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Abstract. Crucial to the development of earthquake forecasting schemes is the manifestation of spatiotemporal correlations

between earthquakes as highlighted, for example, by the notion of aftershocks. Here, we present an analysis of the statistical

relation between subsequent magnitudes for a recently proposed self-similar aftershock rates model of seismicity, whose main

distinguishing feature is that of interdependence between trigger and triggered events in terms of a time-varying frequency

magnitude distribution. By means of a particular statistical measure, we study the level of magnitude correlations under specific5

types of time conditioning, explain their provenance within the model framework and show that the type of null model chosen

in the analysis plays a pivotal role in the type and strength of observed correlations. Specifically, we show that while the

variations in the magnitude distribution can give rise to large trivial correlations between subsequent magnitudes, the non-trivial

magnitude correlations are rather minimal. Simulations mimicking Southern California show that these non-trivial correlations

cannot be observed at the 3σ-level using as reference the real world catalogs magnitude of completeness. We conclude that only10

the time variations in the frequency-magnitude distribution might lead to significant improvements in earthquake forecasting.

Copyright statement. TEXT

1 Introduction

An outstanding question in earthquake dynamics is how reliably one is able to predict or forecast earthquakes. Forecasting can

be defined as a statement of relative likelihood of specific earthquake(s) to occur as a function of space, time and magnitude15

windows, and should be contrasted to the concept of prediction, which is a specific statement of whether an earthquake will or

will not occur at a particular place and time with a certain magnitude (Jackson and Kagan, 1999). In recent years, forecasting

of earthquakes has seen a major effort on many different fronts (Gerstenberger et al., 2005; Helmstetter et al., 2006; Holliday

et al., 2007; Schorlemmer et al., 2010; Woessner et al., 2010; Zechar et al., 2010; Field and Milner, 2018; Moschetti et al.,

2018; DeVries et al., 2018), also see (Ogata, 2013; Tiampo and Shcherbakov, 2013; Ogata, 2017; Michael and Werner, 2018)20

for reviews. A defining characteristic of earthquakes is their clustering in both space and time. By considering various empirical

relations one can construct models (the backbone of a multitude of forecasting efforts), most being a special case of the Hawkes
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process (Hawkes, 1971), such as the epidemic type aftershock sequence (ETAS) model (Ogata, 1988, 1998), the branching

aftershock sequence (BASS) model (Turcotte et al., 2007), the every earthquake is a precursor according to scale (EEPAS)

(Evison and Rhoades, 2004; Rhoades and Evison, 2004), or a branching model based on a dynamical scaling hypothesis where

a single dynamical scaling exponent was introduced in the conditional rate parameter (Lippiello et al., 2007b, a), all of which

exhibit spatiotemporal clustering.5

It is through the aforementioned constitutive statistical models that forecasting of seismicity is often implemented (Helmstet-

ter et al., 2006; Schorlemmer et al., 2010; Woessner et al., 2010; Zechar et al., 2010). Temporal clustering is exemplified by the

increased rate (number of earthquakes per unit time) of local seimicity after large earthquakes, where triggering of earthquakes

by other earthquakes through either static or dynamic stress changes is one of the predominant physical processes occurring

over a wide range of spatio-temporal scales (Moradpour et al., 2014; Hainzl et al., 2014). The empirically derived Omori-Utsu10

relation (Omori, 1894; Utsu, 1957) is used to encode temporal clustering in many of the aforementioned models of seismic-

ity, e.g., the extensively studied ETAS model employs this relation. Yet, in its original formulation the Omori-Utsu relation

is typically not self-similar. By formulating the rate of earthquakes as a self-similar process which gives rise to a generalized

Omori-Utsu relation, one finds greater agreement with observed seismic behavior in Southern California (SC) when compared

to the standard non self-similar form (Davidsen and Baiesi, 2016). Such self-similarity provides support for the hypothesis that15

one can scale up constitutive rules derived from fracture and friction experiments in the lab to tectonic earthquakes (Scholz,

