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Abstract. An intelligent method is presented for locating microseismic source_based on particle swarm optimization (PSO)
concept. It eliminates microseismic source locating errors caused by inaccurate velocity model of the earth medium. The
method uses as the target of PSO a global minimum of the sum of squared discrepancies between differences of modeled
arrival times and differences of measured arrival times. The discrepancies are calculated for all pairs of detectors of a seismic
monitoring system, Then, the adaptive PSO algorithm is applied to locate the microseismic source and obtain optimal value
of the P-wave velocity. The PSO algorithm adjusts inertia weight, accelerating constants, the maximum flight velocity of
particles, and other parameters to avoid the PSO algorithm trapping by local optima during the solution process. The origin
time of the microseismic event is estimated by minimizing the sum of squared discrepancies between the modeled arrival
times and the measured arrival times. This sum is calculated using the obtained estimates of the microseismic source
coordinates and P-wave velocity. The effectiveness of the PSO algorithm was verified through inversion of a theoretical
model and two analyses of actual data from mine blasts in different locations. Compared with the classic least squares
method, the PSO algorithm displays faster convergence and higher accuracy of microseismic source locating. Moreover,
there is no need to measure the microseismic wave velocityin advance: the PSO algorithm eliminates the adverse effects

caused by error in the P-wave velocity when locating a microseismic source using traditional methods.

1. Introduction

Microseismic monitoring technology can be used for effective locating rockruptures caused by rock burst, coal and gas
outburst, water inrush, and other coalmine disasters. In recent years it was also used in early warning systems (Li et al.,2016;
Pastén et al., 2015; Jia et al., 2015). The spatial coordinates of monitoring stations and the arrival times of the first seismic
wave are used to determine the coordinates of the microseismic source, origin time, and other attributes. The accuracy of
microseismic source location has been an important research topic in microseismic monitoring technology for a long time.
Current microseismic source location methods mostly come from seismology. Now they are widely used in
microseismic monitoring (Sun et al., 2016; Xue et al., 2015; Anikiev et al., 2014; Dong and Li, 2013). The earthquake source

location method, based on time-difference principles was proposed (Geiger,1912). Based on this work, Lienert et al. (1986)
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developed an improved algorithm called HYPOCENTER. Since then, Nelson and Vidale (1990) presented the QUAKE3D
method for 3-D velocity modeling. Lomax et al. (2000; 2001) worked out a nonlinear mode for locating global earthquakes
in 3-D media and developed NonLinLoc software. Waldhauser and Ellsworth (2000) presented earthquake location
algorithm based on a double time-differences and developed HypoDD software. After occurrence of characteristics of the
coal mine overburden layers andabscission zones, Gong et al. (2012) proposed a microseismic detecting algorithm for
isotropic velocity model along mine length; the algorithm decreases source location errors. Dong et al. (2017) proposed
mathematical algorithms of microseismic source location where there is no need to predict velocity inadvance. The
algorithms overcome location errors caused by errors of velocity measurement inherent in traditional location methods. Lin
et al. (2010) analyzed the characteristics of linear location method and Geiger method and proposed a joint method to
address the problem of low precision in estimation of source coordinates inherent in linear location method. Feng et al. (2015)
proposed stratified methods for microseismic source location based on particle swarm optimization to obtain correlations
among the source position, origin time, and microseismic propagation speed for a non-unique solution.

In conclusion we note that the microseismic source location accuracy is influencedby many factors such as the location
method, the layout of the microseismic network, the velocity model, and the accuracy of the arrival time measurement (Dong
and Li, 2013). Among these, the key factor influencing the stability of the location algorithm and the location accuracy is
precision of the velocity model (Prange et al., 2015; Li et al., 2014; Usher et al., 2013). In this paper, an adaptive particle
swarm optimization algorithm is proposed for microseismic source location which is based on average flying velocity of the
particles. It uses as the PSO target function the "least square sum™ of measured arrival time differences for all pairs of
seismic sensors and uses the PSO algorithm to identify the source coordinates and microseismic wave velocity. Then, the
origin time of the microseismic event is calculated according to the just determined source location and the wave velocity.
Parameters of the PSO algorithm such as the inertia weight, the acceleration constants and the flight velocities of particles
are adaptively adjusted to avoid the algorithm failure caused by the improper selection of these parameters. Careful dynamic
adjusting PSO parameters improves the robustness of the PSO algorithm, reduces number of iteration and improves

estimation of the microseismic source coordinates and the seismic wave velocity.

