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We thank editors and reviewers for their work; the feedback has been very useful. Pointwise replies to the review
comments can be seen below. We hope the present version will satisfy the high standards of the journal of nonlinear
processes in geophysics.

A latex-diff pdf file is attached, tracking the changes made. These are largely of a minor character. The most
significant changes (prompted by reviews) are (i) the addition of some experiments (ii) moving the “layout” section
into section 1.0, and (iii) improved clarity around Theorem 1. Additionally, (iv) details have been added around
Algorithm 1, and and (v) we have changed the recommended form of the inverse transform matrix (and done cosmetic
improvements to the accompanying appendix).

RC1 (Pavel Sakov)

This is a useful study that nicely sums up the existing literature on the stochastic EnKS
(mainly known as EnRML), offers a simplified and more efficient algorithm, and com-
pares performance of the method with that of a few other popular iterative schemes in
two Lorenz-96 based experiments.

Apart from a few suggestions and questions below, the manuscript overall seems to be
in a good shape to recommend it to publish with a minor revision.

We thank the reviewer for his generous review.

1. P1,L.15: IES

The Ensemble Smoother (ES) van Leeuwen and Evensen (1996) is a non-
sequential method. It involves no ensemble update during the whole run of the
system. While ES produces an optimal analysis for linear systems only, it also
seems to be a popular approach for nonlinear systems with stable dynamics, e.g.
in reservoir modelling.

In contrast, the EnRML is a sequential method specifically designed for nonlinear
dynamics. | am therefore a bit lost when the authors say that EnRML is “also
known as the iterative ensemble smoother (IES)”, particularly considering that
the paper in general is fairly thorough in reviewing the literature, and that Geir
Evensen is one of the authors.

If the above is correct, then using the term “ES-MDA” in regard to a sequential
method also seems somewhat controversial.

The reviewer is probably thinking of Gu and Oliver [2007], which formulated EnRML sequentially. However,
EnRML is usually employed for reservoir problems, where it is employed non-sequentially (or in “batch” mode).
In this case, it is also sometimes known as the IES (especially among users of the ERT software).

As mentioned in section 1.2, it is easy to formulate all “flavours” in sequential and batch formulations.
This also includes ES-MDA. To try to resolve some confusion, we have moved the (single mention of the) IES
acronym to section 1.2.

2. P1., L.18 and further: Gu et al.
Should be “Gu and Oliver”.



Done, thanks.

- P.5, L.49: C, may be identified as the prior covariance of observation
Should be “as the prior covariance of innovation”.

We assume the “innovation” the reviewer is referring to is d := y — Mp,. Writing this as d = (y — Mx) +
(Mz — Mp,), one may show that Cov(d) = MC,M' + Cs, as the reviewer says. However, it is also clearly
the prior covariance of y :== Mx 4+ 6. We have now included both naming options in the paper.

. P5, L.61: Sakov et al. (2017)
Should be “Sakov et al. (2018)".

Done, thanks.

. P7, L.26: Using the C; in its stead is flawed and damaging because it is
zero in the directions orthogonal to the ensemble subspace, so that its
use would imply that the prior is assumed infinitely uncertain (i.e. flat) as
opposed to infinitely certain (like a delta function) in those directions.

| used to believe that using C; is not a problem because the cost function is
estimated in the ensemble subspace only.

We're unsure if the reviewer is saying that he is not yet convinced by our arguments, or rather that he now is
convinced.

In the latter case: thanks!

In the former case, consider that using CBTC_:Iw as the prior mismatch term would not penalize components
of x outside of the ensemble subspace. Thus, these components of the posterior (ensemble) would just be set to
those of the likelihood! This is clearly quite contrary to the correct posterior, which should not move from the
prior (outside of the ensemble subspace). For simplicity, the above is based on assumptions that Cs and C,
are proportional. The other cases are illustrated by Figure 1. In addition, we have conducted benchmarking
investigations with Lorenz-96 which confirm that the Kalman-gain form is better.

Note that the question does not even arise if the change of variables to w is done in the beginning of
the derivation, because then the cost function is only formulated for the ensemble subspace. As noted in the
manuscript, however, we chose to follow the “traditional” derivation precisely in order to highlight this and
other issues.

. P8, L.57: Bocquet et al.,2013
Should be “Bocquet and Sakov, 2013".

Done, thanks.

. P14, L.12: where the data assimilation window has been fixed at L = 0.4,
which is near optimal (cf. Bocquet et al., 2013, Figures 3 and 4)

| am missing the point why L = 0.4 is near optimal.
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Figure 1: Illustration of the consequence of using the pseudo-
inverse to update the ensemble. Here, the state
vector is two-dimensional, and the ensemble has
two members. The correct update (red) stays in
the ensemble subspace.
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Consider Bocquet and Sakov [2013], Figure 3. We're investigating filtering performance, so their left pane is
the relevant one. The method corresponding to our set-up is their SDA IEnKS-N S=1. It’s optimal lag can be
seen to lie between 15 and 20, but it’s not much worse at 8. In model time, this correspond to 8 x 0.05 = 0.4,
which is our setting. In their Figure 4, the optimal lag is 4, but the performance is not much worse for 2
(corresponding to our model time of 0.4).

Furthermore, we believe the relative/qualitative performance results are not very sensitive to this setting.
We therefore decided to use only one, selecting a value that was fairly optimal, but slightly shorter (to be on
the safe side, and because it is cheaper.),

8. Section 4.2
It would also be interesting to see results for a more nonlinear case Aty = 0.8.

We have now included the case of Aty,s = 0.6, which is a fairly extreme setting for data assimilation. It clearly
demonstrates the need for more iterations when the nonlinearity is stronger. It also shows a wider disparity
between the two types of smoothers: Gauss-Newton and MDA. This has been remarked on in the results text.
We have also included the benchmark scores for the EnKF.

NB1: We have changed our definition of “analysis” RMSEs (before, it was defined by the application of
the ultimate W, to the forecast ensemble; now it is defined by the nonlinear propagation of the smoothed
ensemble of iteration i). This has the effect of lowering the reported scores, although the algorithms themselves
are unchanged.

NB2: we swapped the hollow/compact definition of the markers.




RC2

Major.

Minor.

This manuscript reformulates the algorithm of the original ensemble randomized maxi-
mum likelihood (EnRML), a stochastic EnKS, and compares its performance with other
iterative schemes using the Lorenz-96 model. The manuscript is well written. | ba-
sically have no critical comment on the proposed method. However, | would like to
recommend the authors performing some additional Lorenz-96 experiments to discuss
differences between EnRML and iterative EnKS. For example, the following experi-
ments would be interesting:

(1) experiments with imperfect observation error variance

(2) experiments with higher nonlinearily (e.g., larger obs error or infrequent assimila-
tion)
(3) experiments with model imperfection

Those additional experiments, | believe, should improve the manuscript more.

We thank the reviewer for his generous words and comments.

- Concerning items 1 and 3: The distinction between EnRML/IEnKS (following our improvements to
EnRML) is their stochastic/deterministic nature. Since both are derived from the same hidden Markov
model (HMM) framework, without system error, there seems to be little reason to suspect that one would
systematically be better suited to deal with it. We therefore prefer to keep the manuscript short and

focused, and defer to other studies for the issue of system error.

- Concerning item 2: Please see the response to P. Sakov’s point 8, and M. Bocquet’s point 26.

1. Please add dimensions of matrices as Egs. (13) and (14) so that we can follow
equations easier.

2. | recommend the authors to add a schematic figure that simply illustrates the pro-
posed method compared with the original EnRML and iterative EnKS.

3. “stochastic and deterministic ES-MDA” should be explained more.

1. Done, thanks.
2. We were not able to accomplish this to a satisfactory degree.

3. Done, thanks.



RC3 (Marc Bocquet)

This is a very nice paper. Taking inspiration from the deterministic IEnKS, it significantly
clarifies the derivation of the EnRML which | personally always found a bit convoluted.
In spite of all the technical details, it is a relief to see the simple and sleek algorithm in
page 12 of the manuscript. It allows for an immediate comparison with the determinis-
tic IEnKS and it makes sense even without going into the details of the derivation. Part
(and only part) of the simplification is reminiscent of the simplification operated in Boc-
qguet and Sakov (2012) onto the IEnKF algorithm of Sakov et al. (2012) (line 21 of the
main algorithm in Appendix A) without fundamentally changing the method. This could
be briefly mentioned. | have not checked the appendices which are very technical and
would require too much time to confidently check.

We thank the reviewer for his generous words. The “reminiscence” point is clarified in item 30.

1. The line numbering is inconsistent (unpractical at best)!

Sorry! I don’t know how it happened (... probably it’s a compilation issue).

PS: Also note that I’'m not able to remove the pagewise option, which is part of copernicus.cls.

2. line 1: The parentheses around stochastic are unnecessary.

I have gone back and forth on this a lot, actually. There is a subtle interplay of the phrasing (i) here, (ii) below,
for the IEnKS, and (iii) in the title.

3. line 12: "reservoir" — "oil reservoir": | believe reservoir is not natural for the usual
NPG reader.

| Done, thanks.

4. line 16: Readers unfamiliar with the EnRML may jump to the beginning of the
derivation: section 2: But then, there would be no introduction at all for theses
readers. They do deserve a few sentences! (the abstract does not count.)

| Done, thanks. Moreover, this resulted in the incorporation of the “layout” section as a paragraph here.

5. lines 27-28: Parentheses are missing around the equations’ number.

| Done, thanks.

6. line 44: Bocquet and Sakov (2012) could be mentioned here, as it showed that
the requirement for inverses in Sakov et al. (2012) was unnecessary.

| Done, thanks.

