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Abstract. An intelligent method is presented for locating microseismic sourcebased on particle swarm optimization (PSO) 10 

concept. It eliminates microseismic source locating errors caused by inaccurate velocity model of the earth medium. The 

method uses as the target of PSO a global minimum of the sum of squared discrepancies between modeled arrival times and 

measured arrival times. The discrepancies are calculated for all pairs of detectors of a seismic monitoring system, Then, the 

adaptive PSO algorithm is applied to locate the microseismic source and obtain optimal value of the P-wave velocity. The 

PSO algorithm adjusts inertia weight, accelerating constants, the maximum flight velocity of particles, and other parameters 15 

to avoid the PSO algorithm trapping by local optima during the solution process. The origin time of the microseismic event 

is estimated by minimizing the sum of squared discrepancies between the modeled arrival times and the measured arrival 

times. This sum is calculated using the obtained estimates of the microseismic source coordinates and P-wave velocity. The 

effectiveness of the PSO algorithm was verified through inversion of a theoretical model and two analyses of actual data 

from mine blasts in different locations. Compared with the classic least squares method, the PSO algorithm displays faster 20 

convergence and higher accuracy of microseismic source locating. Moreover, there is no need to measure the microseismic 

wave velocityin advance: the PSO algorithm eliminates the adverse effects caused by error in the P-wave velocity when 

locating a microseismic source using traditional methods. 

1. Introduction 

Microseismic monitoring technology can be used for effective locating rockruptures caused by rock burst, coal and gas 25 

outburst, water inrush, and other coalmine disasters. In recent years it was also used in early warning systems (Li et al.,2016; 

Pastén et al., 2015; Jia et al., 2015). The spatial coordinates of monitoring stations and the arrival times of the first seismic 

wave are used to determine the coordinates of the microseismic source, origin time, and other attributes. The accuracy of 

microseismic source location has been an important research topic in microseismic monitoring technology for a long time. 

Current microseismic source location methods mostly come from seismology. Now they are widely used in 30 
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microseismic monitoring (Sun et al., 2016; Xue et al., 2015; Anikiev et al., 2014; Dong and Li, 2013). The earthquake source 

location method, based on time-difference principles was proposed (Geiger,1912). Based on this work, Lienert et al. (1986) 

developed an improved algorithm called HYPOCENTER (Lienert et al., 1986). Since then, Nelson and Vidale (1990) 

presented the QUAKE3D method for 3-D velocity modeling(Nelson and Vidale. 1990). Lomax et al. (2000; 2001) worked 

out a nonlinear mode for locating global earthquakes in 3-D media and developed NonLinLoc software (Lomax etal., 2000; 5 

Lomax et al., 2011 ). Waldhauser and Ellsworth (2000) presented earthquake location algorithm based on a double time 

differences and developed HypoDD software (Waldhauser and Ellsworth, 2000). After occurrence of characteristics of the 

coal mine overburden layers andabscission zones, Gong et al. (2012) proposed a microseismic detecting algorithm for 

isotropic velocity model along mine length; the algorithm decreases source location errors(Gong et al., 2012). Dong et al. 

(2017) proposed mathematical algorithms of microseismic source location where there is no need to predict velocity 10 

inadvance (Dong et al., 2011). The algorithms overcome location errors caused by errors of velocity measurement inherent in 

traditional location methods. Lin et al. (2010) analyzed the characteristics of linear location method and Geiger method and 

proposed a joint method to address the problem of low precision in estimation of source coordinates inherent in linear 

location method (Lin et al., 2010). Chen Feng et al. (2015) proposed stratified methods for microseismic source location 

based on particle swarm optimization to obtain correlations among the source position, origin time, and microseismic 15 

propagation speed for a non-unique solution (Chen et al., 2009). 

In conclusion we note that the microseismic source location accuracy is influencedby many factors such as the location 

method, the layout of the microseismic network, the velocity model, and the accuracy of the arrival time measurement (Dong 

and Li, 2013). Among these, the key factor influencing the stability of the location algorithm and the location accuracy is 

precision of the velocity model (Prange et al., 2015; Li et al., 2014; Usher et al., 2013). In this paper, an adaptive particle 20 

swarm optimization algorithm is proposed for microseismic source location which is based on average flying velocity of the 

particles. It uses as the PSO target function the known in the mathematical statistic"least square sum" of measured arrival 

time differences for all pairs of seismic sensors and uses the PSO algorithm to identify the source coordinates and 

microseismic wave velocity. Then, the origin time of the microseismic event is calculated according to the just determined 

source location and the wave velocity. Parameters of the PSO algorithm such as the inertia weight, the acceleration constants 25 

and the flight velocities of particles are adaptively adjusted to avoid the algorithm failure caused by the improper selection of 

these parameters. Careful dynamic adjusting PSO parameters improves the robustness of the PSO algorithm, reduces number 

of iteration and improves estimation of the microseismic source coordinates and the seismic wave velocity. 

