
the

::::::::
Lorenz63,

:::
we interpret our results as indicating that the neural networks do not learn to approximate the equations

underlying the dynamics of the system –
:
- which would be akin to a “global mapping” –

:
- but rather develop a “regionalized

view” of the system, whereby specific neurons contribute to the forecasts in specific regions of the phase space
:::::::::
phase-space.

Thus, when parts of the phase space
:::::::::
phase-space

:
are left out, the regionalized mapping fails to produce sensible estimates of

the system’s behaviour beyond the regions it has already seen.
:::
We

:::::::::
confirmed

:::
this

:::
by

:::::::::
inspecting

:::
the

:::::::::
activations

::
of

:::::::::
individual35

::::::
neurons

::
in
:::
the

:::::::
trained

::::::::
networks,

:::
and

:::::::
showed

:::
that

:::::
parts

::
of

:::
the

:::::::
network

:::
are

::::::::::
responsible

:::
for

::::::
specific

:::::::
regions

::
of

:::
the

:::::::::::
phase-space.

::::
This

::
is

::::::
similar

::
to

:::::::
findings

::
in

:::
the

:::::::
context

::
of

:::::
image

::::::::::
recognition

::::
and

:::::::::
generation,

::::::
where

:::::::
different

:::::
parts

::
of

:::::
neural

::::::::
networks

:::::
have

::::
been

:::::
shown

:::
to

:::::::
represent

::::::::
different

:::::::::::::
objects/concepts

:::::::::::::::
(Bau et al., 2019).

:

::
As

::
a
::::::
caveat,

:::
we

::::
note

:::
that

::::
our

::::::::::
experiments,

::::::
which

::::::
remove

::
a
::::
large

::::::::::
contiguous

:::::
region

:::
of

::::::::::
phase-space

::::
from

:::
the

:::::::
training

:::::
data,

::
are

:::::
more

:::::::::
penalising

::::
than

::::
what

::::
may

:::
be

:::::::
expected

::
in
::
a
::::::
typical

::::::
climate

::::::::::
simulation.

:
It
::

is
:::::
likely

::::
that

:::
the

::::::
regions

:::
of

:::
the

::::::::::
phase-space5

:::::::
explored

::
by

:::
the

:::::::
climate

::::::
system

:::::
during

:::
the

:::::::
satellite

:::
era

:::
are

::::
more

::::::::::::
representative

::
of

:::
the

::::::::::
hypothetical

::::::
climate

:::::::
attractor

::::
than

::
a

:::::
single

::::
wing

::
of

:::
the

::::::::
butterfly

:
is
:::
for

:::
the

:::::::::
Lorenz63

::::::
system.

:::::::
Indeed,

::::::::
removing

:
a
:::::
wing

::
is

::::
more

::::
akin

:::
to

::::::::
removing

:
a
::::::
season

::::
from

::
a
:::::::
training

::
set

:::
—

:::
for

:::::::
example

::::::
asking

:
a
:::::::
network

:::
to

:::::::
simulate

:
a
::::::::

seasonal
:::::
cycle

::::::
without

::::
ever

:::::
being

::::::
trained

:::
on

::::::
winter

::::
data

::
—

::::
than

::::::
having

::
a
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::::::
training

:::
set

::::::
which

::::
does

:::
not

::::::
include

:::::
some

::::
rare

:::::::
extreme

::::::
events

::
—

::::::
which

::::::::::
presumably

:::
live

::
in

:::::::
sparsely

:::::::::
populated

::::::
regions

:::
of

:::
the

::::::::::
phase-space

:::::
which

::::
need

:::
not

:::
be

::::::::::
contiguous.10

An additional challenge in this context that became obvious during the design of our experiments is the choice of criteria to

judge successful attractor reconstruction after training. As discussed in the methods section, in order to reconstruct the attractor

of a chaotic dynamical system with neural networks, it is not enough to minimize the error of short-term forecasts. Instead,

one also needs to judge whether the trained network successfully reconstructs the attractor
::
on