7. lines 50-52: | guess you are missing the key point which is that chaotic model
require sequential assimilation, whereas oil reservoir models, although nonlinear
(and non trivial), are not chaotic.



| Done, thanks.

8. line 59: "some of the results" — "some of the mathematical results" (otherwise,
the statement would seem odd).

| Done, thanks.

9. line 64: This has also been discussed in Liu et al. (2017) and to some extent
Morzfeld et al. (2018).

| Done, thanks.

10. page 3, line 12: Please define |.

| (Unless I'm missing something) this was/is defined right there (i.e. below eqn 3).

11. page 4, line 19: The section title is too generic and not consistent with the one
chosen for section 2.3. "RML" would be more consistent.

| Done, thanks.

12. page 4, line 30: "first-order" is ambiguous. Strictly speaking, this is second-order
as a Taylor expansion but without second-order derivatives.

| Done, thanks.

13. page 4, line 41: Please define I,;.

| Done, thanks.

14. Page 5, line 49: C, is often called the innovation covariance matrix, or innovation
statistics.

| Please see our response to P. Sakov’s point 3.

15. Page 5, line 50: "than the inversion to compute C" — "than the inversion needed
to compute C, in (7b)."

| Done, thanks.

16. page 5, line 62: "yield" — "yields".

| I like the subjunctive “flourish” in English, but ok.



17. page 5, line 68: "without the costly use of Metropolis-Hastings": More fundamen-
tally this is due to the curse of dimensionality (see e.g., Liu et al. (2017)).

| Done, thanks.

18. page 7, line 6: "Maciejewski and Klein, 1985" — "as proven by ..." or use paren-
theses.

| Done, thanks.

19. page 7, Theorem 1: At the NPG level, this result can be seen and written down on
the back of an envelope, and that is why nobody cares to do so. It is nice though
that you show it rigorously but since the heuristic for this proof is adamant, this
would not really be required in NPG. By that | mean that previous authors are
not really guilty. Also, | believe that the heuristic derivation is not restricted to
Gaussian distributions, is it?

In order to hasten the exchange, we have discussed this item in a private correspondence with the reviewer.
We thus established that the reviewer did not fully appreciate the result. Therefore, to better emphasize its
qualities, the paragraph has been somewhat reorganized.

20. page 8, lines 41-48: This can be better understood thinking in terms of condition-
ing of the associated cost function.

| Done, thanks.

21. page 8, line 58: "the control vector" — "a control vector" right? there may be
several.

| Yes, thanks.

22. page 9, line 90: "Inversely" — "Conversely".

| Done, thanks.

23. page 12, line 63: "pre-multiplying" is ambiguous. Say for instance on the right or
on the left.

| Done, thanks (also did “post-multiplying”)

24. page 13, line 85: There is also a quasi-static variant of the deterministic IEnKS
that would be worth considering (Fillion et al., 2018). However the data assimila-
tion window length your chose might not be long enough to do so.

| (Unless I'm missing something) this was/is mentioned in the associated footnote.

25. page 13, line 10: 10°000, do you mean 10,0007



26.

27.

28.

29.

30.

Yes, thanks.

page 14, line 18: | would add the smoothing RMSE to the numerical study to
muscle it up. Moreover, | noticed that it is often uneasy for colleagues to grasp
that such filter yields better filtering RMSE. | would show both the filtering and
smoothing RMSEs to tell that these methods do both with high accuracy.

We have included plots of the smoothing RMSE, and clarified the distinction to analysis RMSE further in the

text.

Also see the response to P. Sakov’s point 8.

page 14, line 31: You could mention that this is qualitatively if not quantitatively
similar to the deterministic versus stochastic EnKF.

Done, thanks (it was/is also noted in the summary).

Page 14, line 42: "has been subject of" — "has been the subject of".

Done, thanks.

page 14, line 42: "tuning of the step length": what does it mean? | really have no
clue.

Reformulated. Hopefully it makes sense now.

page 15, line 48: This is really reminiscent of the improvement brought about by
Bocquet and Sakov (2012) onto Sakov et al. (2012) in the context of the deter-
ministic IEnKF/IEnKS.

As far as I can tell, avoiding the explicit computation of M; in favour of Y; = M;X, and its computation by
an inverse transform, was already in place (in the deterministic/IEnKS context) in Sakov, Oliver, and Bertino
[2012]. Thus, I believe you're referring to the product (XTX)*XT on line 21 of their algorithm, which was
simplified by Bocquet and Sakov [2012] by the change of variables to w (I also faintly remember a presentation
with an explicit reduction of the product, but I cannot find the source). It is accomplished in the same manner
in our section 3.4, where the papers have now been appropriately cited.

- page 16, line 57: "do not go the length of' — "do not go to the length of".

Changed to “do not venture to”

. page 16, line 63: "prove" — "proves".

Done, thanks.
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Abstract

Ensemble randomized maximum likelihood (EnRML) is an iterative (stochastic) ensemble smoother, used for
large and nonlinear inverse problems, such as history matching and data assimilation. Its current formulation
is overly complicated and has issues with computational costs, noise, and covariance localization, even causing
some practitioners to omit crucial prior information. This paper resolves these difficulties and streamlines the

algorithm, without changing its output.

These simplifications are achieved through the careful treatment of the

linearizations and subspaces. For example, it is shown (a) how ensemble linearizations relate to average sensitivity,
and (b) that the ensemble does not loose rank during updates. The paper also draws significantly on the theory of
the (deterministic) iterative ensemble Kalman smoother (IEnKS). Comparative benchmarks are obtained with the
Lorenz-96 model with these two smoothers and the ensemble smoother using multiple data assimilation (ES-MDA).

1 Introduction

Ensemble (Kalman) smoothers are approximate methods
used for data assimilation (state estimation in geoscience),
history matching (parameter estimation for petroleum
reservoirs), and other inverse problems constrained
by partial differential equations. Iterative forms of
the—ensemble—smootherthese smoothers, derived from

optimization perspectives, have proven useful in improving
the estimation accuracy when the forward operator is
Ensemble randomized maximum likelihood

nonlinear.
(EnRML) s-als
{HES)-is one such method.

“anomalies’

sensitivity” matrix, herein denoted M;. As detailed in
section 3, this is problematic because M; is noisy and
requires the computation of the pseudo-inverse of the
", X, for each iteration, i.

A Levenberg-Marquardt variant was proposed in the
landmark paper of Chen and Oliver [2013b]. Its main
originality is a partial resolution to the above issue
by modifying the Hessian (beyond the standard trust-
region step regularization): the prior ensemble covariance
matrix is replaced by the posterior covariance (of iteration
i): C, « (_L‘m,i. Now the Kalman gain form of the
likelthood increment is “vastly simplified”, because the
linearization M; only appears in the product M; Cm i
which does not require X+ For the prior increment, on

This paper rectifies several conce tual and com utatlonalthe other hand, the modlﬁcatlon breaks its Kalman gain

complications with EnRML,

detailed in section 1.1. As em hasmed in sectlon 1.2
these improvements are largely inspired by the theor
of the iterative ensemble Kalman smoother (IEnKS).

Readers wunfamiliar with EnRML may jump to the
beginning of the derivation: section 2-, which defines
the inverse problem and the idea of the randomized
waximum _ likelihood method. _ Section 3 derives the
new_formulation of EnRML, which is_summarized by
Algorithm 1 of section 3.7. _Section 4 shows _benchmark
experiments _obtained with various_iterative ensemble

smoothers. Appendix A provides proofs of some of the

1.1 Ensemble randomized maximum like-
lihood (EnRML): obstacles

The Gauss-Newton variant of EnRML was given by
Gu and Oliver [2007]; Chen and Oliver [2012], with an
important precursor being Reynolds et al. [2006]. This
version explicitly requires the ensemble-estimated “model

form. Meanwhile, the precision matrix form, i.e. their
equation (10), is already invalid because it requires the
inverse of Cg,. Still, in their equation (15), the prior
increment is formulated with an inversion in ensemble
space, and also unburdened of the explicit computation
of M;. Intermediate explanations are lacking, but could
be construed to involve approximate inversions. Another
issue is that the pseudo-inverse of C, is now required (via
X), and covariance localization is further complicated.

An approximate version was therefore also proposed,
where the prior mismatch term is omitted from the
update formula altogether. This is not principled, and
severely aggravates the chance of over-fitting and poor
prediction skill. Therefore, unless the prior mismatch term
is relatively insignificant, over-fitting must be prevented by
limiting the number of steps or by clever stopping criteria.
Nevertheless, this version has received significant attention
in history matching.

This paper revises EnRML; without any of the above
tricks, we formulate the algorithm such that there is



no explicit computation of M;, and show how the
product M;X may be computed without any pseudo-
inversions of the matrix of anomalies. Consequently, the
algorithm is simplified, computationally and conceptually,
and there is no longer any reason to omit the prior
increment. Moreover, the Levenberg-Marquardt variant
is a trivial modification of the Gauss-Newton variant.
The above is achieved by improvements to the derivation,
notably by (a) improving the understanding of the
sensitivity /linearizations involved, (b) explicitly and
rigorously treating issues of rank-deficiency and subspaces,
and (c) avoiding premature insertion of singular value
decompositions (SVD).

1.2 Iterative ensemble Kalman smoother
(IEnKS)

The contributions of this paper (listed by the previous
paragraph) are orlglnal but draw heavﬂy on the theory
of the itere
ef—S&ke%et—al—B@l%—Beeqﬂet—&ﬂfPS&kev—@Q}é}IEnKS of
Sakov et al. [2012]; Bocquet and Sakov [2012, 2014]. Rel-
evant precursors include [Zupanski, 2005], as well as the
iterative, extended Kalman filter [e.g., Jazwinski, 1970].

