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S1. Event synchronization (ES) 15 

Event synchronization is a promising measure for determining the time synchronization and delay pattern between 

two event-like signals (Quian Quiroga et al., 2002). We define an event when a value in the signal 𝑥(𝑡) (or 𝑦(𝑡)) 

exceeds a threshold (selected by a 𝛼 percentile). Events in 𝑥(𝑡) and 𝑦(𝑡) occurring at time 𝑡𝑙
𝑥 and 𝑡𝑚

𝑦
 where 𝑙 =

1,2,3,4…𝑆𝑥, 𝑚 = 1,2,3,4… 𝑆𝑦, are considered to be synchronized when they occur within a time lag ±𝜏𝑙𝑚
𝑥𝑦

 which is 

defined as(Agarwal et al., 2017a) 20 

 
 (1)                                                                           

𝑆𝑥 and 𝑆𝑦 are the total number of events (greater than threshold 𝛼) that occurred in the signal 𝑥(𝑡) and 

𝑦(𝑡), respectively. This definition of the time lag helps to separate independent events. Then we count the number of 

times an event occurs in the signal 𝑥(𝑡) after the maximum time lag 𝜏𝑙𝑚
𝑥𝑦
 of an event that appears in the signal 𝑦(𝑡) and 

vice versa, resulting in the quantities C(x|y) and C(y|𝑥): 
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(3) 

From these quantities, we define a measure of the strength of event synchronization (𝑄𝑥𝑦) between 𝑥(𝑡) and 𝑦(𝑡) by 25 
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𝑄𝑥𝑦 =
𝐶(𝑥|𝑦) + 𝐶(𝑦|𝑥)

√(𝑆𝑥 − 2)(𝑆𝑦 − 2)
 . 

 

(4) 

𝑄𝑥𝑦 is normalized to 0 ≤ 𝑄𝑥𝑦 ≤ 1.  𝑄𝑥𝑦 = 1 refers to perfect synchronization between the signals 𝑥(𝑡) and  𝑦(𝑡). 

Event synchronization (ES) has been specifically designed to identify nonlinear associations among event time series 

with varying lags between them.    

S2. Maximum overlap discrete wavelet transformation 

Time series of continuous geophysical variables can be interpreted as the superposition of variations occurring at 5 

different scales. Different physical processes drive these patterns, and a partitioning of the variability at different scales 

can help to isolate and characterize the underlying processes(Sturtevant et al., 2016). Wavelets have been successfully 

used to characterize the time scales of interactions between hydrometeorological variables(Molini et al., 2010). 

The wavelet transform of a signal decomposes it into a set of components with predefined central frequencies and 

spectral bandwidths. Here we use the maximal overlap discrete wavelet transform(Percival and Walden, 2000)  10 

(MODWT), because the orthogonal discrete wavelet transform (DWT) results in a pyramid of wavelet coefficients 

which does not contain the time synchronization of the events. Further, our experience with DWT suggests that it 

suffers from ‘shift sensitivity’ also known as ‘shift variance’ which is undesirable because DWT coefficients fail to 

distinguish between input-signal shifts(Rathinasamy and Khosa, 2012). Although MODWT has considerable 

redundancy but it is shift invariant, and this property renders the MODWT more suited for time series analysis.  15 

MODWT decomposes the time series into different time scales or frequency components. The wavelet decomposition 

is realized using the two basis functions known as father wavelets and mother wavelet. Any function 𝑓(𝑡) can be 

expressed in these basis functions and their scaled and translated versions as given in Eq.(5) 

𝑓(𝑡) = ∑𝑠𝐽,𝑘
𝑘

𝜑𝐽,𝑘(𝑡) +∑𝑑𝐽,𝑘
𝑘

𝜓𝐽,𝑘(𝑡) +∑𝑑𝐽−1,𝑘
𝑘

𝜓𝐽−1,𝑘(𝑡) ……+∑𝑑1,𝑘
𝑘

𝜓1,𝑘(𝑡) 
 (5) 

where 𝐽 is the number of multiresolution components (scales), and 𝑘 is in the rangeof 1 to the number of coefficient 

in the specified component. The coefficients 𝑠𝐽,𝑘 are the approximation coefficients and 𝑑𝐽,𝑘,…, 𝑑1,𝑘 are the wavelet 20 

transform coefficients, while the functions 𝜑𝐽,𝑘(𝑡) and {𝜓𝑗,𝑘(𝑡))| 𝑗 =  1, . . . , 𝐽 −  1, 𝐽 } are the approximating wavelet 

function and  detailed wavelet functions respectively.  

These basis functions are defined in terms of father and mother wavelets as follows: 

𝜑𝑗,𝑘(𝑡) = 2−𝑗/2𝜑(2−𝑗𝑡 − 𝑘)  (6) 

𝜓𝑗,𝑘(𝑡) = 2−𝑗/2𝜓(2−𝑗𝑡 − 𝑘)  (7) 

Further,  

𝑠𝐽,𝑘 ≈ ∫𝜑𝐽,𝑘(𝑡)𝑓(𝑡)𝑑𝑡  , 
 (8) 



𝑑𝑗,𝑘 ≈ ∫𝜓𝐽,𝑘(𝑡)𝑓(𝑡)𝑑𝑡  ,  𝑗 = 1, … . 𝐽 − 1, 𝐽 
 (9) 

where the scaling coefficients 𝑠𝐽,𝑘 capture the smooth trend of the time series at the coarse scale 2𝐽, which are also 

called smooth coefficients; and the wavelet coefficients 𝑑𝑗,𝑘, also known as detail coefficients can detect deviations 

from the coarsest scale to the finest scale.  