:::
its

::::::::::
performance

:::
for

:::::
long

:::::
series

::
of

::::::
iterated

::::::::
forecasts,

::::
and

::
in

::::::::
particular

:::
on

:::::::
whether

:::
the

::::::::
resulting

:::::::::
trajectories

::::::::
resemble

:::::
those

::
of

:::
the

:::::::
original

:::::::::
dynamical

::::::
system.15

When the training data contains only data from
::::
only

::::::
covers part of the phase-space, this raises issues related to

:::
the

::::
issue

:::
of

information availability, as in real-world applications it would not be a valid approach to compare the reconstructed attractor

with the full attractor. We also explored alternative approaches that do not rely on comparing the attractor from the trained

network with

:::
All

:::
our

::::
main

:::::::::::
experiments

::::
were

::::
done

::::
with

:::::::::::
feed-forward

::::::
neural

:::::::
network

:::::::::::
architectures

:::
that

:::::::
forecast

:::
the

::::::::
following

:::::
state

::
of

:::
the20

::::::
system.

:::
We

:::::::
repeated

:::::
some

::
of

::::
our

::::::::::
experiments

::::
with

::::::::
networks

:::
that

:::::::::
forecasted

:::
the

::::::::
systems’

:::::::
tendency

:::::::
instead.

:::::
These

:::::
were

:::::
better

::
in

::::::::
producing

:::::::::
short-term

::::::::
forecasts

::
in

::::
new

:::::::
regions

::
of

:::::::::::
phase-space,

:::
but

::::
had

::::
even

:::::
more

::::::
trouble

::
in

:::::::::
producing

:::::
stable

::::::::::
trajectories

::::::
outside

:::
the

::::::
training

::::::
space.

:::::
While

:::::::::::
feed-forward

:::::::::::
architectures

:::
are

::::::
widely

::::
used,

:::::
there

:::
are

:::::
many

::::
other

:::::::::::
architectures

::::::::
available,

::::
that

:::::::::
potentially

::
do

:::
not

::::::
suffer

::::
from

:::
the

::::::
issues

:::
we

:::::
found

::::
(for

:::::::
example

::::::::
recurrent

:::::::::::
architectures,

:::::::::
echo-state

::::::::
networks

::::
and

:::
the

::::::
related

:::::::
reservoir

::::::::::
computers).

::::::::::::::::::::::::
Chattopadhyay et al. (2019)

:::::
found

:::
that

:::::::::
echo-state

::::::::
networks

::::::::::
outperform

:::::::::::
feed-forward

:::::::::::
architectures

:::
in25

:::::::::
forecasting

:::
the

:::::::::
Lorenz95

::::::
model,

::::
and

::
it

:::::
could

::
be

::::
that

::::
this

::::
also

:::::
holds

:::
for

::::
the

:::::::::::
extrapolation

:::::
issues

:::::::::
addressed

:::
in

:::
this

::::::
study.

::::::::
Regarding

::::::
model

:::::::::::
architectures,

:::
for

:::
the

::::::
forcing

::::::::::
experiments

::
it

:::::
might

::::
also

::
be

:::::::
possible

:::
that

:::::::::
presenting

:::
the

::::::
forcing

::
in
:::::::
another

::::
way

:::
than

:::::
done

::::
here

::::
(e.g.

::::::::
designing

::::
into

:::
the

:::::::
network

::::
that

:::
the

::::::
forcing

:::::::
variable

::::
has

:::::::
different

::::::::::::
characteristics

::::
than

:::
the

::::
state

:::::::::
variables)

:::
may

::::::::
improve

::
the

:::::::
learning

:::
of

:::
the

:::::::
influence

::
of

:
the original attractor. However, also the alternative methods suffer from problems

related to information availability at training time, and are potentially sensitive to the length of the reconstructed attractor.30

This implies that for applications that rely on neural networks to reconstruct the attractor of a dynamical system, very careful

consideration of how to test test the reconstruction at training time is necessary
::::::
forcing.