2. Microseismic source location principle 

Suppose, that there are n geophones in the microseismic monitoring system. Assign the microseismic source location point 30 
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as  0 0 0 0, ,r x y z , the coordinates of each geophone as    , , , 1, ,i i i ir x y z i n   . Assuming that the rock layers between 

the microseismic sources and the geophone are uniform (i.e. uniform velocity model), the equivalent average propagation 

velocity of the P-wave in the medium as V, the time of the source P-wave arrivalto i-th geophone of the microseismic 

monitoring system as ti, and the origin time of the microseismic event as t0. Then, the theoretical (regression) arrival time 

differences for i and j geophones are 5 

 , , , 1, , ,
i j

i j i j

l l
t t t i j n

V



                    (1) 
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The differences  , 0i jt r between the difference of the regression arrival times  , 0i jt r a and the difference of the 

measuredarrival times
,i jt is analogous to double-difference concept introduced by Waldhauser and Ellsworth 10 

(2000).andThe sum of their squares reflect the degree of discrepancies between regression and observed arrival times. The 

equation for estimation of the microseismic source position has the form: 
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The estimates of microseismic source coordinates  0 0 0 0
ˆ ˆ ˆ ˆ, ,r x y z  and equivalent P-wave velocity in the medium V̂  

correspond to those values of  0 0 0 0, ,r x y z
 

and V in equation (1), (2) for which the function  0 ,Q r V  reaches a global 15 

minimum in the ranges of possible values of the microseismic source coordinates and medium equivalent velocity. 

According to time difference location principles, the equation for calculation of the source origin time t0 has the 

following form 

 
 

0 0

2

0

0 0

1

ˆ
ˆmin min

ˆ

n
i

i
t t

i

l r
F t t t

V

 
   

 
                (3) 

In the equation, ît  denotes the measured travel times; For a case where signal-to-noise ratios in observed signals from 20 

microseismic source are sufficiently high and earth medium between the source and geophones are homogeneous 
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F t 
 

and estimate of the microseism origin time can be calculated as: 
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In solving for the seismic source location and origin time, the estimates of source coordinates  0 0 0 0
ˆ ˆ ˆ ˆ, ,r x y z  and the 

equivalent wave velocity V̂  are obtained first according to equation (2). Then, the estimate of the origin time to is 

determined by substituting the estimated values 
0̂r  and V̂  into equation (3) (or in equation (4) for the case where 

 
0

0min 0
r

F t  ). Because equation (2) is a nonnegative function of (x0, y0, z0) and V, a minimum  
0

0
,

min ,
r V

Q r V a always 

exists and can be found by the nonlinear fitting methods. The classic method is the "minimum least square solution" . 5 

However, in this solutionthe source location estimate 
0̂r c correlates with the origin time estimate 

0̂t , and the algorithm has 

a slow convergence for the velocity V. It is easy also to get a non-uniquesolution (Chen et al., 2009). To overcome these 

problems, this paper introduces an adaptive PSO algorithm to optimize the solution process. 

Source location based on time difference principle is a multi-extremum non-linear problem. The most popular method is 

the classical method proposed by Geiger in (1912) and various improvements thereafter (Geiger, 1912). This kind of method 10 

is a solution method in the linear category. That is to say, according to Taylor's formula, the non-linear problem is 

transformed into a linear problem, and then different strategies are adopted to solve the linear equation system. In many 

cases, such as second order or more will appear. Problems such as in appropriate omitting of terms, unreasonable selection of 

initial values, and trapping solutions into local minima , etcwill occur (Lee and Stewart, 1981). The Particle Swarm 

Optimization (PSO) method is simple to operate, easy to use, and easy to get the global optimal solution for multi-extremum 15 

non-linear problems. Therefore, the improved PSO method is introduced to solve the above problems. 