2. Microseismic source location principle

Suppose, that there are n geophones in the microseismic monitoring system. Assign the microseismic source location point

as 1y =(%Y:2), the coordinates of each geophone as r, =(x.¥;,z),(i=1...,n). the time of P-wave arrival to i-th

geophone of the microseismic monitoring system as t;, and the origin time of the microseismic event as t,. Assuming that the

rock layers between the microseismic sources and the geophone are uniform (i.e. uniform velocity model), the equivalent

average propagation velocity of the P-wave in the medium ias V, the-time-of the-seurce-P-wave-arrivalio-i-th-geophone-of-the
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microseismic-monitoring-system-as-t,—and-the-origin-time-of-the-microseismic-event-as-te—Then, the theoretical (regression)

arrival time differences for i and j geophones are

Ii _I' ..
Ati,j=ti_tj=Tj,|yJ=(l’-~~|n), (1)

where

I :\/(Xi —%) + (¥ = ¥o) +(z-2) .
1 :\/(Xi —x0)2+(yj _y0)2+(zi _ZO)Z

The differences between the difference of regression arrival times At ;(r,) and the difference of the measuredarrival
times At/ ; is analogous to double-difference concept introduced by Waldhauser and Ellsworth (2000).The sum of their

squares reflect the degree of discrepancies between regression and observed arrival times. The equation for estimation of the

microseismic source position has the form:

i,j=1 \

Q(ro,v):zn“(m;,j—Mlzzmin. )

The estimates of microseismic source coordinates f, =(%,,¥,.2,) and equivalent P-wave velocity in the medium v

correspond to those values of r, = (xo, Yor zo) and V in equation (1), (2) for which the function Q(rO,V) reaches a global
minimum in the ranges of possible values of the microseismic source coordinates and medium equivalent velocity.

According to time difference location principles, the equation for calculation of the source origin time t, has the

following form

R N N (A
ranF(to)_rqolniZl:(ti —to ——Aj ) (3)

Y
In the equation, t/ denotes the measured travel times; For a case where signal-to-noise ratios in observed signals from
microseismic source are sufficiently high and earth medium between the source and geophones are homogeneous

minF (t,) ~0 and estimate of the microseism origin time can be calculated as:

fo

o 1&(, K(R)
to~ﬁ_ [ti Tj 4)

i=1
In solving for the seismic source location and origin time, the estimates of source coordinates fy =(%;,¥,,2,) and the

equivalent wave velocity V are obtained first according to equation (2). Then, the estimate of the origin time to is

determined by substituting the estimated values f, and V into equation (3) (or in equation (4) for the case where



10

15

20

25

min F (to) ~ 0). Because equation (2) is a nonnegative function of (o, Yo, Zg) and V, a minimum miVnQ(rO,V) always exists

To
and can be found by the nonlinear fitting methods. The classic method is the "minimum least square solution” . However, in

this solution_the source location estimate f, correlates with the origin time estimate f;, and the algorithm has a slow

convergence for the velocity V. It is easy also to get a non-uniquesolution (Chen et al., 2009). To overcome these problems,
this paper introduces an adaptive PSO algorithm to optimize the solution process.

Source location based on time difference principle is a multi-extremum non-linear problem. The most popular method is
the classical method proposed by Geiger (1912) and various improvements thereafter . This kind of method is a solution
method in the linear category. That is to say, according to Taylor's formula, the non-linear problem is transformed into a
linear problem, and then different strategies are adopted to solve the linear equation system. In many cases, such as second
order or more will appear. Problems such as in appropriate omitting of terms, unreasonable selection of initial values, and
trapping solutions into local minima will occur (Lee and Stewart, 1981). The Particle Swarm Optimization (PSO) method is
simple to operate, easy to use, and easy to get the global optimal solution for multi-extremum non-linear problems. Therefore,

the improved PSO method is introduced to solve the above problems.