To address the second point
:::::::
question

:
we raised, we simulated an external forcing on the Lorenz63 and Lorenz95 systems via

slowly changing model parameters. We then trained neural networks both with and without the changing model parameters as

additional input. The results vary considerably depending on length of the training set and iteration of the experiment, but in35

many cases including forcing information degrades the network forecasts. That is, it may be better not to include the forcing

variable as network input, even when the system undergoes a forcing which is exactly known. In general, the neural networks

thus struggle to leverage the additional information concerning the external forcing. Since it is impossible to know a priori

which specific combinations of parameters may result in improved forecasts when including the
:::::
Given

::::::::::
simulations

:::
that

::::
span

::
a

::::
large

::::::
enough

:::::
range

::
of

:::::::
forcing

:::::::
regimes,

:::
the

::::::::
networks

:::
that

:::
use

:::
the

:
forcing term and which may result in degraded forecasts, this5

poses a formidable (though not necessarily unsolvable) challenge to the
::
as

::::
input

:::
are

::::::
indeed

::::
able

::
to

:::::::
capture

::
at

::::
least

::::
part

::
of

:::
the

:::::::
influence

:::
of

:::
the

:::::::
forcing,

:::
and

:::::::::
extrapolate

::
it
::
to

:::::
some

::::::
extent

::
to

::::
new

::::::
forcing

:::::::
regimes.

::::
The

::::::::
networks

:::::
again

:::::::
perform

:::::
better

:::
on

:::
the

::::::::
Lorenz95

::::
than

::
the

:::::::::
Lorenz63

::::::
system.

::::
This

::::::::
indicates

:::
that

:::
the

:
idea of emulating climate-change projections with neural networks
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. Specifically, it implies that it
:::::::::
projections

::::
with

::::::
neural

::::::::
networks

:::::
might

:::
not

::
be

:::::::
entirely

::::::::::
unrealistic.

::::::::
However,

::
it

:::::
would

:::
be

::::
very

::::
hard

::
to

::::
know

::::::::::
beforehand

:::
the

:::::
range

::
of

::::::
forcing

:::::::
regimes

:::
one

:::::
would

:::::
need

::
in

::
the

:::::::
training

::::::
period.

:::::::::::
Additionally,

:::
the

::::::::
networks

::::::
trained10

::::
with

::::::
forcing

::
as

:::
an

::::
input

::::
still

:::::::
perform

:::::
worse

::::
than

::::::::
networks

:::::::
directly

::::::
trained

::
on

:::
the

::::::
target

::::::
forcing.

:::::::::
Therefore,

::
it
:
may be unwise

to apply an architecture that in principle works reasonably on past atmospheric data (like the one proposed by Dueben and

Bauer (2018)) to future climates
:
,
::::::
without

:::::
very

:::::::
detailed

::::::
testing. Our results are similar to Rasp et al. (2018), who found that

their neural network based
:
a subgrid-model is not able to extrapolate very far into new climate states, even though it is able to

interpolate between different extreme climate states.15

As a caveat, we underline
::::::
Again,

::
we

::::::
should

::::::::
highlight

:
that our experiments

::
are

:::
not

::::::
meant

::
to

::::::
provide

::
a
:::::
direct

:::::
match

::
to

:::::
what

:::
may

:::
be

::::
seen

::
in
::

a
:::::::
climate

::::::
model.

:::
For

::::::::
example,

:::
the

:::::::
forcing

::
in

:::
the

::::::::
Lorenz63

::::::
system

::
is
:::::::::
modulated

:::
by

::::::
tuning

:
a
:::::::::

parameter
::::
that

::::::
changes

:::
the

:::::::::
dynamics

::
of

:::
the

::::::
system,

:::::
while

:::
the

:::::::
forcing

::::
term

::
in

:::
the

::::::::
Lorenz95

::::::
system

:::::
leads

::
to

:::::::::
transitions

:::::::
between

:::::::
periodic

::::
and

:::::::
turbulent

:::::::
regimes.