It is informally known that EnRML can be seen
as a stochastic flavour of the IEnKS [Sakov et al.,
2012]. Indeed, while the IEnKS update takes the form
of a deterministic, “square-root” transformation, based
in a single objective function, EnRML uses stochastic,
“perturbed observations”, associated with an ensemble of
randomized objective functions.

Another notable difference is that the IEnKS was
developed in the atmospheric literature, while EnRML
was developed in the literature on subsurface flow. Thus,
typically, the IEnKS is applied to (sequential) state
estimation problems such as filtering for chaotic dynamical
systems, while EnRML is applied to (batch) parameter
estimation problems, such as nonlinear inversion for
physical constants and boundary conditions. As

iHustrated—For these problems, EnRML is sometimes
referred to as the iterative ensemble smoother (IES). As

shown by Gu and Oliver [2007], however, EnRML is easily
reformulated for the sequential problem;-and-viee-versafor
the TEnicS-. Vice-versa, the IEnKS may be formulated for

The improvements to the EnRML algorithm herein
renders it very similar to the IEnKS, also in computational
cost. It thus fully establishes that EnRML is “the
stochastie—the stochastic ”counterpart” to the IEnKS.
In spite of the similarities, the theoretical insights and
comparative experiments of this paper should make it
interesting also for readers already familiar with the
IEnKS.

1.3 FEayeut

2 RML

Randomized maximum likelihood (RML) [Kitanidis, 1995;
Oliver, 1996; Oliver et al., 2008] is an approximate
solution approach to a class of inverse problems. The

form of RML described here is a simplification, common

for large inverse problems, which—dees—not—make—use—of
without the use of a correction step (such as Metropolis-
Hastingsteehniees). This restricts the class of problems

for which it is unbiased, but makes it more tractable
[Oliver, 2017]. A-—similar—method—was—Similar methods

were _proposed and studied by B&fdsiﬁket—aﬂl—f%%él}

Bardsley et al. [2014]; Liu et al. [2017]; Morzfeld et al. [2018

2.1 The inverse problem

Consider the problem of estimating an—the unknown,
high-dimensional parameter—state (or parameter) vector
x € RM given the observation y € RP. It is assumed
that

where—the (generic, and typically nounlinear) for-

ward/observation process may be approximated b

computational model, M, tS—kHGWH—&ﬂé—%y}—HG&HV
nonlinear-and-the-observation-so that_

y=M(@) +9, (1)

=

where the error, § +israndemneise;givingis random and
gives rise to a likelihood, p(y|x).

In the Bayesian paradigm, prior information is
quantified as a probability density function (pdf) called the
prior, denoted p(x), and the truth, «, is considered a draw
thereof. The inverse problem then consists of computing
and representing the posterior which, in principle, is given
by pointwise multiplication:

(2)

quantifying the updated estimation of . Due to the
noted high-dimensionality and nonlinearity, this can be
challenging, necessitating approximate solutions.

The prior is assumed Gaussian, with mean p, and
covariance Cg, i.e.

p(z|y) < p(y|z) p(z),

p(:l?) = /\/‘(ac | M, C:c)

1 1 2
= |27TCE|_§ e—EH‘D—Hchm .

3)

For now, the prior covariance matrix, €zC, € RM*M

is assumed invertible such that the corresponding norm,
|z|&, = «"Ci'a, is defined. Note that vectors are
taken to have column orientation, and that ' denotes
the transpose.



The observation error, d, is assumed drawn from:

p(6) = N(8]0,Cs),

(4)
whose covariance, €5C5 € R"*F | will always be assumed
invertible. Then, assuming & and « are independent and
recalling equation (1),

p(ylz) = ()

in the “Kalman gain” form:

Aprior —
.
Al.klhd

(In — K.M,)[z, —
= K.[yn — M(z.)],

xz,], (10a)

(10b)

where Kis—the-I); € RM*M g the identity matrix, and
K, € RM*" is the gain matrix:

— TH—1
K.=C,M]C,"', (11)

2.2 ThealgerithmRandomize, then optimizeith

The Monte-Carlo approach offers a convenient representa-
tion of distributions as samples. Here, the prior is repre-
sented by the “prior ensemble”; {z,, }_;, whose members
(sample points) are assumed independently drawn from it.
RML is a—relatively-an efficient method to approximately
“condition” (i.e. implement (2) on) the prior ensemble,
using optimization. Firstly, an ensemble of perturbed
observations, {y,}_,, is generated as y,, = y +J,,, where
d,, is independently drawn according to equation (4).

Then, the n-th “randomized log-posterior”, Jg ., is
defined by Bayes’ rule (2), except with the prior mean and
the observation replaced by the n-th members of the prior
and observation ensembles:

Jon(®) = 5|2 + 3| M(=) (6)
The two terms are referred to as the model mismatch (log-
prior) and data mismatch (log-likelihood), respectively.

Finally, these log-posteriors are minimized. Using
the Gauss-Newton iterative scheme (for example) requires

(7a) its gradient and (7b) WJ&}WW
first-order apps statr-model expansions,

both evaluated at the current iterate, labelled x, ;
for each member n and iteration 7. To simplify the
notation, define x, = x,;. Objects evaluated at
x, are similarly denoted; for instance, Mz=A4

%denotes the Jacoblan of ./\/l

evaluated at x,, and

-z, —ynllg, -

VJ, = C;l[:c.
Ccrl=

—z,] + M]C5 ' [M(z.) -
C,'+M]C;'M..

yn] )

Application of the Gauss-Newton scheme yields:

T it1 = . — C, VI,

=z, + A{)rior + Al.klhd7 (8)

where the prior (or model) and likelihood (or data)

increments are respectively given by:

prior __
APTOT =

lklhd
A.

C.C. 'z
=C.M]Cy!

(9a)
(9b)

n - wo] 9
[yTL - M(x')] )
which can be called the “precision matrix” form.

Alternatively, by corollaries of the well known
Woodbury matrix identity, the increments can be written

C, = M.C,M[ 4 Cs5. (12)
As the subscript suggests, C, may be identified (in the
linear case) as the prior covariance of the observation,

equation{Hy, of equation (1); it is also the covariance
of the innovation, y — M(pg). Note that if P < M, then

the inversion of &Wfor the Kalman gain form
(10) is significantly cheaper than the inversion te-comptte

Cof C, € RM*M {51 the precision matrix form (9).

3 EnRML

Ensemble-RML (EnRML) is an approximation of RML
where the ensemble is used in its own update, by estimating
C, and M,. This section derives EnRML, and gradually
introduces the new improvements.

Computationally, compared to RML, EnRML offers
the simultaneous benefits of working with low-rank
representations of covariances, and not requiring a tangent-
linear (or adjoint) model. Both advantages will be further
exploited in the new formulation of EnRML.

Concerning their sampling properties, a few points
can be made. Firstly (due to the ensemble covariance),
EnRML is biased for finite N, even for a linear-Gaussian
problem, for which RML will sample the posterior
correctly. This bias arises for the same reasons as in
the ensemble Kalman filter [EnKF, van Leeuwen, 1999;
Sacher and Bartello, 2008]. Secondly (due to the ensemble
linearization), EnRML effectively smoothes the likelihood.
It is therefore less prone to getting trapped in local maxima
of the posterior [Chen and Oliver, 2012]. Sakov et al.
[2018] explain this by drawing an analogy to the secant
method, as compared to the Newton method. Hence, it
may reasonably be expected that EnRML sield—yields
constructive results if the probability mass of the exact
posterior is concentrated around its global maximum.
Although this regularity condition is rather vague, it would
require that the model be “not too nonlinear” in this
neighbourhood. Conversely, EnRML is wholly inept at
reflecting multimodality introduced through the likelihood,
and so RML may be better suited when local modes feature
prominently, as is quite common in problems of subsurface
flow [Oliver and Chen, 2011]. However, while RML has
the ability to sample multiple modes, it is difficult to
predict to what extent their relative proportions will be
eorreet—accurate (without the costly use of a correction
step such as Metropolis-Hastings). Further comparison of
the sampling properties of RML and EnRML was done by
Evensen [2018].



3.1 Ensemble preliminaries
For convenience, define the concatenations:
E = [33'1 s

wN:I c ]R]\/[X]\f7
6N] c RPXN,

T,
(sna

which are known as the “ensemble matrix” and the
“perturbation matrix”, respectively.

Projections sometimes appear through the use of linear
regression. We therefore recall [Trefethen and Bau, 1997]
that a (square) matrix IT is an orthogonal projector if

NI=I1=1I". (15)
For any matrix A, let IIo denote the projector whose
image is the column space of A, implying that

IIAA=A. (16)
Equivalently, IIx A = 0, where IT5 = I—TI is called the
complementary projector. The (Moore-Penrose) pseudo-
inverse, AT, may be used to express the projector:

Iy =AAT = (AT)T(AT). (17)
Here, the second equality follows from the first by
equation (15) and (A*)T = (AT)*. The formulae simplify
further in terms of the SVD of A.

Now, denote 1 € RV the (column) vector of ones;ane
letTv—be—theN-by-N—identity—matrix—, _The matrix
of anomalies, XX € RM*N "is defined and computed by
subtracting the ensemble mean, = E1/N, from each
column of E. It should be appreciated that this amounts
to the projection:

X =E-z1" = EIl}, (18)
where l_I]ll = IN — H]17 with Hﬂ = ]I]IT/N
Definition 1 (The ensemble subspace). The flat (i.e.

affine subspace) given by: {x € RM . [x — Z] € col(X)}.

