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We thank editors and reviewers for their work; the feedback has been very useful. Pointwise replies to the review
comments can be seen below. We hope the present version will satisfy the high standards of the journal of nonlinear
processes in geophysics.

A latex-diff pdf file is attached, tracking the changes made. These are largely of a minor character. The most
significant changes (prompted by reviews) are (i) the addition of some experiments (ii) moving the “layout” section
into section 1.0, and (iii) improved clarity around Theorem 1. Additionally, (iv) details have been added around
Algorithm 1, and and (v) we have changed the recommended form of the inverse transform matrix (and done cosmetic
improvements to the accompanying appendix).

RC1 (Pavel Sakov)

We thank the reviewer for his generous review.

1.

The reviewer is probably thinking of Gu and Oliver [2007], which formulated EnRML sequentially. However,
EnRML is usually employed for reservoir problems, where it is employed non-sequentially (or in “batch” mode).
In this case, it is also sometimes known as the IES (especially among users of the ERT software).

As mentioned in section 1.2, it is easy to formulate all “flavours” in sequential and batch formulations.
This also includes ES-MDA. To try to resolve some confusion, we have moved the (single mention of the) IES
acronym to section 1.2.

2.
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Done, thanks.

3.

We assume the “innovation” the reviewer is referring to is d := y − Mµx. Writing this as d = (y − Mx) +
(Mx − Mµx), one may show that Cov(d) = MCxM

T + Cδ, as the reviewer says. However, it is also clearly
the prior covariance of y := Mx + δ. We have now included both naming options in the paper.

4.

Done, thanks.

5.

We’re unsure if the reviewer is saying that he is not yet convinced by our arguments, or rather that he now is

convinced.
In the latter case: thanks!
In the former case, consider that using xT

C
+

x x as the prior mismatch term would not penalize components
of x outside of the ensemble subspace. Thus, these components of the posterior (ensemble) would just be set to
those of the likelihood! This is clearly quite contrary to the correct posterior, which should not move from the
prior (outside of the ensemble subspace). For simplicity, the above is based on assumptions that Cδ and Cx

are proportional. The other cases are illustrated by Figure 1. In addition, we have conducted benchmarking
investigations with Lorenz-96 which confirm that the Kalman-gain form is better.

Note that the question does not even arise if the change of variables to w is done in the beginning of
the derivation, because then the cost function is only formulated for the ensemble subspace. As noted in the
manuscript, however, we chose to follow the “traditional” derivation precisely in order to highlight this and
other issues.

6.

Done, thanks.

7.
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Figure 1: Illustration of the consequence of using the pseudo-
inverse to update the ensemble. Here, the state
vector is two-dimensional, and the ensemble has
two members. The correct update (red) stays in
the ensemble subspace.

Consider Bocquet and Sakov [2013], Figure 3. We’re investigating filtering performance, so their left pane is
the relevant one. The method corresponding to our set-up is their SDA IEnKS-N S=1. It’s optimal lag can be
seen to lie between 15 and 20, but it’s not much worse at 8. In model time, this correspond to 8 × 0.05 = 0.4,
which is our setting. In their Figure 4, the optimal lag is 4, but the performance is not much worse for 2
(corresponding to our model time of 0.4).

Furthermore, we believe the relative/qualitative performance results are not very sensitive to this setting.
We therefore decided to use only one, selecting a value that was fairly optimal, but slightly shorter (to be on
the safe side, and because it is cheaper.),

8.

We have now included the case of ∆tobs = 0.6, which is a fairly extreme setting for data assimilation. It clearly
demonstrates the need for more iterations when the nonlinearity is stronger. It also shows a wider disparity
between the two types of smoothers: Gauss-Newton and MDA. This has been remarked on in the results text.
We have also included the benchmark scores for the EnKF.

NB1: We have changed our definition of “analysis” RMSEs (before, it was defined by the application of
the ultimate Wi to the forecast ensemble; now it is defined by the nonlinear propagation of the smoothed
ensemble of iteration i). This has the effect of lowering the reported scores, although the algorithms themselves
are unchanged.

NB2: we swapped the hollow/compact definition of the markers.
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RC2

Major.

We thank the reviewer for his generous words and comments.

- Concerning items 1 and 3: The distinction between EnRML/IEnKS (following our improvements to
EnRML) is their stochastic/deterministic nature. Since both are derived from the same hidden Markov
model (HMM) framework, without system error, there seems to be little reason to suspect that one would
systematically be better suited to deal with it. We therefore prefer to keep the manuscript short and
focused, and defer to other studies for the issue of system error.

- Concerning item 2: Please see the response to P. Sakov’s point 8, and M. Bocquet’s point 26.

Minor.

1. Done, thanks.

2. We were not able to accomplish this to a satisfactory degree.

3. Done, thanks.
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RC3 (Marc Bocquet)

We thank the reviewer for his generous words. The “reminiscence” point is clarified in item 30.

1.

Sorry! I don’t know how it happened (. . . probably it’s a compilation issue).

PS: Also note that I’m not able to remove the pagewise option, which is part of copernicus.cls.

2.

I have gone back and forth on this a lot, actually. There is a subtle interplay of the phrasing (i) here, (ii) below,
for the IEnKS, and (iii) in the title.

3.

Done, thanks.

4.

Done, thanks. Moreover, this resulted in the incorporation of the “layout” section as a paragraph here.

5.

Done, thanks.

6.

Done, thanks.

7.
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Done, thanks.

8.

Done, thanks.

9.

Done, thanks.

10.

(Unless I’m missing something) this was/is defined right there (i.e. below eqn 3).

11.

Done, thanks.

12.

Done, thanks.

13.

Done, thanks.

14.

Please see our response to P. Sakov’s point 3.

15.

Done, thanks.

16.

I like the subjunctive “flourish” in English, but ok.
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17.

Done, thanks.

18.

Done, thanks.

19.

In order to hasten the exchange, we have discussed this item in a private correspondence with the reviewer.
We thus established that the reviewer did not fully appreciate the result. Therefore, to better emphasize its
qualities, the paragraph has been somewhat reorganized.

20.

Done, thanks.

21.

Yes, thanks.

22.

Done, thanks.

23.

Done, thanks (also did “post-multiplying”)

24.

(Unless I’m missing something) this was/is mentioned in the associated footnote.

25.
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Yes, thanks.

26.

We have included plots of the smoothing RMSE, and clarified the distinction to analysis RMSE further in the
text.

Also see the response to P. Sakov’s point 8.

27.

Done, thanks (it was/is also noted in the summary).

28.

Done, thanks.

29.

Reformulated. Hopefully it makes sense now.

30.

As far as I can tell, avoiding the explicit computation of Mi in favour of Yi = MiX, and its computation by
an inverse transform, was already in place (in the deterministic/IEnKS context) in Sakov, Oliver, and Bertino
[2012]. Thus, I believe you’re referring to the product (XT

X)+
X

T on line 21 of their algorithm, which was
simplified by Bocquet and Sakov [2012] by the change of variables to w (I also faintly remember a presentation
with an explicit reduction of the product, but I cannot find the source). It is accomplished in the same manner
in our section 3.4, where the papers have now been appropriately cited.

31.

Changed to “do not venture to”

32.

Done, thanks.

8



References

Bocquet, M. and Sakov, P.: Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear
systems, Nonlinear Processes in Geophysics, 19, 383–399, 2012.

Bocquet, M. and Sakov, P.: Joint state and parameter estimation with an iterative ensemble Kalman smoother,
Nonlinear Processes in Geophysics, 20, 803–818, 2013.

Gu, Y. and Oliver, D. S.: An iterative ensemble Kalman filter for multiphase fluid flow data assimilation, SPE Journal,
12, 438–446, 2007.

Sakov, P., Oliver, D. S., and Bertino, L.: An Iterative EnKF for Strongly Nonlinear Systems., Monthly Weather
Review, 140, 1988–2004, 2012.

9



Revising the stochastic iterative ensemble smoother

Patrick N. Raanes∗1,2, Geir Evensen1,2, and Andreas S. Stordal1

1NORCE, Pb. 22 Nygårdstangen, 5838 Bergen, Norway
2NERSC, Thormøhlens gate 47, 5006 Bergen, Norway

July 3, 2019

Abstract

Ensemble randomized maximum likelihood (EnRML) is an iterative (stochastic) ensemble smoother, used for
large and nonlinear inverse problems, such as history matching and data assimilation. Its current formulation
is overly complicated and has issues with computational costs, noise, and covariance localization, even causing
some practitioners to omit crucial prior information. This paper resolves these difficulties and streamlines the
algorithm, without changing its output. These simplifications are achieved through the careful treatment of the
linearizations and subspaces. For example, it is shown (a) how ensemble linearizations relate to average sensitivity,
and (b) that the ensemble does not loose rank during updates. The paper also draws significantly on the theory of
the (deterministic) iterative ensemble Kalman smoother (IEnKS). Comparative benchmarks are obtained with the
Lorenz-96 model with these two smoothers and the ensemble smoother using multiple data assimilation (ES-MDA).

1 Introduction

Ensemble (Kalman) smoothers are approximate methods
used for data assimilation (state estimation in geoscience),
history matching (parameter estimation for

✿✿✿✿✿✿✿✿✿

petroleum
reservoirs), and other inverse problems constrained
by partial differential equations. Iterative forms of
the ensemble smoother

✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿

smoothers, derived from
optimization perspectives, have proven useful in improving
the estimation accuracy when the forward operator is
nonlinear. Ensemble randomized maximum likelihood
(EnRML) , also known as the iterative ensemble smoother
(IES), is one such method. This paper fixes several issues

✿✿✿✿

This
✿✿✿✿✿

paper
✿✿✿✿✿✿✿

rectifies
✿✿✿✿✿✿✿

several
✿✿✿✿✿✿✿✿✿✿

conceptual
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿

computational

✿✿✿✿✿✿✿✿✿✿✿✿

complications
✿

with EnRML, described in the following.