:

::::
More

:::::::::
generally,

:::
our

::::::::::
experiments

:
were performed on highly idealised systems and it is hard to estimate the extent to which20

they may generalise
::::::::
generalize

:
to more complex systems such as atmospheric general circulation models or even global climate

models. Nonetheless, Scher and Messori (2019) have shown that some insights drawn from simple models in the context of

machine learning do map to more complex systems. A second caveat is that our approach to truncating the training data was

somewhat extreme: it is likely that the regions of the phase-space explored by the climate system during the satellite era are

more representative of the hypothetical climate attractor than a single wing of the butterfly is for the Lorenz63 system. Finally,25

it is virtually impossible to robustly demonstrate that neural networks cannot fulfill a specific task. In fact, the Universal

Approximation Theorem loosely states that a feed-forward neural network can approximate any continuous function with any

desired accuracy, as long as it has a large enough number of hidden layers
::::::
neurons

:
(Hornik, 1991). However, this does not

mean that there is a practically feasible way to find the optimal network (network meaning here both architecture and weights)

and train it with sufficient data.30

We hope that this study can pose as
::::::
provide

:
a starting point for more

:::::
further

:
discussion on the potentials and limitations of

neural networks in the context of complex
:::::
chaotic

:
dynamical systems. Future studies could expand to more realistic systems

(e.g. general circulation
::::::::::
atmospheric models), explore neural network architectures beyond the feed-forward networks used

here (e.g. recurrent architectures) and the influence of noisy training data. Additionally,
::
it

:::::
would

:::
be

:::::::::
interesting

::
to

::::::
extend

:::
the

::::::
analysis

::
to
:::
the

::::::
2-level

:::::::
version

::
of

:::
the

::::::::
Lorenz95

::::::
model,

:::::
which

:::::
would

:::::
allow

::
to

::::
also

:::::::
compare

:::
the

::::::::
networks

::
to

::::::::::
“truncated”

:::::::
versions5

::
of

:::
the

::::::
model.

::::::
Finally, a more mathematically rigorous approach – as opposed to the empirical approach used here – might shed

interesting new light on the topic.

Code availability. The code used for this study is available in the accompanying Zenodo repository (doi:10.5281/zenodo.3461683) and on

S.S.’s github repository (https://github.com/sipposip/code-for-Generalization-properties-of-neural-networks-trained-on-Lorenz-systems/tree/revision1)
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Appendix A: Tuning of neural network architecture for Lorenz95
::::::::
Lorenz6310

The use of neural networks requires a large number of somewhat arbitrary choices to be made before the training of the

network even begins. The first step is to select a specific network architecture, and choose the so-called hyperparameters. As

basic architecture here we chose stacked convolution layers, which wrap around the circular domain
::::
fully

:::::::::
connected

:::::
layers.

Next, we performed an exhaustive gridsearch over network configurations and hyperparameters. The learning rate was varied

from
:::::::
0.00003

::
to

:::::
0.003,

:::
the

:::::::
number

::
of

::::::
hidden

:::::
layers

::::
from

::
1

::
to

:::
10,

:::
and

:::
the

:::
size

::
of

:::
the

::::::
hidden

:::::
layers

:::::
from

:
4
::
to

::::
128.

::::
The

::::::::
activation15

:::::::
function

:::
was

:::::
fixed

::
to

:::
the

:::::::
rectified

:::::
linear

::::
unit

:::::::::
(“ReLu”).

::
A

:::::::::
mini-batch

::::
size

::
of

:::
32

:::
was

:::::
used.

::::
The

:::::::
training

:::
data

::::
was

::::::::::
normalized

::
to

::::
zero

:::::
mean

:::
and

::::
unit

::::::::
variance.

