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Abstract4

Towards the end of the last century, B. Mandelbrot saw the importance, revealed5

the beauty, and robustly promoted (multi)fractals. Multiplicative cascades are closely6

related and provide simple models for the study of turbulence and chaos.7

For pedagogical reasons, but also due to technical difficulties, continuous stochastic8

models have been favoured over discrete cascades. Particularly important are the α,9

the β and the p model (Lovejoy and Schertzer (2013), Chapter 3, de Wijs (1951, 1953)).10

It is the aim of this contribution to introduce original concepts that shed new light11

on the latter paradigmatic cascade and allow key features to be derived in a rather12

elementary fashion.13

To this end, we introduce and study a discrete version of the p model which is based14

on a new kind of sampling. Technical machinery can be kept simple, therefore formulas15

are explicit, proofs extend standard arguments, and potential extensions are numerous.16

Thus the proposed line of investigation may enrich and simplify received multifractal17

analyses.18

Keywords: p model, binomial cascade, multifractals, sampling, law of large numbers19
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1 Introduction20

Cascades are straightforward and excellent models for divergent phenomena. That is,21

given some point, the mass concentrated at this point is distributed to a number of22

descendants. Straightforwardly, with a single starting point (the root) and repeated23

local bifurcations (all governed by the same mechanism), one obtains a tree-like and24

self-similar structure that can often be extended to a reasonable (multi)fractal limit25

(Shynkarenko 2019).26

Early examples of fractals were provided by, among others, mathematicians Weierstraß,27

Cantor and Peano. Later, upon studying dynamic systems, chaos and turbulence, physi-28

cists found similar patterns. Mandelbrot (1982, 1997, 1999) obtained a first synthesis29

when he established a strong link between fractal geometry and its applications in30

the sciences (physics and economics in particular) which has since been extended to31

“multifractal methodology” (Salat et al. 2017), general “critical phenomena” (Sornette32

2007), and asymptotic theory (Kendal and Jørgensen 2011).33

Moving from the objects involved to the processes generating them, cascades have come34

into focus (Schertzer and Lovejoy 2011) only recently. On the one hand, they are quite35

common. On the other hand, they are also a “key idea” conceptually (Lovejoy (2019),36

p. 76). That is, although a cascade’s components are rather primitive, they can easily37

be adapted to observable phenomena:38

The basic building block - a type of fork-like structure - can be chosen appropriately,39

the propagation mechanism may be deterministic or stochastic (the original p model vs.40

most other models), scales (and scale invariance) are closely related, and the approach41

works in spaces of (almost) any dimension. Endowed with an abundance of nonlinear42

processes, geophysics has been especially productive in this respect (see, in particular,43

Mandelbrot (1989), and Lovejoy and Schertzer (2007)), with contributions ranging from44

the atmosphere (climate and weather), wave dispersion and topography to geology and45

mining (e.g., Serinaldi (2010), Lovejoy and Schertzer (2013), Agterberg (2019)).46
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Pioneering work dates back to the first half of the 20th century, in particular to Richard-47

son (1922) and Kolmogorov (1941). A little later, de Wijs (1951, 1953) established the48

basic p model (see also Mandelbrot (1974), p. 329): For n = 0, start with the uniform49

distribution on the unit interval. Next, the proportion 1 − p is uniformly distributed50

on the interval (0, 1/2), and the proportion p is uniformly distributed on the interval51

(1/2, 1). In the same vein, one splits the masses further (locally), i.e., mass (1 − p)2
52

to the interval (0, 1/4), mass (1 − p)p to the interval (1/4, 1/2), mass p(1 − p) to the53

interval (1/2, 3/4), and mass p2 to the interval (3/4, 1), etc. It is well-known that the54

corresponding limit distribution function, with the exception of p = 1/2, has no density55

(Salem 1943).56

Curiously enough, Mandelbrot (1999), p. 87, says that the p model appeared “in an57

esoteric corner of mining engineering science.” However, if one thinks about it, ores58

are the result of an enrichment process. Such a process may be modelled as a sequence59

of binary decisions, i.e., a cascade that is biased in favour of some mineral. Owing to60

Salem’s result, it is to be expected that the limit of such a process should be some61

kind of fractal, involving a certain amount of polarization (a natural mineral deposit62

vs. dead rock, say). For a graphic example see Hill (1999).63

Since the basic building block used in the p model is a binary bifurcation (each point64

bequeaths its mass to two descendants with proportions p and 1 − p, respectively),65

the corresponding cascade should be named after Bernoulli. Unfortunately, the terms66

‘binomial cascade’ (and ‘binomial measure’) have caught on in the literature, since such67

a process traditionally yields a binomial distribution. This article shows that this need68

not be the case.69

It is instructive to compare a Bernoulli cascade with the classical Galton board: Each70

ball running down the board also makes a binary decision at every step. However, since71

each bifurcation is counterbalanced immediately afterwards - with exactly two possible72

paths the ball may take merging at another point - extreme imbalances are rather73

unlikely, and a smooth density occurs at the bottom of the board. More precisely, one74

starts with unit mass at a single point, and a Bernoulli random variable B(p) governing75

4

https://doi.org/10.5194/npg-2019-17
Preprint. Discussion started: 2 September 2019
c© Author(s) 2019. CC BY 4.0 License.



the binary decision of moving left (failure) or right (success). k successes in n trials can76

only occur if k − 1 successes in n− 1 trials are followed by a success, or if k successes77

in n − 1 trials are followed by a failure in the last trial. Thus paths split and merge78

successively, leading to Pascal’s triangle and the corresponding binomial distribution79

B(n, p). Asymptotically, one gets a smooth normal distribution with most of the mass80

close to some centre of gravity, which was first proved by De Moivre and Laplace, and81

later extended to the central limit theorem (CLT, note the name).82

Quite obviously, there are two kinds of opposing ‘forces’ at work: On the one hand,83

bifurcations split some material and cause variance. Thus they dissipate matter effi-84

ciently, but may also concentrate it in some places (veins of gold, for instance). On85

the other hand, ‘mergers’ amass materials and eliminate variance. Combining material86

from various sources, they also blend their input (errors, for instance) efficiently. A87

particular important kind of merging is averaging which, at least typically, leads to88

continuous unimodal densities.89

In order to achieve some kind of polarization, it seems a good idea to avoid ‘mergers’ and90

to look for distribution functions that are not differentiable, i.e., cascades in general,91

and the classical p model in particular. Beyond that, an elementary discrete cascade92

with similar properties also in the finite case would be even more appropriate. After93

giving a more abstract motivation in the next section, such a process will be defined94

and studied rigorously throughout the rest of this article.95

The basic idea is to establish a rather strong ‘force’ that is able to separate different96

classes of object. More precisely, starting with two distinct populations exponential97

sampling is able to prevent them from merging. It turns out that the corresponding98

deterministic cascade forms ‘threads’ that interweave in a systematic way defining a99

‘multiplicative triangle.’ The corresponding distributions are discrete versions of well-100

known continuous distributions with ‘sewn-in’ binomial components (section 3).101

Expected values and variances are derived in section 4, asymptotic properties are dis-102

cussed in section 5, and section 6 is devoted to populations with finite variances. In103
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particular, the variance can be decomposed into several components. Finally in section104