✿✿✿✿✿✿✿

detailed
✿✿✿

in
✿✿✿✿✿✿✿✿✿✿

section 1.1
✿

.
✿✿✿✿

As
✿✿✿✿✿✿✿✿✿✿✿✿

emphasized
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

section 1.2,

✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

improvements
✿✿✿

are
✿✿✿✿✿✿✿

largely
✿✿✿✿✿✿✿✿

inspired
✿✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿

theory

✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿

iterative
✿✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿

Kalman
✿✿✿✿✿✿✿✿✿

smoother
✿✿✿✿✿✿✿✿✿

(IEnKS).
Readers unfamiliar with EnRML may jump to the
beginning of the derivation: section 2.

✿

,
✿✿✿✿✿

which
✿✿✿✿✿✿✿

defines

✿✿✿

the
✿✿✿✿✿✿✿

inverse
✿✿✿✿✿✿✿✿

problem
✿✿✿✿✿

and
✿✿✿✿

the
✿✿✿✿✿

idea
✿✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

randomized

✿✿✿✿✿✿✿✿✿

maximum
✿✿✿✿✿✿✿✿✿✿

likelihood
✿✿✿✿✿✿✿✿

method.
✿✿✿✿✿✿✿✿✿✿✿✿✿

Section 3
✿✿✿✿✿✿

derives
✿✿✿✿

the

✿✿✿

new
✿✿✿✿✿✿✿✿✿✿✿✿

formulation
✿✿✿

of
✿✿✿✿✿✿✿✿

EnRML,
✿✿✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿

summarized
✿✿✿

by

✿✿✿✿✿✿✿✿✿✿✿

Algorithm 1
✿✿

of
✿✿✿✿✿✿✿✿✿✿

section 3.7
✿

.
✿✿✿✿✿✿✿✿✿✿

Section 4
✿✿✿✿✿

shows
✿✿✿✿✿✿✿✿✿✿✿

benchmark

✿✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿✿✿✿✿

obtained
✿✿✿✿✿✿

with
✿✿✿✿✿✿✿

various
✿✿✿✿✿✿✿✿✿

iterative
✿✿✿✿✿✿✿✿✿

ensemble

✿✿✿✿✿✿✿✿✿

smoothers.
✿✿✿✿✿✿✿✿✿✿✿✿✿

Appendix A
✿✿✿✿✿✿✿✿

provides
✿✿✿✿✿✿

proofs
✿✿✿

of
✿✿✿✿✿

some
✿✿

of
✿✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿✿

mathematical
✿✿✿✿✿✿

results
✿✿✿✿✿

used
✿✿

in
✿✿✿✿

the
✿✿✿✿

text.
✿

1.1 Ensemble randomized maximum like-
lihood (EnRML): obstacles

The Gauss-Newton variant of EnRML was given by
Gu and Oliver [2007]; Chen and Oliver [2012], with an
important precursor being Reynolds et al. [2006]. This
version explicitly requires the ensemble-estimated “model

sensitivity” matrix, herein denoted Mi. As detailed in
section 3, this is problematic because Mi is noisy and
requires the computation of the pseudo-inverse of the
“anomalies”, X+

i , for each iteration, i.
A Levenberg-Marquardt variant was proposed in the

landmark paper of Chen and Oliver [2013b]. Its main
originality is a partial resolution to the above issue
by modifying the Hessian (beyond the standard trust-
region step regularization): the prior ensemble covariance
matrix is replaced by the posterior covariance (of iteration
i): Cx ← Cx,i. Now the Kalman gain form of the
likelihood increment is “vastly simplified”, because the
linearization Mi only appears in the product MiCx,iM

T

i ,
which does not require X+

i . For the prior increment, on
the other hand, the modification breaks its Kalman gain
form. Meanwhile, the precision matrix form, i.e. their
equation

✿

(10
✿

), is already invalid because it requires the

inverse of Cx,i. Still, in their equation
✿

(15
✿

), the prior
increment is formulated with an inversion in ensemble
space, and also unburdened of the explicit computation
of Mi. Intermediate explanations are lacking, but could
be construed to involve approximate inversions. Another
issue is that the pseudo-inverse of Cx is now required (via
X), and covariance localization is further complicated.

An approximate version was therefore also proposed,
where the prior mismatch term is omitted from the
update formula altogether. This is not principled, and
severely aggravates the chance of over-fitting and poor
prediction skill. Therefore, unless the prior mismatch term
is relatively insignificant, over-fitting must be prevented by
limiting the number of steps or by clever stopping criteria.
Nevertheless, this version has received significant attention
in history matching.

This paper revises EnRML; without any of the above
tricks, we formulate the algorithm such that there is
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no explicit computation of Mi, and show how the
product MiX may be computed without any pseudo-
inversions of the matrix of anomalies. Consequently, the
algorithm is simplified, computationally and conceptually,
and there is no longer any reason to omit the prior
increment. Moreover, the Levenberg-Marquardt variant
is a trivial modification of the Gauss-Newton variant.
The above is achieved by improvements to the derivation,
notably by (a) improving the understanding of the
sensitivity/linearizations involved, (b) explicitly and
rigorously treating issues of rank-deficiency and subspaces,
and (c) avoiding premature insertion of singular value
decompositions (SVD).

1.2 Iterative ensemble Kalman smoother
(IEnKS)

The contributions of this paper (listed by the previous
paragraph) are original, but draw heavily on the theory
of the iterative ensemble Kalman smoother (IEnKS )
of Sakov et al. [2012]; Bocquet and Sakov [2014]

✿✿✿✿✿✿

IEnKS
✿✿

of

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Sakov et al. [2012]; Bocquet and Sakov [2012, 2014]. Rel-
evant precursors include [Zupanski, 2005], as well as the
iterative, extended Kalman filter [e.g., Jazwinski, 1970].

It is informally known that EnRML can be seen
as a stochastic flavour of the IEnKS [Sakov et al.,
2012]. Indeed, while the IEnKS update takes the form
of a deterministic, “square-root” transformation, based
in a single objective function, EnRML uses stochastic,
“perturbed observations”, associated with an ensemble of
randomized objective functions.

Another notable difference is that the IEnKS was
developed in the atmospheric literature, while EnRML
was developed in the literature on subsurface flow. Thus,
typically, the IEnKS is applied to (sequential) state
estimation problems such as filtering

✿✿

for
✿✿✿✿✿✿✿

chaotic
✿✿✿✿✿✿✿✿✿

dynamical

✿✿✿✿✿✿✿

systems, while EnRML is applied to (batch) parameter
estimation problems,

✿✿✿✿✿✿

such
✿✿✿

as
✿✿✿✿✿✿✿✿✿

nonlinear
✿✿✿✿✿✿✿✿✿

inversion
✿✿

for
physical constants and boundary conditions. As
illustrated

✿✿✿

For
✿✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿

problems,
✿✿✿✿✿✿✿✿

EnRML
✿✿✿

is
✿✿✿✿✿✿✿✿✿✿

sometimes

✿✿✿✿✿✿✿

referred
✿✿

to
✿✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿✿

iterative
✿✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿

smoother
✿✿✿✿✿✿

(IES).
✿✿✿

As

✿✿✿✿✿

shown
✿

by Gu and Oliver [2007], however, EnRML is easily
reformulated for the sequential problem, and vice-versa for
the IEnKS .

✿✿✿✿✿✿✿✿✿✿

Vice-versa,
✿✿✿

the
✿✿✿✿✿✿

IEnKS
✿✿✿✿✿

may
✿✿

be
✿✿✿✿✿✿✿✿✿✿

formulated
✿✿✿

for

✿✿✿

the
✿✿✿✿✿

batch
✿✿✿✿✿✿✿✿✿

problem.
✿

The improvements to the EnRML algorithm herein
renders it very similar to the IEnKS, also in computational
cost. It thus fully establishes that EnRML is “the
stochastic

✿✿✿

the
✿✿✿✿✿✿✿✿✿

stochastic
✿✿✿

”counterpart” to the IEnKS.
In spite of the similarities, the theoretical insights and
comparative experiments of this paper should make it
interesting also for readers already familiar with the
IEnKS.

1.3 Layout

Section 2 defines the inverse problem and the idea of
the randomized maximum likelihood method. Section 3
derives the new formulation of EnRML, summarized in
Algorithm 1 of section 3.7. Section 4 shows benchmark
experiments obtained with various iterative ensemble

smoothers. Appendix A provides proofs of some of the
results used in the text.

2 RML

Randomized maximum likelihood (RML) [Kitanidis, 1995;
Oliver, 1996; Oliver et al., 2008] is an approximate
solution approach to a class of inverse problems. The
form of RML described here is a simplification, common
for large inverse problems, which does not make use of

✿✿✿✿✿✿✿

without
✿✿✿

the
✿✿✿✿

use
✿✿

of
✿✿

a
✿✿✿✿✿✿✿✿✿

correction
✿✿✿✿✿

step
✿✿✿✿✿

(such
✿✿✿

as Metropolis-
Hastingstechniques). This restricts the class of problems
for which it is unbiased, but makes it more tractable
[Oliver, 2017]. A similar method was

✿✿✿✿✿✿✿

Similar
✿✿✿✿✿✿✿✿

methods

✿✿✿✿

were
✿✿

proposed and studied by Bardsley et al. [2014]

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Bardsley et al. [2014]; Liu et al. [2017]; Morzfeld et al. [2018]
.