:::
The

::::::
tuning

::::
was

::::
done

::::
with

::
a
::::::::
Lorenz63

:::
run

:::::
with

:::::::
standard

::::::::::
parameters,

:
a
::::::::

timestep
::
of

::::
0.01

::::
and

:::
2e5

:::::::::
timesteps.

:::::
While

:::
the

::::::::
networks

:::
are

::
all

:::::::
trained

::
on

:::::::::
short-term

:::::
error,

:::
the

::::
final

::::::::
selection

::
of

:::::::
network

::::::::::
architecture

::::
was

::::
done

:::
by

::
the

::::::
ability

::
of

:::
the

:::::::
network

::
to

::::::::::
reconstruct

:::
the

:::::::
attractor

:::
(see

:::::::
Section

::::
3.2).

::::
The

:::
best

::::::::::
architecture

::::
had

:
2
::::::
hidden

:::::
layers

::::
with

::
a
::::::
hidden

::::
layer

::::
size

::
of

:::
128

::::
and

:
a
:::::::
learning

::::
rate

::
of

::::
3e-5.

:
20

Appendix B:
::::::
Tuning

::
of

::::::
neural

::::::::
network

:::::::::::
architecture

:::
for

::::::::
Lorenz95

:::
For

:::
the

::::::::
Lorenz95

::::::
model

:::
we

:::::
chose

::
as

:::::
basic

::::::::::
architecture

:::::::
stacked

::::::::::
convolution

:::::
layers,

::::::
which

:::::
wrap

::::::
around

:::
the

:::::::
circular

:::::::
domain.

:::
The

:::::::::
gridsearch

::::
was

::::
done

::::
over

:::
the

:::::::::
following

::::::::::
parameters:

:::
the

:::::::
learning

::::
rate

:::
was

::::::
varied

::::
from

:
0.00001 to 0.003; the kernel size

of the convolution layers (the “stencil” the convolution operations uses) from 3 to 9; the number of convolution layers from 1

to 9,
:
; and the depth of each convolution layer from 32 to 128. Furthermore, both sigmoid and rectified linear units (“ReLu”25

) activation functions were tested.
:
A

:::::::::
mini-batch

::::
size

::
of

:::
32

:::
was

:::::
used.

::::
The

:::::::
training

:::
data

::::
was

::::::::::
normalized

::
to

::::
zero

:::::
mean

:::
and

::::
unit

:::::::
variance.

:

The tuning was done with a Lorenz95 run with F = 8, a timestep of 0.01 and 1e4 timesteps. It was performed independently

for forecast lead-times of 0.01, 0.1 and 1. For each lead-time, a different network architecture worked best. When training on

lead-times of 0.01, a single convolution layer with kernel size 5 worked best. For lead-time
:
a

::::::::
lead-times

:::
of 0.1, 2 convolution30

layers with kernel size 5 worked best, and for a
:
lead-time

::
of 1, 9 convolution layers with kernel size 3 were the optimal choice.

When considering how stacked convolution layers work, this result is not surprising. The information available for forecasting

the target value for a specific gridpoint is kernel-sized for a single layer, and increases with each additional convolution layer.

From a physical point of view, the information affecting the dynamics of a specific gridpoint comes only from the immediate

neighborhood for very short forecasts (given the local nature of the Lorenz95 equations). With increasing lead-time the infor-

mation from an increasingly large part of the domain becomes important. Therefore, it is intuitive that for making a longer

forecast in a single step, the network should have more convolution layers.

The network architecture trained on a timestep of 0.1 made the best forecasts over lead-times up to ~4 timeunits
::
~4

::::
time

::::
units,5

both in terms of RMSE and anomaly correlation (when making longer forecasts through iteratively making forecasts with the

network, see fig. A1
:::
Fig.