7, we give a number of potential extensions.105

It might be mentioned that the new mathematical structures are as basic as the bi-106

nomial distribution B(n, p) and its siblings. Indeed the finite Weaver distributions107

W (n, p) and their limit W (p) are straightforward consequences of a Bernoulli cascade.108

Technically, the crucial difference is a slightly more sophisticated way of sampling109

that ‘augments’ Pascal’s triangle to a multiplicative pattern. The latter ‘triangle’ is110

equivalent to local Bernoulli bifurcations and brings out the fractal nature of zero-one111

decisions.112

2 Theoretical motivation113

Traditional statistics rests on several main theorems, in particular CLTs and laws114

of large number (LLN). Given an iid sequence X1, X2, . . . of random variables, the115

basis of Frequentist statistics is some LLN, i.e., the convergence of X̄n = Sn/n =116

∑n
i=1 Xi/n towards a single number. However, in calculus, convergence of a sequence117

x1, x2, . . . is a strong assumption, and, typically, not even the (much weaker) Cesaro-118

limit limn→∞ x̄n = limn→∞(
∑

xi/n) exists. In dynamic system theory, also, convergence119

towards a point is a rare exception.120

In probability theory, the iid model represents a single population and a large, poten-121

tially infinite sample from this population. To avoid convergence, it is thus straightfor-122

ward to consider two populations (distributions), say, H0 and H1, and a sample that123

fluctuates between them. In other words, if one switched between the populations skil-124

fully, X̄n should not converge. In the jargon of dynamic system theory, the (unique)125

limit may be replaced by a (more complicated) attractor.126

However, a constant switching rate won’t do: If j observations from H0 are followed127

by j observations from H1, and so forth, the arithmetic mean of this sequence will128

converge, since the ‘influence’ of another j observations on X̄n becomes insignificant129

with increasing n. Yet if 2j observations from H0 are followed by 2j+1 observations from130
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H1, etc., one then obtains the desired effect. (On a logarithmic scale, taking ld = log2,131

the ratio ld((2j+1)/2j) = j + 1 − j = 1 is a constant. Thus, there, one switches at132

a constant rate, ‘1’ indicating that H0 alternates with H1.) Since 20 + 22 + 24 + . . .133

observations are from H0, and 21 + 23 + 25 + . . . observations are from H1, given a134

sample of size 2n− 1, considerably more than one half of these observations come from135

H0(H1), if n is an odd (even) number. Thus the arithmetic mean cannot ‘settle’ in136

some point.137

Altogether, we obtain a stochastic process that is inhomogeneous in a particular way.138

Its paths depend on the concrete distributions of H0 and H1, and on the way switching139

is done. The aim of this article is to explore straightforward consequences of this setting.140

3 The weaver’s distribution141

In order to keep things finite, suppose for the rest of this contribution that first moments142

exist, such that without real loss of generality µ(H0) = 0 and µ(H1) = 1 are the143

expected values of the two distributions involved.144

A particularly simple way to alternate between H0 and H1 is to take the next batch145

of 2j observations (j = 0, 1, . . .) from population H0 with probability 1 − p, and from146

population H1 with probability p. To avoid trivialities, we assume 0 < p < 1 throughout147

this contribution. Thus, one creates a hierarchical random system (a particular random148

probability measure) composed of a choice mechanism which selects the population in149

charge, and a realization mechanism which provides observations from the population150

selected.151

Definition 1. (Exponential sampling)152

Given two distributions H0 and H1, define exponential sampling as follows: A sample153

of size 2n − 1, i.e., X1; X2, X3; X4, X5, X6, X7; . . . ; X2n−1 , . . . , X2n−1, consists of n sub-154

samples, where the ith sub-sample X2i−1 , . . . , X2i−1 has size 2i−1 for i = 1, . . . , n.155

The selection mechanism B chooses H1 with probability p, and H0 with probability 1−p156

(independent of anything else, 0 < p < 1). Thus, with these probabilities, the ith sub-157
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sample comes from H1 or H0, respectively. Finally, denote by Bn the collection of n158

such independent choices.159

With probability p, the first observation comes from H1, and with probability 1 − p,160

the first observation comes from H0. Thus, conditional on this choice, the expected161

value observed is either µ(H1) = 1 or µ(H0) = 0, and the unconditional mean is162

µ = pµ(H1) + (1− p)µ(H0) = p.163

With probability p, the second and third observations both come from H1, and with164

probability 1− p, these observations both come from H0. Thus, after two choices, the165

overall situation is as follows:166

Number of observations Number of observations Probability Conditional

from H0 from H1 Mean

1+2 0 (1− p)2 0

1 2 (1-p) p 2/3

2 1 p (1-p) 1/3

0 3 p2 1

167

The unconditional mean does not change, since

µ = p2 +
1

3
p(1− p) +

2

3
(1− p)p = p2 + p(1− p) = p.

Similar to the binomial distribution, every path splits in two. However, unlike the168

binomial distribution, the paths do not combine. Rather, like threads, they interweave.169

Illustration: Binomial structure, local splitting (cascade), and global weaving

·

↙ ↘

0 1

↙ ↘ ↙ ↘

00 (01, 10) 11

. . .

·

↙ ↘

0 1

↙ ↘ ↙ ↘

00 01 10 11

. . .

·

↙ ↘

0 1

↙ ↘↙ ↘

00 01 10 11

. . .
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In a sense, the difference between splitting and weaving is minor: Given a binary string,170

the former operation adds the next cipher to the right (a suffix), whereas the latter171

operation adds the next cipher to the left (a prefix).172

After n steps (selections, choices), one thus obtains an interesting distribution:173

Theorem 2. (The weaver’s distribution)174

Given the situation described in Definition 1, suppose the first moments are µ(H0) = 0175

and µ(H1) = 1, respectively.176

For n = 1, 2, . . . let Sn =
∑2n−1

i=1 Xi, X̄n = Sn/(2
n − 1), and Yn = E(X̄n|Bn). Some177

elementary properties of these processes are:178

(i) Yn assumes the values yk = yk,n = k/(2n − 1) for k = 0, 1, . . . , 2n − 1, and the179

difference between the realizations of Yn is a constant; more precisely,180

yk+1 − yk = k+1
2n−1

− k
2n−1

= 1/(2n − 1) for k = 0, . . . , 2n − 2181

(ii) Suppose Bn = bn, then bn = (bn−1, . . . , b1, b0) is a binary vector of length n,

i.e., bi−1 = 0 if in the ith selection, B chooses H0, and bi−1 = 1 otherwise. Note

that bi−1 can also be interpreted as the ith digit in the binary representation of a

natural number k ∈ {0, . . . , 2n − 1}, i.e., k =
∑n−1

i=0 bi2
i. Then the probability pk

at the point yk is given by

pk = p#1(1− p)#0 = p
∑n−1

i=0 bi(1− p)n−∑n−1
i=0 bi ≥ 0,

where #1 and #0 denote the number of ones and zeros in bn, respectively. In182

particular, every pk can be written in the form pk = pj(1 − p)n−j with some183

j ∈ {0, . . . , n}.184
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(iii) More generally and explicitly, the distributions of Bn, E(Sn|Bn), and Yn are

(k)10 (k)2 bn E(Sn|bn) yk,n pk

0 0 (0, . . . , 0) 0 0 (1− p)n

1 1 (0, . . . , 0, 1) 1 1/(2n − 1) p(1− p)n−1

2 10 (0, . . . , 0, 1, 0) 2 2/(2n − 1) p(1− p)n−1

3 11 (0, . . . , 0, 1, 1) 3 3/(2n − 1) p2(1− p)n−2

4 100 (0, . . . , 0, 1, 0, 0) 4 4/(2n − 1) p(1− p)n−1

. . . . . . . . . . . . . . . . . .