2.1 The inverse problem

Consider the problem of estimating an
✿✿✿

the
✿

unknown,
high-dimensional parameter

✿✿✿✿

state
✿✿✿

(or
✿✿✿✿✿✿✿✿✿✿✿

parameter)
✿

vector
x ∈ R

M , given the observation y ∈ R
P . It is assumed

that

y=M(x) + δ ,

where the (generic,
✿✿✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

typically
✿✿✿✿✿✿✿✿✿✿✿

nonlinear) for-
ward/observation

✿✿✿✿✿✿

process
✿✿✿✿✿

may
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿✿✿✿

approximated
✿✿✿✿

by
✿✿

a

✿✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿

model, M, is known and typically
nonlinear, and the observation

✿✿

so
✿✿✿✿

that
✿

y
✿

=M(x) + δ ,
✿✿✿✿✿✿✿✿✿✿✿

(1)

✿✿✿✿✿

where
✿✿✿

the
✿

error, δ , is random noise, giving
✿

is
✿✿✿✿✿✿✿

random
✿✿✿✿

and

✿✿✿✿

gives
✿

rise to a likelihood, p(y|x).
In the Bayesian paradigm, prior information is

quantified as a probability density function (pdf) called the
prior, denoted p(x), and the truth, x, is considered a draw
thereof. The inverse problem then consists of computing
and representing the posterior which, in principle, is given
by pointwise multiplication:

p(x|y) ∝ p(y|x) p(x) , (2)

quantifying the updated estimation of x. Due to the
noted high-dimensionality and nonlinearity, this can be
challenging, necessitating approximate solutions.

The prior is assumed Gaussian, with mean µx and
covariance Cx, i.e.

p(x) = N (x |µx, Cx)

= |2πCx|−
1

2 e− 1

2
‖x−µx‖2

Cx . (3)

For now, the prior covariance matrix, Cx
✿✿✿✿✿✿✿✿✿✿✿✿

Cx ∈ R
M×M ,

is assumed invertible such that the corresponding norm,
‖x‖2

Cx
= xTC−1

x x, is defined. Note that vectors are

taken to have column orientation, and that xT denotes
the transpose.
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The observation error, δ, is assumed drawn from:

p(δ) = N (δ |0, Cδ) , (4)

whose covariance, Cδ
✿✿✿✿✿✿✿✿✿✿

Cδ ∈ R
P ×P , will always be assumed

invertible. Then, assuming δ and x are independent and
recalling equation (1),

p(y|x) = N (y |M(x), Cδ) . (5)

2.2 The algorithm
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Randomize,
✿✿✿✿✿✿

then
✿✿✿✿✿✿✿✿✿✿

optimize

The Monte-Carlo approach offers a convenient representa-
tion of distributions as samples. Here, the prior is repre-
sented by the “prior ensemble”, {xn}N

n=1, whose members
(sample points) are assumed independently drawn from it.
RML is a relatively

✿✿

an efficient method to approximately
“condition” (i.e. implement (2) on) the prior ensemble,
using optimization. Firstly, an ensemble of perturbed
observations, {yn}N

n=1, is generated as yn = y +δn, where
δn is independently drawn according to equation (4).

Then, the n-th “randomized log-posterior”, Jx,n, is
defined by Bayes’ rule (2), except with the prior mean and
the observation replaced by the n-th members of the prior
and observation ensembles:

Jx,n(x) = 1
2‖x− xn‖2

Cx
+ 1

2‖M(x)− yn‖2
Cδ

. (6)

The two terms are referred to as the model mismatch (log-
prior) and data mismatch (log-likelihood), respectively.

Finally, these log-posteriors are minimized. Using
the Gauss-Newton iterative scheme (for example) requires
(7a) its gradient and (7b) a

✿✿

its
✿✿✿✿✿✿✿✿

Hessian
✿✿✿✿✿✿✿✿✿✿✿✿

approximated
✿✿✿

by
first-order approximation to its Hessian

✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

expansions,
both evaluated at the current iterate, labelled xn,i

for each member n and iteration i. To simplify the
notation, define x• = xn,i. Objects evaluated at
x• are similarly denoted; for instance, M• =M′(x•)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

M• =M′(x•) ∈ R
P ×M

✿✿

denotes the Jacobian of M
evaluated at x•, and

∇J• = C−1
x [x• − xn] + MT

• C−1
δ [M(x•)− yn] , (7a)

C−1
• = C−1

x + MT

• C−1
δ M• . (7b)

Application of the Gauss-Newton scheme yields:

xn,i+1 = x• −C•∇J•

= x• + ∆prior
• + ∆lklhd

• ,
(8)

where the prior (or model) and likelihood (or data)
increments are respectively given by:

∆prior
• = C•C

−1
x [xn − x•] , (9a)

∆lklhd
• = C•M

T

• C−1
δ [yn −M(x•)] , (9b)

which can be called the “precision matrix” form.
Alternatively, by corollaries of the well known

Woodbury
✿✿✿✿✿✿

matrix identity, the increments can be written

in the “Kalman gain” form:

∆prior
• = (IM −K•M•)[xn − x•] , (10a)

∆lklhd
• = K•[yn −M(x•)] , (10b)

where K• is the
✿✿✿✿✿✿✿✿✿✿✿

IM ∈ R
M×M

✿✿

is
✿✿✿✿

the
✿✿✿✿✿✿✿

identity
✿✿✿✿✿✿✿

matrix,
✿✿✿✿

and

✿✿✿✿✿✿✿✿✿✿✿

K• ∈ R
M×P

✿✿

is
✿✿✿

the
✿

gain matrix:

K• = CxMT

• C−1
y , (11)

with

Cy = M•CxMT

• + Cδ . (12)

As the subscript suggests, Cy may be identified
✿✿

(in
✿✿✿✿

the

✿✿✿✿✿

linear
✿✿✿✿✿

case)
✿

as the prior covariance of the observation,
equation (1)

✿✿

y,
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

equation (1);
✿✿✿

it
✿✿

is
✿✿✿✿

also
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

covariance

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

innovation,
✿✿✿✿✿✿✿✿✿✿✿

y −M(µx). Note that if P ≪M , then
the inversion of Cy

✿✿✿✿✿✿✿✿✿✿✿

Cy ∈ R
P ×P for the Kalman gain form

✿✿✿✿

(10) is significantly cheaper than the inversion to compute
C•

✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

C• ∈ R
M×M

✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

precision
✿✿✿✿✿✿

matrix
✿✿✿✿✿

form
✿✿✿

(9).

3 EnRML

Ensemble-RML (EnRML) is an approximation of RML
where the ensemble is used in its own update, by estimating
Cx and M•. This section derives EnRML, and gradually
introduces the new improvements.

Computationally, compared to RML, EnRML offers
the simultaneous benefits of working with low-rank
representations of covariances, and not requiring a tangent-
linear (or adjoint) model. Both advantages will be further
exploited in the new formulation of EnRML.

Concerning their sampling properties, a few points
can be made. Firstly (due to the ensemble covariance),
EnRML is biased for finite N , even for a linear-Gaussian
problem, for which RML will sample the posterior
correctly. This bias arises for the same reasons as in
the ensemble Kalman filter [EnKF, van Leeuwen, 1999;
Sacher and Bartello, 2008]. Secondly (due to the ensemble
linearization), EnRML effectively smoothes the likelihood.
It is therefore less prone to getting trapped in local maxima
of the posterior [Chen and Oliver, 2012]. Sakov et al.
[2018] explain this by drawing an analogy to the secant
method, as compared to the Newton method. Hence, it
may reasonably be expected that EnRML yield

✿✿✿✿✿

yields
constructive results if the probability mass of the exact
posterior is concentrated around its global maximum.
Although this regularity condition is rather vague, it would
require that the model be “not too nonlinear” in this
neighbourhood. Conversely, EnRML is wholly inept at
reflecting multimodality introduced through the likelihood,
and so RML may be better suited when local modes feature
prominently, as is quite common in problems of subsurface
flow [Oliver and Chen, 2011]. However, while RML has
the ability to sample multiple modes, it is difficult to
predict to what extent their relative proportions will be
correct

✿✿✿✿✿✿✿

accurate
✿

(without the costly use of
✿

a
✿✿✿✿✿✿✿✿✿

correction

✿✿✿✿

step
✿✿✿✿

such
✿✿✿

as Metropolis-Hastings). Further comparison of
the sampling properties of RML and EnRML was done by
Evensen [2018].
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3.1 Ensemble preliminaries

For convenience, define the concatenations:

E =
[

x1 , . . . xn , . . . xN

]
∈ R

M×N , (13)

D =
[

δ1 , . . . δn , . . . δN

]
∈ R

P ×N , (14)

which are known as the “ensemble matrix” and the
“perturbation matrix”, respectively.

Projections sometimes appear through the use of linear
regression. We therefore recall [Trefethen and Bau, 1997]
that a (square) matrix Π is an orthogonal projector if

ΠΠ = Π = ΠT . (15)

For any matrix A, let ΠA denote the projector whose
image is the column space of A, implying that

ΠAA = A . (16)

Equivalently, Π⊥
A

A = 0, where Π⊥
A

= I−ΠA is called the
complementary projector. The (Moore-Penrose) pseudo-
inverse, A+, may be used to express the projector:

ΠA = AA+ = (AT)+(AT) . (17)

Here, the second equality follows from the first by
equation (15) and (A+)T = (AT)+. The formulae simplify
further in terms of the SVD of A.

