
Response to Reviewer #1

First of all, I would like to thank this reviewer for his or her thoughtful comments and
the potential simplifications he or she has pointed out.

A crucial statement can found towards the end of his / her report: “I don’t understand
why H0 and H1 are variables, and their expectations µ(H0) and µ(H1) and moments
are mentioned.” Therefore the referee thinks that, upon selection, Xi is a constant
(being either zero or one).

However, the author treats the general case of two populations with nontrivial distri-
butions and different expected values µ(H0) 6= µ(H1). The assumption that µ(Hm) =
m, (m = 0, 1) is only made in order to simplify the formulas. In particular, m, the
index of the population, should not be confused with some realization Xi = xi.

Despite this misconception, it is instructive to understand the main argument of
the referee, i.e., to look at the trivial example of degenerate (constant) populations.
Moreover, since the random variables Xi are organized in groups (subsamples), it is

indeed helpful to consider Zj =
∑2j−1

i=2j−1 Xi (j = 1, . . . , n) and the decomposition

Sn =
∑n

j=1 Zj =
∑n

j=1

∑2j−1
i=2j−1 Xi.

However, it is not true that Zj only assumes the values 2j−1 and 0 which would imply
that Sn ∈ {0, . . . , 2n − 1}, and Sn could be considered some “variant of binomial
variable.” Alas, since the Xi’s have arbitrary distributions, Sn = sn may be any real
number.

Rather, due to exponential sampling, the Weaver’s distribution W (n, p) extends B(n, p)
considerably. Since the basic building block of both distributions is the Bernoulli B(p),
they are related, but there is also a marked difference (see Definition 1 and Theorems
2-4). In particular, the paths defining the Weaver only split and never merge (see the
Illustration, p. 8), and the limit distribution W (p) is a fractal instead of being the
Normal.

Nevertheless, since the selection process B = (B0, . . . , Bn−1) is a vector of independent
Bernoullis, there is some “built-in” Binomial distribution. My proofs of Theorems 5, 6
and the first part of Theorem 11 rely on the construction process of W (n, p), display
the “built-in” cascade and/or weaving mechanism, and use the associated Binomial.

The referee is right that they can be simplified. The crucial observation is that the
total variance in Sn (or, equivalently, in X̄n) stems from the independent Bernoulli
selections (H0 or H1) and the variance in the distributions L(Xi). Since the Yn’s are
conditional expectations, only the selection procedure is of relevance to them, and thus
there is the elegant representation

(2n − 1)yk,n = E(Sn|(b0, . . . , bn−1)) =
n∑

j=1

bj−12
j−1 ∈ {0, . . . , 2n − 1},

mentioned in Theorem 2. This representation may be used in Theorem 5,

E(Yn) = E(
n∑

j=1

Bj−12
j−1)/(2n − 1)) =

1

(2n − 1)

n∑
j=1

E(Bj−12
j−1)

=
1

(2n − 1)

n∑
j=1

2j−1E(Bj−1) = p,

1



and in Theorem 6:

σ2(Yn) = σ2(
n∑

j=1

Bj−12
j−1)/(2n − 1)) =

1

(2n − 1)2

n∑
j=1

σ2(Bj−12
j−1)

=
1

(2n − 1)2

n∑
j=1

(2j−1)2σ2(Bj−1) =
p(1− p)
(2n − 1)2

n∑
j=1

22(j−1)

The expression
∑n

j=1 22(j−1)/(2n − 1)2 has a nice geometric interpretation that is used
(implicitly) in the proof of Lemma 12.

1 2 4 . . . 2n−1 ∑
1 1 2 4 . . . 2n−1 2n − 1
2 2 4 8 . . . 2n 2(2n − 1)
4 4 8 16 . . . 2n+1 4(2n − 1)
. . . . . . . . . . . . . . . . . . . . .

2n−1 2n−1 2n 2n+1 . . . 22(n−1) (2n−1)(2n − 1)∑
2n − 1 2(2n − 1) 4(2n − 1) . . . (2n−1)(2n − 1) (2n − 1)2

That is,
∑n

j=1 22(j−1) is the trace of the above matrix and
∑n

j=1 22(j−1)/(2n− 1)2 is the
proportion of the trace relative to the whole square.