3. Adaptive PSO algorithm forsolving location parameters

3.1 PSO principle

The PSO is an evolutionary computation technique developed by Eberhart and Kennedy (1995). It is an evolutionary
algorithm similar to a simulated annealing optimization algorithm for a problem of iterative improving a candidate for the
solution with regard to a given measure of quality. PSO is an intelligent computational algorithm for analyzing the dynamic
behavior of a swarm of particles. In comparison with other similar algorithms PSO has such advantages as simple
implementation, high accuracy and fast convergence. It has been successfully applied in the field of optimization in recent
years (Fong et al., 2016; Renaudineau et al., 2015; Sudheeret al., 2014). The basic PSO principles are as follows: PSO
randomly initializes a set of particles in the solution space. Each particle flies through the solution space with a certain speed
by following the current optimum particle and the optimal solution is found through the search in successive generations. In
each generation, the particles update themselves by tracking two types of extreme values: local optimums and global
optimum. First extreme values are the optimal values for every particle itself in a set of positions of this particle in the
sequence of already existing generations. They are denoted as pBest. Second optimum is the optimal value found in the all
existing generations of the whole swarm of particles. It is denoted as gBest. After the two sorts of the optimal values are

found, the particles update their speed and positions according to equation (5):



(k+1) _ \p (), (K) (k (k) (k) k (k) (k)
Vig' =w )Vi,d +C )rl(pi,d —Xig )+C£ )rz(pg,d =X

d
k+1, k k+1)
X =x +viMi=(1,...,n),d =(1,...,m)

)

where m is the dimension of the particle space; n is a number of particles in the swarm; k is a number of the current

evolutionary particle generation; r; and r, are independent random values within [0, 1]; w® s the inertia weight at the k-th

particle generation; c{k) and cgk) are acceleration constants at the k-th particle generation; vff} is the current flight speed

5 for d-th component of i-th particle at the k-th generation; Xi(,? is the d-th component of i-th particle current location at the
k-th generation; pi(z) is the d-th coordinate of current optimal value for i-th particle itself at the k-th generation; pg"()j is the
d-th component of current optimal value for total particle population up to the k-th generation.

3.2 The algorithm for solving source location parameters
The equation (2) concerns a nonlinear optimization problems with multiple local extremums. The PSO algorithm was
10 developed for solving such problems and can be applied to search for the optimal value in four-dimensional solution space
composed of (X, y, z, v), that is, to solve for the source location and the equivalent seismic velocity. x, y, z and v is the 1-th,
2-th, 3-th and 4-th componnent of particles, respectively. The flowchart for the PSO algorithm is shown in Fig. 1.
N
( Start )
\;T/
/ / / /
/ [ Initialize seismic source parameters and [ Initialize the source position and /
‘\\ Input PSO parameters \ PSO parameters H\ initial velocity of particle ‘\\
\ A\ \ A\
\ 4
Calculate particle's fitness value by Update particle's flight velocity
using equation (2) and position by using equation (5)
; A
////E)ges the loop satisfy the e\r}\&\\\\ N
T condition? —
IY
Output seismic source Current particle's fitness value is the Outout optimal locity V
coordinate (Xo, Yo, Zo) seismic source coordinate and the — utput optimal wave velocity
_ — optimal wave velocity . ]
Calculate the origin time by using N Output the origin time to
equation (4) o
v
( End \w
- /
Fig. 1 Flowchart for the microseismic source location algorithm based on adaptive particle swarm optimization
15 The procedure for the source location parameter evaluation based on the PSO algorithm is described as follows:
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Stepl: Initialize the model parameters for microseismic source location and the PSO parameters. Randomly initialize the
source position and wave velocity of PSO algorithm. Initialization of the PSO parameters mainly includes the
population size m, acceleration constants c¢; and c,, inertia weight w, computional accuracy ¢, largest number of
evolutionary generation T, initial velocity and positions of the particles, and maximum particles flight speed Vax.
Then, initialize the iterative counter k.