Similarly to section 2, iteration index (i > 0)
subscripting on E, X, and other objects, is used to indicate
that they are conditional (i.e. posterior). The iterations
are initialized with the prior ensemble: x,, o = x,,.

3.2 The constituent estimates

The ensemble estimates of C, and M, are the building
blocks of the EnRML algorithm. The canonical estimators
are used, namely the sample covariance (19a), and the
least-squares linear regression coefficients (19b). They are
denoted with the overhead bar:

C., = XX,
M; = M(E;)X;

(19a)
(19b)

The anomalies at iteration i are again given by X; =
E,IT;, usually computed by subtraction of ;. The matrix
M(E;) is defined by the column-wise application of M
to the ensemble members. Conventionally, M(E;) would

also be centred in equation (19b), i.e

multiplied on the right by IIf.

s smltinliod

However, this opera-

tion (and notational burden) can be neglected, because
X} =

X, which follows from IT(AII)T = (AIL)"

valid for any matrix A and projector I, as shown by Maciejewski

Note that the linearization (previously M,, now M)
no longer depends on the ensemble index, n. Indeed, it
has been called “average sensitivity” since the work of
Zafari and Reynolds [2005]; Reynolds et al. [2006]; Gu

and Oliver [2007]. Fhe-formula-{19b)for M -issometimes
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intuition_has not been_rigorous] Ubtlﬁedl This is
accomplished by Fheerem—the following theorem.

Theorem 1 (Regression coefficients versus derivatives).

s he pri Leri i for)—Suppose
the ensemble is drawn from a Gaussian. Then

lim M = E[M'(z)],

N—o0

(20)

with “almost sure” convergence, and expectation (E) in x—,
which has the same distribution as the ensemble members.
Regulamty conditions and proof mn appendwc A. Ne%e—the

description. The theorem applies for the ensemble of an

Gaussian, and hence also holds for M. On the other
hand, the generality of Theorem 1 is restricted by its

the Gaussianity assumption. Thus, for generality and
precision, M; should simply be labelled “the least-squares
(linear) fit” of M, based on E;.
Finallynote-that-Note that the computation (19b) of
M; seemingly requires calculating a new pseudo-inverse,
X;r, at each iteration, 7; this is addressed in section 3.6.
The prior covariance estimate (previously Cg, now Cg)
is mot assumed invertible, in contrast to section 2. It is
then not possible to employ the precision matrix forms (9)

-1 —
because C, is not defined. Using the CI in its stead is

"The formula (19b) for M, is sometimes arrived at_via
a truncated Taylor expansion of M around Z; __ This is
already an approximation, and still requires further, indeterminate
approximations to obtain any other interpretation than M/(%;): the

Jacobian evaluated at the ensemble mean,




flawed and damaging because it is zero in the directions
orthogonal to the ensemble subspace, so that its use would
imply that the prior is assumed infinitely uncertain (i.e.
flat) as opposed to infinitely certain (hke a delta functlon)
in those directions. Instead, ass —one
should employ ensemble subspace formulae or equlvalently

—the—(as shown in the following, using corollaries of the
Woodbury identity), the Kalman gain form.

3.3 Estimating the Kalman gain

The ensemble estimates (19) are now substituted into the
Kalman gain form of the update, equation (10) to (12).
The ensemble estimate of the gain matrix, denoted Kj,
thus becomes:

K, = C,M] (M,C,M] + C5) "
1

= XY (Y:Y] +(N-1)Cs) (21)
where ¥:-Y; € RP*Y has been defined as the prior (i.e.
unconditioned) anomalies, under the action of the i-th
iterate linearization:

A Woodbury corollary {again;
can be used to express K; as:
K; = XC,,Y/C;", (23)
with
Cuwi = (Y]C31 Y + (N-DIy) (24)

The reason for labelling this matrix with the subscript w
is revealed later. For now, note that, in the common
case of N « P, the inversion in equation (24) is
significantly cheaper than the inversion in equation (21).
Another computatlonal benefit is that Cu” is non-
dlmensmnal ; ; st ; ;

WM&WM@M@@
problem [Lorenc, 1997].

In conclusion, the likelihood increment (10b) is now
estimated as:

AMN R [y, — M(z)]. (25)
This is efficient because M; does not explicitly appear
in K; (neither in formula (21) nor (23)), even though it
is implicitly present through Y; (22), where it multiplies
X. This absence (a) is reassuring, as the product Y;
constitutes a less noisy estimate than just M; alone [Chen
and Oliver, 2012; Emerick and Reynolds, 2013b, figures 2
and 27, resp.]; (b) constitutes a computational advantage,
as will be shown in section 3.6; (c) enables leaving the type
of linearization made for M unspecified, as is usually the
case in EnKF literature.

3.4 Estimating the prior increment

In contrast to the likelihood increment (10b), the Kalman
gain form of the prior increment (10a) explicitly contains
the sensitivity matrix, M,. In—response;—eonsider—This
Issue was resolved by Bocquet and Sakov [2012] in_their
refinement of Sakov et al. [2012] by employing the change

of variables:

r(w) =%+ Xw, (26)
where w € RY is called the ensemble “controls” [Bannister,
2016], also known as the ensemble “weights” [Ott et al.,
2004], or “coefficients” [Bocquet and Sakov, 2013].
Denote w, the—eontrel-an ensemble coefficient vector
such that (w,) = x,, and note that x(e,) = x,, where
e, is the n-th column of the identity matrix. Thus,
[, — z.] = X[e, — w.], and the prior increment (10a)
with the ensemble estimates becomes:
APt = (X - K;Y;) e, — w.], (27)
where there is no explicit M,, which only appears
implicitly through Y; = M,;X, as defined in equation (22)

Alternatively, applying the subspace formula (23) and
using Iy = Cwﬂ(Cw,i) yields:
AP = XChp i (N—1)[en — w.] . (28)

3.5 Justifying the change of variables

Lemma 1 (Closure). Suppose E; is generated by EnRML.
Then, each member (column) of E; is in the (prior)
ensemble subspace. Moreover, col(X;) C col(X).

Lemma 1 may be proven by noting that X is
the leftmost factor in K;, and using induction on
equations (10a) and (10b). Alternatively, it can be
deduced [Raanes et al., 2019] as a consequence of the
implicit assumption on the prior that & ~ N (%,Cg). A
stronger result, namely col(X;) = col(X), is conjectured
in appendix A, but Lemma 1 is sufficient for the present
purposes: it implies that there exists w, € RY such that
z(w,) = @, for any ensemble member and any iteration.
Thus, the lemma justifies the change of variables (26).

Moreover, using the ensemble eentrel-coefficient vector
(w) is theoretically advantageous as it inherently embodies
the restriction to the ensemble subspace. A practical
advantage is that w is relatively low-dimensional compared
to x, which lowers storage and accessing expenses.

3.6 Simplifying the regression

Recall the definition of equation (22): Y, = M;X.
Avoiding the explicit computation of M; used in this
product between the iteration-i estimate M; and the initial
(prior) X was the motivation behind the modification
C. + C,, by Chen and Oliver [2013b]. Here, instead,
by simplifying the expression of the regression, it is shown
how to compute Y; without first computing M.



3.6.1 The transform matrix

Inserting the regression M; (19b) into the definition (22),

Y; = M(E;) T; (29)
where Tj = X;-"X has been defined, apparently requiring
the pseudo-inversion of X; for each i. But, as shown in
appendix A.2,

T, = XTX;, (30)
which only requires the one-time pseudo-inversion of the
prior anomalies, X. Then, since the pseudo-inversion of
T; € RV*N for Y; (29) is a relatively small calculation,
this saves computational time.

The symbol T has been chosen in reference to
deterministic, square-root EnKFs. Indeed, pre-multiphyine
equation-(30) multiplying equation (30) on the left by X
and recalling equation (17) and Lemma 1 produces X; =
XT;. Therefore, the “transform matrix”, T;, describes
the conditioning of the anomalies (and covariance).

InverselyConversely, equation (29) can be seen as the

“de-conditioning” of the posterior observation anomalies.

This interpretation of Y; should be contrasted to its
definition (22), which presents it as the prior parameter
state anomalies “propagated” by the linearization of
iteration ¢. The two approaches are known to be “mainly

equivalent” in the deterministic case [Sakov et al., 2012].

To our knowledge, however, it has not been exploited
for EnRML before now, possibly because the proofs
(appendix A.2) are a little more complicated in this
stochastic case.

3.6.2 From the ensemble eentrolscoefficients

The ensemble matrix of iteration ¢ can be written:

E, =z1" + XW,, (31)

where the columns of W; € RV*V are the ensemble
eontrol—coefficient _vectors (26). Post-multiplving
equaﬂerr(—?ﬂﬁ—l\/lultl lying equation (31) on the right by

IT; to get the anomalies produces:

X; = X(W,II7). (32)
This seems to indicate that W;IIf is the transform matrix,
T,;, discussed in the previous subsection. However, they
are not fully equal: inserting X; from (32) into (30) yields:
T; = Mxr(W,II{), (33)
i.e. they are distinguished by ITxr = X*tX: the projection
onto the row space of X.
Appendix A.3 shows that, in most conditions, this
pesky projection matrix vanishes when T; is used in
equation (29):

N-1< M, or

34
M is linear. (34)

Y; = M(E;) (W) " if{

In other words, the projection Ilxt can be omitted unless
M is nonlinear and the ensemble is larger than the
unknown parameterstate’s dimensionality.