Now, denote 1 ∈ R
N the (column) vector of ones, and

let IN be the N -by-N identity matrix.
✿

.
✿✿

The matrix
of anomalies, X

✿✿✿✿✿✿✿✿✿✿

X ∈ R
M×N , is defined and computed by

subtracting the ensemble mean, x = E1/N , from each
column of E. It should be appreciated that this amounts
to the projection:

X = E− x1T = EΠ⊥
1

, (18)

where Π⊥
1

= IN −Π1, with Π1 = 11
T/N .

Definition 1 (The ensemble subspace). The flat (i.e.
affine subspace) given by: {x ∈ R

M : [x− x] ∈ col(X)}.

Similarly to section 2, iteration index (i > 0)
subscripting on E, X, and other objects, is used to indicate
that they are conditional (i.e. posterior). The iterations
are initialized with the prior ensemble: xn,0 = xn.

3.2 The constituent estimates

The ensemble estimates of Cx and M• are the building
blocks of the EnRML algorithm. The canonical estimators
are used, namely the sample covariance (19a), and the
least-squares linear regression coefficients (19b). They are
denoted with the overhead bar:

Cx = 1
N−1 XXT , (19a)

Mi =M(Ei)X
+
i . (19b)

The anomalies at iteration i are again given by Xi =
EiΠ

⊥
1

, usually computed by subtraction of xi. The matrix
M(Ei) is defined by the column-wise application of M
to the ensemble members. Conventionally, M(Ei) would

also be centred in equation (19b), i.e. post-multiplied

✿✿✿✿✿✿✿✿✿

multiplied
✿✿✿

on
✿✿✿✿

the
✿✿✿✿✿

right
✿

by Π⊥
1

. However, this opera-
tion (and notational burden) can be neglected, because
Π⊥

1
X+

i = X+
i , which follows from Π(AΠ)+ = (AΠ)+

[valid for any matrix A and projector Π Maciejewski and Klein, 1985

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

[valid for any matrix A and projector Π, as shown by Maciejewski and
.

Note that the linearization (previously M•, now Mi)
no longer depends on the ensemble index, n. Indeed, it
has been called “average sensitivity” since the work of
Zafari and Reynolds [2005]; Reynolds et al. [2006]; Gu
and Oliver [2007]. The formula (19b) for Mi is sometimes
arrived at via a Taylor expansion ofM around xi, but this
requires further, indeterminate approximations to obtain
any other interpretation than M′(xi): the Jacobian
evaluated at the ensemble mean. Instead, the “average
sensitivity/derivative/gradient” description suggest that

M ≈ 1

N

N∑

n=1

M′(xn) ,

where the subscript i has been temporarily dropped for
clarity. However, equation (20) does not appear to have
been spelled out in the literature, and the sense in which
it holds has not yet been established; this

✿✿✿✿✿✿✿✿

However,
✿✿✿✿

this

✿✿✿✿✿✿✿✿

intuition
✿✿✿✿

has
✿✿✿✿

not
✿✿✿✿✿

been
✿✿✿✿✿✿✿✿✿✿

rigorously
✿✿✿✿✿✿✿✿✿

justified.1
✿✿✿

This
✿✿

is
accomplished by Theorem 1

✿✿✿

the
✿✿✿✿✿✿✿✿✿

following
✿✿✿✿✿✿✿

theorem.

Theorem 1 (Regression coefficients versus derivatives).
Let x be drawn from the distribution of the ensemble
(e.g., the prior or posterior of any iteration):

✿✿✿✿✿✿✿

Suppose

✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿

is
✿✿✿✿✿✿

drawn
✿✿✿✿✿

from
✿

a Gaussian. Then

lim
N→∞

M = E[M′(x)] , (20)

with “almost sure” convergence, and expectation (E) in x. ,

✿✿✿✿✿

which
✿✿✿

has
✿✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿

members.
Regularity conditions and proof in appendix A. Note: the
expectation could also be defined using the ensemble itself,
since E[N−1

∑

nM′(xn)] = E[M′(x)].

Note that the
✿✿

A
✿✿✿✿✿✿✿✿✿

corollary
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

Theorem 1
✿

is
✿✿✿✿✿

that

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

M ≈ 1
N

∑N
n=1M′(xn),

✿✿✿✿✿✿✿✿✿

justifying
✿✿✿

the
✿✿✿✿✿✿✿✿

“average
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

sensitivity/derivative/gradien

✿✿✿✿✿✿✿✿✿✿

description.
✿✿✿✿

The
✿✿✿✿✿✿✿✿

theorem
✿✿✿✿✿✿✿

applies
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

ensemble
✿✿

of
✿✿✿✿

any

✿✿✿✿✿✿✿✿

Gaussian,
✿✿✿✿✿

and
✿✿✿✿✿✿

hence
✿✿✿✿

also
✿✿✿✿✿✿

holds
✿✿✿

for
✿✿✿✿

Mi.
✿✿✿✿✿

On
✿✿✿✿

the
✿✿✿✿✿

other

✿✿✿✿✿

hand,
✿✿✿✿

the
✿

generality of Theorem 1 is restricted by its

✿✿✿

the
✿

Gaussianity assumption. Thus, for generality and

precision, Mi should simply be labelled “the least-squares
(linear) fit” of M, based on Ei.

Finally, note that
✿✿✿✿

Note
✿✿✿✿

that
✿

the computation (19b) of

Mi seemingly requires calculating a new pseudo-inverse,
X+

i , at each iteration, i; this is addressed in section 3.6.
The prior covariance estimate (previously Cx, now Cx)

is not assumed invertible, in contrast to section 2. It is
then not possible to employ the precision matrix forms (9)

because C
−1

x is not defined. Using the C
+

x in its stead is

1

✿✿✿

The
✿✿✿✿✿✿✿

formula
✿✿✿✿✿✿

(19b)
✿✿

for
✿✿✿✿

Mi
✿✿✿

is
✿✿✿✿✿✿✿✿✿

sometimes
✿✿✿✿✿✿

arrived
✿✿✿

at
✿✿✿✿

via

✿

a
✿✿✿✿✿✿✿✿

truncated
✿✿✿✿✿✿✿

Taylor
✿✿✿✿✿✿✿✿

expansion
✿✿✿

of
✿✿✿✿

M
✿✿✿✿✿✿

around
✿✿✿✿

xi.
✿✿✿✿✿✿✿

This
✿✿

is

✿✿✿✿✿

already
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿

approximation,
✿✿✿

and
✿✿✿

still
✿✿✿✿✿✿✿

requires
✿✿✿✿✿✿

further,
✿✿✿✿✿✿✿✿✿✿✿

indeterminate

✿✿✿✿✿✿✿✿✿✿✿

approximations
✿✿

to
✿✿✿✿✿✿

obtain
✿✿✿

any
✿✿✿✿

other
✿✿✿✿✿✿✿✿✿✿✿

interpretation
✿✿✿✿

than
✿✿✿✿✿✿

M′(xi):
✿✿✿

the

✿✿✿✿✿✿✿

Jacobian
✿✿✿✿✿✿✿

evaluated
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿

mean.
✿
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flawed and damaging because it is zero in the directions
orthogonal to the ensemble subspace, so that its use would
imply that the prior is assumed infinitely uncertain (i.e.
flat) as opposed to infinitely certain (like a delta function)
in those directions. Instead, as shown in the following, one
should employ ensemble subspace formulae, or equivalently
, the

✿✿✿

(as
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

following,
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿✿✿

corollaries
✿✿

of
✿✿✿✿

the

✿✿✿✿✿✿✿✿✿

Woodbury
✿✿✿✿✿✿✿✿✿

identity),
✿✿✿

the
✿

Kalman gain form.

3.3 Estimating the Kalman gain

The ensemble estimates (19) are now substituted into the
Kalman gain form of the update, equation (10) to (12).
The ensemble estimate of the gain matrix, denoted Ki,
thus becomes:

Ki = CxMT

i

(
MiCxMT

i + Cδ

)−1

= XYT

i

(
YiY

T

i + (N−1)Cδ

)−1
, (21)

where Yi
✿✿✿✿✿✿✿✿✿✿

Yi ∈ R
P ×N

✿

has been defined as the prior (i.e.
unconditioned) anomalies, under the action of the i-th
iterate linearization:

Yi = MiX . (22)

A Woodbury corollary (again, no implicit pseudo-inverting),
can be used to express Ki as:

Ki = XCw,iY
T

i C−1
δ , (23)

with

Cw,i =
(
YT

i C−1
δ Yi + (N−1)IN

)−1
. (24)

The reason for labelling this matrix with the subscript w

is revealed later. For now, note that, in the common
case of N ≪ P , the inversion in equation (24) is
significantly cheaper than the inversion in equation (21).
Another computational benefit is that Cw,i is non-
dimensional, meaning that data with small magnitude will
not be “perceived” as noise by numerical decomposition
routines

✿✿✿✿✿✿✿✿✿

improving
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

conditioning
✿✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

optimization

✿✿✿✿✿✿✿

problem
✿✿✿✿✿✿✿✿✿✿✿✿✿

[Lorenc, 1997].
In conclusion, the likelihood increment (10b) is now

estimated as:

∆lklhd
• = Ki[yn −M(x•)] . (25)

This is efficient because Mi does not explicitly appear
in Ki (neither in formula (21) nor (23)), even though it
is implicitly present through Yi (22), where it multiplies
X. This absence (a) is reassuring, as the product Yi

constitutes a less noisy estimate than just Mi alone [Chen
and Oliver, 2012; Emerick and Reynolds, 2013b, figures 2
and 27, resp.]; (b) constitutes a computational advantage,
as will be shown in section 3.6; (c) enables leaving the type
of linearization made for M unspecified, as is usually the
case in EnKF literature.