Step2: Calculate particle’s (microseismic source coordinate and velocity model) fitness value by using equation (2). The

calculated values here are the source’s 3-dimensional coordinates (xék),ygk),zgk)) and equivalent velocity vV,

where K is the evolutionary generation number.
Step3: Judge whether the current parameters of the particles meets the presupposed flight times and positioning accuracy or
not. If it does, then go to Step 5; otherwise, go to Step 4.

Step4: Update the flight velocity and particle positions according to equation (5), and then, goback to Step 2.

Step5: Output the estimated source’s 3-dimensional coordinates ()20,90,20) and equivalent wave velocity V.
Step6: Calculate and output the origin time estimate f, by substituting estimated values of the source coordinates

()20,)70,20) and equivalent velocity V into equation (4). When the solution for the source coordinates and the

origin time are obtained, the algorithm is over.
3.3 Discussion of PSO algorithm parameters

The parameter values for the PSO algorithm are the keys to influence the algorithm performance and efficiency. This paper
proposes guiding principles for adjusting parameters of the PSO algorithm based on the practical approach to solving for the
seismic source parameters.

(1) Inertia weight w):

Generally, optimization problems are divided into local eptimum-and global problemseptimum. The former consists in

looking for the minimumklecal-optimum-is—to-find-the-minimum in a finite area of function value space, while—glebal

optimumthe latter is to find the minimum in the whole area of function value space. As early as 1998, Shi and Eberhart
(1998) found that when the value of inertia weight w is relatively large, the global optimization ability of the PSO algorithm
is strong, while the local optimization ability is weak. On the other hand, when the value of inertia weight w is relatively
small, the local optimization ability of the PSO algorithm is strong, while the global optimization ability is weak. To avoid
particles being stuck in a local optimum untimely or missing the global optimal solution, this study uses the strategy of
self-adaptive inertia weight to determine the proper value of w (Zhang and Liao, 2009). The strategy is the following:

In order to enhance the exploring competence of the PSO algorithm, the population average velocity should be
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maintained rather high at the initial stages of evolution, while in the late stage of evolution a smaller population average
velocity should be maintained in order to strengthen the development capabilities of the algorithm. We assume that evolution

of the average particle flying velocity with changing number of generations k should be close to function defined by equation

(6)-

7( 2 ]2
Y=y —y e T (6)

avg e '

where v, represents the initial average velocity of population; Tpax is the largest number of evolutionary generations; T, is the

nitialvaluenumber of evolved utienary generations.
We will call vﬁk) as expected value of the average flying velocity for a particle population at k-th generation. The

actual average velocity of the particle swarm at k-th generation is given by equation (7):

1 m 4
Vi = 2| 2 () )

d=1
Where vi(v? represents the velocity of d-th component of the i-th particle at k-th generation.

Assign the initial inertia weight as w. Designate w® inertia weight for the k-th particle generation. Then the inertia

weight w ) for (k+I)-th generation is determined by equation (8):
“ then w(k +1)=w(k)/ p
)=w(k)-p
if Vi) =i then w(k +1)=w(k)
if wk+1)>w,, then w(k+1)=w,,
if w(k+1)<w,, then w(k+1)=w,,

if v >y

avg

(
if Vi) <v® then w(k +1
(

avg

, (8)

where p is a some constant. Practice has proved that the best value of p is 1.05 (Zhang and Liao, 2009).
Substitution of w*) given by equation (8) into equation (5) ensures that average velocity vgtg will reduce to zero in

the process of population evolution.

(2) Acceleration constants cl(") and cg")e
Gao and Liao noted that the position xi(_'f,) of each particle in the population eventually converges to

(cl Pig +CPgq )/(c1 +C,) (Gao and Liao, 2012), This means that the position of the particles for large k will stay close to

the lines that connect the global optimum point with the local optimum point. Therefore, in the first stage of particle swarm
optimization, the optimum value of the particle itself is an important parameter to make all particles converge to global

optimum.