A well known result of Reynolds et al. [2006] is that
the first step of the EnRML algorithm (with Wy = Iy) is
equlvalent to the EnKF. However H&&b%&ﬁdr&rd—f}ehmheﬁ

Y that-never eontains-this is only strictly true if there is
no appearance of ITxr in EnRML. The following section
explains why it—sheuld—be—se—for—EnRME—+tooEnRML

should indeed always be defined without this projection.

3.6.3 Linearization chaining

Consider applying the change of variables (26) to w at the
very beginning of the derivation of EnRML. Since X1 = 0,
there is a redundant degree of freedom in w, meaning
that there is a choice to be made in deriving its density
from the original one, given by Jg ,(z) in equation (6).
The simplest choice [Bocquet et al., 2015] results in the
log-posterior:

+ HIM@Z+Xw) — ynllE, ,

Jwn(w) = 5w

Application of the Gauss-Newton scheme with the
gradients and Hessian of Jy, ., followed by a reversion
to a, produces the same EnRML algorithm as developed
above.

The derivation summarized in the previous paragraph
is arguably simpler than that of the last few pages.
Notably, (a) it does not require the Woodbury identity
to derive the subspace formulae; (b) there is never an
explicit M; to deal with; (c) the statistical linearization of
least-squares regression from W; to M(E;) directly yields
equation (34), except that there are no preconditions.

While the case of a large ensemble (N—1 > M) is not
typical in geoscience, the fact that this derivation does
not produce a projection matrix (which requires a pseudo-
inversion) under any conditions begs the questions: Why
are they different? Which version is better?

The answers lie in understanding the linearization of
the map w — M(Z + Xw), and noting that, similarly
to analytical (infinitesimal) derivatives, the chain rule
applies for least-squares regressmn In effect the product
Y, = M;X, which pete ; ¢
Ww&&b&m@&%’ can e
seen as an application of the chain rule for the composite
function M(x(w)). By contrast, equation (34) — but
without the precondition — is obtained by direct regression
of the composite function. Typically, the two versions
yield identical results (i.e. the chain rule). However, since
the intermediate space, col(X), is of lower d1mens1ons than
the initial domain (M < N—1), indir —regr
composite linearization results in a loss of 1nf0rmat10n
manifested by the projection matrix. Therefore, the
definition Y; = M(E;) (W,II{)" is henceforth preferred
to 1\_/IlX

Numerical experiments, as in section 4 but not shown,
indicate no statistically significant advantage for either
version. This corroborates similar findings by Sakov et al.




[2012] for the deterministic flavour. Nevertheless, there is
a practical advantage: avoiding the computation of IIxr.

3.6.4 Inverting the transform

In square-root ensemble filters, the transform matrix
should have 1 as an eigenvector [Sakov and Oke, 2008;
Livings et al., 2008]. By construction, this also holds
true for W,ITj, with eigenvalue 0. Now, consider adding
0 = XII; to equation (32), yielding another valid
transformation:

X; = X(W,II; +1IIy).
N———’

Q;

(35)

The matrix €;, in contrast to W,;II{ and T;, has
eigenvalue 1 for 1 —and—ean—be——shown—to—be
nvertiblethemma-2-appendixA-3jand is thus invertible.
This is eonvenientHforprovingequation {34 —as—is—done
used to_prove equation (34) in appendix A.3, where
Y; is initialy—expressed in terms of Q;l.

Nete;

p(if‘t 13?]11]%].]:%]31].]3 o 1 : 91—1

of Y; was found to_yield stable convergence of the new
EnRML algorithm in the trivial example of M(z) = oz
By contrast, the use of (WIIj)* exhibited geometrically
growing (in i) errors when o > 1. Other formulae for the
inversion are derived in appendix A.4; the one found to
be the most stable is (WII; )" = W_'TI; ; it is therefore
preferred in Algorithm 1.

AL g
Hewevei—mﬂﬂ%pﬁeﬁdeﬂwefs&eﬂ—aﬁﬁw—km

of the inverse transform formula used, it is important
to retain all non-zero singular valuesshetﬂé%ae%e%aiﬁeek

> ' it atly— e ike—. This
absence of a truncation threshold is a tuning simplification
compared with the old EnRML algorithm, where a—X
and/or X; was scaled decomposed, and truncated}. If,

by extreme chance for_poor numerical subroutines, the
matrix W, is not_invertible (this never occurred in any
of the experiments except by our explicit intervention;
cf. the conJecture in appendlx A)eembiﬁed—wfeh—peef

its pseudo—lnversmn tHewer—%hiﬂﬁHﬂﬂvahé&E&J—aﬁé

b

should be used; however th1s must also be accounted for

in the prior increment en—?7-8-bythat-sameprojection
by multl lying the formula on line 8 on the left by the

3.7 Algorithm

To summarize, Algorithm 1 provides pseudo-code for the
new EnRML formulation. The increments Ahd (25) and

APTior (28) can be recognized by pre-multiplying 2210~

multiplying line 10 on the left by X. For aesthetics, the
sign of the gradients has been reversed. Note that there

is no need for an explicit iteration index. Nor is there

an ensemble index, n, since all N columns are stacked

into the matrix W. However, in case M is large, Y may

be computed column-by-column to avoid storing E. The
1o . . :

Algorithm 1 Gauss-Newton variant of EnRML
(the stochastic flavour of the IEnKS analysis update)

require: prior ens. E; obs. perturb’s D

1. & :E]l/N
2 X =E—z1T
3: W =1y

4: repeat:

Run model (on each col.) to get M(E)

Y = MEHWHE= ME) W

5
6:
7. VK = YTCylT + D — M(E)]
8
9

VIR — (N=1)[Iy — W]
. Cw =(Y'C;'Y+ (N-1)Iy)
100 W =W + Cpp [V 4 Vlklnd]
1: E =z1T + XW
12: until tolerable convergence or max. iterations
13: return posterior ensemble E

-1

Line 6 is typically computed by solving YW = M(E) for
Y’ and then subtracting its column mean. Alternative

formulae are discussed in section 3.6.4. Line 9 may be
computed using a reduced (or even truncated) SVD of

-1

smaller than P. Alternatively, the Kalman gain forms
could be used.

The Levenberg-Marquardt variant is_obtained by
adding the trust-region parameter A > 0 to (N-1) in the
Hessian, line 9, which impacts both the step length and

direction.
Localization may be implemented by local analysis -

T&peﬁﬂgfﬁa%b&é@ﬂ& Hunt et al., 2007; Sakov and Bertino, 2011

i also see Bocquet [2016]; Chen and Oliver [2017]. Here
tapering is applied by replacing the local-domain Cj 12

by—p 2 e Cr'" —where—(i g]/ 2 implicit on lines 7 and 9
by _poCy;!% with o is—heing the Schur product,
and p is—a square matrix containing the leealization
(square-root) tapering coefficients, p,,; € [0,1]. Adso-see
B 12016} C L Ok (2017 for loeatizati .
smoothers—If the number of local domains used is large
so that the number of W matrices used becomes large
then it may be more efficient to revert to the original
state variables, and explicitly compute the sensitivities M,
using the local parts of M(E;) and X,.

Inflation and model error parameterizations are not
included in the algorithm, but may be applied outside
of it. Aldse—see-We refer to Sakov et al. [2018]; Evensen
[2019] for model error treatment with iterative methods.



4 Benchmark experiments

The new EnRML algorithm produces results that are
identical to the old formulation, at least up to round-off
and truncation errors, and for N—1 < M. Therefore, since
there is already a large number of studies of EnRML with
reservoir cases [e.g., Chen and Oliver, 2013a; Emerick and

Reynolds, 2013b], adding to this does not seem necessary.

However, there does not appear to be any studies of
EnRML with the Lorenz-96 system [Lorenz, 1996] in a
data assimilation setting. The advantages of this case
are numerous: (a) the model is a surrogate of weather
dynamics, and as such holds relevance in geoscience;
(b) the problem is (exhaustively) sampled from the
system’s invariant measure, rather than being selected
by the experimenter; (c) the sequential nature of data
assimilation inherently tests prediction skill, which helps
avoid the pitfalls of point measure assessment, such as
overfitting; (d) its simplicity enhances reliability and
reproducibility, and has made it a literature standard, thus
facilitating comparative studies.

Comparison of the benchmark performance of EnRML
will be made to the IEnKS, and to ensemble multiple

data assimilation (ES- MDA)2—b6H&ﬂﬁﬂ%eehaﬁHe—Mi$.

Both_the stochastic and the deterministic (square-root)
Havour—flavowrs of ES-MDA are included, which in_the

cage of only one iteration (not shown), result in exactl

the same ensembles as EnRML and IEnKS, respectively.

Not included in the benchmark comparisons is the version

of EnRML where the prior increment is dropped (cf.

section 1.1). This is because the chaotic, sequential nature
of this case makes it practically impossible to achieve good
results without propagating prior information. Similarly,
as they lack a dynamic prior, this precludes “regularizing,
iterative ensemble smoothers” [Iglesias, 2015], [Luo et al.,
2015],% [Mandel et al., 2016]*, even if their background

is well-tuned, and their stopping condition judicious.

Because they require the tangent-linear model, M,, RML
and EDA/En4DVar [Tian et al., 2008; Bonavita et al.,
2012; Jardak and Talagrand, 2018] are not included. For
simplicity, localization will not be used, nor covariance
hybridization. Other, related methods may be found in
the reviews of Bannister [2016]; Carrassi et al. [2018].