:::
B1). We therefore chose this network architecture (conv_depth = 128, kernel_size = 5, learning_rate=

0.003, and 2 convolution layers with ReLu activation) for the analyses presented in the study. This result also suggests that

there could be an “optimal” lead-time that neural networks should be trained on for chaotic dynamical systems
:::
and

::
is

:::::::
contrary
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::
to

::::
what

::::::::::::::::::::::
Scher and Messori (2019)

::::
found

:::
on

::::::::::::
coarse-grained

:::::::::
reanalysis

::::
data.

:::::::
Indeed,

:::
the

:::::
latter

:::::
study

::::::::
concluded

::::
that

:::
the

::::::
longer5

::
the

:::::::
training

:::::::::
lead-time,

:::
the

:::::
lower

:::
the

:::::::
forecast

:::::
error.

:::
Our

::::::::::
architecture

::::
only

:::::::
slightly

::::::
overfits

:::::
(Fig.

:::
B1

::
c);

::::
that

::
is,

:::::
error

::
on

:::
the

::::
test

:::
data

::
is

:::::::
slightly

:::::
higher

::::
than

::
on

:::
the

:::::::
training

::::
data. The network was trained until validation loss did not increase for 4 epochs

:
, with

a maximum of 30 epochs.
:::
The

:::::::
network

::::::::::
architecture

:::
for

:::
the

::::::::::
experiments

::::::::
including

:::
the

::::::
forcing

::
F
:::
as

::::
input

::::
was

:::::
tuned

:::::::::
separately.

:::
For

::::
this,

:
a
::::::::
Lorenz95

:::
run

::
of

::::
1e4

::::
with

::::::
linearly

:::::::::
increasing

::
F

::::
from

::
6

::
to

:
7
::::
was

::::
used.

::::
The

:::
last

::
10

::
%
:::
of

::
the

::::
run

:::
was

::::
used

::
as

:::::::::
validation

:::
set.
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a )b)

c)

Figure B1. Evaluation of network architecture for the Lorenz95 system
::::::
without

::
F

::
as

::::
input. a,b) Forecast error (on test data) for the best

network configurations when training on lead-times of 0.01, 0.1 and 1 (different colors). c)
:::::
Kernel

::::::
density

::::::
estimate

::
of

::::
mean

:::::::
absolute

::::::
forecast

:::
error

:::
on

::::::
training

:::
and

:::
test

::::
data

::
for

:::::
1-step

:::::::
forecasts

::
of
:::

the
:::::::
network

:::::
trained

::::
with

:
a
::::
lead

::::
time

::
of

:::
0.1,

:::
and

:::::
kernel

::::::
density

::::::
estimate

:::
of

::
the

:::::
mean

::::::
absolute

:::::
1-step

::::::::
tendencies

::
of

:::
the

:::::
model

::::::
(dashed

::::
line).

::
d)
:

Examples of the Lorenz95 model (left) and the network model obtained through

iterated forecasts trained on a lead-time of 0.1 (right)
:
,
:::
both

::::::::
initialized

::::
from

::
the

:::::
same

::::
initial

::::
state.

::
e)
::::::::::::
Autocorrelation

:::
for

::::::
different

:::::::
timelags

::
of

::
the

:::::
model

:::
and

:::
the

::::::
network

::::::::
“climate”. 27



a) b) c)

Figure C1. As fig
::::
Same

::
as
:::

Fig. 2
:
2
:::
d-f, but

::
for

:::::::
networks

::::::::
forecasting

:
the points are located at the predicted state

::::::
tendency

:
instead of at the

initial
:::::::
following stateof each forecast.

:::
Note

:::
the

::::::
different

::::::::
colorscale

::
in

::
c)

a) neuron in layer 2
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Figure C2.
::::
Same

::
as

:::
Fig.

::::
3b,e,

:::
but

::::::
showing

::
all

::::::
neurons

::::::
without

::::::
specific

:::::::
ordering
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Appendix C: Supplementary figures

Appendix C:
:::::::::::::
Supplementary

::::::
figures
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