3.4 Estimating the prior increment

In contrast to the likelihood increment (10b), the Kalman
gain form of the prior increment (10a) explicitly contains
the sensitivity matrix, M•. In response, consider

✿✿✿✿

This

✿✿✿✿

issue
✿✿✿✿

was
✿✿✿✿✿✿✿✿

resolved
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Bocquet and Sakov [2012]
✿✿

in
✿✿✿✿✿

their

✿✿✿✿✿✿✿✿✿

refinement
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Sakov et al. [2012]
✿✿

by
✿✿✿✿✿✿✿✿✿

employing
✿

the change
of variables:

x(w) = x + Xw , (26)

where w ∈ R
N is called the ensemble “controls” [Bannister,

2016], also known as the ensemble “weights” [Ott et al.,
2004], or “coefficients” [Bocquet and Sakov, 2013].

Denote w• the control
✿✿

an
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿✿

coefficient
✿

vector
such that x(w•) = x•, and note that x(en) = xn, where
en is the n-th column of the identity matrix. Thus,
[xn − x•] = X[en − w•], and the prior increment (10a)
with the ensemble estimates becomes:

∆prior
• = (X−KiYi)[en −w•] , (27)

where there is no explicit Mi, which only appears
implicitly through Yi = MiX, as defined in equation (22)
Alternatively, applying the subspace formula (23) and
using IN = Cw,i(Cw,i)

−1 yields:

∆prior
• = XCw,i(N−1)[en −w•] . (28)

3.5 Justifying the change of variables

Lemma 1 (Closure). Suppose Ei is generated by EnRML.
Then, each member (column) of Ei is in the (prior)
ensemble subspace. Moreover, col(Xi) ⊆ col(X).

Lemma 1 may be proven by noting that X is
the leftmost factor in Ki, and using induction on
equations (10a) and (10b). Alternatively, it can be
deduced [Raanes et al., 2019] as a consequence of the
implicit assumption on the prior that x ∼ N (x, Cx). A
stronger result, namely col(Xi) = col(X), is conjectured
in appendix A, but Lemma 1 is sufficient for the present
purposes: it implies that there exists w• ∈ R

N such that
x(w•) = x• for any ensemble member and any iteration.
Thus, the lemma justifies the change of variables (26).

Moreover, using the ensemble control
✿✿✿✿✿✿✿✿

coefficient
✿

vector
(w) is theoretically advantageous as it inherently embodies
the restriction to the ensemble subspace. A practical
advantage is that w is relatively low-dimensional compared
to x, which lowers storage and accessing expenses.

3.6 Simplifying the regression

Recall the definition of equation (22): Yi = MiX.
Avoiding the explicit computation of Mi used in this
product between the iteration-i estimate Mi and the initial
(prior) X was the motivation behind the modification
Cx ← Cx,i by Chen and Oliver [2013b]. Here, instead,
by simplifying the expression of the regression, it is shown
how to compute Yi without first computing Mi.
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3.6.1 The transform matrix

Inserting the regression Mi (19b) into the definition (22),

Yi =M(Ei) T+
i , (29)

where T+
i = X+

i X has been defined, apparently requiring
the pseudo-inversion of Xi for each i. But, as shown in
appendix A.2,

Ti = X+Xi , (30)

which only requires the one-time pseudo-inversion of the
prior anomalies, X. Then, since the pseudo-inversion of
Ti ∈ R

N×N for Yi (29) is a relatively small calculation,
this saves computational time.

The symbol T has been chosen in reference to
deterministic, square-root EnKFs. Indeed, pre-multiplying
equation (30)

✿✿✿✿✿✿✿✿✿✿

multiplying
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

equation (30)
✿✿

on
✿✿✿

the
✿✿✿✿

left
✿

by X

and recalling equation (17) and Lemma 1 produces Xi =
XTi. Therefore, the “transform matrix”, Ti, describes
the conditioning of the anomalies (and covariance).

Inversely
✿✿✿✿✿✿✿✿✿

Conversely, equation (29) can be seen as the
“de-conditioning” of the posterior observation anomalies.
This interpretation of Yi should be contrasted to its
definition (22), which presents it as the prior parameter

✿✿✿✿

state
✿✿

anomalies “propagated” by the linearization of
iteration i. The two approaches are known to be “mainly
equivalent” in the deterministic case [Sakov et al., 2012].
To our knowledge, however, it has not been exploited
for EnRML before now, possibly because the proofs
(appendix A.2) are a little more complicated in this
stochastic case.

3.6.2 From the ensemble controls
✿✿✿✿✿✿✿✿✿✿✿

coefficients

The ensemble matrix of iteration i can be written:

Ei = x1T + XWi , (31)

where the columns of Wi ∈ R
N×N are the ensemble

control
✿✿✿✿✿✿✿✿✿

coefficient
✿✿

vectors (26). Post-multiplying
equation (31)

✿✿✿✿✿✿✿✿✿✿✿

Multiplying
✿✿✿✿✿✿✿✿✿✿✿✿✿

equation (31)
✿✿

on
✿✿✿✿

the
✿✿✿✿✿

right
✿

by
Π⊥

1
to get the anomalies produces:

Xi = X(WiΠ
⊥
1

) . (32)

This seems to indicate that WiΠ
⊥
1

is the transform matrix,
Ti, discussed in the previous subsection. However, they
are not fully equal: inserting Xi from (32) into (30) yields:

Ti = ΠXT(WiΠ
⊥
1

) , (33)

i.e. they are distinguished by ΠXT = X+X: the projection
onto the row space of X.

Appendix A.3 shows that, in most conditions, this
pesky projection matrix vanishes when Ti is used in
equation (29):

Yi =M(Ei) (WiΠ
⊥
1

)+ if

{

N−1 ≤M, or

M is linear.
(34)

In other words, the projection ΠXT can be omitted unless
M is nonlinear and the ensemble is larger than the
unknown parameter

✿✿✿✿✿

state’s dimensionality.
A well known result of Reynolds et al. [2006] is that

the first step of the EnRML algorithm (with W0 = IN ) is
equivalent to the EnKF. However, the standard definition
of the EnKF uses cross-covariances rather than an explicit
M0 to define the Kalman gain, and this corresponds to a
Y0 that never contains

✿✿✿

this
✿✿

is
✿✿✿✿

only
✿✿✿✿✿✿✿

strictly
✿✿✿✿

true
✿✿

if
✿✿✿✿✿

there
✿✿

is

✿✿

no
✿✿✿✿✿✿✿✿✿✿✿

appearance
✿✿

of
✿

ΠXT
✿

in
✿✿✿✿✿✿✿✿

EnRML. The following section
explains why it should be so for EnRML too

✿✿✿✿✿✿✿

EnRML

✿✿✿✿✿✿

should
✿✿✿✿✿✿

indeed
✿✿✿✿✿✿

always
✿✿✿

be
✿✿✿✿✿✿✿

defined
✿✿✿✿✿✿✿

without
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

projection.

3.6.3 Linearization chaining

Consider applying the change of variables (26) to w at the
very beginning of the derivation of EnRML. Since X1 = 0,
there is a redundant degree of freedom in w, meaning
that there is a choice to be made in deriving its density
from the original one, given by Jx,n(x) in equation (6).
The simplest choice [Bocquet et al., 2015] results in the
log-posterior:

Jw,n(w) = 1
2‖w − en‖2

1

N−1
IN

+ 1
2‖M(x+Xw)− yn‖2

Cδ
,

Application of the Gauss-Newton scheme with the
gradients and Hessian of Jw,n, followed by a reversion
to x, produces the

✿✿✿✿

same
✿

EnRML algorithm as developed
above.

The derivation summarized in the previous paragraph
is arguably simpler than that of the last few pages.
Notably, (a) it does not require the Woodbury identity
to derive the subspace formulae; (b) there is never an
explicit Mi to deal with; (c) the statistical linearization of
least-squares regression from Wi toM(Ei) directly yields
equation (34), except that there are no preconditions.

While the case of a large ensemble (N−1 > M) is not
typical in geoscience, the fact that this derivation does
not produce a projection matrix (which requires a pseudo-
inversion) under any conditions begs the questions: Why
are they different? Which version is better?

The answers lie in understanding the linearization of
the map w 7→ M(x + Xw), and noting that, similarly
to analytical (infinitesimal) derivatives, the chain rule
applies for least-squares regression. In effect, the product
Yi = MiX, which potentially yields a projection matrix

✿✿✿✿✿✿✿✿

implicitly
✿✿✿✿✿✿✿✿✿

contains
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

projection
✿✿✿✿✿✿✿

matrix
✿✿✿✿✿

ΠXT , can be
seen as an application of the chain rule for the composite
function M(x(w)). By contrast, equation (34) – but
without the precondition – is obtained by direct regression
of the composite function. Typically, the two versions
yield identical results (i.e. the chain rule). However, since
the intermediate space, col(X), is of lower dimensions than
the initial domain (M < N−1), indirect linear regression

✿✿✿✿✿✿✿✿✿

composite
✿✿✿✿✿✿✿✿✿✿✿

linearization
✿

results in a loss of information,
manifested by the projection matrix. Therefore, the
definition Yi =M(Ei) (WiΠ

⊥
1

)+ is henceforth preferred
to MiX.

Numerical experiments, as in section 4 but not shown,
indicate no statistically significant advantage for either
version. This corroborates similar findings by Sakov et al.
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[2012] for the deterministic flavour. Nevertheless, there is
a practical advantage: avoiding the computation of ΠXT .