1990; Mogi, 2007). The self-similar aftershock rates (SSAR) model proposed in (Davidsen and Baiesi, 2016) is a model of

earthquake-earthquake triggering, similar to the ETAS model. The SSAR model contains two distinguishing features; event

rates are self-similar with respect to the magnitude difference between the trigger and the triggered event, and the frequency-

magnitude distribution of the triggered events for a single trigger varies in time. In the standard Omori-Utsu relation the number20

of triggered events of a particular energy does not simply depend on the magnitude difference between trigger and triggered

events (i.e. mother-daughter events). This relation is not self-similar unless very special conditions are met; conditions which

are typically inconsistent with observations (Davidsen and Baiesi, 2016). The ansatz for a self-similar mother-daughter rate

relation can be expressed as,

r (mas, t|m′,0) =
1

τ∆m
f

(
t

c∆m

)
, (1)25

where τ∆m and c∆m are two time scales that only depend on ∆m=m′−mas, m′ and mas being the magnitudes of the

trigger and triggered event, respectively, and t is the time interval between the trigger and triggered event. In (Lippiello et al.,

2007b, a) only one such dynamical scaling exponent was introduced in the conditional rate equation, and in (Shcherbakov

et al., 2015) the two time scales were first introduced along with the relation between exponents of τ∆m and c∆m; terms

which we will present in detail in (Sect. 2). Dependence on the magnitude difference for the two time scales allows one to30

obtain two scale-free regimes when considering the frequency-magnitude distribution of events triggered by events of the

same magnitude; a feature consistent with observed behavior in the SC catalog (Davidsen and Baiesi, 2016) and shown to

exist in the detailed analysis of aftershock rates in Japan (Peng et al., 2007). Furthermore, scaling of the form in Eq. 1 for a
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particular f
(

t
c∆m

)
was shown to be consistent with all accepted empirical relations (Davidsen and Baiesi, 2016). Just as the

ETAS model is widely used in forecasting efforts, one would wish to use the SSAR model for this particular purpose given

that the latter was shown to better describe the SC seismic data. The main difference between the ETAS and SSAR model

is that in the latter case the mother-daughter magnitudes are effectively coupled in accordance with Eq. 1. From this vantage

point, one would like to quantify the strength of the statistical correlation of magnitudes in a time ordered catalog in the SSAR5

model, which may ultimately aid in developing more reliable forecasting methods. For this purpose, the magnitude correlations

between subsequent events are of particular interest. In order to study magnitude correlations between subsequent events we

apply here a statistical method similar to the ones employed in (Lippiello et al., 2008; Davidsen and Green, 2011; Davidsen

et al., 2012). An important aspect to highlight is that in our analysis we test two different types of null hypotheses against

the SSAR model. We find that the null hypothesis plays a significant role in the types and strength of magnitude correlations10

observed. This allows us to distinguish between trivial magnitude correlations that are simply a consequence of the variations

in frequency-magnitude distribution and non-trivial ones that are not.

1.1 Overview of this paper

We first give a brief overview of the SSAR model (Sect. 2), introduce the specifics of the surrogate catalogs (Sect. 2.1), followed

by the methodology (Sect. 3.1) and analysis of the magnitude correlations between subsequent events through the lens of a15

particular statistical measure (Sect. 3.2, 3.3). In the latter, we show why it is important that in the analysis of magnitude

correlations care must be taken with the methodology (on choosing the randomized magnitudes, i.e., the type of null model) if

one wishes to avoid confounding factors. In Sect. 4 we present a discussion of our results.

2 The self-similar aftershock rates (SSAR) model

The SSAR model recasts the standard Omori-Utsu rate equation into a self-similar version. A distinguishing feature of the20

rate equation in the SSAR model is that it only depends on the difference between mother-daughter events making it self-

similar (e.g., the rates of a magnitude 3 mother and magnitude 2 daughter event are the same as those of a magnitude 5 mother

and a magnitude 4 daughter event), the scaling relation along with the relationship amongst its exponents was introduced in

(Shcherbakov et al., 2015),

r (mas, t|m′,0) =
1

τ∆m

(
t

c∆m
+ 1

)−p
, (2)25

with time scales,

c∆m = c010g∆m and τ∆m = τ010−z∆m , (3)

where g and z are universal scaling exponents –with corresponding simulation values of 0.66 and 0.24 matching SC (David-

sen and Baiesi, 2016)–, with constant prefactors c0 and τ0 (respective values of 210 s and 104 s used in the simulations), and
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p& 1 (Davidsen and Baiesi, 2016) (p≤ 1 is unphysical if considering only daughter events aka directly triggered events, see,

for example, (Davidsen et al., 2015)). To obtain the total number of triggered events of magnitude mas for a given trigger m′,

we integrate Eq. 2 in the time domain,

N (mas|m′)5

=

∞∫
0

1

τ∆m

(
t

c∆m
+ 1

)−p
dt=

c∆m
τ∆m (p− 1)

