
Response to Dr. Grudzien’ Comments

Dear Dr. Grudzien,

We thank you for carefully reading the manuscript and for the valuable feedback.
We have added the references in your comment 1) and corrected the typos mentioned in

your comments 2) and 4).
About your comment 3): “Page 21, lines 19 - 25: I think this discussion is very interesting

and useful to the reader. I would like this to be expanded to elaborate on the consequences
for the analysis of paleo-climate in terms of the contributions of di↵erent processes to past
states, and how this may a↵ect the inferences we may wish to make based on such models.
Likewise, I would like this to elaborate further on the more realistic case of nonlinear ob-
servation operators relating proxy measurements to the actual climate system, and how the
reconstruction of the climate and parameters will be a↵ected by these additional complica-
tions. I think the work will benefit from a longer conclusion and discussion of the implications
of the results for more realistic modeling settings.”

We extended our discussion of the implications of our results for paleoclimate recon-
structions by adding a subsection ‘5.4 Implications for paleoclimate reconstructions’. This
section covers steps to be taken towards more realistic observation operators and discusses
the implications for reconstructing physically meaningful state estimates and inference of
parameters for energy sinks and sources. In turn, we shortened the respective paragraph in
the conclusions.

5.4 Implications for paleoclimate reconstructions
Our analysis shows that assessing the well-posedness of the inverse problem of parameter
estimation is a necessary first step for paleoclimate reconstructions making use of physically
motivated parametric models. When the problem is ill-posed, a straightforward Bayesian
inference will lead to biased and unphysical parameter estimates. We overcome this issue
by using regularized posteriors, resulting in parameter estimates in the physically reasonable
range with quantified uncertainty. However, it should be kept in mind that this approach
relies strongly on high quality prior distributions.

The ill-posedness of the parameter estimation problem for the model we have considered
is of particular interest because the form of the nonlinear function g✓(u) is not arbitrary but
is motivated by the physics of the energy budget of the atmosphere. The fact that wide
ranges of the parameters ✓i are consistent with the “observations” even in this highly ideal-
ized setting indicates that surface temperature observations themselves may not be su�cient
to constrain physically-important parameters such as albedo, graybody thermal emissivity,
or air-sea exchange coe�cients separately. While state-space modeling approaches allow re-
construction of past surface climate states, it may be the case that the associated climate
forcing may not contain su�cient information to extract the relative contributions of the
individual physical processes that produced it. Further research will be necessary to under-
stand whether the contribution of e.g. a single process like graybody thermal emissivity can
be reliably estimated from the observations if regularized posteriors are used to constrain the
other parameters of g✓(u).

If the purpose of using the SEBM is to induce physical structure into the state recon-
structions without specific concern regarding the parametric form of g, re-parametrization or
nonparametric Bayesian inference can be used to estimate the form of the nonlinear function
g but avoid the ill-posedness of the parameter estimation problem. This is an option if the
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interest is in the posterior of the climate state and not in the individual contributions of
energy sink and source processes.

State-of-the-art observation operators in paleoclimatology are often non-linear and con-
tain non-Gaussian elements (Haslett et al., 2006; Tolwinski-Ward et al., 2011). A locally
linearized observation model with data coming from the interpolation of proxy data can be
used in the modeling framework we have considered, along with the assumption of Gaussian
observation noise. Alternatively, it is also possible to first compute o↵-line point-wise recon-
structions by inverting the full observation operator, potentially interpolating the results in
time, and using a Gaussian approximation of the point-wise posterior distributions as obser-
vations in the SEBM (e.g. Parnell et al., 2016). We anticipate that such simplified observation
operators will limit the accuracy of the parameter estimation, but that the regularized pos-
terior would still be able to distinguish the most likely states and quantify the uncertainty
in the estimation. Directly using non-linear, non-Gaussian observation operators requires a
more sophisticated particle filter as optimal filtering is no longer possible. Such approaches
will increase the computational cost and face di�culties avoiding filter degeneracy.