2n − 5 1 . . . 1011 (1, . . . , 1, 0, 1, 1) 2n − 5 (2n − 5)/(2n − 1) pn−1(1− p)

2n − 4 1 . . . 100 (1, . . . , 1, 0, 0) 2n − 4 (2n − 4)/(2n − 1) pn−2(1− p)2

2n − 3 1 . . . 101 (1, . . . , 1, 0, 1) 2n − 3 (2n − 3)/(2n − 1) pn−1(1− p)

2n − 2 1 . . . 10 (1, . . . , 1, 0) 2n − 2 (2n − 2)/(2n − 1) pn−1(1− p)

2n − 1 1 . . . 1︸ ︷︷ ︸ (1, . . . , 1) 2n − 1 1 pn

n times

Proof: (i) is obvious since E(Sn|Bn) assumes the values 0, 1, . . . , 2n−1, and (ii) follows185

from (iii). (iii) holds by construction, or since by the binomial theorem
∑2n−1

k=0 pk =186

∑n
j=0

(
n
j

)
pj(1− p)n−j = 1. ♢187

We say that Yn has a weaver’s distribution, Yn ∼ W (n, p), with parameters n and p.188

Since powers of two play a major role, ‘binary distribution’ would also be a suitable189

choice - much in line with ‘Bernoulli’ and ‘binomial’ distributions, which are closely190

related.191

Theorem 3. (The geometric triangle)192

Given the assumptions and the notation of the last theorem, let bn = sij be a vector193

with exactly i ones and j zeros, such that i + j = n. Moreover, set f = p/(1− p).194
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(i) The probabilities p(·) of the concatenated vectors (sij, 1), (1, sij), (sij, 0), and (0, sij)

are:

p(sij, 1)

p(sij, 0)
=

p(1, sij)

p(0, sij)
=

pi+1(1− p)j

pi(1− p)j+1
=

p

1− p
= f

In particular, pk+1/pk = p/(1− p) = f for any two adjacent realizations yk, yk+1,

and k = 0, 2, . . . , 2n−2. The probabilities p(·) of the concatenated vectors (0, 1, sij), (1, 0, sij),

etc., are

p(0, 1, sij)

p(1, 0, sij)
=

p(0, sij, 1)

p(1, sij, 0)
=

p(sij, 0, 1)

p(sij, 1, 0)
=

pi+1(1− p)j+1

pi+1(1− p)j+1
= 1

(ii) For n = 1, 2, . . ., p0 = p0(n) = (1− p)n is the probability that only H0 is chosen,195

and pk = p0 · f#1 for k = 0, . . . , 2n − 1, where, again, #1 is the number of196

ones in the binary representation of k. This means that the vector of probabilities197

pn = (p0, p1, . . . , p2n−1) can be written as follows:198

pn = p0 · (1; f ; f, f 2; f, f 2, f 2, f 3; f, f 2, f 2, f 3, f 2, f 3, f 3, f 4; . . . ;

f, f 2, f 2, f 3, . . . , fn−2, fn−1, fn−1, fn) = p0 · fn

(iii) More explicitly, with p0 = 1, the vector fn has dimension 2n and obeys the recur-

sive relation f0 = 1, and fn = (fn−1, f · fn−1) for n = 1, 2, . . . Thus its components

can be calculated with the help of the following scheme, which may be interpreted

as a geometric version of Pascal’s triangle.1

n = 0 : 1

n = 1 : 1 | f

n = 2 : 1 | f || f | f 2

n = 3 : 1 | f || f | f 2 ||| f | f 2 || f 2 | f 3

. . .

1Pascal named his triangle “triangle arithmetique.” Thus, at least in French, it is straightforward
to name the above multiplicative structure “triangle geometrique.” Since row n has 2n entries, the
geometric triangle is a ‘real’ triangle on the ld scale.
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Every row has 2n entries. Note that the left and the right of every | are ‘separated’199

by the factor f in the following sense: First [|], 1/f = f/f 2 = f 2/f 3 = . . .,200

or, equivalently, 1 · f = f ; f · f = f 2; f 2 · f = f 3, etc. Second [||], (1, f) · f =201

(f, f 2); (f, f 2) ·f = (f 2, f 3), (f 2, f 3) ·f = (f 3, f 4), etc. Third [|||], (1, f, f, f 2) ·f =202

(f, f 2, f 2, f 3); (f, f 2, f 2, f 3) · f = (f 2, f 3, f 3, f 4); etc.203

(iv) One may construct successive rows of (iii) in a rather elementary way: Start with204

a single 1 in the very first row. Then, fork every entry of row n into two, by205

multiplying each entry with 1 and f upon moving left and right, respectively. It is206

quite remarkable that this local (cascade) view is equivalent to the global (weaving)207

view taken in the definition.2208

(v) Applying the logarithm base f to every entry of the geometric triangle yields the

exponents, i.e., the following numbers:

n Sum sn

0 0 0

1 0 | 1 1

2 0 | 1 || 1 | 2 4

3 0 | 1 || 1 | 2 ||| 1 | 2 || 2 | 3 12

. . .

In general, s0 = 0, and sn+1 = 2sn + 2n for n = 0, 1, . . . That is, one obtains the209

sequence 0, 1, 4, 12, 32, 80, 192, 448, 1024, 2304, . . .210

Proof: (i) is proven in the statement of the theorem. However, (i) is also obvious, since211

the positions of the numbers 0 and 1 are irrelevant for the probabilities in question. In212

particular, for k = 0, 2, . . . , 2n − 2, the binary representations of k and k + 1 differ in213

exactly one position.214

(ii) Using Theorem 2 (ii), one obtains immediately215

2It may be noted that the ‘weaver’ is similar to the ‘baker’ in dynamic system theory. In particular,
in both cases a locally defined transformation is closely related to global patterns. Theorem 10 connects
the stochastic and the dynamic points of view explicitly.
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pk = p#1(1− p)#0 = p#1(1− p)n−(#1) = (1− p)n p#1

(1−p)#1 = p0f
#1

216

(iii) is a consequence of self-similarity. Since the binary representations of 0 and 2n−1,217

and of 1 and 2n−1 + 1, etc., differ only by a single one,218

pn = (p0, . . . , p2n−1−1; p2n−1 , . . . , p2n−1) = (p0, . . . , p2n−1−1; fp0, fp1, . . . , fp2n−1−1)

= (pn−1, fpn−1) = (p0fn−1, fp0fn−1) = p0(fn−1, f fn−1)

Since, again by (ii), also pn = p0fn, the desired result follows.219

One may also prove (iii) by induction on n: First, p1 = fp0, and thus (p0, p1) =220