3. Adaptive PSO algorithm forsolving location parameters 

3.1 PSO principle 

The PSO is an evolutionary computation technique developed by Eberhart and Kennedy in 1995 year (Eberhart and 

Kennedy, 1995)(1995). It is an evolutionary algorithm similar to a simulated annealing optimization algorithm for a problem 20 

of iterative improving a candidate for the solution with regard to a given measure of quality. PSO is an intelligent 

computational algorithm for analyzing the dynamic behavior of a swarm of par1iclesparticles. In comparison with other 

similar algorithms PSO has such advantages as simple implementation, high accuracy and fast convergence. It has been 

success fullysuccessfully applied in the field of optimization in recent years (Fong et al. , 2016; Renaudineau et al., 2015; 

Sudheeret al., 2014). The basic PSO principles are as follows: PSO randomly initializes a set of particles in the solution 25 

space. Each particle flies through the solution space with a certain speed by following the current optimum particle and the 

optimal solution is found through the search in successive generations. In each generation, the particles update themselves by 

tracking two types of extreme values: local optimums and global optimum. First extreme values are the optimal values for 

every particle itself in a set of positions of this particle in the sequence of already existing generations. They are denoted as 
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pBest. Second optimum is the optimal value found in the all existing generations of the whole swarm of particles. It is 

denoted as gBest. After the two sorts of the optimal values are found, the particles update their speed and positions according 

to equation (5): 

     
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where m is the dimension of the particle spaceis a number of particles in the swarm; n is a number of particles in the swarmis 5 

the dimension of the particle space; k is a number of the current evolutionary particle generation; r1 and r2 are independent 

random values within [0, 1];  k
w  is the inertia weight at the k-th particle generation; 

 
1

k
c  and 

 
2

k
c  are acceleration 

constants at the k-th particle generation; 
 
,

k

i dv  is the current flight speed for d-th component of i-th particle at the k-th 

generation; 
 
,

k

i dx  is the d-th component of i-th particle current location at the k-th generation; 
 
,

k

i dp  is the d-th coordinate of 

current optimal value for i-th particle itself at the k-th generation; 
 

,

k

g dp  is the d-th component of current optimal value for 10 

total particle population up to the k-th generation. 

3.2 The algorithm for solving source location parameters 

The equation (2) concerns a nonlinear optimization problems with multiple local 

extremumsmulti-extremumnonlinearoptimization problem. The PSO algorithm was developed for solving such problems and 

can be applied to search for the optimal value in four-dimensional solution space composed of (x,y,z,v), that is, to solve for 15 

the source location and the equivalent seismic velocity. The flowchart for the PSO algorithm is shown in Fig. 1. 
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Initialize seismic source  parameters and 

PSO parameters 

Initialize the source position and 

initial velocity of particle

Calculate particle's fitness value by 

using equation (2)

Does the loop satisfy the end 

condition?

Update particle's flight velocity 

and position by using equation (5)

Current particle's fitness value is the 

seismic source coordinate and  the 

optimal wave velocity

Output seismic source 

coordinate (x0, y0, z0)

Calculate the origin time by using 

equation (4)
Output the origin time t0

End

Start

N

Y

Output optimal wave velocity V 

Input PSO parameters

 

Fig. 1 Flowchart for the microseismic source location algorithm based on adaptive particle swarm optimization 

The procedure for the source location parameter evaluation based on the PSOalgorithm is described as follows: 

Step1: Initialize the model parameters for microseismic source location and the PSO parameters. Randomly initialize the 

source position and wave velocity of PSO algorithm. Initializationof the PSO parameters mainly includes the 5 

population size m, acceleration constants c1 and c2, inertia weight w, calculation computional accuracy ε, largest 

number of evolutionary generation Tmax, initial velocity and positions of the particles, and maximum particles flight 

speed vmax. Then, initialize the iterative counter k. 

Step2: Calculate particle’s (microseismic source coordinate and velocity model) fitness value by using equation (2). The 

calculated values here are the source’s 3-dimensional coordinates 
      0 0 0, ,
k k k

x y z  and equivalent velocity 
 k

V , 10 

where k is the evolutionary generation number. 

Step3: Judge whether the current parameters of the particles meets the presupposed flight times and positioning accuracy or 

not. If it does, then go to Step 5; otherwise, go to Step 4. 

Step4: Update the flight velocity and particle positions according to equation (5), and then, goback to Step 2. 