, (4)

which only depends on ∆m ensuring self-similarity. Integrating Eq. 2 from a chosen cutoff magnitude mcut to∞, we find

N> (mcut|m′) =
c0 10(g+z)(m′−mcut)

τ0 (p− 1) (g+ z) ln10
, (5)

which is simply the Gutenberg-Richter relation for triggered events (Davidsen and Baiesi, 2016), giving us the scaling10

relation (Shcherbakov et al., 2004),

bas = g+ z . (6)

In contrast, for finite times the number of triggered events of magnitude mas up to a time tf is,

N (mas, tf |m′)≡
tf∫

0

r (mas, t|m′,0) dt . (7)

Plotting Eq. 7 for different values of tf in Fig. 1, we observe a defining characteristic of the SSAR model. Unlike another15

self-similar model (Lippiello et al., 2007a, 2008), two scale-free regimes co-exist for all finite values of tf in the frequency-

magnitude distribution; an effect recognized during different stages of aftershock sequences in (Shcherbakov et al., 2004).

Namely, b→ z corresponds to the dominating exponent in the early time limit of Eq. 2, and a second regime with b→ g+ z

that dominates at later times. In other words, at early times we can observe a b-value of z over an extended regime of small

magnitudes but as tf increases the transition point moves towards smaller magnitudes and we begin to see a more extended20

range with a b-value of g+ z, which corresponds to the asymptotic behavior for tf →∞.

Analogously to the ETAS model, the full SSAR model is given by a time-varying seismic rate (also called the conditional

intensity or stochastic intensity), which takes on the following form

λ(t,m,r) =25

µ s0 (m) +
∑
t′<t

κ(m′)ψm,m′ (t− t′)s(m)ζm′ (r− r′) (8)
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Figure 1. Plot of Eq. 7 for m′ = 1.8 and tf = 101,103, and 105 seconds. Dashed lines correspond to the b-value exponent; b= z for early

times (black) and b= g+ z for late times (red).

where µ is a constant and s0 (m) is the probability density function (PDF) of the magnitudes of background events, i.e.,

events that are not triggered by other events, and their product determines the background rate, which is assumed to be uniform

in time and space. Similarly, ψm,m′ (t) , s(m) , and ζm′ (r) are the PDFs for the temporal distance, magnitude and spatial

distance of daughter events triggered by a mother of magnitude m′, respectively. κ(m′) corresponds to the total number5

of daughters triggered by a mother, often denoted as the productivity relation. For the purpose of our temporal analysis of

magnitudes, we can ignore the spatial component in Eq. 2, we refer the reader to (Moradpour et al., 2014; Davidsen and

Baiesi, 2016) for a treatment of ζm′ (r). The PDFs for the magnitude distribution of background and triggered events are the

normalized Gutenberg-Richter relations:

s0 (m) = β e−β(m−mcut)

s(m) = βase
−βas(m−mcut) ,

(9)10

where mcut indicates the lower magnitude cut-off, β = b ln10 –with simulation value b= 1.08 matching SC (Davidsen

and Baiesi, 2016)– and βas = bas ln10. The productivity relation and the normalized temporal distribution for the generalized

Omori-Utsu relation are, respectively,

κ(m′) =Aeβas(m′−mcut) , (10)

15

ψm,m′ (t) =
(p−1)cp−1

4m

(t+c4m)p . (11)
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Figure 2. Time-magnitude plot for a realization of the SSAR model with a lower magnitude threshold of 1.50 and 376,311 events.