2Note
sense of

that this is MDA in the

4.1 Setup

The performances of the iterative ensemble smoother
methods are benchmarked with “twin experiments”, using
the Lorenz-96 dynamical system, which is configured with
standard settings [e.g., Ott et al., 2004; Bocquet and Sakov,
2014], detailed below. The dynamics are given by the
M = 40 coupled ordinary differential equations:

% = (xm+l - xm—Q) Tm—1 — Tm + Fa (36)
for m = 1,..., M, with periodic boundary conditions.
These are integrated using the fourth-order Runge-Kutta
scheme, with time steps of 0.05 time units, and no model
noise, to yield the truth trajectory, (). Observations
of the entire state vector are taken Atsps—=0-2-6r04
Atgpg time units apart with unit noise variance, meaning
y(t) = x(t) + 8(t), for each ¢ = k - Atops, with
F=0:5—-30060k = 0,1, ....10,000, and Cs = I,,.
The iterative smoothers are employed for

problemr—in the sequential problem of ﬁlterln aini—
ing to estimate x(t) as soon as y(t) comes in. In
so doing, they also tackle the smoothing problem for

oft—Lig(1=Mpavy), where the lenzth of the data sssim-

11at10n windowhas

At
that_is also _cost efficient (i.e. _short). This window is
shifted by +—Atsps—1 - Atgps each time a new observation
becomes available. A post-analysis inflation factor is
tuned for optimal performance for each smoother and each
ensemble size, N. Also, random rotations are used to
generate the ensembles for the square-root variants. The
number of iterations is fixed, either at 3 or 10. No tuning
of the step length is undertaken: it is 1/3 or 1/10 for
ES-MDA, and 1 for EnRML and the IEnKS.

The smoothers-methods are assessed by their accuracy,
as measured by root-mean squared error:

)=\ agll=t0

which is recorded immediately following each analysis
of the latest observation y(t). The “smoothing” error

RMSE(t (37)

Iz

[assessed with @(t—Atpaw )] is also recorded. After the

experiment, the instantaneous RMSE(t) are averaged

for all t > 20.

eaeh—me%heel—m—%gu&e&»—%—e%—%h%The results

can be reproduced using Python-code scripts hosted

Emeriek-and Reynolds{2013a}
Emerick and Reynolds [2013a]; Stordal [2015]; Kirkpatrick et al. [198301line at https://github.com/nansencenter/DAPPER/

, where the annealing itself yields iterations, and not in the sense
of quasi-static assimilation [Pires et al., 1996; Bocquet and Sakov,
2014; Fillion et al., 2018], where it is used as an auxiliary technique.

3Their Lorenz-96 experiment only concerns the initial conditions.

4Their Lorenz-96 experiment seems to have failed completely, with
most of the benchmark scores (their Figure 5) indicating divergence,
which makes it pointless to compare benchmarks. Also, when
reproducing their experiment, we obtain much lower scores than they
report for the EnKF. One possible explanation is that we include,
and tune, inflation.

tree/paper_StochIEnS. This code reproduces previously
published results in the literature. For example, our
benchmarks obtained with the ITEnKS can be cross-
referenced with the ones reported by Bocquet and Sakov
[2014, Figure 7a.

4.2 Results

table of RMSE averages is compiled for a range of Z\7
and then plotted as curves for each method, in Figure 1.

9 - i
,is ﬁxed at a near-optimal value [inferred from Figures 3 anc


https://github.com/nansencenter/DAPPER/tree/paper_StochIEnS
https://github.com/nansencenter/DAPPER/tree/paper_StochIEnS
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The upper panels report the analysis RMSE scores, while
the lower panels report the smoothing RMSF scores. The
smoothing scores are systematically lower, but the relative
increases Atqps, and thus the nonlinearity; naturally, all
of the RMSE scores also increase. As a final Tsanity

check”, note that the performances of all of the smoothers
ensemble methods improve with increasing IV, which needs

to be at least 15 for tolerable performance, corresponding
to the rank of the unstable subspace of the dynamics
plus one [Bocquet and Carrassi, 2017]. Ofeourseall-of

For experiments with Afeps < 0.4, using 3 iterations is
largely sufficient, since its markers are rarely significantly
higher than those of 10 iterations. On the other hand, for
the highly nonlinear experiment where Atgps = 0.6, there

is a significant advantage in using 10 iterations.
The deterministic (square-root) IEnKS and ES-MDA

score noticeably lower RMSE averages than the stochastic
IEnKS (i.e. EnRML) and ES-MDA, which require N

closer to 30 for telerable-performanee—good performance.

This is qualitatively the same result as obtained for
non-iterative methods [e.g., Sakov and Oke, 2008]. Also

tested (not shown) was the first-order-approximate
deterministic flavour of ES-MDA [Emerick, 2018]—whick

At

erformed very similarly to the square-root flavour.

stochastie—Among the stochastic smoothers, the one
based on Gauss-Newton (EnRML) scores noticeably lower
averages than the one based on annealing (ES-MDA)

vab@uh@

nonlinearity is strong (At > 0 4), and for small N. A

similar trend holds for the determlnlstlc smoothers;—; the
IEnKS performs sﬁg%rﬂybbetter than ES—MDA —Eheugh

bee&uee—m—eeﬁ%t—&wbkhfor At = 0. 6 The hkel

explanation for this result is that EnRML/IEnKS swhieh
can iterate indefinitely, we-thought—that-while ES-MDA

wotd—suffer{rom—oceastonatly—ma occasionally suffer

from not “reaching” the optimum.

Qﬂe—eepkuﬁﬁeﬂ—eeﬂlé—be—%}hftfm
performance of EnRML/IEnKS need-satewering—of-could

ossibly be improved by lowering the step lengths,
pess&b}yﬂs—a—ﬁﬁeﬂeﬁ—e%%he%ef&ﬂeﬂ—ﬁufﬂber—to avoid

causing “unphysical” states, and to avoid “bouncing
around” near the optimum. Aleng—with—therelated
MDA-inflation—parameter;"The tuning of the steplength
hasbeenparameter that controls the step length, (e.g., the
trust-region parameter and the MDA-inflation parameter)

has been the subject of several studies [Chen and Oliver,
2012; Bocquet and Sakov, 2012; Ma et al., 2017; Le et al.,
2016; Rafiee and Reynolds, 2017]. However, our superficial
trials with this parameter (not shown) yielded little or no
improvement.

5 Summary

This paper has presented a new and simpler (on paper and
computationally) formulation of the iterative, stochastic
ensemble smoother known as ensemble randomized
maximum likelihood (EnRML). Notably, there is no
explicit computation of the sensitivity matrix M;, while
the product Y; = M;X is computed without any pseudo-
inversions of the matrix of parameter—state anomalies.
This fixes issues of noise, computational cost, and
covariance localization, and there is no longer any
temptation to omit the prior increment from the update.
Moreover, the Levenberg-Marquardt variant is now a
trivial modification of the Gauss-Newton variant.

The new EnRML formulation was obtained by
improvements to the background theory and derivation.
Notably, Theorem 1 established the relation of
the ensemble-estimated, least-squares linear regression
coefficients, M, to “average sensitivity”. Section 3.6 then
showed that the computation of its action on the prior
anomalies, Y; = M;X, simplifies into a de-conditioning
transformation, Y; = M(E;) T;. Further computational
gains resulted from expressing T; in terms of the eentret
coefficient vectors, W;, except that it also involves the
“annoying” IIxrt. Although it usually vanishes, the
appearance of this projection is likely the reason why most
expositions of the EnKF do not ge-thelength-of-declaring
venture to declare that its implicit linearization of M
is that of least-squares linear regression. Section 3.6.3
showed that the projection is merely the result of using
the chain rule for indirect regression to the ensemble space,
and argued that it is preferable to use the direct regression
of the standard EnKF.

The other focus of the derivation was rank issues,
with C, not assumed invertible. Using the Woodbury
matrix lemma, and avoiding implicit pseudo-inversions and
premature insertion of SVDs, it was shown that the rank
deficiency invalidates the Hessian form of the RML update,
which should be restricted to the ensemble subspace. On
the other hand, the subspace form and Kalman gain form
of the update remain equivalent and valid. Furthermore,
Theorem 2 of appendix A preve-proves that the ensemble
does not lose rank during the updates of EnRML (or
EnKF).

The paper has also drawn significantly on the
theory of the deterministic counterpart to EnRML:
the iterative ensemble Kalman smoother (IEnKS).
Comparative benchmarks using the Lorenz-96 model with
these two and the ensemble multiple data assimilation
(ES-MDA) smoother were shown in section 4. Little

difference was observed between the performances of
deterministic (resp. stochastic) ES-MDA versus EnRML

resp. IEnKS) although the latter did achieve better
accuracy for small ensembles and large mnonlinearity.
As in the non-iterative casefe-g-Sakev-and-Oke 2008}

, the deterministic smoothers achieved better accuracy
than the stochastic methods

St pHSHio}J y there—was
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A  Proofs

A.1 Preliminary

Proof of Theorem 1. Assume 0 < |Cg| < oo, and that
each element of Cuy(z),. and E[M'(x)] is finite. Then
C. is a strongly consistent estimator of C,. Likewise,
C_IM(w)w = CM(a),z almost surely, as N — oo. Thus,

since M = C M(),@ C, ! for sufficiently large N, Slutsky’s
theorem yields M — CM(z),z C_!, almost surely. The
equality to E[M’(x)] follows directly from “Stein’s lemma”
[Liu, 1994]. O

Theorem 2 (EnKF rank preservation). The posterior
ensemble’s covariance, obtained using the EnKF, has the
same rank as the prior’s, almost surely (a.s.).