Step5: Output the estimated source’s 3-dimensional coordinates  0 0 0
ˆ ˆ ˆ, ,x y z  and equivalent wave velocity V̂ . 15 

Step6: Calculate and output the origin time estimate 0̂t  
by substituting estimated values of the source coordinates  
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 0 0 0
ˆ ˆ ˆ, ,x y z

 
and equivalent velocity V̂  into equation (4). When the solution for the source coordinates and the 

origin time are obtained, the algorithm is over. 

3.3 Discussion of PSO algorithm parameters 

The parameter values for the PSO algorithm are the keys to influence the algorithm performance and efficiency. This paper 

proposes guiding principles for adjusting parameters of the PSO algorithm based on the practical approach to solving for the 5 

seismic source parameters. 

(1) Inertia weight 
 k

w : 

Generally, optimization problems are divided into local optimum and global optimum. Local optimum is to find the 

minimum in a finite area of function value space, while global optimum is to find the minimum in the whole area of function 

value space.For an optimization problem, if a decision is better than any decision to solve the problem, it can be called the 10 

global optimization; Different from the global optimization, the local optimization is not the best in all decisions, butthe 

decision is better than partial decision to solve the problem. As early as 1998, Shi and Eberhart (1998)et al. found that when 

the value of inertia weight w is relatively large, the global optimization ability of the PSO algorithm is strong, while the local 

optimization ability is weak (Shi and Eberhart, 1998). On the other hand, when the value of inertia weight w is relatively 

small, the local optimization ability of the PSO algorithm is strong, while the global optimization ability is weak. To avoid 15 

particles being stuck in a local optimum untimely or missing the global optimal solution, this study uses the strategy of 

self-adaptive inertia weight to determine the proper value of w (Zhang and Liao, 2009). The strategy is the following: 

In order to enhance the exploring competence of the PSO algorithm, the population average velocity should be 

maintained rather high at the initial stages of evolution, while in the late stage of evolution a smaller population average 

velocity should be maintained in order to strengthen the development capabilities of the algorithm. We assume that evolution 20 

of the average particle flying velocity with changing number of generations k should be close to function defined by 

formulaequation (6). 
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max 1
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0

k

T Tk k

avg ev =v v e
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                  (6) 

where v0 represents the initial average velocity of initial average rate populationevolutionaryvelocity; Tmax is the largest 

number of evolutionary generations; T1 is the initial value of evolutionary generationsnumber of evolvedgenerations. 25 

We will call 
 k

ev  as expected value of the average flying velocity for a particle population at k-th generation. The 

actual average velocity of the particle swarm at k-th generation is given by the formulaequation (7): 

4
( ) ( ) 2

,

1 1

1
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m
k k

avg i d

i d

v v
m  

                     (7) 
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Where 
( )

,

k

i dv r represents the velocity of d-th component of the i-th particle at k-th generation. 

Assign the initial inertia weight as w. Designate 
 k

w  inertia weight for the k-th particle generation. Then the inertia 

weight 
 1k

w


 for (k+l)-th generation is determined by formulaequation (8): 
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where p is a some constant. Practice has proved that the best value of p is 1.05 (Zhang and Liao, 2009). 5 

Substitution of 
 k

w  given by equation (8) into equation (5) ensures that average velocity 
 k

avgv
 

will reduce to zero in 

the process of population evolution. 

(2) Acceleration constants
 
1

k
c  and 

 
2

k
c : 

Gao and Liao noted that the position 
 
,

k

i dx of each particle in the population eventually converges to 

   1 , 2 , 1 2/i d g dc p c p c c 
 

(Gao and Liao, 2012), This means that the position of the particles for large k will stay close to 10 

the lines that connect the global optimum point with the local optimum point. Therefore, in the first stage of particle swarm 

optimization, the optimum value of the particle itself is an important parameter to make all particles converge to global 

optimum.So, the optimal value of the particle themselvesare very important at the first phase of particle swarm 

optimizationto make all the particles converge to the global optimum. 

However, if 
 
1

k
c  would be high for all k then the optimum position of the particle swarm would, generally, not 15 

coincide with the global optimum of the target function (2). Therefore, at the first stage of PSO, 
 
1

k
c  should take a larger 

value, while 
 
2

k
c  should take a smaller value to promote the local optimization speed. When particle swarm optimization is 

near to its end, the role of the global optimal value should be highlighted. At this stage, 
 
1

k
c  should take a smaller value, 

while 
 
2

k
c  should take a larger value to help the particle swarm converge to the global optimum. Therefore, the acceleration 

constants 
 
1

k
c  and 

 
2

k
c  should be designed based on the average velocity of the particle swarm: 20 

   
( ) ( )

1 2

max max

, 1 .

k k

avg avgk k
v v

c C c C
v v

 
   

 
 

                (9) 

C is a a positive integer, usually in the range [2,5]. 