(p0, fp0) = p0(1, f). Second, the binary representation of any k ∈ {0, . . . , 2n − 1} is221

a vector bn = (bn−1, . . . , b0). Let #1 be the number of ones in bn. With probability222

1−p, the next selection leads to (0,bn), and with probability p this selection results in223

(1,bn). Since in the first case, the number of ones does not change, and in the second224

case, the number of ones increases by one, we obtain on the one hand (to the left),225

pi,n+1 = p0,n+1f
#1 = (1−p)n+1f#1 = (1−p)p0,nf

#1 = (1−p)pi,n for 0 ≤ i ≤ 2n−1. This226

is tantamount to fn being reproduced as the first half of fn+1. (Upon moving from n to227

n+1, the exponent of f does not change.) On the other hand (to the right), we obtain228

pi,n+1 = p0,n+1f
(#1)+1 = (1− p)n+1f#1p/(1− p) = p(1− p)nf#1 = pp0,nf

#1 = ppi,n for229

2n ≤ i ≤ 2n+1 − 1. The additional factor f means that the second half of fn+1 has to230

be f · fn.231

(iv) The proof is by induction on n. For n = 0 there is nothing to prove, and the232

equivalence is obvious for n = 1. By the inductive assumption, the vector occurring on233

line n, having length 2n, has the form wn = (ln−1, rn−1) = (ln−1, f · ln−1) where ln−1 is234

a vector of length 2n−1. In other words, rk/lk = f for k = 1, . . . , 2n−1.235

Local splits (see the definition given in the statement of the theorem) produce a vector236

wn+1 of length 2n+1. Since, locally, a step to the left reproduces the numbers, and a237

step to the right multiplies any two entries on tier n with the same factor f , we also238

have, because of the inductive assumption, w2n+k/wk = f for k = 1, . . . , 2n. Therefore239

wn+1 = (ln, f · ln).240
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(v) Straightforward induction on n yields the recursive formula. ♢241

Note that the multiplicative triangle lies at the heart of the observation that “the best242

known multifractal constructions use multiplicative operations” (Mandelbrot (1999),243

p. 32).244

Theorem 4. (Further properties of the weaver’s distribution).245

Given the assumptions and the notation of Theorem 2, one obtains246

(i) The probabilities corresponding to row n can be constructed by the following simple

scheme:

1

1− p | p

(1− p)2 | p(1− p) || p(1− p) | p2

(1 − p)3 | p(1 − p)2 || p(1 − p)2 | p2(1 − p) ||| p(1 − p)2 | p2(1 − p) || p2(1 − p) | p3

. . .

Global interpretation [weaving]: pn+1 = ((1 − p)pn, ppn). Local interpretation247

[Bernoulli cascade]: Start with mass 1 in the very first (the zeroth) row. Then,248

fork every probability of row n into two, by multiplying each entry with 1− p (on249

the left) and p (on the right), respectively.250

(ii) For p > 1/2, the sequence p0, fp0, f
2p0, . . . increases. Accordingly, for p < 1/2,251

we have f < 1. Therefore the sequence p0, fp0, f
2p0, . . . decreases. If p = 1/2,252

all probabilities coincide, i.e. we obtain the discrete uniform distribution on the253

values yk = k/(2n − 1); pk = 1/2n for k = 0, 1, . . . , 2n − 1.254

(iii) If p > 1/2, the mode occurs in one, and the median is larger than 1/2. Vice versa,255

if p < 1/2, the mode occurs in zero, and the median is less than 1/2.256

(iv) Symmetry: Suppose Y ∼ W (n, p) and Y
′ ∼ W (n, 1 − p). Then P (Y = yk) =257

P (Y
′
= y2n−1−k) for k = 0, . . . , 2n − 1.258
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(v) Distribution function F of W (n, p): For all n ≥ 0 and k = 0, . . . , 2n define vk,n =259

k/2n. For every fixed n, the mass left and right of vk,n (0 < k < 2n) is constant260

for every m ≥ n, and so is the value of F (vk,n). In particular, F (v1,1) = F (1/2) =261

(1− p) for all n ≥ 1; F (v1,2) = F (1/4) = (1− p)2, F (v3,2) = F (3/4) = 1− p2 for262

all n ≥ 2; F (v1,3) = F (1/8) = (1− p)3; F (v3,3) = F (3/8) = (1− p)2 + p(1− p)2,263

F (v5,3) = F (5/8) = (1− p) + p(1− p)2, F (v7,3) = F (7/8) = 1− p3 for all n ≥ 3,264

etc.265

(vi) The total mass pk in every interval [vk,n, vk+1,n] (k = 0, . . . , 2n − 1) remains the266

same for all m ≥ n. For m = n it is located at the point yk = yk,n = k/(2n − 1).267

In the interest of consistency let y0,0 = p and p0 = 1 if n = 0.268

Thus W (n, p) may be interpreted as a discretisation of the density in the corre-269

sponding classical p model.270

(vii) Distribution of the jumps (stick heights): Fn has 2n points of discontinuity. If271

p = 1/2 there is a constant jump height h = 1/2n. Otherwise, there are n + 1272

different jump sizes, given by hj = pj(1−p)n−j for j = 0, . . . , n, having a binomial273

distribution. That is, there is 1 jump of size h0 = (1 − p)n, there are
(

n
1

)
= n274

jumps of size h1 = (1− p)n−1p, etc.275

Proof:276

(i) For n = 1, 2, . . ., we have p0 = p0(n) = (1− p)n for the leftmost probability (only277

H0 is selected). Applying the geometric triangle yields the result.278

(ii) We have p < 1/2 ⇒ f > 1. Thus the mass in y1 exceeds the mass in y0 = 0 by279

the factor f , and the result follows straightforwardly.280

(iii) is due to self-similarity. The claim for the mode can also be shown directly, since,281

if p < 1/2, we have (1− p)n < (1− p)n−kpk < pn.282

(iv) Exchanging the roles of zeros and ones, and replacing p by 1− p yields the same283

distribution. In other words: The reflection of W (n, p) across the axis of symmetry284

y = 1/2 is W (n, 1− p).285
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(v) follows immediately from the geometric triangle. Geometrically speaking, the unit286

interval on the horizontal axis is successively halved. At the same time, the unit287

interval on the vertical axis is successively divided according to the ratio f . Thus,288

for finite n ≥ 1, one obtains a step function with 2n jumps.289

(vi) holds because of the local interpretation of the geometric triangle: Each split can290

be interpreted as distributing the mass pk in yk to the points y2k,n+1 and y2k+1,n+1291

in that same interval. Graphically, the stick of height pk in yk,n is broken into two292

sticks of heights (1−p)pk and p ·pk, located in y2k,n+1 and y2k+1,n+1, respectively.293

(vii) is due to construction. ♢294

Remark: In the last theorem, the probabilities in (i) are the same as those in the classi-295

cal p model (de Wijs 1951, 1953). Its ‘multifractal interpretation’ is due to Mandelbrot296

(see, in particular, Mandelbrot (1989), section 5). Note, however, that the weaver’s297

distribution is discrete and based on exponential sampling. Thus it obtains 2n values.298