The last paragraph in the conclusions is replaced by:
This work shows that it is necessary to assess the well-posedness of the inverse problem
of parameter estimation when reconstructing paleoclimate fields with physically motivated
parametric stochastic models. In our case, the natural physical formulation of the SEBM is
ill-posed. While climate states can be reconstructed, values of individual parameters are not
strongly constrained by the observations. Regularized posteriors are a way to overcome the
ill-posedness but retain a specific parametric form of the non-linear function representing the
climate forcings.
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Response to the second referee

Dear Referee,

We thank you for carefully reading the manuscript and for the valuable feedback. In the

following, we respond to your comments and suggestions.

Reviewer’s comments: Paleoclimate reconstruction seems to be an interesting and non-

standard question. So it might be worthy to give some details on how the SEBM is formulated,

for example, what do each parameter ✓ stands for. It is also better to give some references on

why the specific parameters are chosen. For example, it seems that data are available with

time-interval 4 = 0.01 (what is the time unit here?). But is this practically true?

The SEBM follows the atmospheric model from Fanning and Weaver (1996), which con-

tains parameterizations for incoming shortwave radiation, outgoing longwave radiation, ra-

diative air-surface flux, sensible air-surface heat flux, and the latent heat flux into the atmo-

sphere. The parametrizations contain terms of 0th, 1st, and 4th order, which are aggregated

together such that roughly the 0th order terms correspond to incoming shortwave radiation

and albedo e↵ects, the 1st order terms correspond to air-sea heat (energy) exchange, and the

4th order terms correspond to longwave radiative transfer expressed as graybody emissivity.

The prior distributions of ✓ aggregate the contributions of the di↵erent energy sources and

sinks according to their parameterized polynomial order using the parameter and uncertainty

estimates from Fanning and Weaver (1996). This first guess is adjusted using estimates of the

current earth energy balance from Trenberth et al. (2009) to increase the physical consistency

of the estimates. Thereby, at the equilibrium temperature, the contribution of the individual

parameterized processes is very close to the estimates from Trenberth et al. (2009).

It should be noted that our parameterizations and the corresponding prior distributions

are idealized. For example, spatial variations of the parameters are not yet included. How-

ever, we do not anticipate that increasing the realism of the SEBM would reduce the ill-

posedness, as it would lead to a more complex parameter dependence structure without

increasing the number of available (paleo-)observations.

We have briefly explained the prior range and model structure in the paragraphs in

lines 28-30 on page 3 and 7-13 on page 4. We add the sentence “The nonlinear function

g✓(u) aggregates parametrizations from Fanning and Weaver (1996) for incoming shortwave

radiation, outgoing long-wave radiation, radiative air-surface flux, sensible air-surface heat

flux, and the latent heat flux into the atmosphere according to their polynomial order.” to

this description as additional clarification of the model structure.

The time unit is year. We add a sentence ‘and one time unit represents a year” to line

6 in page 4. The time-interval 4 = 0.01 represents about 4 days. In practice, missing or

temporally integrated observations should be expected. Missing observations can be incor-

porated easily in our model, and would increase the reconstruction uncertainty similar to

the reduction of the observed nodes (cf. Section 5.1). To include integrated observations,

the observation operator can be interpolated (please see a new ’Section 5.4’ in the revised

manuscript in response to the first referee).

Reviewer’s comments: While I agree the Fisher information matrix may be ill-conditioned,

but I don’t see immediately why the strong regularization approach is the right or natural

way to fix it. The numerical results show that the regularized posterior has obvious biases,
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and sometimes close to being the prior. The strong regularization used here might be the

cause of this. An alternative approach might be using the following version instead of (21)

pN(✓|u, y) / p(✓)↵[p✓(u)]
1/N

(1)

where ↵ is a parameter in [0, 1], and it can be tuned for a better posterior.