2.1 SSAR model catalogs

Since the SSAR model was tested using a catalog from SC (Davidsen and Baiesi, 2016), we focus here on synthetic model

catalogs that are comparable to those from SC. We would like to point out again that for the purpose of our analysis of mag-

nitude correlations below, the spatial location of events is not relevant. A seismic catalog generated through the SSAR model

consists of both independent background events and its associated N − th generation aftershocks. The catalog is generated by5

first seeding background events with magnitudes selected from the corresponding frequency-magnitude distribution of Pois-

sonian times, triggered events are then created from the statistical distributions of magnitude and time in an iterative manner

(see Sect.S2 in supplemental material of (Davidsen and Baiesi, 2016) for details). A realization of the SSAR model, which

resembles the SC catalog, henceforth referred to as SSAR-SC, was used for the analysis presented in this paper, see Fig. 2. Yet,

none of our findings depends on the specific realization as we tested explicitly. The SSAR-SC catalog contains ∼ 1.5× 10510

background events with a total of 376,311 events (after removing 1% of the initial events to minimize boundary effects), lower

magnitude cutoff mmin = 1.50, with model parameters p= 1.15, c0 = 210s, τ0 = 104 s, g = 0.66, z = 0.24 that agree with

those of SC (Davidsen and Baiesi, 2016). This corresponds to a coverage of about 36 years, the current length of the relocated

SC catalog from 1981 to 2017 (Hauksson et al., 2012). We have also imposed a hard upper cutoff,Mmax = 7.40, for the largest

magnitude possible in the SSAR-SC catalog in order to avoid an unphysical runway process.15

3 Magnitude correlations in the SSAR model

In this section we aim to answer the question of what is the type and strenght of the effective magnitude correlations in the

SSAR model (for an analysis of magnitude correlations in the SC catalog see (Davidsen and Green, 2011)). Correlations

arise by means of the rate equation given by Eq. 2 since the timing of the daughters will depend on the magnitude difference
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between the daughters and mothers as captured by the functional dependencies of c∆m and τ∆m. We first draw attention to the

methodology since this is a crucial aspect in understanding the types of correlations observed in the model.

3.1 Methodology

Our study of magnitude correlations, similar to methods used in (Lippiello et al., 2008; Davidsen and Green, 2011; Davidsen

et al., 2012), considers subsequent events in the time ordered catalog. Specifically, it focuses on ∆mi =mi+1−mi (for a5

particular magnitude thresholdsmth) and compares these to randomized magnitude differences averaged over 500 realizations,

i.e., ∆m∗i =mi∗−mi wheremi∗ is a magnitude chosen at random. If magnitude correlations between subsequent events in the

ordered catalog are present, the distribution of ∆m will deviate from the distribution of the randomized case; ∆m∗. To asses

whether magnitude correlations exist in the SSAR model we considered three types of conditioning (unconditioned, ∆t and ∆t

& M-D) for various magnitude thresholds mth. For the unconditioned case we use the quantity δP (m0)≡ P (∆m<m0)−10

P (∆m∗ <m0), where P (...) refers to the cumulative distribution function (CDF) of the ordered and randomized catalogs.

For ∆t and ∆t & M-D (mother-daughter) conditioning we consider the corresponding quantities,

δP (m0|∆t < y)

= P (∆m<m0|∆t < y)−P (∆m∗ <m0|∆t < y) , (12)15

and

δP (m0|∆t < y & M-D)

= P (∆m<m0|∆t < y & M-D)

−P (∆m∗ <m0|∆t < y & M-D) . (13)20

Specifically, for ∆t and ∆t & M-D conditioning one only considers subsequent event pairs and their ∆mi if the time

interval between the two events is not longer than ∆t. In addition, for ∆t & M-D conditioning these event pairs also have to

be a mother-daughter pair. The reason why we choose to condition on time intervals is motivated by the expectation that event

pairs that are closer in time are more likely to be related — either by being mother-daughter pairs or by being daughters of

the same mother — than those further apart. Note that in the SSAR model all dependencies are fundamentally encoded at the25

mother-daughter level, viz. Eq. 2. By conditioning on time we are also preferentially “picking” certain magnitude differences

via the rate equation, Eq. 2.

Another important aspect in our analysis is how we randomly choose the magnitudes mi∗ in the case of ∆t or ∆t & M-

D conditioning. One can either pick mi∗ ’s from the already conditioned catalog — which we call sub-catalog randomizing

— or one can pick mi∗ ’s from the full unconditioned catalog — called full-catalog randomizing. It is important to point30

out that in sub-catalog randomizing the frequency-magnitude distributions of mi+1 and mi∗ are identical by construction.