Also note that there are two kinds of scale: the first could be named ‘discrete time,’299

i.e., the total number of observations t = 2n, the second would be ‘logarithmic time,’300

that is, the number of selections, ld 2n = n.301

4 Moments302

Theorem 5. (Expected value). Let Yn ∼ W (n, p). Then, for every n ≥ 1, the expected303

value of Yn is p.304

Proof: Let µ = EYn. One may decompose µ into a sum of n terms t0, . . . , tn−1,305

where the index j counts the number of zeros in the corresponding binary vector306

bn = (bn−1, . . . , b0), that is, j = n−∑n−1
i=0 bi. More precisely, µ =

∑n−1
j=0 tj =

∑n−1
j=0 pj ·y[j]307

where y[j] is the sum of all realizations with corresponding probability mass pj.308

j = 0: There is only one vector of dimension n without the entry zero, i.e., bn =309

(1, . . . , 1). The corresponding probability is pn and thus t0 = 1 · pn
310
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j = 1: We have to consider the sum of all realizations of Yn that occur with probability311

p1 = pn−1(1− p), i.e. all binary sequences of length n, having exactly one zero. Thus312

y[1] =
(
2n − 1− 20 + 2n − 1− 21 + 2n − 1− 22 + . . . + 2n − 1− 2n−1

)
/(2n − 1)

= (n2n − n−
n−1∑

i=0

2i)/(2n − 1) = (n(2n − 1)− (2n − 1))/(2n − 1) = n− 1

More intuitively, the number 2n − 1 is represented by a vector of n successive ones in313

the binary system. In the last equation we are looking for all sequences of length n314

with exactly one zero. There are exactly n such sequences, with the zero placed in each315

possible position. Thus their sum is n(2n − 1) − (2n − 1) = (n − 1)(2n − 1). Dividing316

by 2n − 1 yields the result, and t1 = (n− 1)pn−1(1− p).317

In general, there are
(

n
j

)
ways to place exactly j zeros in a binary string of length n.318

Without the zeros, the sum of these sequences would be
(

n
j

)
(2n−1). However, for every319

‘chain’ of zeros we have to subtract
∑n−1

i=0 2i = 2n−1, and there are j
n
·
(

n
j

)
such chains.320

Thus321

y[j] =

((
n

j

)
(2n − 1)− j

n

(
n

j

)
(2n − 1)

)
/(2n − 1) =

(
n

j

)
−
(

n− 1

j − 1

)
=

(
n− 1

j

)
,

and therefore tj =
(

n−1
j

)
pn−j(1− p)j.322

Putting everything together with the help of the binomial theorem, we get:323

µ =
n−1∑

j=0

tj = pn +
n−1∑

j=1

(
n− 1

j

)
pn−j(1− p)j = pn +

n−1∑

j=0

(
n− 1

j

)
pn−j(1− p)j − pn

= p
n−1∑

j=0

(
n− 1

j

)
p(n−1)−j(1− p)j = p ♢

After the first step, the distribution of the conditional expected values is B(p). For any324

random variable X with values in the unit interval, and EX = p, this distribution has325

maximum variance p(1 − p). Upon weaving, probability mass is successively concen-326

trated within the unit interval, and thus variance decreases. On the other hand, every327

bifurcation may increase the variance term.328

17

https://doi.org/10.5194/npg-2019-17
Preprint. Discussion started: 2 September 2019
c© Author(s) 2019. CC BY 4.0 License.



Both effects combined could result in a (net) monotone decrease of variance up to a329

certain point. For concrete values, see the table on p. 26. Moreover, there should be a330

limit variance σ2 = cp(1− p) with c < 1.331

Theorem 6. (Variance). Let Yn ∼ W (n, p). Then the variance of this r.v. is

σ2(Yn) =

∑n−1
i=0 22i

(2n − 1)2
p(1− p) (1)

Proof: If we interpret k =
∑n−1

i=0 bi as a binary number of length n, the i + 1th332

step of the above selection scheme defines its ith digit (from the right to the left,333

i = 0, . . . , n − 1). Since the digits are independent by construction, every step con-334

tributes a certain amount to the overall variance, independent of all of the other steps.335

This means that the total variance can be decomposed into n parts σ2
0, . . . , σ

2
n−1 that336

sum to the total variance. The variance contributed by the ith digit is the difference337

between (? · · ·?1? · · ·?) and (? · · ·?0? · · ·?), where the question marks denote arbitrary338

other binary digits (the same for both numbers).339

As a typical example, consider the case n = 3. The first step introduces variance that

can be assessed by means of considering two adjacent realizations of Y3, e.g., the values

0 = (000)2 and 1/7 = (001)2/(111)2. This results in

σ2
0 = p

(
1

7
− 1

7
p

)2

+ (1− p)

(
0− 1

7
p

)2

=
1

49
p(1− p) =

(
1

7

)2

p(1− p)

By the same token, the variance produced by the second step can be measured by two

realizations that differ only in the second component of their binary representation,

e.g., the values 0 = (000)2 and 2/7 = (010)2/(111)2. This gives

σ2
1 = p

(
2

7
− 2

7
p

)2

+ (1− p)

(
0− 2

7
p

)2

=
4

49
p(1− p) =

(
2

7

)2

p(1− p)

Finally, since the variance produced by the last step (consisting of 4 bifurcations) is

the same for all their descendants, it suffices to consider just one of these forks, e.g.,
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(00)2 and the values 0 = (000)2 and 4/7 = (100)2/(111)2. This leads to

σ2
2 = p

(
4

7
− 4

7
p

)2

+ (1− p)

(
0− 4

7
p

)2

=
16

49
p(1− p) =

(
4

7

)2

p(1− p)

Putting everything together, we obtain σ2(Y3) = σ2
0 +σ2

1 +σ2
2 = (1+4+16)p(1−p)/72.

Therefore, in general,

σ2
i = p

(
2i

2n − 1
− 2i

2n − 1
p

)2

+ (1− p)

(
0− 2i

2n − 1
p

)2

= (2i)2p(1− p)/(2n − 1)2

gives σ2(Yn) =
∑n−1

i=0 σ2
i = p(1− p)

∑n−1
i=0 ( 2i

2n−1
)2. ♢340

Note that the numerator shows an additive analogue to factorials: For factorials, n! =341

(n− 1)! · n holds. For the numerator, we have
∑n

i=0(2
i)2 =

∑n−1
i=0 22i + 22n.342

Corollary 7. EY 2
n exists, and so do all higher moments EY j

n for j ≥ 1.343

Proof: For fixed n, all realizations yk are in the unit interval. Thus yk ≥ y2
k ≥ y3

k ≥ . . . ,344

with strict inequality if 0 < yk < 1. Therefore 0 < EY i
n < EY j

n if i > j. ♢345

Lemma 8. The limit of the variance term is 1
3
p(1− p)346

Proof: Considered as a function of n, σ2(Yn) is monotonically decreasing. Since it is347

also nonnegative, it is clearly convergent. Moreover, a straightforward induction on n348

shows that
∑n−1

i=0 22i = (22n − 1)/3, thus349

σ2(Yn)

p(1− p)
=

∑n−1
i=0 22i

(2n − 1)2
=

22n − 1

3(22n − 2n+1 + 1)
=

(22n − 1)/22n

3(22n − 2n+1 + 1)/22n
,

which converges to 1/3 if n →∞. ♢350
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5 Limit distribution351