For the first part of Theorem 11 note that EX̄n = ESn/(2
n − 1), and

ESn = E

 n∑
j=1

2j−1∑
i=2j−1

Xi

 =
n∑

j=1

2j−1∑
i=2j−1

EXi =
n∑

j=1

2j−1∑
i=2j−1

p = (2n − 1)p,

since EXi = p · µ(H1) + (1 − p) · µ(H0) = p. (All random variables of some group j
have distribution H1 with probability p, and H0 with probability 1− p. Thus these are
also the corresponding probabilities of any single Xi (i = 1, . . . , 2n − 1).)

The second part of Theorem 11 considers the variance σ2(X̄n). It turns out that it is
crucial to study Zj, which is the sum of 2j−1 random variables. Selection j chooses
H1 with probability p, and H0 with probability 1 − p. Given Hm (m = 0, 1), the
conditional variance of Zj is σ2(Zj|Hm) = 2j−1σ2(Xi|Hm) = 2j−1σ2

m, since the Xi’s are
independent.

Moreover, E(Zj|Hm) = 2j−1m, and EZj = 2j−1p. A variance decomposition of Zj

yields

σ2(Zj) = p(E(Zj|H1)− EZj)
2 + (1− p)(E(Zj|H0)− EZj)

2

+pσ2(Zj|H1) + (1− p)σ2(Zj|H0)

= p(2j−1 − 2j−1p)2 + (1− p)(0− 2j−1p)2 + p2j−1σ2
1 + (1− p)2j−1σ2

0

= 22(j−1)p(1− p)(1− p+ p) + 2j−1pσ2
1 + 2j−1(1− p)σ2

0
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which implies

σ2(X̄n) = σ2

(
Sn

2n − 1

)
=

1

(2n − 1)2
σ2(Sn) =

1

(2n − 1)2

n∑
j=1

σ2(Zj)

=

∑n
j=1 22(j−1)

(2n − 1)2
p(1− p) +

∑n
j=1 2j−1

(2n − 1)2
pσ2

1 +

∑n
j=1 2j−1

(2n − 1)2
(1− p)σ2

0

= σ2(Yn) +
pσ2

1 + (1− p)σ2
2

2n − 1
. (1)

Consistently, the variance within the population washes out quickly, and one obtains
limn→∞ σ

2(X̄n) = σ2(Y ) = p(1 − p)/3. This means, that the limit distribution of X̄n

is the same as that of Yn, i.e., W (p). In other words, within the populations, the LLN
applies. Therefore, in the limit, only the variance caused by exponential sampling (the
selection process) is relevant.

Although equation (7) is wrong and should be replaced by the above equation (1), the
idea of Theorem 13 is still valid, and thus that Theorem may also be “repaired:”

Starting with Yn ∼ W (n, p), one may replace each realization yk,n = k/(2n − 1) by
a Bernoulli r.v. Ck,n ∼ B(yn,k). The r.v. Ck,n ◦ Yn assumes the values zero and one,
since each yk,n is mapped to 1 w.p. yk,n and to 0 w.p. 1 − yk,n. Since the location of
the distribution does not change if on splits the realizations yk,n in the aforementioned
way, E(Ck,n ◦ Yn) = EYn = p, and thus Ck,n ◦ Yn ∼ B(p). For fixed n, one might think
of the collection of all Ck,n (k = 0, . . . , 2n − 1) as a family of “dual distributions” to
W (k, n). In the paper, this train of thought is called “mixing,” and it is still true that
the total variance p(1− p) is the sum of “weaving and mixing.”

In a nutshell, owing to the “elementary” construction principles used throughout the
manuscript, explicit formulas can be given for the crucial parameters of the processes
and their limits. Because of Theorem 10, at least some of these results can be applied to
the received situation. Moreover, Theorem 10 demonstrates that a multifractal discrete
structure (i.e., W (p)) derived in an iterative “bottom up” way1 may be equivalent to
a structure obtained with a similar iterative “top down” procedure.2 At least to the
author, this looks like an exemplar of a more general sandwich principle.

Of course, to some extent, it is a matter of taste how many of the extensions should
be discussed in Section 7.

Finally, the author agrees with the reviewer that the core of this contribution is a
mathematical analysis of an important nonlinear model that is applied in many fields.

1starting with B(p) or point mass at p, if one defines W (k, 0) = εp
2starting with the uniform distribution on the unit interval
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