Proof. The updated anomalies, both for the square-root
and the stochastic EnKF, can be written X* = XT for
some T € RVXNV,

For a deterministic EnKF, T¢ = /N — 1(_3;1/2 for

sitive - reatkthe
symumetric_positive definite_square_root of Cy. or an
orthogonal transformation thereof [Sakov and Oke, 2008].
Hence rank(X?) = rank(X).

For the stochastic EnKF, equations (23) and (25)
may be used to show that T® = (N—1)C, XTI, with
YT =1y —&-YTCng/(N—l). Hence, for rank preservation,
it will suffice to show that Y is a.s. full rank.

We begin by writing Y more compactly:

S = (N-1)"Y2c; ' ?y

Y =Iy+S'Z with
{z = (N-1)"V2c;'*D.

)

(38)

From equations (4), (14) and (38) it can be seen that
column n of Z follows the law z, ~ N(0,Ip/(N-1)).
Hence, column n of Y follows v,, ~ N(e,,STS/(N—-1)),
and has sample space:

Sp={veR" : v=e,+8"z}. (39)
Now consider, for n =0, ..., N, the hypothesis:
rank(['r:n, In:]) - N, (Hn)

where Y., denotes the first n columns of Y, and I,.
denotes the last N — n columns of Iy. Clearly, Hy is
true. Now, suppose H,,_; is true. Then the columns of
[Y.,—1, I,—1.] are all linearly independent. For column
n, this means that e, ¢ col([Y.,—1, I,.]). By contrast,
from equation (39), e,, € S,,. The existence of a point in
Sn \ col([Y.,—1, I,.]) means that

dim (S,Necol([Xin-1, L)) < dim(S,). (40)
Since v,, is absolutely continuous with sampling space
Sy, equation (40) means that the probability that v, €
col([X.,—1, I,..]) is zero. This implies H,, a.s., establishing
the induction. Identifying the final hypothesis (Hy) with
rank(Y') = N concludes the prooffer—the EnKE. O
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A corollary of Theorem 2 and Lemma 1 is that the
ensemble subspace is also unchanged by the EnKF update.
Note that both the prior ensemble and the model (involved
through Y) are arbitrary in Theorem 2. However, Cgs is
assumed invertible. The result is therefore quite different
from the topic discussed by Kepert [2004]; Evensen [2004],
where rank deficiency arises due to a reduced-rank Cg.

Conjecture 1. The rank of the ensemble is preserved by
the EnRML update (a.s.) and W; is invertible.

We were not able to prove Conjecture 1, but it seems
a logical extension of Theorem 2, and is supported by
numerical trials. The following proofs utilize Conjecture 1,
without which some projections will not vanish. Yet, even
if Conjecture 1 should not hold (due to bugs, truncation,
or really bad luck), Algorithm 1 is still valid and optimal,
as discussed in sections 3.6.3 and 3.6.4.

A.2 The transform matrix
Theorem 3. (X*X;)* =X/ X.

Proof. Let T = X*X; and S = X;/X. The following
shows that S satisfies the four properties of the Moore-
Penrose characterization of the pseudo-inverse of T

1. TST = (X"X;)(X] X)(X*X))
= Xt IIx, IIx X, [y = AA™]
= X"Ix,X; [Lemma 1]
=T. [MIaA = A]

2. STS = S, as may be shown similarly to point 1.

3. TS = X*X, as may be shown similarly to point 1,
using Conjecture 1. The symmetry of TS follows
from that of X*X.

4. The symmetry of ST is shown as for point 3. O

This proof was heavily inspired by appendix A of Sakov
et al. [2012]. However, our developments apply for EnRML
(rather than the deterministic, square-root IEnKS). This
means that T; is not symmetric, which complicates the
proof in that the focus must be on X+tX; rather than
X; alone. Our result also shows the equivalence of
St and T in general, while the additional result of the
vanishing prOJectlon matrlx in the case of N—-1<Mis

treated rgseparately, in
appendix A.3.

A.3 Proof of equation (34)
Lemma 2. Q; is invertible (provided W is).

Proof. We show that Q;,u # 0 for any uw # 0, where
Q; = W,II{ + II;. For w € col(1): Qu = u. For
u € col(1)t: Q;u = W,u # 0 (Conjecture 1). O

Recall that equation (33) was obtained by inserting
X, in the expressmn (30) for T;. Fhefolowingusesthe

‘ rting-By contrast, the following inserts
XWMln the expression (29) for T} —




(41)

Next, it is shown that, under certain conditions, the
projection matrix ITxr vanishes:

Y, = [M(E)II]Q; ! (42)

Thereafter, equation (47) of appendix A.4 can be used to
Lin terms of (W,;II{)*, reducing equation (42

write

to (34).

The case of N—-1 < M
In the case of N—1 < M, the null space of X is the range

of 1 [with probability 1, Muirhead, 1982, Theorem 3.1.4].

By Lemma 2, the same applies for X;, and so IIxt in
equation (41) reduces to IIi. O

The case of linearity
Let M be the matrix of the observation model M, here

assumed linear: M(E;) = ME;.
Y; = ME,IIx:Q; ' But E;IIxr = X; = E,II{. O

A.4 The—pseude-inverse—versionlnverse

transforms

, ~Recall
&wM@NY 1= O—aﬂd—s& Therefore
Cuw: T =(N-1)Fl1=1, (43)

where C,,; is defined in equation (24), and the second
equ&ﬁefeﬂews’frem—ehe—ﬁr% dentity for C,, ; follows from
MM Similarly, the following 1dent1tles are valid

also when W; and W;l are swapped.

wWi1=1; (44)
W, I = I W, IT; ; (45)
(Willy)" = W 'y (46)

Equation (44) is proven inductively (in i) wusing—{43)-

n—22+0-by inserting (43) in line 10 of Algorithm 1. It
enables showing (45), using IIf = Iy — II;. This
enables showing (46), similarly to Theorem 3. Fhese

identities—ean—then—Note that this implies that Y, 1 =0
also for Y; = M(E;) (W,II+)t., and hence that the

WM

Equations (45) and (46) can be used to werifs—show (by

multiplying with ;) that

Q7= (WII) T + 10y . (47)

By equation (41),

12

Acknowledgements

The authors thank Dean Oliver Kristian Fossumaﬁd—M?‘rre

’y

Marc Boc uet, and Pavel Sakov for their reading and
comments, and Elvar Bjarkason for his guestion—about

questions concerning the computation of {W-Hij"—the
inverse transform matrix. This work has been funded by

DIGIRES, a project sponsored by industry partners and
the PETROMAKS?2 programme of the Research Council
of Norway.

References

R. N. Bannister. A review of operational methods of
variational and ensemble-variational data assimilation.
Quarterly Journal of the Royal Meteorological Society,
2016.

Johnathan M. Bardsley, Antti Solonen, Heikki Haario,
and Marko Laine. Randomize-then-optimize: A
method for sampling from posterior distributions in

nonlinear inverse problems. SIAM Journal on Scientific
Computing, 36(4):A1895-A1910, 2014.

Marc Bocquet. Localization and the iterative ensemble
Kalman smoother. Quarterly Journal of the Royal
Meteorological Society, 142(695):1075-1089, 2016.

Marc Bocquet and Alberto Carrassi. Four-dimensional
ensemble variational data assimilation and the unstable
subspace. Tellus A: Dynamic Meteorology and
Oceanography, 69(1):1304504, 2017.

Marc Bocquet and Pavel Sakov. Combining inflation-
free and iterative ensemble Kalman filters for strongly
nonlinear systems. Nonlinear Processes in Geophysics,
19(3):383-399, 2012.

Marc Bocquet and Pavel Sakov. Joint state and parameter
estimation with an iterative ensemble Kalman smoother.
Nonlinear Processes in Geophysics, 20(5):803-818, 2013.

Marc Bocquet and Pavel Sakov. An iterative ensemble
Kalman smoother. Quarterly Journal of the Royal
Meteorological Society, 140(682):1521-1535, 2014.

Marc Bocquet, Patrick N. Raanes, and Alexis Hannart.
Expanding the validity of the ensemble Kalman filter
without the intrinsic need for inflation. Nonlinear

Processes in Geophysics, 22(6):645-662, 2015.

Massimo Bonavita, Lars Isaksen, and Elias H6lm. On the
use of EDA background error variances in the ECMWF
4D-Var. Quarterly journal of the royal meteorological
society, 138(667):1540-1559, 2012.



Alberto Carrassi, Marc Bocquet, Laurent Bertino, and
Geir Evensen. Data assimilation in the geosciences: An
overview of methods, issues, and perspectives. Wiley
Interdisciplinary Reviews: Climate Change, 9(5):€535,
2018.

Yan Chen and Dean S. Oliver. Ensemble randomized
maximum likelihood method as an iterative ensemble
smoother. Mathematical Geosciences, 44(1):1-26, 2012.

Yan Chen and Dean S. Oliver. History matching of
the Norne full field model using an iterative ensemble
smoother-(SPE-164902). In 75th EAGE Conference &
Ezhibition incorporating SPE EUROPEC, 2013a.

Yan Chen and Dean S. Oliver. Levenberg—Marquardt
forms of the iterative ensemble smoother for efficient
history matching and uncertainty quantification.
Computational Geosciences, 17(4):689-703, 2013b.

Yan Chen and Dean S. Oliver. Localization and regular-
ization for iterative ensemble smoothers. Computational
Geosciences, 21(1):13-30, 2017.

Alexandre A Emerick. Deterministic ensemble smoother
with multiple data assimilation as an alternative
for history-matching seismic data.  Computational
Geosciences, pages 1-12, 2018.

Alexandre A. Emerick and Albert C. Reynolds. Ensemble
smoother with multiple data assimilation. Computers
& Geosciences, 55:3-15, 2013a.