Since, due to Theorem 4, the distribution function Fn is well-known for all values352

v(k, n), it is easy to pass to the limit. The limit function F obviously is a distribution353

function.354

Theorem 9. (The weaver’s hem)355

Let Y be the limit of (Yn), defined by its distribution function F = limn→∞ Fn. For356

obvious reasons, the corresponding distribution, i.e., Y ∼ W (p), may be called the357

weaver’s hem.358

F is continuous, and the moments are EY = p and σ2(Y ) = p(1−p)/3. Except for the359

case p = 1/2, when the discrete uniform distribution becomes the continuous uniform360

distribution on the unit interval (and thus F is the identity function there), F has no361

density with respect to Lebesgue measure.362

Proof: Using the notation of Theorem 4, for fixed n, all mass is concentrated at the363

points yk,n = k/(2n − 1), (k = 0, . . . , 2n − 1), and the jump heights there (Theorem 4364

(vii)) go to zero if n →∞. Thus F has to be continuous.365

Because of EX =
∫ 1

0
(1−G(x))dx for any distribution function G on the unit interval,366

and Fn → F , we also have EY = p for the weaver’s hem. An analogous argument for367

the second moment and Theorem 7 yields σ2(Y ) = p(1− p)/3.368

Rather heuristically, if p > 1/2, consider the interval [0, 1/2[. The mass of 1− p avail-369

able there is shifted to the left. Thus the distribution function grows rapidly at first,370

but hardly grows near 1/2. Now consider the interval ]1/2, 1]. Because a mass of p is371

available there and systematically shifted to the left, the distribution function grows372

rapidly near 1/2, but very slowly near 1. Thus the distribution function has a sharp373

point at 1/2 and cannot be differentiated there. The same holds for all v(k, n). Since374

the set of these points lies dense in the unit interval, there should be no density.375

Formally, consider the interval [vk,n, vk+1,n] about yk = yk,n. For fixed n, this interval

has length vk+1,n− vk,n = (k + 1− k)/2n = 1/2n. By Theorem 3 (ii), the density in the
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neighbourhood of yk is given by

gk,n = 2npk = 2np0(n)f#1 = 2n(1− p)nf#1 = 2np#1(1− p)#0, (2)

where #0 and #1 are the number of zeros and ones in the binary representation of k,376

respectively. If p = 1/2, gk,n = 1, and thus W (1/2) is the uniform distribution on [0, 1].377

In general, compare Equation (2) and the classical De Moivre-Laplace theorem. In the378

latter case, one considers
(

n
k

)
pk(1− p)n−k, which approaches a limit 0 < c < ∞, since379

the convergence of pk(1−p)n−k toward zero is counterbalanced by a sequence that goes380

to infinity at the same speed, i.e., an appropriate binomial coefficient (also depending381

on n and k).382

Here, every iteration (n → n + 1) doubles the number of values yk, and thus the first383

factor is 2n instead of
(

n
k

)
. Moreover, due to Theorem 4, every yk,n is the starting384

point of a cascade, i.e., a sequence of local bifurcations in the corresponding interval385

[vk,n; vk+1,n]. After one iteration, the probabilities at y2k,n+1 and y2k+1,n+1, i.e., (1−p)pk386

and p · pk, respectively, differ by the factor f . After l iterations, the probabilities at387

the leftmost value y2lk,n+l and the rightmost value y2lk+(2l−1),n+l differ by f l. If w.l.o.g.388

mass is systematically shifted to the right (p > 1/2), we have f > 1, and thus the389

ratio of these probabilities soon exceeds any bound. Even more so, 2l(1 − p)lpk → 0390

and 2lplpk →∞ in every interval [vk,n; vk+1,n] if l →∞. Thus, there cannot be a limit391

density. ♢392

Remarks:393

(i) Note that the ‘roughness’ of the density (measured by f l) grows at the same rate394

as the number of intervals. Thus ln fn/ ln 2n = ln f/ ln 2 is a constant, the fractal395

dimension.396

(ii) Studying the p model, Riedi (1999) also builds on dyadic representations and397

proves that the limit density does not exist (if p ̸= 1/2). His first proof is similar398

to ours, his second proof is based on the distribution function.399
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Theorem 10. The weaver’s hem and Mandelbrot’s ‘binomial measure’ are equivalent.400

Proof: Mandelbrot’s ‘binomial measure’ is the limit of the p model, splitting the mass401

(locally) according to the geometric triangle. Thus, the p model’s Bernoulli cascade402

and weaving (see Theorem 4, (vi)) assign the same mass to every interval [vk,n; vk+1,n].403

Since these intervals shrink to zero, the limit distributions have to coincide. ♢404

6 The complete process405

So far, we have mainly considered the distribution of the (conditional) expected values,406

Yn = E(X̄n|B), or, equivalently, the case of two one-point distributions located in µ(H0)407

and µ(H1), respectively. Looking at X̄n, however, there is not just variance between the408

populations H0 and H1, that we have considered so far, but also within each of these409

populations, σ2(H0) = σ2
0 and σ2(H1) = σ2

1, say, contributing to the total variance.410

In complete generality, i.e., without specific distributional assumptions or any par-

ticular sampling scheme, let n = n0 + n1, and suppose that n0 independent obser-

vations Z1, . . . , Zn0 come from the first population, and n1 independent observations

Z
′
1, . . . , Z

′
n1

come from the second population. At this point of sampling, the combined

distribution is a mixture M giving weight n0/n to the sample from H0, and weight

n1/n to the sample from H1. In particular,

X̄n =

∑n
i=1 Xi

n
=

∑n0

i=1 Zi +
∑n1

i=1 Z
′
i

n
=

n0

n

∑n0

i=1 Zi

n0

+
n1

n

∑n1

i=1 Z
′
i

n1

Thus we get the expected value (total mean)411

µ = EX̄n = E[E(X̄n|M)] =
n0

n
µ(H0) +

n1

n
µ(H1), (3)
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and variance412

σ2
n = σ2(E(X̄n|M)) + E(σ2(X̄n|M))

=
n0

n
(µ(H0)− µ)2 +

n1

n
(µ(H1)− µ)2 +

n0

n

σ2
0

n0

+
n1

n

σ2
1

n1

(4)

Theorem 11. (Expected value and variance)413

With the assumptions of Theorem 2 , EX̄n = p and

σ2(X̄n) = p(1− p) +
σ2

0 + σ2
1

2n − 1
(5)

Proof: Sophisticated bookkeeping. Given exponential sampling, after n selections, there

are 2n mixed distributions Qk (k = 0, . . . , 2n−1) with the proportion λk = k/(2n−1) =

yk of observations coming from H1. In other words, Qk is a Bernoulli distribution B(yk).

Distribution Qk occurs with probability pk, where pk comes from a W (n, p) distribution.