However, if cl(k) would be high for all k then the optimum position of the particle swarm would, generally, not

coincide with the global optimum of the target function (2). Therefore, at the first stage of PSO, cl(k) should take a larger
7
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value, while cgk) should take a smaller value to promote the local optimization speed. When particle swarm optimization is
near to its end, the role of the global optimal value should be highlighted. At this stage, cl(k) should take a smaller value,
while cgk) should take a larger value to help the particle swarm converge to the global optimum. Therefore, the acceleration

constants cl(k) and cgk) should be designed based on the average velocity of the particle swarm:

(k) (k)
\Y \Y
e [1— ik J ©

max Vmax

C is a a positive integer, usually in the range [2,5].

(3) The maximum flight velocity of particles Vyay:

The selection and analysis of the maximum flight velocity of particles should proceed as follows: if vy is too small,
then the particle movement will be restricted. In this situation, the algorithm cannot converge fast enough and may not even
be able to achieve the optimal solution. On the other hand, if v, is too large, then the optimal solution may be missed
(Eslami et al., 2014; Abido 2002). Therefore, it is very important to dynamically adjust the Ve Value.-ta-this-stueyy-the-v.,

value-is-obtained-as-follows To ensure uniform velocity through all dimensions, the maximum velocity in the d-th dimension

is proposed as :

Xoaxd — X

Vmaxyd _ max, N min,d, (10)

Where Xmaxd and Xming, respectively, stand for the largest and smallest values_in the d-th dimension of the possible

particle positions, and the-nrumberof-intervals-in-each-space-dimension-N is a chosen number of intervals (Abido 2002),
usually in the range [1, 10].are-selected-as-1-0-and-10-respectively-

4. Simulation and case study

4.1. Simulation analysis and discussion

For the simulation, eight sensors comprising a microseismic localization system are located on the eight vertices of a cube.
Four microseismic sources,O, P, Q, S-etc., are located inside the cube, and R is located outside the cube. The coordinates of

the geophones and the microseismic sources are shown in Table 1, and the relative locations of the geophones and

microseismic sources are shown in Fig. 2.

Table 1 Coordinates of sensors and microseismic sources

Geophone_coordinates(m) Microseismic source coordinates(m)
A(0,0,0) 0(400,400,400)

B(800,0,0) P(300,600,700)

C(800,800,0) Q(300,200,300)

D(0,800,0) R(500,600,1200)
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Fig. 2 The locations of geophones and microseismic sources

It is assumed that the velocity of wave propagation (v) in the medium is unknown. According to the coordinates of

geophones and microseismic sources shown in Table 1, First, the synthetic travel time-t-and-erigin-time-t,-can-behave been

computed-caleutated. Then, the differences between the arrival times at all the pairs of station have been retrieved according

to tand-ty-are-substituted-inte-equations (2), (3) and (4), and inversion is carried out by the least squares method (Dong et al.,
2011) and the PSO proposed in this paper. The microseismic source location, equivalent wave velocity, and origin time are
obtained. Then, the results calculated using the two different methods are compared using error analysis, the algorithm
execution time, and the number of iterations.

Suppose a microseismic velocity v=5.60m/ms. According to the coordinate information in Table 1, the trigger time of

the microseismic waves recorded by the geophones triggered can be calculated, as shown in Table 2. For the convenience of

9
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discussion, we abbreviate the least square method as LSM, and the method in this paper is PSO. The computational accuracy
of the LSM algorithm is £=1.0<10™°. The parameters for the PSO algorithm are as follows: population size m=50, w,=1 and
Tmax=3000. The inertia weight w, acceleration constants c; and ¢, and maximum flight velocity of particles v, are
determined by equations (6-10). MATLAB programming was used to implement the LSM and PSO algorithms to obtain

solutions at four points O, P, Q and R. The calculated results are shown in Table 3._The results of convergence are different

when different initial values are selected for LSM method. When the initial value is far from the true value, the LSM method

satisfies the end condition, but it does not get the true value of the microseismic source. By repeatedly adjusting the initial

value, the algorithm converges to the correct result. The corresponding initial values of LSM method in Table 3 are obtained

after several adjustments. The PSO method can converge to the true value only by randomly selecting a set of initial values

within a specified range.