3.6.4 Inverting the transform

In square-root ensemble filters, the transform matrix
should have 1 as an eigenvector [Sakov and Oke, 2008;
Livings et al., 2008]. By construction, this also holds
true for WiΠ

⊥
1

, with eigenvalue 0. Now, consider adding
0 = XΠ1 to equation (32), yielding another valid
transformation:

Xi = X(WiΠ
⊥
1

+ Π1
︸ ︷︷ ︸

Ωi

) . (35)

The matrix Ωi, in contrast to WiΠ
⊥
1

and Ti, has
eigenvalue 1 for 1 , and can be shown to be
invertible(Lemma 2, appendix A.3)

✿✿✿

and
✿✿

is
✿✿✿✿✿

thus
✿✿✿✿✿✿✿✿✿

invertible.
This is convenient for proving equation (34) , as is done

✿✿✿✿

used
✿✿✿

to
✿✿✿✿✿✿

prove
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

equation (34) in appendix A.3, where

Yi is initially expressed in terms of Ω−1
i . Note,

however, that this version requires centringM(Ei) before
post-multiplying by Ω−1

i

✿✿✿✿✿✿✿✿✿✿✿

Numerically,
✿✿✿✿

the
✿✿✿

use
✿✿✿

of
✿✿✿

Ωi
✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

computation
✿✿✿✿✿

(34)

✿✿

of
✿✿✿

Yi
✿✿✿✿

was
✿✿✿✿✿✿

found
✿✿

to
✿✿✿✿✿

yield
✿✿✿✿✿✿

stable
✿✿✿✿✿✿✿✿✿✿✿✿

convergence
✿✿

of
✿✿✿✿

the
✿✿✿✿

new

✿✿✿✿✿✿✿

EnRML
✿✿✿✿✿✿✿✿✿

algorithm
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿

trivial
✿✿✿✿✿✿✿✿

example
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

M(x) = αx.

✿✿

By
✿✿✿✿✿✿✿✿✿

contrast,
✿✿✿

the
✿✿✿✿

use
✿✿

of
✿✿✿✿✿✿✿✿✿

(WΠ⊥
1

)+
✿✿✿✿✿✿✿✿✿

exhibited
✿✿✿✿✿✿✿✿✿✿✿✿

geometrically

✿✿✿✿✿✿✿

growing
✿✿✿

(in
✿✿

i)
✿✿✿✿✿✿

errors
✿✿✿✿✿

when
✿✿✿✿✿✿

α > 1.
✿✿✿✿✿

Other
✿✿✿✿✿✿✿✿✿

formulae
✿✿✿

for
✿✿✿

the

✿✿✿✿✿✿✿✿

inversion
✿✿✿

are
✿✿✿✿✿✿✿

derived
✿✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿

appendix A.4;
✿✿✿✿

the
✿✿✿✿

one
✿✿✿✿✿

found
✿✿✿

to

✿✿

be
✿✿✿

the
✿✿✿✿✿

most
✿✿✿✿✿✿

stable
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(WΠ⊥
1

)+ = W−1Π⊥
1

;
✿✿

it
✿✿

is
✿✿✿✿✿✿✿✿

therefore

✿✿✿✿✿✿✿✿

preferred
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

Algorithm 1
✿

.
✿

In real applications it is commonplace to use a stable
linear solver in place of any inversion. Reflecting this,
Algorithm 1 persists with (WiΠ

⊥
1

)+ rather than Ω−1
i .

However, in this pseudo-inversion, all N−1
✿✿✿✿✿✿✿✿✿✿

Irrespective

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

inverse
✿✿✿✿✿✿✿✿✿✿

transform
✿✿✿✿✿✿✿✿

formula
✿✿✿✿✿

used,
✿✿✿

it
✿✿

is
✿✿✿✿✿✿✿✿✿✿

important

✿✿

to
✿✿✿✿✿✿

retain
✿✿✿

all
✿

non-zero singular valuesshould be retained,
and no truncation threshold should be used, because all
components of Wi are equally important (unlike

✿

.
✿✿✿✿✿

This

✿✿✿✿✿✿✿

absence
✿✿

of
✿

a
✿✿✿✿✿✿✿✿✿✿

truncation
✿✿✿✿✿✿✿✿

threshold
✿✿

is
✿✿

a
✿✿✿✿✿✿

tuning
✿✿✿✿✿✿✿✿✿✿✿✿

simplification

✿✿✿✿✿✿✿✿

compared
✿✿✿✿✿

with
✿

the old EnRML algorithm, where a X

and/or Xi was scaled decomposed, and truncated). If,
by extreme chance (

✿

or
✿✿✿✿✿

poor
✿✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿✿✿✿✿

subroutines,
✿✿✿✿

the

✿✿✿✿✿✿

matrix
✿✿✿✿

Wi
✿✿

is
✿✿✿✿

not
✿✿✿✿✿✿✿✿✿

invertible
✿✿✿✿✿

(this
✿✿✿✿✿

never
✿✿✿✿✿✿✿✿✿

occurred
✿✿

in
✿✿✿✿

any

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿✿✿✿

except
✿✿✿

by
✿✿✿✿

our
✿✿✿✿✿✿✿

explicit
✿✿✿✿✿✿✿✿✿✿✿✿

intervention;
cf. the conjecture in appendix A)combined with poor
numerical precision or subroutines, the rank of Wi or ,
its pseudo-inversion is lower, this will invalidate Jw,n and
the algorithm unless compensated for by pre-multiplying

✿✿✿✿✿✿

should
✿✿

be
✿✿✿✿✿✿

used;
✿✿✿✿✿✿✿✿

however,
✿✿✿✿

this
✿✿✿✿✿

must
✿✿✿✿

also
✿✿✿

be
✿✿✿✿✿✿✿✿✿

accounted
✿✿✿

for

✿✿

in
✿

the prior increment on ?? 8 by that same projection

✿✿

by
✿✿✿✿✿✿✿✿✿✿✿

multiplying
✿✿✿✿

the
✿✿✿✿✿✿✿

formula
✿✿✿

on
✿✿✿✿

line
✿✿

8
✿✿✿

on
✿✿✿✿

the
✿✿✿

left
✿✿✿

by
✿✿✿✿

the

✿✿✿✿✿✿✿✿✿

projection
✿✿✿✿

onto
✿✿✿✿

Wi.

3.7 Algorithm

To summarize, Algorithm 1 provides pseudo-code for the
new EnRML formulation. The increments ∆lklhd (25) and
∆prior (28) can be recognized by pre-multiplying ?? 10

✿✿✿✿✿✿✿✿✿✿

multiplying
✿✿✿✿

line
✿✿✿

10
✿✿

on
✿✿✿✿

the
✿✿✿✿

left by X. For aesthetics, the
sign of the gradients has been reversed. Note that there

is no need for an explicit iteration index. Nor is there
an ensemble index, n, since all N columns are stacked
into the matrix W. However, in case M is large, Y may
be computed column-by-column to avoid storing E. The
product WΠ⊥

1
is computed by subtracting the column

mean of W. Its pseudo-inverse on ?? 6 should retain all
N−1 non-zero singular values, as discussed in section 3.6.4
. Line 9 may be computed using a reduced or truncated

SVD of C
−1/2
δ Y, which is relatively fast for N both larger

and smaller than P . Alternatively, the Kalman gain forms
could be used.

Algorithm 1 Gauss-Newton variant of EnRML
(the stochastic flavour of the IEnKS analysis update)

require: prior ens. E, obs. perturb’s D

1: x = E1/N
2: X = E− x1T

3: W = IN

4: repeat:

5: Run model (on each col.) to get M(E)
6: Y =M(E) (WΠ⊥

1
)+

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

=M(E) W−1Π⊥
1✿

7: ∇J lklhd
W

= YTC−1
δ [y1T + D−M(E)]

8: ∇Jprior
W = (N−1)[IN −W]

9: Cw =
(
YTC−1

δ Y + (N−1)IN

)−1

10: W = W + Cw[∇Jprior
W +∇J lklhd

W
]

11: E = x1T + XW

12: until tolerable convergence or max. iterations
13: return posterior ensemble E

✿

✿✿✿✿

Line
✿

6
✿✿

is
✿✿✿✿✿✿✿✿

typically
✿✿✿✿✿✿✿✿✿

computed
✿✿✿

by
✿✿✿✿✿✿✿

solving
✿✿✿✿✿✿✿✿✿✿✿✿✿

Y′W =M(E)
✿✿✿

for

✿✿

Y′
✿✿✿✿

and
✿✿✿✿✿

then
✿✿✿✿✿✿✿✿✿✿✿

subtracting
✿✿✿

its
✿✿✿✿✿✿✿

column
✿✿✿✿✿✿✿

mean.
✿✿✿✿✿✿✿✿✿✿✿

Alternative

✿✿✿✿✿✿✿✿

formulae
✿✿✿

are
✿✿✿✿✿✿✿✿✿

discussed
✿✿✿

in
✿✿✿✿✿✿✿✿✿✿✿

section 3.6.4
✿

.
✿✿✿✿✿✿

Line
✿

9
✿✿✿✿✿

may
✿✿✿

be

✿✿✿✿✿✿✿✿✿

computed
✿✿✿✿✿

using
✿✿

a
✿✿✿✿✿✿✿✿

reduced
✿✿✿

(or
✿✿✿✿✿

even
✿✿✿✿✿✿✿✿✿✿

truncated)
✿✿✿✿✿

SVD
✿✿✿

of

✿✿✿✿✿✿✿✿

C
−1/2
δ Y,

✿✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿✿✿✿

relatively
✿✿✿✿

fast
✿✿✿

for
✿✿✿

N
✿✿✿✿✿

both
✿✿✿✿✿✿

larger
✿✿✿✿

and

✿✿✿✿✿✿

smaller
✿✿✿✿✿

than
✿✿✿

P .
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Alternatively,
✿✿✿✿

the
✿✿✿✿✿✿✿✿

Kalman
✿✿✿✿

gain
✿✿✿✿✿✿

forms

✿✿✿✿✿

could
✿✿

be
✿✿✿✿✿✿

used.

✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Levenberg-Marquardt
✿✿✿✿✿✿✿✿

variant
✿✿

is
✿✿✿✿✿✿✿✿✿✿

obtained
✿✿✿

by

✿✿✿✿✿✿

adding
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

trust-region
✿✿✿✿✿✿✿✿✿✿

parameter
✿✿✿✿✿

λ > 0
✿✿✿

to
✿✿✿✿✿✿

(N−1)
✿✿✿

in
✿✿✿

the

✿✿✿✿✿✿✿

Hessian,
✿✿✿✿

line
✿✿

9,
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

impacts
✿✿✿✿✿

both
✿✿✿

the
✿✿✿✿✿

step
✿✿✿✿✿✿

length
✿✿✿✿

and

✿✿✿✿✿✿✿✿

direction.
✿

Localization may be implemented by local analysis .
Tapering may be done

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

[Hunt et al., 2007; Sakov and Bertino, 2011]

✿

;
✿✿✿✿

also
✿✿✿

see
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Bocquet [2016]; Chen and Oliver [2017].
✿✿✿✿✿✿

Here,

✿✿✿✿✿✿✿

tapering
✿✿

is
✿✿✿✿✿✿✿✿

applied by replacing the local-domain C
−1/2
δ

by ρ1/2 ◦C
−1/2
δ , where

✿✿✿✿✿✿✿✿

(implicit
✿✿✿

on
✿✿✿✿✿✿

lines
✿✿

7
✿✿✿✿✿

and
✿✿✿

9)

✿✿

by
✿✿✿✿✿✿✿✿✿✿✿

ρ ◦C
−1/2
δ ,

✿✿✿✿✿

with
✿✿

◦ is
✿✿✿✿

being
✿✿

the Schur product,
and ρ is a square matrix containing the localization

✿✿✿✿✿✿✿✿✿✿✿

(square-root)
✿✿✿✿✿✿✿✿

tapering
✿

coefficients, ρm,l ∈ [0, 1]. Also see
Bocquet [2016]; Chen and Oliver [2017] for localization of
smoothers.

✿

If
✿✿✿

the
✿✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿

local
✿✿✿✿✿✿✿✿

domains
✿✿✿✿✿

used
✿✿

is
✿✿✿✿✿

large,

✿✿

so
✿✿✿✿

that
✿✿✿✿

the
✿✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿

W
✿✿✿✿✿✿✿✿✿

matrices
✿✿✿✿

used
✿✿✿✿✿✿✿✿✿

becomes
✿✿✿✿✿

large,

✿✿✿✿

then
✿✿

it
✿✿✿✿✿

may
✿✿✿

be
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿

efficient
✿✿✿

to
✿✿✿✿✿✿

revert
✿✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿✿

original

✿✿✿✿

state
✿✿✿✿✿✿✿✿✿

variables,
✿✿✿✿

and
✿✿✿✿✿✿✿✿

explicitly
✿✿✿✿✿✿✿✿

compute
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

sensitivities
✿✿✿

Mi

✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿

local
✿✿✿✿✿

parts
✿✿

of
✿✿✿✿✿✿✿

M(Ei)
✿✿✿✿

and
✿✿✿

Xi.
✿

Inflation and model error parameterizations are not
included in the algorithm, but may be applied outside
of it. Also see

✿✿✿

We
✿✿✿✿

refer
✿✿✿

to
✿

Sakov et al. [2018]; Evensen
[2019] for model error treatment with iterative methods.
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The Levenberg-Marquardt variant is obtained by adding
the trust-region parameter λ > 0 to (N−1) in the Hessian,
line 9, which impacts both the step length and direction.

4 Benchmark experiments

The new EnRML algorithm produces results that are
identical to the old formulation, at least up to round-off
and truncation errors, and for N−1 ≤M . Therefore, since
there is already a large number of studies of EnRML with
reservoir cases [e.g., Chen and Oliver, 2013a; Emerick and
Reynolds, 2013b], adding to this does not seem necessary.

However, there does not appear to be any studies of
EnRML with the Lorenz-96 system [Lorenz, 1996] in a
data assimilation setting. The advantages of this case
are numerous: (a) the model is a surrogate of weather
dynamics, and as such holds relevance in geoscience;
(b) the problem is (exhaustively) sampled from the
system’s invariant measure, rather than being selected
by the experimenter; (c) the sequential nature of data
assimilation inherently tests prediction skill, which helps
avoid the pitfalls of point measure assessment, such as
overfitting; (d) its simplicity enhances reliability and
reproducibility, and has made it a literature standard, thus
facilitating comparative studies.

Comparison of the benchmark performance of EnRML
will be made to the IEnKS, and

✿✿

to
✿

ensemble multiple
data assimilation (ES-MDA)2, both its stochastic and .

✿✿✿✿

Both
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

stochastic
✿✿✿✿

and
✿✿✿

the
✿

deterministic (square-root)
flavour.

✿✿✿✿✿✿✿

flavours
✿✿

of
✿✿✿✿✿✿✿✿✿

ES-MDA
✿✿✿

are
✿✿✿✿✿✿✿✿✿

included,
✿✿✿✿✿✿

which
✿✿

in
✿✿✿✿

the

✿✿✿✿

case
✿✿

of
✿✿✿✿✿

only
✿✿✿

one
✿✿✿✿✿✿✿✿✿

iteration
✿✿✿✿

(not
✿✿✿✿✿✿✿✿

shown),
✿✿✿✿✿✿

result
✿✿

in
✿✿✿✿✿✿✿

exactly

✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿✿✿✿

ensembles
✿✿✿

as
✿✿✿✿✿✿✿✿

EnRML
✿✿✿✿

and
✿✿✿✿✿✿✿

IEnKS,
✿✿✿✿✿✿✿✿✿✿✿

respectively.
Not included in the benchmark comparisons is the version
of EnRML where the prior increment is dropped (cf.
section 1.1). This is because the chaotic, sequential nature
of this case makes it practically impossible to achieve good
results without propagating prior information. Similarly,
as they lack a dynamic prior, this precludes “regularizing,
iterative ensemble smoothers” [Iglesias, 2015], [Luo et al.,
2015],3 [Mandel et al., 2016]4, even if their background
is well-tuned, and their stopping condition judicious.
Because they require the tangent-linear model, M•, RML
and EDA/En4DVar [Tian et al., 2008; Bonavita et al.,
2012; Jardak and Talagrand, 2018] are not included. For
simplicity, localization will not be used, nor covariance
hybridization. Other, related methods may be found in
the reviews of Bannister [2016]; Carrassi et al. [2018].

2Note that this is MDA in the
sense of Emerick and Reynolds [2013a]

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Emerick and Reynolds [2013a]; Stordal [2015]; Kirkpatrick et al. [1983]
, where the annealing itself yields iterations, and not in the sense
of quasi-static assimilation [Pires et al., 1996; Bocquet and Sakov,
2014; Fillion et al., 2018], where it is used as an auxiliary technique.

3Their Lorenz-96 experiment only concerns the initial conditions.
4Their Lorenz-96 experiment seems to have failed completely, with

most of the benchmark scores (their Figure 5) indicating divergence,
which makes it pointless to compare benchmarks. Also, when
reproducing their experiment, we obtain much lower scores than they
report for the EnKF. One possible explanation is that we include,
and tune, inflation.

4.1 Setup

The performances of the iterative ensemble smoother
methods are benchmarked with “twin experiments”, using
the Lorenz-96 dynamical system, which is configured with
standard settings [e.g., Ott et al., 2004; Bocquet and Sakov,
2014], detailed below. The dynamics are given by the
M = 40 coupled ordinary differential equations:

dxm

dt
= (xm+1 − xm−2) xm−1 − xm + F , (36)

for m = 1, . . . , M , with periodic boundary conditions.
These are integrated using the fourth-order Runge-Kutta
scheme, with time steps of 0.05 time units, and no model
noise

✿

,
✿✿✿

to
✿✿✿✿✿

yield
✿✿✿

the
✿✿✿✿✿✿

truth
✿✿✿✿✿✿✿✿✿✿

trajectory,
✿✿✿✿

x(t). Observations
of the entire state vector are taken ∆tobs = 0.2 or 0.4

✿✿✿✿✿

∆tobs
✿

time units apart with unit noise variance, meaning
y(t) = x(t) + δ(t), for each t = k · ∆tobs , with
k = 0, 1, . . . , 10′000

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

k = 0, 1, . . . , 10,000, and Cδ = IM .
The iterative smoothers are employed for the filtering

problem
✿

in
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

sequential
✿✿✿✿✿✿✿✿

problem
✿✿✿

of
✿✿✿✿✿✿✿✿

filtering, aim-
ing to estimate x(t) as soon as y(t) comes in. In
so doing, they also tackle the smoothing problem for
x(t− L)

✿✿✿✿✿✿✿✿✿✿✿✿

x(t−∆tDAW ), where the
✿✿✿✿✿✿

length
✿✿

of
✿✿✿

the
✿

data assim-
ilation windowhas been fixed at L = 0.4, which is near
optimal [cf. Bocquet and Sakov, 2013, Figures 3 and 4].,

✿✿✿✿✿✿✿

∆tDAW ,
✿✿

is
✿✿✿✿✿

fixed
✿✿

at
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

near-optimal
✿✿✿✿✿

value
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

[inferred from Figures 3 and

✿✿✿✿

that
✿✿

is
✿✿✿✿

also
✿✿✿✿✿

cost
✿✿✿✿✿✿✿

efficient
✿✿✿✿✿

(i.e.
✿✿✿✿✿✿✿

short).
✿✿

This window is
shifted by 1×∆tobs

✿✿✿✿✿✿✿✿

1 ·∆tobs each time a new observation
becomes available. A post-analysis inflation factor is
tuned for optimal performance for each smoother and each
ensemble size, N . Also, random rotations are used to
generate the ensembles for the square-root variants. The
number of iterations is fixed, either at 3 or 10. No tuning
of the step length is undertaken: it is 1/3 or 1/10 for
ES-MDA, and 1 for EnRML and the IEnKS.