If Zk ∼ Qk, and µk = EZk, Equation (3) translates into

µ =
2n−1∑

k=0

pkµk =
n−1∑

j=0

pjy[j] = p (6)

due to Theorem 5, using the notation of that theorem, that is, y[j] is the sum of all414

µk = yk = E(X̄n|Bn = (bn−1, . . . , b0)) with corresponding probability mass pj. In415

other words, the sum extends over all vectors (bn−1, . . . , b0) containing exactly j zeros,416

j = n−∑n−1
i=0 bi.417

The first part of Equation (4), capturing the variance between the Zk, reads

σ2(E(X̄n|Bn)) =
2n−1∑

k=0

pk(µk − µ)2 =

∑n−1
i=0 22i

(2n − 1)2
p(1− p)
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due to Theorem 6. Finally, the second part of Equation (4), accounting for the variance418

within the mixtures, becomes419

E(σ2(X̄n|Bn)) =
2n−1∑

k=0

pkσ
2(X̄n|Bn = (bn−1, . . . , b0)))

For every fixed k = (bn−1, . . . , b0)2, Qk is a mixture with k =
∑n−1

i=0 bi2
i observations420

from H1. Using µ(H0) = 0 and µ(H1) = 1, Equation (3) simplifies to µk = λk =421

k/(2n − 1) and the variance of Zk, again according to Equation (4), is422

σ2(X̄n|Bn = (bn−1, . . . , b0)) = (1− λk)λ
2
k + λk(1− λk)

2 + (1− λk)
σ2

0

2n − 1− k
+ λk

σ2
1

k

= (1− λk)λk +
σ2

0

2n − 1
+

σ2
1

2n − 1

Altogether we obtain the preliminary result

σ2(X̄n) =

∑n−1
i=0 22i

(2n − 1)2
p(1− p) +

2n−1∑

k=0

pk

(
λk(1− λk) +

σ2
0 + σ2

1

2n − 1

)
(7)

Now423

2n−1∑

k=0

pkλk(1− λk) =
2n−1∑

k=0

p
∑n−1

i=0 bi(1− p)n−∑n−1
i=0 bi

k

2n − 1

2n − 1− k

2n − 1

=
1

(2n − 1)2

2n−2∑

k=1

p
∑n−1

i=0 bi(1− p)n−∑n−1
i=0 bi

(
n−1∑

i=0

bi2
i

)(
n−1∑

i=0

(2n − 1− bi2
i)

)

=
p(1− p)

(2n − 1)2

{
1 · (2n − 2)(1− p)n−2 + 2 · (2n − 3)(1− p)n−2

+ 4 · (2n − 3)p(1− p)n−3 + . . . + (2n − 3) · 2 · pn−2 + (2n − 2) · 1 · pn−2
}
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The last term in brackets can be rearranged:424

{. . .} = (1− p)n−2[1 · (2n − 2) + 2 · (2n − 3) + 4 · (2n − 5) + . . . + 2n−1(2n−1 − 1)]

+p(1− p)n−3[3 · (2n − 4) + 5 · (2n − 6) + . . . + (2n−1 + 2n−2) · (2n − 1− (2n−1 + 2n−2))]

+ . . . + pn−2[(2n−1 − 1)2n−1 + . . . + (2n − 5) · 4 + (2n − 3) · 2 + (2n − 2) · 1]

=

(
n− 2

0

)
(1− p)n−2

(
n−1∑

j=0

2j(2n − 1− 2j)

)
+

(
n− 2

1

)
p(1− p)n−3

(
n−1∑

j=0

2j(2n − 1− 2j)

)

+ . . .

(
n− 2

n− 3

)
pn−3(1− p)

(
n−1∑

j=0

2j(2n − 1− 2j)

)
+

(
n− 2

n− 2

)
pn−2

(
n−1∑

j=0

2j(2n − 1− 2j)

)

=
n−1∑

j=0

2j(2n − 1− 2j)(1− p + p)n−2 =
n−1∑

j=0

2j(2n − 1− 2j)

so that
2n−1∑

k=0

pkλk(1− λk) = p(1− p)
n−1∑

j=0

2j(2n − 1− 2j)/(2n − 1)2

and Equation (7) becomes425

σ2
n(X̄n) =

∑n−1
i=0 22i

(2n − 1)2
p(1− p) +

2n−1∑

k=0

pkλk(1− λk) +
2n−1∑

k=0

pk
σ2

0 + σ2
1

2n − 1

=

∑n−1
i=0 22i

(2n − 1)2
p(1− p) +

∑n−1
j=0 2j(2n − 1− 2j)

(2n − 1)2
p(1− p) +

σ2
0 + σ2

1

2n − 1
(8)

= p(1− p) +
σ2

0 + σ2
1

2n − 1
,

where the last equation is due to the next technical lemma. ♢426

Lemma 12. ∑n−1
i=0 22i

(2n − 1)2
+

∑n−1
j=0 2j(2n − 1− 2j)

(2n − 1)2
= 1

Proof: All one has to do is rearrange the terms:427
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n−1∑

i=0

22i +
n−1∑

j=0

2j(2n − 1− 2j) = 20 + 22 + 24 + . . . + 22(n−1)

+ 20(2n − 1− 20) + 21(2n − 1− 21) + 22(2n − 1− 22) + . . . + 2n−1(2n − 1− 2n−1)

= 20 + 20(2n − 1− 20) + 22 + 21(2n − 1− 21) + 24 + 22(2n − 1− 22)

+ . . . + 22(n−1) + 2n−1(2n − 1− 2n−1)

= (2n − 1) + 2(2n − 1) + . . . + 2n−1(2n − 1)

= (2n − 1)(1 + 2 + . . . + 2n−1) = (2n − 1)(2n − 1) ♢

It may be helpful to display some concrete values:

Denom. Weaving Mixing of H0 and H1 Proportions

n 2n − 1 (2n − 1)2
∑n−1

i=0 (2i)2
∑n−1

i=0 2i(2n − 1− 2i) Weaving ↔ Mixing

1 1 1 1 0 1 ↔ 0

2 3 9 4 5 4/9 = 0.4̄ ↔ 0.5̄ = 5/9

3 7 49 21 28 0.43 ↔ 0.57

4 15 225 85 140 0.37̄ ↔ 0.62̄

5 31 931 341 620 0.35 ↔ 0.65

6 63 3969 1365 2604 0.34 ↔ 0.66

With respect to weaving and mixing, this means that one starts (n = 1) with a B(p)428

distribution having expected value p and variance p(1− p) on the unit interval. In the429

next steps, this ‘available’ variance is then distributed between weaving and mixing,430

since due to Theorem 11 the latter variances add up to p(1− p) for n ≥ 2.431

With n increasing, Theorems 9 and 11 govern the asymptotic behaviour. That is, the432

variance component due to weaving (i.e., the first term in Equation (8)) decreases433

towards 1/3, which has the consequence that the component due to mixing (i.e., the434

second term in Equation (8)) has to increase to 2/3. Moreover, since the variance within435
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the populations (i.e., the third term in Equation (8)) vanishes, we obtain the following436

result:437

Theorem 13. (Limit distribution)438

Given the assumptions and the notation of Theorem 2, if H0 and H1 both have finite439

variances, then B(p) is the limit distribution of the inhomogeneous (unconditional)440

stochastic process (X̄n).441

Proof: If there were just one population, H1, say, X̄n would converge to µ(H1) = 1442

almost surely. Because H0 makes X̄n smaller, at least in expectation, 1 has to be443

the largest cluster point. Since, for the same reasoning, 0 is the lowest cluster point,444