(3) The maximum flight velocity of particles vmax: 

The selection and analysis of the maximum flight velocity of particles should proceed as follows: if vmax is too small, 
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then the particle movement will be restricted. In this situation, the algorithm cannot converge fast enough and may not even 

be able to achieve the optimal solution. On the other hand, if vmax is too large, then the optimal solution may be missed 

(Eslami et al., 2014; Abido 2002). Therefore, it is very important to dynamically adjust the vmax value. In this study, the vmax 

value is obtained as follows: 

max, min,

max,

d d

d

x x
v

N


                   (10) 5 

Where xmax,d and xmin,d, respectively, stand for the largest and smallest valuesin the d-th dimension of the possible 

particle positions, and N is the number of intervals on in each space dimension N are selected as 1.0 and 10 respectively. 

4. Simulation and case study 

4.1. Simulation analysis and discussion 

For the simulation, eight sensors comprising a microseismic localization system are located on the eight vertices of a cube. 10 

Four microseismic sources,O, P, Q, RS, etc., are located inside the cube, and S R is located outside the cube. The coordinates 

of the geophones and the microseismic sources are shown in Table 1, and the relative locations of the geophones and 

microseismic sources are shown in Fig. 2. 

Table 1 Coordinates of sensors and microseismic sources 

Geophonecoordinates(m)/m Microseismic source 

coordinates(m)/m 

A(0,0,0) O(400,400,400) 

B(800,0,0) P(300,600,700) 

C(800,800,0) Q(300,200,300) 

D(0,800,0) R(500,600,1200) 

E(0,0,800)  

F(800,0,800)  

G(800,800,800)  

H(0,800,800)  

x

y

z

A B

CD

E F

GH

O
P

Q

R

 15 

Fig. 2 The locations of geophones and microseismic sources 

The principle of microseismic location simulation: Firstly, the travel time and monitoring arrival time of 
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microseismictheory are calculated by formula (1) according to the position of sensors, source location and wave velocity; 

then, the location of microseismic source, the time of occurrence and the velocity model of microseismic wave propagating 

in medium are determined by formula (3) and formula (4) as true values. 

It is assumed that the velocity of wave propagation (v) in the medium is unknown. According to the coordinates of 

geophones and microseismic sources shown in Table 1, the travel time t and origin time t0 can be calculated. Then, t and t0 5 

are substituted into equations (2), (3) and (4), and inversion is carried out values are obtainedbyinversion using the least 

squares method (Dong et al., 2011) and the PSO proposed in this paper. The microseismic source location, equivalent wave 

velocity, and origin time are obtained. Then, the results calculated using the two different methods are compared using error 

analysis, the algorithm execution time, and the number of iterations. 

Suppose a microseismic velocity v=5.60m/ms, and suppose the microseismic source’s origin time is 08:00:00:000 on a 10 

certain day. According to the coordinate information in Table 1, the trigger time of the microseismic waves recorded by the 

geophones triggered can be calculated, as shown in Table 2. For the convenience of discussion, we abbreviate the least 

square method as LSMTake the method of Geigersource location using the least squares method as the LSM algorithm, and 

the method in this paper is the PSOalgorithm. The computational accuracy of the LSM algorithm is ε=1.0×10
-10

. The 

parameters for the PSO algorithm are as follows: population size m=50, w0=1 and Tmax=3000. The inertia weight w, 15 

acceleration constants c1 and c2 and particles’ maximum flight velocity of particles vavg are determined by equations (6), (9) 

and (-10). MATLAB programming was used to implement the LSM and PSO algorithms to obtain solutions at four points O, 

P, Q and R. The calculated results are shown in Table 3. 