Alexandre A. Emerick and Albert C. Reynolds.
Investigation of the sampling performance of ensemble-
based methods with a simple reservoir model.
Computational Geosciences, 17(2):325-350, 2013b.

Geir Evensen. Sampling strategies and square root analysis
schemes for the EnKF. Ocean Dynamics, 54(6):539-560,
2004.

Geir Evensen. Analysis of iterative ensemble smoothers for
solving inverse problems. Computational Geosciences,
22(3):885-908, 2018.

Geir Evensen. Accounting for model errors in iterative
ensemble smoothers. Computational Geosciences, Apr

2019. ISSN 1573-1499. doi: 10.1007/s10596-019-9819-z.

A. Fillion, M. Bocquet, and S. Gratton. Quasi-static
ensemble variational data assimilation: a theoretical
and numerical study with the iterative ensemble Kalman
smoother. Nonlinear Processes in Geophysics, 25(2):315—
334, 2018.

Yaqing Gu and Dean S. Oliver. An iterative ensemble
Kalman filter for multiphase fluid flow data assimilation.
SPE Journal, 12(04):438-446, 2007.

Brian R. Hunt, Eric J. Kostelich, and Istvan Szunyogh.
Efficient data assimilation for spatiotemporal chaos: A
local ensemble transform Kalman filter. Physica D:
Nonlinear Phenomena, 230(1):112-126, 2007.

13

Marco A. Iglesias. Iterative regularization for ensemble
data assimilation in reservoir models. Computational
Geosciences, 19(1):177-212, 2015.

Mohamed Jardak and Olivier Talagrand. Ensemble
variational assimilation as a probabilistic estimator —
part 1: The linear and weak non-linear case. Nonlinear
Processes in Geophysics, 25(3):565-587, 2018.

A. H. Jazwinski. Stochastic Processes and Filtering Theory,
volume 63. Academic Press, 1970.

Jeffrey D. Kepert. On ensemble representation of the
observation-error covariance in the ensemble Kalman
filter. Ocean Dynamics, 54(6):561-569, 2004.

Scott Kirkpatrick, C. Daniel Gelatt, and Mario P. Vecchi.
Optimization by simulated annealing. science, 220
(4598):671-680, 1983.

Peter K. Kitanidis. Quasi-linear geostatistical theory for
inversing. Water resources research, 31(10):2411-2419,
1995.

Duc H. Le, Alexandre A. Emerick, and Albert C. Reynolds.
An adaptive ensemble smoother with multiple data
assimilation for assisted history matching. SPE Journal,
21(06):2-195, 2016.

Jun S. Liu. Siegel’s formula via Stein’s identities. Statistics
& Probability Letters, 21(3):247-251, 1994.

Y. Liu, J.-M. Haussaire, M. Bocquet, Y. Roustan,
O. Saunier, and A. Mathieu. Uncertainty quantification
of pollutant source retrieval: comparison of bayesian
methods with application to the chernobyl and
fukushima daiichi accidental releases of radionuclides.
Quarterly Journal of the Royal Meteorological Society,
143(708):2886—-2901, 2017.

David M. Livings, Sarah L. Dance, and Nancy K. Nichols.
Unbiased ensemble square root filters. Physica D:
Nonlinear Phenomena, 237(8):1021-1028, 2008.

Andrew C. Lorenc. Development of an operational
variational assimilation scheme. Journal of the
Meteorological Society of Japan. Series. II, 75
(Special issue: data assimilation in meteorology and
oceanography: theory and practice)(1B):339-346, 1997.

Edward N. Lorenz. Predictability: A problem partly
solved. In Proc. ECMWF Seminar on Predictability,
volume 1, pages 1-18, Reading, UK, 1996.

Xiaodong Luo, Andreas S. Stordal, Rolf J. Lorentzen,
and Geir Naevdal. Iterative ensemble smoother as an
approximate solution to a regularized minimum-average-
cost problem: Theory and applications. SPE Journal,
20(05):962-982, 2015.

Xiang Ma, Gill Hetz, Xiaochen Wang, Linfeng Bi, Dave
Stern, and Nazish Hoda. A robust iterative ensemble
smoother method for efficient history matching and
uncertainty quantification. In SPE Reservoir Simulation
Conference. Society of Petroleum Engineers, 2017.



Anthony A. Maciejewski and Charles A. Klein. Obstacle
avoidance for kinematically redundant manipulators in
dynamically varying environments. The international
journal of robotics research, 4(3):109-117, 1985.

J. Mandel, E. Bergou, S. Giirol, S. Gratton, and
I. Kasanicky. Hybrid Levenberg-Marquardt and

weak-constraint ensemble Kalman smoother method.

Nonlinear Processes in Geophysics, 23(2):59-73, 2016.

M. Morzfeld, D. Hodyss, and J. Poterjoy. Variational
particle smoothers and their localization. Quarterly
Journal of the Royal Meteorological Society, 144(712):
806-825, 2018.

Robb J. Muirhead. Aspects of multivariate statistical
theory. John Wiley & Sons, Inc., New York, 1982. Wiley
Series in Probability and Mathematical Statistics.

Dean S. Oliver. On conditional simulation to inaccurate
data. Mathematical Geology, 28(6):811-817, 1996.

Dean S. Oliver. Metropolized randomized maximum
likelihood for improved sampling from multimodal
distributions. SIAM/ASA Journal on Uncertainty
Quantification, 5(1):259-277, 2017.

Dean S. Oliver and Yan Chen. Recent progress on reservoir
history matching: a review. Computational Geosciences,
15(1):185-221, 2011.

Dean S. Oliver, Albert C. Reynolds, and Ning Liu. Inverse
Theory for Petroleum Reservoir Characterization and
History Matching. Cambridge University Press, 2008.

Edward Ott, Brian R. Hunt, Istvan Szunyogh, Aleksey V.

Zimin, Eric J. Kostelich, Matteo Corazza, Eugenia
Kalnay, D. J. Patil, and James A. Yorke. A
local ensemble Kalman filter for atmospheric data
assimilation. Tellus A, 56(5):415-428, 2004.

Carlos Pires, Robert Vautard, and Olivier Talagrand.

On extending the limits of variational assimilation
in nonlinear chaotic systems. Tellus A: Dynamic
Meteorology and Oceanography, 48(1):96-121, 1996.

Patrick N. Raanes, Marc Bocquet, and Alberto Carrassi.
Adaptive covariance inflation in the ensemble Kalman
filter by Gaussian scale mixtures. Quarterly Journal of
the Royal Meteorological Society, 145(718):53-75, 2019.
doi: 10.1002/q;j.3386.

Javad Rafiee and Albert C. Reynolds. Theoretical and
efficient practical procedures for the generation of
inflation factors for ES-MDA. Inverse Problems, 33(11):
115003, 2017.

A. C. Reynolds, M. Zafari, and G. Li. Iterative forms of the
ensemble Kalman filter. In 10th European Conference
on the Mathematics of Oil Recovery, 2006.

William Sacher and Peter Bartello. Sampling errors in
ensemble Kalman filtering. Part I: Theory. Monthly
Weather Review, 136(8):3035-3049, 2008.

14

Pavel Sakov and Laurent Bertino. Relation between
two common localisation methods for the EnKF.
Computational Geosciences, 15(2):225-237, 2011.

Pavel Sakov and Peter R. Oke. Implications of the form
of the ensemble transformation in the ensemble square
root filters. Monthly Weather Review, 136(3):1042-1053,
2008.

Pavel Sakov, Dean S. Oliver, and Laurent Bertino. An
iterative EnKF for strongly nonlinear systems. Monthly
Weather Review, 140(6):1988-2004, 2012.

Pavel Sakov, Jean-Matthieu Haussaire, and Marc Bocquet.
An iterative ensemble Kalman filter in the presence of
additive model error. Quarterly Journal of the Royal
Meteorological Society, 144(713):1297-1309, 2018.

Andreas S. Stordal. Iterative Bayesian inversion with
Gaussian mixtures: finite sample implementation and
large sample asymptotics. Computational Geosciences,
19(1):1-15, 2015.

Xiangjun Tian, Zhenghui Xie, and Aiguo Dai. An
ensemble-based explicit four-dimensional variational
assimilation method. Journal of Geophysical Research:
Atmospheres, 113(D21), 2008.

Lloyd N. Trefethen and David Bau, III. Numerical linear
algebra. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1997.

Peter Jan van Leeuwen. Comment on “Data assimilation
using an ensemble Kalman filter technique”. Monthly
Weather Review, 127(6):1374-1377, 1999.

Mohammad Zafari and Albert Coburn Reynolds. Assessing
the uncertainty in reservoir description and performance
predictions with the ensemble Kalman filter. Master’s
thesis, University of Tulsa, 2005.

Milija Zupanski. Maximum likelihood ensemble filter:
Theoretical aspects. Monthly Weather Review, 133(6):
1710-1726, 2005.



	Introduction
	Ensemble randomized maximum likelihood (EnRML): obstacles
	Iterative ensemble Kalman smoother (IEnKS)
	

	RML
	The inverse problem
	Randomize, then optimize

	EnRML
	Ensemble preliminaries
	The constituent estimates
	Estimating the Kalman gain
	Estimating the prior increment
	Justifying the change of variables
	Simplifying the regression
	The transform matrix
	From the ensemble coefficients
	Linearization chaining
	Inverting the transform

	Algorithm

	Benchmark experiments
	Setup
	Results

	Summary
	Proofs
	Preliminary
	The transform matrix
	Proof of eqn:Yred
	Inverse transforms