P (X̄n /∈ [0, 1]) → 0 if n →∞.445

Now, because of the last theorem, for every n, the process is centered in EX̄n = p, and446

its variance is given by Equation (5). Obviously, (σ2
0 + σ2

1)/(2
n − 1) → 0. Thus we are447

left with a limit distribution that is restricted to the unit interval, centered in p and448

has maximum variance p(1− p). These properties imply the result. ♢449

Intuitively, the latter results are also quite obvious: If the variance within the popula-450

tions vanishes, it is just the variance between the populations that is asymptotically451

relevant. Since after all H0 is selected with probability 1 − p, and H1 is selected with452

probability p, the total variance is p(1−p). One third of this variance is due to weaving453

(i.e., the variance in the Weaver’s hem), the remainder stems from mixing H0 and H1454

(i.e., the mean variance of the mixtures Qk). For finite n, weaving - or, equivalently, the455

Bernoulli cascade - produces a W (n, p) distribution with realizations yk,n = k/(2n−1),456

k = 0, . . . , 2n− 1. Subsequently, every yk,n splits up into a B(yk,n) distribution. Owing457

to equation (8), their combined variance is p(1− p) as well.458

Of course, if the populations H0 and H1 are not too complicated, it is possible to study459

the process (X̄n) in much more detail.460
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7 Extensions461

There are extensions on several tiers:462

(i) Looking at Sections 2 and 3, it is straightforward to search for rather explicit463

formulas for higher moments, e.g. skewness or kurtosis of W (n, p) and W (p).464

(ii) The binomial distribution is strongly connected with the arithmetic (Pascal’s)465

triangle, and has a number of associated distributions: in particular, the normal,466

the multinomial, and the geometric distributions. Analogously, the weaver’s dis-467

tribution is strongly connected with a multiplicative structure (or the Binomial468

cascade), and apart from Mandelbrot’s limit distribution, other distributions are469

associated with it. In particular, two generalizations of the geometric distribution470

are straightforward:471

Suppose the process stops upon encountering the first one. If this occurs in step

i, the classical geometric distribution takes the realization i occurring with prob-

ability (1 − r)i−1r. Here, it is more natural to consider the value 2i−1. Suppose

the random variable T has such an ‘extended’ geometric distribution. Then

ET = r + 2r(1− r) + 4r(1− r)2 + 8r(1− r)3 + . . . = r
∞∑

i=0

2i(1− r)i.

Since
∑∞

i=0 2i(1 − r)i =
∑∞

i=0(2 − 2r)i is a geometric series that converges if

its argument 2 − 2r is less than 1, convergence occurs if and only if r > 1/2.

Moreover, the same kind of reasoning yields that

ET 2 = r + 4r(1− r) + 16r(1− r)2 + 64r(1− r)3 + . . . = r
∞∑

i=0

4i(1− r)i

converges if r > 3/4.472

Thus, altogether, there are three different kinds of behaviour:473

a) If r > 3/4, then ET and σ2(T ) both exist.474

b) If 1/2 < r ≤ 3/4, ET exists, but not σ2(T ).475
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c) If r ≤ 1/2, then neither the first nor the second moment of T exists.476

In a sense, it is also straightforward to take the realizations of the weaver’s dis-

tribution, that is yi = 2i−1/(2i − 1) for i = 1, 2, . . . This approach yields

ET
′
= r

∞∑

i=1

2i−1

2i − 1
(1− r)i−1 ≤ r

∞∑

i=1

(1− r)i−1 = r/r = 1.

Since the series is monotonically increasing, it converges for every r > 0.477

(iii) Looking at Theorem 11, if the variance of the populations is infinite, the last term478

in (5) need not vanish asymptotically. Thus, in the limit, the variances of weaving479

and mixing are augmented by variance components stemming from within the480

populations. It would be interesting to know how this phenomenon changes the481

limit distribution. In particular, this approach offers a constructive way to deal482

with populations that have nonexistent second moments.483

(iv) Other multiplicative schemes come to mind, in particular involving dependen-484

cies among the random variables, and with time-dependent pn (e.g., Mandelbrot485

(1974), Serinaldi (2010), Lovejoy and Schertzer (2013), Cheng (2014)). It would486

also be interesting to learn more about the relationship between local cascades487

and global weaving (or shuffling) in general.488

(v) Pascal’s triangle is additive, whereas the geometric triangle is multiplicative. An489

alternative view would be that splitting and merging alternate in Pascal triangle,490

whereas there are only splits in the geometric triangle, since the latter can be491

interpreted as a Bernoulli cascade. In general, the dual operations of splitting and492

merging could alternate in more complicated (deterministic or random) ways.493

(vi) With respect to the two-population interpretation it is straightforward to alter-494

nate between H0 and H1: The first observation comes from H0, then two observa-495

tions come from H1, another four observations come from H0, etc. However, this496

deterministic way to proceed introduces an asymmetry, since it makes a difference497

which population comes first.498
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Moreover, the latter regime is a special case of the following, more general (and499

also more promising) Markov scheme. That is, given two populations and the500

present state, one switches according to the following transition matrix501

to: H0 H1

from H0 s 1− s

H1 1− s s

502

Here, s = 1 corresponds to the classical situation (all the observations come from503

one of the two populations), and s = 0 corresponds to deterministic switching at504

the highest frequency possible (always).505

It is possible to characterize the behaviour of X̄n qualitatively, and w.l.o.g let506

µ(H0) = 0 and µ(H1) = 1, respectively. On the one hand, if switching is rare, some507

Hi is selected and the arithmetic mean of the sample is ‘apparently converging’508

towards µ(Hi). These (long) phases of stability are interrupted by sudden switches509

(within a few time periods on the log t scale) to the other population. In other510

words, 0 and 1 are strongly ‘attracting’ (X̄n). On the other hand, if switching511

is frequent, the process spends most of the time oscillating between H0 and H1,512

i.e., in a subset of the unit interval, and may even converge (just think of the513

sequence 0, 1, 0, 1, . . .). Thus there seem to be many possible limit distributions514

‘between’ some constant c ∈ [0, 1] and some Bernoulli B(p).515

Moreover, following the ‘deterministic’ track, it is straightforward to consider

different (possibly time-dependent) switching rates. Thinking along probabilistic

lines, asymmetric switching should be studied, that is, transition matrices




s 1− s

1− s
′

s
′


 with s ̸= s

′
.

(vii) If switching occurs very often, or if a constant switching regime (on the log t-scale)516

is employed (n observations from H0, n observations from H1, etc.), we are back to517

the classical theory (X̄n converging to a fixed number). If switching occurs seldom,518

in particular, if sampling is exponential, X̄n converges in distribution. It would be519
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interesting to know more about the ‘line’ separating these two situations. What520

are necessary and sufficient conditions for either kind of convergence of X̄n?521

Seen a bit differently, calculus deals with convergent series, i.e., (xi) converges522

by itself. Classical probability theory deals with the case of existing expected523

value, i.e., the statistic
∑

Xi/n converges. Throughout this contribution,
∑

Xi/n524

fluctuates in a (stochastically) regular way, generating a simple fractal structure.525

Therefore, further extensions seem very plausible: e.g., by considering other, more526

complicated summation schemes (Volkov 2001), employing more complex switch-527

ing regimes, a larger number of populations, or multidimensional distributions.528

Higher levels of complexity may thus be reachable in a rather systematic manner.529
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