Table 2 Travel time of a microseismic wave

Travel time(ms)

Geophones
P Q R

A 123.72 173.13 83.76 255.68
B 123.72 187.29 110.08 245.50
C 123.72 157.71 149.40 223.75
D 123.72 140.61 131.22 234.87
E 123.72 121.11 110.08 156.70
F 123.72 140.61 131.22 139.47
G 123.72 97.81 165.60 96.16
H 123.72 66.82 149.40 119.79

Table 3 Comparison of the LSM and PSO algorithms

Microseismic source O

Algorithm
x(m) y(m) z(m) to(ms) v(m/ms)
LSM Initial value 350.00 350.00 350.00 0.00 1.00
Calculatedvalue  400.00 400.00 400.00 - -
pSO Initial value 0~800 0~800 0~800 0~10
Calculatedvalue  400.00 400.00 400.00 - -
True value 400.00 400.00 400.00  0.00 5.60
) Microseismic source P
Algorithm
x(m) y(m) z(m) to(ms) v(m/ms)
LSM Initial value 100.00 400.00 500.00  0.00 1.00
Calculatedvalue  304.37 295.22 703.63  6.27 5.85
PSO Initial value 0~800 0~800 0~800 0~10
Calculatedvalue  301.23 298.95 701.02 181 5.67
True value 300.00 300.00 700.00 0.00 5.60
. Microseismic source Q
Algorithm
x(m) y(m) z(m) to(ms) v(m/ms)
LSM Initial value 100.00 100.00 100.00  0.00 1.00

10
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Calculatedvalue  263.98 206.33 304.59 2.92 5.81

pSO Initial value 0~800 0~800 0~800 0~10

Calculatedvalue  258.84 201.35 298.01 1.11 5.68

True value 260.00 200.00 300.00 0.00 5.60
Algorithm Microseismic source R

x(m) y(m) z(m) to(ms) v(m/ms)

Initial value 300.00 400.00 1000.00 0.00 1.00

LM Calculatedvalue  491.28 590.68 1208.32 13.82 5.92

Initial value 0~800 0~800 0~800 0~10

Pso Calculatedvalue  504.21 605.23 1195.25 4.48 5.70

True value 500.00 600.00 1200.00 0.00 5.60

Notes: “-” means that the value cannot be obtained directly; the calculatedvaluefrom the PSO is the average value obtained
after running the PSO algorithm twenty times.

Based on the results shown in Table 3, the LSM algorithm has different convergent results for different initial values.
When the initial value is far from the true value, the required calculation accuracy ¢ can be met, but the result does not
approach the true value. In some cases, there are multi-group results, so the initial values need to be repeatedly adjusted in
order to make the LSM algorithm approach the true value. For the PSO algorithm, a wide range of initial values was used for
the microseismic source location parameters. The only variables that need to be solved for are the 3-dimensional coordinates
of the arbitrary point inside the space surrounded by the seismic detection equipment. Thus, the calculated results can better
approach the true value, and the solution is unique. This occurs because by improving the parameter selection rules, the
condition that particles are trapped in local optima or fly over the global optimum during the process of searching is avoided;
thus, the optimization ability of the PSO algorithm is improved.

Comparisons of the errors in the microseismic source location parameters obtained using the LSM and PSO algorithms

are shown in Fig.3, and the comparison of iterations between the two algorithms is shown in Fig.4.
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Fig. 3 Comparisons of the errors in the source location parameters between the LSM and PSO algorithms: (a) Comparisons of the
x-axis locating error; (b) Comparisons of the y-axis locating error; (c) Comparisons of the z-axis locating error; (d) Comparisons of

the errors in the origin time estimation.
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Fig. 4 (a) Comparison of the number of iterationsbetween the LSM and PSO algorithms, wherethe max and min markers are
highlighting the max and min number of iterations for each algorithm; (b) Comparison of the computing time between the LSM and

PSO algorithms, wherethe max and min markers are highlighting the max and min amount of computing time for each algorithm.