Table 2 Travel time of a microseismic wave 

Geophones 
Travel time(ms)/ms 

O P Q R 

A 123.72 173.13 83.76 255.68 

B 123.72 187.29 110.08 245.50 

C 123.72 157.71 149.40 223.75 

D 123.72 140.61 131.22 234.87 

E 123.72 121.11 110.08 156.70 

F 123.72 140.61 131.22 139.47 

G 123.72 97.81 165.60 96.16 

H 123.72 66.82 149.40 119.79 

 20 

Table 3 Comparison of the LSM and PSO algorithms 

Algorithm 
Microseismic source O 

x/(m)m y(m)/m z(m)/m t0(ms)/ms v/m/ms(m/ms) 

LSM 
Initial value 350.00 350.00 350.00 0.00 1.00 

Calculatedvalue 400.00 400.00 400.00 - - 

PSO 
Initial value 0~800 0~800 0~800  0~10 

Calculatedvalue 400.00 400.00 400.00 - - 
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True value 400.00 400.00 400.00 0.00 5.60 

Algorithm 
Microseismic source P 

x(m)/m y(m)/m z(m)/m t0(ms)/ms v(m/ms)/m/ms 

LSM 
Initial value 100.00 400.00 500.00 0.00 1.00 

Calculatedvalue 304.37 295.22 703.63 6.27 5.85 

PSO 
Initial value 0~800 0~800 0~800  0~10 

Calculatedvalue 301.23 298.95 701.02 1.81 5.67 

True value 300.00 300.00 700.00 0.00 5.60 

Algorithm 
Microseismic source Q 

x(m)/m y(m)/m z(m)/m t0(ms)/ms v(m/ms)/m/ms 

LSM 
Initial value 100.00 100.00 100.00 0.00 1.00 

Calculatedvalue 263.98 206.33 304.59 2.92 5.81 

PSO 
Initial value 0~800 0~800 0~800  0~10 

Calculatedvalue 258.84 201.35 298.01 1.11 5.68 

True value 260.00 200.00 300.00 0.00 5.60 

Algorithm 
Microseismic source R 

x(m)/m y(m)/m z(m)/m t0(ms)/ms v(m/ms)/m/ms 

LSM 
Initial value 300.00 400.00 1000.00 0.00 1.00 

Calculatedvalue 491.28 590.68 1208.32 13.82 5.92 

PSO 
Initial value 0~800 0~800 0~800  0~10 

Calculatedvalue 504.21 605.23 1195.25 4.48 5.70 

True value 500.00 600.00 1200.00 0.00 5.60 

Notes: “-” means that the value cannot be obtained directly; the calculatedvaluefrom the PSO is the average value obtained 

after running the PSO algorithm twenty times. 

Based on the results shown in Table 3, the LSM algorithm has different convergent results for different initial values. 

When the initial value is far from the true value, the required calculation accuracy ε can be met, but the result does not 

approach the true value. In some cases, there are multi-group results, so the initial values need to be repeatedly adjusted in 5 

order to make the LSM algorithm approach the true value. For the PSO algorithm, a wide range of initial values was used for 

the microseismic source location parameters. The only variables that need to be solved for are the 3-dimensional coordinates 

of the arbitrary point inside the space surrounded by the seismic detection equipment. Thus, the calculated results can better 

approach the true value, and the solution is unique. This occurs because by improving the parameter selection rules, the 

condition that particles are trapped in local optima or fly over the global optimum during the process of searching is avoided; 10 

thus, the optimization ability of the PSO algorithm is improved. 

Comparisons of the errors in the microseismic source location parameters obtained using the LSM and PSO algorithms 

are shown in Fig.3, and the comparison of iterations between the two algorithms is shown in Fig.4. 

http://dict.youdao.com/search?q=iterations&keyfrom=E2Ctranslation


12 
 

 

Fig. 3 Comparisons of the errors in the source location parameters between the LSM and PSO algorithms: (a) Comparisons of the 

x-axis locating error; (b) Comparisons of the y-axis locating error; (c) Comparisons of the z-axis locating error; (d) Comparisons of 

the errors in the origin time estimationseismogenic time error. 

 5 

(a)                                                         (b) 

Fig. 4 (a) Comparison of the number of iterationsbetween the LSM and PSO algorithms, wherethe max and min markers are 

highlighting the max and min number of iterations for each algorithm; (b) Comparison of the computing time between the LSM and 

PSO algorithms, wherethe max and min markers are highlighting the max and min amount of computing time for each algorithm. 