In full-catalog randomizing, however, the mi∗ might or might not follow a different frequency-magnitude distribution. This
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Figure 3. Magnitude correlations of the unconditioned SSAR-SC catalog formth = 1.60, 2.00, 2.40 and 3.40 (inset). Error bars correspond

to 3σ.

is possible since the frequency-magnitude distribution can vary in the SSAR model as discussed above. A similar and more

graphical explanation of the sub and full catalog randomizing can be found in the supplemental material.

For all three types of conditioning one can state the following. If the quantity δP (m0| . . .) significantly deviates from 0 for

at least some values of m0, then correlations between subsequent magnitudes are present. The two randomizing methods used

in our analysis, one which keeps the frequency-magnitude distribution fixed while the other one might not, both produce in5

principle different types of magnitude correlations: When the frequency-magnitude distribution is fixed, we are seeing inherent

(non-trivial) magnitude correlations, while the correlations in the other case correspond to a mixing of non-trivial and trivial

correlations, where the latter simply arise due to the differences in the frequency-magnitude distribution.

3.2 Magnitude correlations for the unconditioned case of the SSAR model

In Fig. 3 we show the previously described measure of magnitude correlations for subsequent events for the unconditioned10

case in the SSAR-SC catalog. Magnitude correlations that are significant at the 3σ-level exist in the SSAR-SC catalog in the

range mth = 1.60 – 2.80. Inspecting the slope of δP (m0) in Fig. 3, we see that the values ∆m have a higher tendency to lie in

a given range when compared to the randomized case ∆m∗, and less likely to lie outside said range: for mth < 2.4 the slope

of δP is typically positive in the range -0.5 to 0.25 showing an ≈ 0.9% higher probability that ∆m lies within this range when

compared to ∆m∗. While significant, this difference is very small. The absence of significant correlation at the 3σ-level for15

mth = 3.40 (the current magnitude of completeness for SC (Schorlemmer and Woessner, 2008)) is simply a consequence of

an insufficient number of events.
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Figure 4. Magnitude correlations for the SSAR-SC catalog with ∆t & M-D conditioning for sub-catalog randomizing (left panels) and

full-catalog randomizing (right panels) for mth = 1.60,2.40. To see the trends clearly only 1σ error bars are shown.

3.3 ∆t & mother-Daughter conditioning in the SSAR model

To test whether magnitude correlation become stronger if one considers pairs of events that are related, we now focus on the

magnitude correlation analysis for ∆t & M-D conditioning. The correlations that arise under ∆t & M-D conditioning are

shown in Fig. 4. The two randomization types produce vastly different results. For sub-catalog randomizing, Fig. 4 a), we see

no qualitative difference in the shape of δP (m0|∆t < y & M-D) compared to the unconditional case. Yet, the probability to5

encounter a magnitude difference in an interval around 0, i.e, a daughter event being similar in magnitude to the mother event,

is now up to four times higher for the smallest ∆t than for δP (m0) (Fig. 3). Even for δP (m0|∆t <∞ & M-D) there is a

significant increase in the excess of daughters that are on average the same size as the mother to about 2.6%. As before, this

excess comes at the expense of significantly smaller and larger daughter events. As Fig. 4 c) shows, a similar behavior occurs

for larger mth.10

In contrast, when estimating δP (m0|∆t < y & M-D) using full-catalog randomizing, Fig. 4 b), the distribution is qualita-

tively and quantitatively distinct compared to δP (m0). Specifically, Fig. 4 b) demonstrates that independent of the ∆t values,

the magnitudes of the daughter events tend to be on average larger than those of the mother events compared to what is expected

based on the null model. The associated probability increases from a minimum of 8% to over 20% for increasing values of ∆t.

As Fig. 4 d) shows, a similar behavior occurs for larger mth.15

As discussed above, the underlying difference between sub-catalog and full-catalog randomizing for ∆t & M-D condition-

ing is the frequency-magnitude distribution of the randomized daughter events (c.f., end of Sect.3.1). Thus, our observations

indicate that the non-trivial magnitude correlations as captured by sub-catalog randomizing are significant but smaller by up
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Figure 5. Magnitude correlations for the SSAR-SC catalog with ∆t conditioning for sub-catalog randomizing (left panels) and full-catalog

randomizing (right panels) for mth = 1.60,2.40. To see the trends clearly only 1σ error bars are shown.

to a factor of 6 for ∆ = 102s and mth = 2.4 compared to the mixture of trivial and non-trivial magnitude correlations mea-

sured by using full-catalog randomizing. This indicates that the trivial magnitude correlations arising from differences in the

frequency-magnitude distribution significantly outweigh the non-trivial ones under appropriate conditioning and play the more

dominant role.