The selection of initial values for parameters in the LSM algorithm is comparatively complex, so the basic principle of
parameter selection is to approach the desired value as near as possible. The selection of different initial values for
parameters in the LSM algorithm has a greater influence on the accuracy of the solution location compared to PSO and
results in a large difference in the number of iterations between the two methods. The improved PSO algorithm only needs to

be provided a value range for the initial parameters. Then, it automatically selects parameter values to iterate, and the
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algorithm runs for a maximum number of 3000 iterations. As is shown in Table 3, Fig.3, and Fig.4, compared with the LSM
algorithm, the PSO algorithm not only improves the computational accuracy of the desired value of microseismic source
parameters but also increases the computational efficiency and determines the microseismic source’s real-time location.

The following is a discussion of some special conditions. 1) Since source O is located at the cube’s center of gravity, the
distance between O and each geophone is the same. As a result, both the LSM and PSO algorithms can converge to the true
value when solving for the seismic source coordinates (Xo, Yo, Zg) but cannot solve the origin time t, because regardless of
which value of wave velocity v isselected, the value of Q in equation (2) tends to be zero. Because of the randomness of the
wave velocity, the origin time t, cannot be solved according to equation (3). 2) Since source R is located outside the cube,
The average distance from this point to each sensor is larger than that from other points in the cube, such as P and Q points,
to each sensor.. The error in the equivalent wave velocity, which is solved by iteration, causes greater location error for R
than for other points in the cube, so the layout of the seismic detection equipment should ensure that the microseismic source

is within the detection array.

4.2 Case study

Because rock burst occurs frequently at a mine in central China, a Paladin 24-bit, multi-channel microseismic monitoring
system of the ESG Company in Canada was installed. In total, 18 seismic detection devices are installed in different
positions at the mine, 9 seismic detection devices are installed at the -520 level and 9 at the -840 level. A blasting operation
with known position was conducted in order to verify the validity of the PSO algorithm. Ten seismic detection devices
detected microseismic signals during the blasting operation. Pre-treatments of the data, such as denoising and filtering, were
performed on the detected signals in order to obtain a high SNR. Then, two blast points that showed an obvious rising
waveform trend, making it easy to capture the trigger time, were selected and analyzed. The position coordinates of the two
points are A(1495.60, 998.50, -685.10) and B(1298.70, 855.30, -576.20). The coordinates of the 10 seismic detection devices
and the trigger times detected are shown in Table 4. The relative position of the 10 geophones and the 2 burst points is

shown in Fig. 5. The seismic waveform data received by the geophone are shown in Fig. 6.

Table 4 Geophone coordinates and travel time from the burst point

Geophone No. Geophone Coordinates (m) Travel time(ms)
X y z Burst point A Burst point B

2# 751.26 549.55 -520.51 157.39 112.01

3# 755.40 1302.64 -523.35 146.02 146.02

44 1752.37 700.70 -519.43 76.08 86.03

6# 2005.65 1298.72 -521.35 109.69 149.34

o# 1512.59 1149.63 -519.15 39.98 65.41

12# 995.87 1305.66 -820.20 107.27 106.07

13# 1248.20 1597.85 -821.95 118.96 140.72

15# 1500.46 550.75 -819.87 82.76 77.72
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16# 2254.38 1303.22 -818.35 146.92 192.00
17# 1750.34 998.48 -822.73 52.20 96.23
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Fig. 6 (a) Seismic waveform of burst point A received by geophone 2#; (b) Seismic waveform of burst point B received by geophone
2#

The experiment was carried out in the advance roadway of the coal mine working face. The diameter of the borehole is
42 mm, the depth of the borehole is 1.2 m, and the length of the filled explosive is 1/4 of the borehole depth. We

approximate the blasting point to a spherical blasting point without considering the error caused by the assumption. Based on
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the data presented in Table 4, the PSO algorithm and LSM algorithm were used to solve for the seismic source location

parameters and origin time. A comparison of the error is shown in Table 5.