The original series 𝑓(𝑡) can be reconstructed by the summing the detailed components and the smooth components.  

𝑓(𝑡) = 𝑆𝐽,𝑘 + 𝐷𝐽,𝑘 + 𝐷𝐽−1,𝑘 +⋯…… .𝐷1,𝑘    (10) 

where 

𝑆𝐽,𝑘 =∑𝑠𝐽,𝑘𝜑𝐽,𝑘(𝑡) , 𝐷𝐽,𝑘 =∑𝑑𝐽,𝑘𝜓𝐽,𝑘(𝑡) , …… , 𝐷1,𝑘 =∑𝑑1,𝑘𝜓1,𝑘(𝑡)

𝑘𝑘𝑘

 

 

(11) 

Eq (10) defines a multiresolution analysis (MRA) of 𝑓(𝑡); i.e., we express the series f(t) as the sum of a constant vector 5 

𝑆𝐽 and J other vectors 𝐷𝑗 , 𝑗 = 1, … . . , 𝐽, each of which contain a timeseries related to variations in f(t)at a certain scale. 

We refer to 𝐷𝑗  as the 𝑗𝑡ℎ level wavelet detail. Fig.S1 shows the MODWT decomposition of a sample signal up to 7 

scales resulting in 7 detailed components (D1- D7) and one approximate Component (S7).  

 

Fig.S1 Scheme of multi-scale decomposition of signals using maximum overlap discrete wavelet transformation 10 

(MODWT). The relationship between signal 𝒀𝒕 (blue), detailed component 𝑫𝒋 (black), and approximate 

component 𝑺𝒋 (red), is shown. 

Let 𝑌𝑡  represents a time series history of a geophysical process. In order to partition the variability of the process at 

different scales 𝑗 =  1… 𝐽, the signal 𝑌𝑡 is transformed into the wavelet space which provides the required information 

at different scales. This is obtained by convolving 𝑌𝑡  with a set of low pass (𝑔) and high pass (ℎ) filters. For instance, 15 

at each scale 𝑗, the MODWT applies a high pass wavelet filter ℎ𝑗,𝑙  and a lower pass filter  𝑔𝑗,𝑙  of length (𝑙) to the time 



series 𝑌 to respectively yield the wavelet coefficients 𝑊𝑗,𝑡 and 𝑉𝑗,𝑡 for every point 𝑡 in the time series (Percival and 

Walden 2000). 

 

                                                                                  

(12) 

 

The 𝑊𝑗,𝑡 wavelet coefficients distinguish fluctuations in the time series of scale 2𝑗−1,while the 𝑉𝑗,𝑡coefficients provide 

information about the variations at scale 2𝑗 and higher. Let the maximum level of decomposition be 𝑗 = 𝐽.This would 

result in a total ′𝐽 + 1′ series of wavelet coefficients with 𝑊𝑗,𝑡, 𝑗 = 1,2,3… 𝐽, and one series of 𝑉𝐽,𝑡.  5 

Let us now define 𝐷𝑗 which represents the time domain reconstruction of  𝑊𝑗. It represents the portion of 𝑌 attributable 

to scale 𝑗. Let 𝑆𝐽  represent the time domain reconstruction of  𝑉𝐽. For the maximum level of decomposition,  𝑉𝐽 has all 

of its elements equal to the sample mean of 𝑌. 

Therefore, we can write  

𝑌 =∑𝐷𝑗 + 𝑆𝐽

𝐽

𝑗=1

 

 

                              (13) 

S3. Significance test for similarity measure  10 

To evaluate the statistical significance of the ES values, a surrogate test is used as proposed by Agarwal et al.(Agarwal 

et al., 2017c). We randomly reshuffle each time series 100 times (arbitrary number) but keeping the distribution same. 

The reshuffling will ensure that any potential synchronization between the even series will be destroyed and that they 

will be equivalent to independent random series. Then, for each pair of time series (precipitation and climate time 

series), we calculate the MSES values for the different scales. At each scale, the empirical test distribution of the 100 15 

MSES values for the reshuffled time series is compared to the MSES values of the original time series. Using a 1% 

significance level, we assume that synchronization cannot be explained by chance if the MSES value at a certain scale 

of the original time series is larger than the 99𝑡ℎ percentile of the test distribution. 

S4. Wavelet Coherence  

To compare the results obtained from the MSES, we use wavelet coherence (WC). Wavelet coherence analysis has 20 

been used as a robust tool in identifying the relationship between two variables at multiple scales. The wavelet 

coherence between time series {Xt} and {Yt} was defined by(Torrence and Compo, 1998) as 
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 (14) 

Where 𝑅2(𝑗, 𝑡) takes a value between 0 and 1;  is a smoothing operator and can be written as  

. Wxy represents the cross-wavelet coefficient between X and Y. Wx (j,t) and Wy  (j,t) 

denote the wavelet coefficients obtained from wavelet transform of X and Y respectively at scale j and time t.  

The global wavelet coherence at a certain scale j is defined as the time-averaged value of the wavelet coefficients at 

the scale with the COI. It is estimated by  5 

 

 (15) 

Where 𝑛𝑗 is the number of points with COI and 𝑛𝑗 = 𝑡2 − 𝑡1 + 1.  

Global wavelet coherence is a useful measure to examine the common characteristic periodicities between x and y. 

Grinsted et al. showed the applicability of WC analysis of the association of precipitation with climate 

variables(Grinsted et al., 2004). More detailed description of wavelet coherence analysis is can be found in (Grinsted 

et al., 2004) 10 
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