We thank the reviewer for the above alternative approach, which is in line with our

strongly regularized posterior (with ↵ = 1), and it aims to balance the contributions of the

prior and the likelihood. As we admitted in the original manuscript, (page 12, line 16-17) the

factor 1/N might not be optimal. However, it is not clear how to tune the optimal ↵ or the

factor 1/N , and the development of a strategy for optimal regularization factors is beyond

the scope of the current study. Therefore, we postpone it to future work. We have added a

comment in the manuscript about this alternative approach.

The need of a strongly regularized posterior is due to the degenerate likelihood, which is

indicated by the ill-conditioned Fisher information matrix, as demonstrated numerically in

Section 3.2 for di↵erent data sizes. In this case, the regularization by a prior in the standard

Bayesian approach is not su�cient (as indicated by the Bernstein-von Mises theorem in

the asymptotic setting). Therefore, we need a stronger regularization that increases the

contribution of the prior.

Reviewer’s comments: Page 9, Fisher information matrix: since most NPG readers are

likely to be geoscientists, maybe you should explain that in statistics, Fisher information

dictates the asymptotic inference di�culty and give references. Also, there should be some

explanations on why this matrix is ill-conditioned, not just some simulation plots.

While we agree with the reviewer that the Fisher information matrix dictates the asymp-

totic inference, we would prefer not to distract the readers to asymptotic inference, particu-

larly because this manuscript focuses on non-asymptotic study.

Following the reviewer’s suggestion, we added an intuitive argument on why the matrix

is ill-conditioned on page 9 line 17: “As N ! 1, the Fisher information matrix converges,

by ergodicity of the system, to its expectation
�
�t��2

f E[(Aun)
�kAT

T C
TCAT (Aun)

�l
]
�
k,l=0,1,4

,

where the matrices A, AT and C, arising in the spatial-temporal discretization, are defined

in Section A1. Intuitively, neglecting these matrices and viewing the vector un as a scalar,

this expectation matrix could be reduced to (�t��2
f E[uk

nu
l
n])k,l=0,1,4, which is ill-conditioned

because un has a distribution concentrated near one with a standard deviation at the scale

of 10
�2

(see Figure 1).”

Reviewer’s comments: Figure 2. The figure caption below ”Data size log10 N” is garbled.

This happens to many figures later on as well. This might be a problem with my own

computer/printer. But you better check.

We checked the captions, but garbled captions did not appear on our computers.

Reviewer’s comments: Page 11, what is ui? And it is better to define uc and �o with

mathematical terms.

In Eq. (18), the subindex i in ui indices the time. In the revised manuscript, ui is replaced

by un since n is used throughout the manuscript. To avoid confusion of notation, we rewrote

uc as uc. Since uc and �o denote the mean and standard deviation of the observations, we

believe that mathematical formulas for them are not necessary. In particular, they would

lead to notational complexity.
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Reviewer’s comments: Page 13, I think Markov chain might be too abstract a term for

NPG. I think you can replace it with MCMC for the same meaning.

We change the title of Sect. 4.1. to “Diagnosis of the Markov chain Monte Carlo algo-

rithm”. However, in the following MCMC refers to the method while Markov chain refers to

the output of the MCMC algorithm. Thus, replacing Markov chain by MCMC throughout

the section would be wrong and we still use Markov chain in the revised manuscript.

Reviewer’s comments: Page 18, line 2, there shouldn’t be parenthesis for ✓0, ✓1.
We clarify the previous formulation by replacing it with “the correlations between ✓4 and

✓0 as well as ✓1 are weakened”.

Reviewer’s comments: Page 29, line 7, ”see e.g. [”. You miss some content here.

Thanks for finding the typo. The correct form is “(see e.g. Doucet and Johansen, 2011)”.

References

Fanning, A. F. and Weaver, A. J.: An atmospheric energy-moisture balance model: Clima-

tology, interpentadal climate change, and coupling to an ocean general circulation model,

J. Geophys. Res. Atmos., 101, 15 111–15 128, 1996.

Trenberth, K. E., Fasullo, J. T., and Kiehl, J.: Earth’s Global Energy Budget, Bull. Amer.

Meteor. Soc., 90, 311–324, 2009.

3