The selection of initial values for parameters in the LSM algorithm is comparatively complex, so the basic principle of 10 

parameter selection is to approach the desired value as near as possible. The selection of different initial values for 

parameters in the LSM algorithm has a greater influence on the accuracy of the solution location compared to PSO and 

results in a large difference in the number of iterations between the two methods. The improved PSO algorithm only needs to 

be provided a value range for the initial parameters. Then, it automatically selects parameter values to iterate, and the 
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algorithm runs for a maximum number of 3000 iterations. As is shown in Table 3, Fig.3, and Fig.4, compared with the LSM 

algorithm, the PSO algorithm not only improves the computational accuracy of the desired value of microseismic source 

parameters but also increases the computational efficiency and determines the microseismic source’s real-time location. 

The following is a discussion of some special conditions. 1) Since source O is located at the cube’s center of gravity, the 

distance between O and each geophone is the same. As a result, both the LSM and PSO algorithms can converge to the true 5 

value when solving for the seismic source coordinates (x0, y0, z0) but cannot solve the origin time t0 because regardless of 

which value of wave velocity v isselected, the value of Q in equation (2) tends to be zero. Because of the randomness of the 

wave velocity, the origin time t0 cannot be solved according to equation (3), so when positioning the geophones, the same 

distance between the microseismic source and each geophone should be avoided. 2) Since source R is located outside the 

cube, The average distance from this point to each sensor is larger than that from other points in the cube, such as P and Q 10 

points, to each sensor.the average distance between R and each geophone is greater than the average distance from R to other 

points (such as P and Q). The error in the equivalent wave velocity, which is solved by iteration, causes greater location error 

for R than for other points in the cube, so the layout of the seismic detection equipment should ensure that the microseismic 

source is within the detection array. 

4.2 Case study 15 

Because rock burst occurs frequently at a mine in central China, a Paladin 24-bit, multi-channel microseismic monitoring 

system of the ESG Company in Canada was installed. In total, 18 seismic detection devices are installed in different 

positions at the mine, 9 seismic detection devices are installed at the -520 level and 9 at the -840 level. A blasting operation 

with known position was conducted in order to verify the validity of the PSO algorithm. Ten seismic detection devices 

detected microseismic signals during the blasting operation. Pre-treatments of the data, such as denoising and filtering, were 20 

performed on the detected signals in order to obtain a high SNR. Then, two blast points that showed an obvious rising 

waveform trend, making it easy to capture the trigger time, were selected and analyzed. The position coordinates of the two 

points are A(1495.60, 998.50, -685.10) and B(1298.70, 855.30, -576.20). The coordinates of the 10 seismic detection devices 

and the trigger times detected are shown in Table 4. The relative position of the 10 geophones and the 2 burst points is 

shown in Fig. 5. 25 

Table 4 Geophone coordinates and travel time from the burst point 

Geophone No. Geophone Coordinates /(m)m Travel time/(ms)ms 

x y z Burst point A Burst point 

B 

2# 751.26 549.55 -520.51 157.39 112.01  

3# 755.40 1302.64 -523.35 146.02 146.02 

4# 1752.37 700.70 -519.43 76.08 86.03  

6# 2005.65 1298.72 -521.35 109.69 149.34  
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9# 1512.59 1149.63 -519.15 39.98  65.41  

12# 995.87 1305.66 -820.20 107.27 106.07 

13# 1248.20 1597.85 -821.95 118.96  140.72 

15# 1500.46 550.75 -819.87 82.76  77.72  

16# 2254.38 1303.22 -818.35 146.92  192.00 

17# 1750.34 998.48 -822.73 52.20  96.23  

 

Fig. 5 Schematic diagram of the relative position of the 10 geophones and the 2 burst points 

The experiment was carried out in the advance roadway of the coal mine working face. The diameter of the borehole is 

42 mm, the depth of the borehole is 1.2 m, and the length of the filled explosive is 1/4 of the borehole depth. We 

approximate the blasting point to a spherical blasting point without considering the error caused by the assumption. Based on 5 

the data presented in Table 4, the PSO algorithm and LSM algorithm were used to solve for the seismic source location 

parameters and origin time. A comparison of the error is shown in Table 5. 