While in our model simulations we can readily identify mother-daughter pairs, i.e., the ground truth is known, this is not5

the case for field data. Thus, for such catalogs — including the SC catalog — one would need to infer mother-daughter pairs

aka decluster the catalog first (Baiesi and Paczuski, 2004; Zaliapin et al., 2008; Marsan and Lengliné, 2008; Zaliapin and

Ben-Zion, 2013; Gu et al., 2013) in order to estimate the magnitude correlations for ∆t& M-D conditioning. As an alternative,

time conditioning alone has been used in the past (Lippiello et al., 2008; Davidsen and Green, 2011; Davidsen et al., 2012).

This is what is shown in Fig. 5. When comparing to Fig. 4, a significant decrease in amplitude of δP can be observed. This10

decrease is especially large for small mth. Yet, as before the trivial magnitude correlations arising from differences in the

frequency-magnitude distribution significantly outweigh the non-trivial ones.

To clarify the reason for the difference between the ∆t & M-D conditioning and the ∆t conditioning, we can examine the

ratio of event pairs within ∆t that are mother-daughter to all event pairs that fall within the time interval ∆t in the SSAR

model (Fig. 6). According to Fig. 6, in order to maximize the ratio of mother-daughter events one should choose subsequent15

event pairs that have a high mth and are close in time (small ∆t). This explains the differences between two different types of

conditioning shown in Fig. 4 and in Fig. 5, which become less pronounced for higher mth and smaller ∆t.

The aforementioned maximization comes with a trade-off; although a higher mth value captures more mother-daughter

pairs, the total number of selected event pairs goes down at the same time leading to higher statistical uncertainties. It is also

important to realize that the ratios shown in Fig. 6 are for the specific parameters used in our realization of the SSAR model20
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Figure 6. Ratio of total number of events satisfying ∆t < y & M-D to ∆t < y conditioning for the SSAR-SC catalog for different values of

mth.

(cf. Sect.2.1). Choosing different parameter values for c0 and τ0, for example, will effect the specific ratio even if one keeps

c0/τ0 constant, though the qualitatively behavior remains the same.

4 Discussion & Conclusion

Through a particular statistical measure (Sect. 3.1) we have shown how two different types of magnitude correlations between

subsequent events arise in the SSAR model (Sect. 3.3). Trivial correlations are largely a consequence of variations in the5

frequency-magnitude distribution, while this is not the case for non-trivial correlations, similar to what has been discussed in

the context of tectonic seismicity (Davidsen and Green, 2011). Both types of correlations can be estimated by using different

underlying null models, implemented here by the two different types of catalog randomizing. Given that magnitudes in the

SSAR model are not independent (as exemplified in Eq. 2), it does not come as a surprise that non-zero magnitude correlations

exist. We were able to explicitly show that it is indeed the mother-daughter pairs that are largely responsible for these corre-10

lations. Based on this, we were also able to show that one can increase the observed magnitude correlations by conditioning

on shorter time intervals and considering higher values of mth (c.f., Fig. 6); an important fact one can use when triggering

relations or declustering algorithms are unknown and only information on time intervals are available, such as in the case of

real world catalogs. When dealing with real-world catalogs one needs, however, to consider the effects due to magnitude of

completeness and short term aftershock incompleteness as well (Kagan, 2004; Moradpour et al., 2014; Hainzl, 2016).15

Finally, the significantly higher strength of the trivial correlations compared to the non-trivial correlations is the main out-

come of our analysis. Thus, when it comes to improving earthquake forecasting efforts our analysis leads us to believe that

looking at the time variations in the frequency-magnitude distribution could perhaps be a more fruitful approach then focusing

on non-trivial correlations. Using the SSAR model instead of the ETAS model in existing forecasting frameworks would be

one way to utilize this. This remains a challenge for the future.20
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