Table 5 Error comparison for the LSM algorithm and PSO algorithm
XerllM) — Yerl(M)  Zen(M) — Ter(MS)

. LSM 9.65 10.39 13.05 18.63

Burst point A
PSO 6.78 5.27 9.79 10.33
. LSM 8.28 11.22 12.74 27.24

Burst point B
PSO 5.96 6.29 8.26 15.95
£ LSM 8.97 10.81 12.90 22.94

rror

PSO 6.37 5.78 9.03 13.14

According to Table 5, the accuracy of the LSM algorithm is relatively poor. Its average deviation in the X, Y and Z
directions are 8.97m, 10.81m and 12.90m. The results were obtained after repeated adjustment of the initial location
parameters for the seismic source and the wave velocity. The PSO algorithm can automatically approach the true values
according to the given initial parameter range. Its average deviation in the X, Y and Z directions are 6.37m, 5.78m and
9.03m, with errors that are less than 5%. Therefore, the PSO can achieve high positioning accuracy in the geophone array
range.

The simulation example and blasting experiment discussed above clearly demonstrate that the PSO optimization
algorithm is better than LSM when solving for the microseismic positioning parameters and the seismic origin time. The
algorithm has high positioning accuracy and fast convergence speed, and it is easy to set the initial parameters. This is
because the adaptive PSO algorithm is more accurate in fitting the relationship between each coordinateforthe seismic
detection equipment and the time difference. It can dynamically adjust the velocity value in an iterative process until the
value approximates the optimal average velocity, which can account for the nonlinear relationship between each coordinate
of the seismic detection equipment and the time difference and can greatly reduce the impact of the velocity error on the

positioning precision.
4.3 Discussion

In order to further verify the effectiveness of the proposed method, the experiments in Section 4.1 are compared and
analyzed under different wave velocities. The comparative analysis steps are as follows: (1) Using PSO method and LSM
method to locate microseismic source when using real velocity (i.e. error floating 0%); (2) Because it is difficult to measure
real wave velocityin practical engineering, a small errors of 1%, 3% and5% is given to the PSO method and LSM method
respectively, that is, when the wave velocityis 5.544, 5.432 and 5.320m/ms,two methods are used to locate the microseismic
source;(3) Steps (1), (2) are used to locate the microseismic source, and the absolute distance error is calculated by
comparing the locating results with the real values. The absolute distance errors calculated by the PSO method and the LSM

method at different wave velocities are plotted in Fig._67.
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Fig. 6-7 Comparison of locating errors between PSO method and LSM method at different wave velocities

As we can be seen from Fig. 67, the LSM method will cause large errors in the location system under the disturbance of
different wave velocities. The maximum error is up to 25m (Except for the seismic source R), while the PSO method is more
stable. The reason is that the PSO method can accurately fit the relationship between the coordinates of each sensor and the
time difference, because it does not depend on the velocity value when solving the seismic location parameters. The LSM
method needs accurate velocity to solve the seismic location parameters, and the disturbance of velocity has a great influence
on the results. That is to say, in the case of wave velocity disturbance, even if there is a small error in the value of wave
velocity, there will be a large error in the location result of LSM method. Because of the complexity of rock media, the
average velocity of each region is not necessarily the same, and the influence of construction technology, it is very difficult
to determine the velocity of anisotropic media, which is the main reason for the low positioning accuracy of LSM method. In
addition, when the source is outside the sensor array (Such as seismic source R), the errors of the two methods are very large,
but the LSM method has greater locating errors than PSO method, which shows that the sensor arrangement should ensure

that the seismic source is within the array as far as possible.

5. Conclusions

(1) An adaptive PSO optimization method is proposed based on the average population velocity in order to solve for location
parameters of the seismic source in a location model. This method takes the minimum residual sum of squares between
the time difference regression values and the time difference measured values for two seismic detection devices, and the
PSO algorithm is designed to solve for the seismic source coordinates and the equivalent wave velocity and then solve

for the seismic source origin time.

16



10

15

20

25

30

35

(2) Combined with the actual need to solve for seismic source parameters, the model constraints of inertia weight,
accelerating constants, the maximum flight velocity of particles, and other parameters are discussed in order to improve
the optimization capacity of the PSO algorithm and avoid being trapped in a local optimum.

(3) Comparative analysis shows that when solving for the seismic source location parameters, compared with the classic
least squares method, the adaptive PSO algorithm has high positioning accuracy and fast convergence, and it is easy to

set the initial parameter values.
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