Table 5 Error comparison for the LSM algorithm and PSO algorithm 

  Xerr(m)/m Yerr(m)/m Zerr(m)/m Terr(ms)/

ms 

Burst point A 
LSM 9.65  10.39  13.05  18.63 

PSO 6.78  5.27  9.79  10.33 

Burst point B 
LSM 8.28  11.22  12.74  27.24 

PSO 5.96  6.29  8.26  15.95 

Error 
LSM 8.97  10.81  12.90  22.94 

PSO 6.37  5.78  9.03  13.14 

According to Table 5, the accuracy of the LSM algorithm is relatively poor. Its average deviation in the X, Y and Z 

directions are 8.97m, 10.81m and 12.90m. The results were obtained after repeated adjustment of the initial location 10 

parameters for the seismic source and the wave velocity. The PSO algorithm can automatically approach the true values 
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according to the given initial parameter range. Its average deviation in the X, Y and Z directions are 6.37m, 5.78m and 

9.03m, with errors that are less than 5%. Therefore, the PSO can achieve high positioning accuracy in the geophone array 

range. 

The simulation example and blasting experiment discussed above clearly demonstrate that the PSO optimization 

algorithm is better than LSM when solving for the microseismic positioning parameters and the seismic origin time. The 5 

algorithm has high positioning accuracy and fast convergence speed, and it is easy to set the initial parameters. This is 

because the adaptive PSO algorithm is more accurate in fitting the relationship between each coordinateforthe seismic 

detection equipment and the time difference. It can dynamically adjust the velocity value in an iterative process until the 

value approximates the optimal average velocity, which can account for the nonlinear relationship between each coordinate 

of the seismic detection equipment and the time difference and can greatly reduce the impact of the velocity error on the 10 

positioning precision. 

4.3 Discussion 

In order to further verify the effectiveness of the proposed method, the experiments in Section 4.1 are compared and 

analyzed under different wave velocities. The idea of comparative analysis steps are as followsis as follows: (1) Using PSO 

method and LSM method to locate microseismic source when using real velocity (i.e. error floating 0%); (2) Because it is 15 

difficult to measure real wave velocities velocityin practical engineering, assuming that there are severala small errors of 1%, 

3% and,5% is given to the PSO method and LSM method respectively, , that is, when the wave velocityiesisare 5.544, 5.432 

and 5.320m/ms. ,two methods are used to locate the microseismic source;.(3) Steps (1), (2) are used to locate the 

microseismic source, and the absolute distance error is calculated by comparing the locating results with the real values.The 

locating results under different conditions are analyzed, and the errors of each coordinate and absolute distance are 20 

calculated. The absolute distance errors of calculated by the traditional PSO method and the LSMnew method at different 

wave velocities are plotted in Fig.6. 
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Fig. 6 Comparison of locating errors between PSO method and LSM method at different wave velocities 

As we can be seen from Fig. 6, the LSM method will cause large errors in the location system under the disturbance of 

different wave velocities. The maximum error is up to 25m (Except for the seismic source R), while the PSO method is more 

stable. The reason is that the PSO method can accurately fit the relationship between the coordinates of each sensor and the 5 

time difference, because it does not depend on the velocity value when solving the seismic location parameters. The LSM 

method needs accurate velocity to solve the seismic location parameters, and the disturbance of velocity has a great influence 

on the results. That is to say, in the case of wave velocity disturbance, even if there is a small error in the value of wave 

velocity, there will be a large error in the location result of LSM method. Because of the complexity of rock media, the 

average velocity of each region is not necessarily the same, and the influence of construction technology, it is very difficult 10 

to determine the velocity of anisotropic media, which is the main reason for the low positioning accuracy of LSM method. In 

addition, when the source is outside the sensor array (Such as seismic source R), the errors of the two methods are very large, 

but the LSM method has greater locating errors than PSO method, which shows that the sensor arrangement should ensure 

that the seismic source is within the array as far as possible. 

5. Conclusions 15 

(1) An adaptive PSO optimization method is proposed based on the average population velocity in order to solve for location 

parameters of the seismic source in a location model. This method takes the minimum residual sum of squares between 

the time difference regression values and the time difference measured values for two seismic detection devices, and the 

PSO algorithm is designed to solve for the seismic source coordinates and the equivalent wave velocity and then solve 

for the seismic source origin time. 20 
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(2) Combined with the actual need to solve for seismic source parameters, the model constraints of inertia weight, 

accelerating constants, the maximum flight velocity of particles, and other parameters are discussed in order to improve 

the optimization capacity of the PSO algorithm and avoid being trapped in a local optimum. 

(3) Comparative analysis shows that when solving for the seismic source location parameters, compared with the classic 

least squares method, the adaptive PSO algorithm has high positioning accuracy and fast convergence, and it is easy to 5 

set the initial parameter values.  
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