The smoothers
✿✿✿✿✿✿✿✿

methods are assessed by their accuracy,
as measured by root-mean squared error:

RMSE(t) =

√

1

M

∥
∥x(t)− x(t)

∥
∥

2

2
, (37)

which is recorded immediately following each analysis
of the latest observation y(t).

✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿

“smoothing”
✿✿✿✿✿

error
[
✿✿✿✿✿✿✿

assessed
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿✿

x(t−∆tDAW )]
✿✿

is
✿✿✿✿

also
✿✿✿✿✿✿✿✿✿

recorded.
✿

After the
experiment, the instantaneous RMSE(t) are averaged
for all t > 20. A table of RMSE averages is
compiled for a range of N , and plotted as curves for
each method, in Figure 1. All of the

✿✿✿✿

The
✿

results
can be reproduced using Python-code scripts hosted
online at https://github.com/nansencenter/DAPPER/

tree/paper_StochIEnS. This code reproduces previously
published results in the literature. For example, our
benchmarks obtained with the IEnKS can be cross-
referenced with the ones reported by Bocquet and Sakov
[2014, Figure 7a].

4.2 Results

As we expect, Figure 1 shows that the performance
✿

A

✿✿✿✿

table
✿✿✿

of
✿✿✿✿✿✿✿

RMSE
✿✿✿✿✿✿✿✿

averages
✿✿

is
✿✿✿✿✿✿✿✿✿

compiled
✿✿✿✿

for
✿✿

a
✿✿✿✿✿

range
✿✿✿

of
✿✿✿

N ,

✿✿✿

and
✿✿✿✿✿

then
✿✿✿✿✿✿✿

plotted
✿✿

as
✿✿✿✿✿✿✿

curves
✿✿✿

for
✿✿✿✿

each
✿✿✿✿✿✿✿✿

method,
✿✿✿

in
✿✿✿✿✿✿✿✿

Figure 1.
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Figure 1: Benchmarks of the (filtering ) accuracy of four iterative ensemble smoothers, obtained with
✿✿✿✿✿✿

filtering
✿✿✿✿✿✿✿

(upper)
✿✿✿

and

✿✿✿✿✿✿✿✿

smoothing
✿✿✿✿✿✿✿

(lower)
✿✿✿✿✿✿✿✿

accuracy,
✿✿

in
✿✿✿✿✿

three
✿✿✿✿✿✿✿✿✿✿✿✿

configurations
✿✿

of
✿

the Lorenz-96 system, plotted as functions of N . The y-axis changes
resolution at y = 1. For perspective, the two lines at y = 3.6 and y = 0.94 show the average RMSE of the climatological mean,
and of the optimal interpolation method, respectively. Each of the

✿✿✿

four
✿✿✿✿✿✿✿✿✿

(coloured)
✿

iterative ensemble smoothers is plotted for 3
(compact

✿✿✿✿✿

hollow
✿

markers) and 10 (hollow
✿✿✿✿✿✿✿

compact
✿

markers) iterations. It can be seen that the deterministic (i.e. square-root)
methods systematically achieve lower RMSE averages.

✿✿✿

For
✿✿✿✿✿✿✿✿✿✿

perspective,
✿✿✿

the
✿✿✿✿✿

black
✿✿✿✿

lines
✿✿

at
✿✿✿✿✿✿

y = 3.6
✿✿✿✿

and
✿✿✿✿✿✿✿

y = 0.94
✿✿✿✿✿

show
✿✿✿

the
✿✿✿✿✿✿

average

✿✿✿✿✿

RMSE
✿✿✿✿✿✿

scores
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

climatological
✿✿✿✿✿✿

mean,
✿✿✿✿

and
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

optimal
✿✿✿✿✿✿✿✿✿✿✿

interpolation
✿✿✿✿✿✿✿✿

method,
✿✿✿✿✿✿✿✿✿✿

respectively.
✿✿✿✿✿

The
✿✿✿✿✿✿

dotted
✿✿✿✿

lines
✿✿✿✿✿

show
✿✿✿

the

✿✿✿✿✿

scores
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

stochastic
✿✿✿✿✿

(blue)
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

deterministic
✿✿✿✿

(red)
✿✿✿✿✿✿

EnKF.
✿
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✿✿✿

The
✿✿✿✿✿✿

upper
✿✿✿✿✿✿

panels
✿✿✿✿✿✿

report
✿✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿✿

RMSE
✿✿✿✿✿✿

scores,
✿✿✿✿✿

while

✿✿✿

the
✿✿✿✿✿

lower
✿✿✿✿✿✿

panels
✿✿✿✿✿✿

report
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

smoothing
✿✿✿✿✿✿

RMSE
✿✿✿✿✿✿✿

scores.
✿✿✿✿

The

✿✿✿✿✿✿✿✿✿

smoothing
✿✿✿✿✿✿

scores
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿✿✿

systematically
✿✿✿✿✿

lower,
✿✿✿✿

but
✿✿✿

the
✿✿✿✿✿✿✿

relative

✿✿✿✿✿✿

results
✿✿✿

are
✿✿✿✿✿✿

highly
✿✿✿✿✿✿✿

similar.
✿✿✿✿✿✿✿

Moving
✿✿✿✿✿

right
✿✿✿✿✿✿✿

among
✿✿✿

the
✿✿✿✿✿✿

panels

✿✿✿✿✿✿✿✿

increases
✿✿✿✿✿✿

∆tobs ,
✿✿✿✿

and
✿✿✿✿✿

thus
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

nonlinearity;
✿✿✿✿✿✿✿✿✿

naturally,
✿✿✿

all

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

RMSE
✿✿✿✿✿✿✿

scores
✿✿✿✿

also
✿✿✿✿✿✿✿✿✿

increase.
✿✿✿✿

As
✿✿

a
✿✿✿✿✿

final
✿✿✿✿✿✿✿

“sanity

✿✿✿✿✿✿

check”,
✿✿✿✿✿

note
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

performances
✿

of all of the smoothers

✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿

methods improve with increasing N , which needs
to be at least 15 for tolerable performance, corresponding
to the rank of the unstable subspace of the dynamics
plus one [Bocquet and Carrassi, 2017]. Of course, all of
the scores are lower for the left pane where ∆tobs = 0.2,
compared to the right pane where ∆tobs = 0.4

✿✿✿

For
✿✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿

∆tobs ≤ 0.4,
✿✿✿✿✿

using
✿

3
✿✿✿✿✿✿✿✿✿

iterations
✿✿

is

✿✿✿✿✿✿

largely
✿✿✿✿✿✿✿✿✿

sufficient,
✿✿✿✿✿

since
✿✿

its
✿✿✿✿✿✿✿✿

markers
✿✿✿

are
✿✿✿✿✿✿

rarely
✿✿✿✿✿✿✿✿✿✿✿

significantly

✿✿✿✿✿

higher
✿✿✿✿✿

than
✿✿✿✿✿

those
✿✿

of
✿✿✿

10
✿✿✿✿✿✿✿✿✿

iterations.
✿✿✿✿

On
✿✿✿

the
✿✿✿✿✿✿

other
✿✿✿✿✿

hand,
✿✿✿

for

✿✿✿

the
✿✿✿✿✿✿

highly
✿✿✿✿✿✿✿✿

nonlinear
✿✿✿✿✿✿✿✿✿✿✿

experiment
✿✿✿✿✿✿

where
✿✿✿✿✿✿✿✿✿✿✿

∆tobs = 0.6,
✿✿✿✿✿

there

✿

is
✿✿

a
✿✿✿✿✿✿✿✿✿✿

significant
✿✿✿✿✿✿✿✿✿

advantage
✿✿

in
✿✿✿✿✿✿

using
✿✿

10
✿✿✿✿✿✿✿✿✿

iterations.
The deterministic (square-root) IEnKS and ES-MDA

score noticeably lower RMSE averages than the stochastic
IEnKS (i.e. EnRML) and ES-MDA, which require N
closer to 30 for tolerable performance.

✿✿✿✿

good
✿✿✿✿✿✿✿✿✿✿✿✿

performance.

✿✿✿✿

This
✿✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿

qualitatively
✿✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿✿

result
✿✿✿

as
✿✿✿✿✿✿✿✿

obtained
✿✿✿✿

for

✿✿✿✿✿✿✿✿✿✿✿

non-iterative
✿✿✿✿✿✿✿✿

methods
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

[e.g., Sakov and Oke, 2008]
✿

.
✿

Also
tested (not shown) was the first-order-approximate
deterministic flavour of ES-MDA [Emerick, 2018], which
systematically performed slightly worse than ;

✿✿✿✿

it

✿✿✿✿✿✿✿✿✿

performed
✿✿✿✿

very
✿✿✿✿✿✿✿✿

similarly
✿✿✿

to
✿

the square-root flavour.
It appears that 3 iterations is largely sufficient, since

its markers are rarely significantly higher than those of 10
iterations, the exceptions all occurring when the ensemble
size is close to the lower limit of the tolerable performance
range.

Between the two stochastic smoothers(EnRML and
stochastic

✿✿✿✿✿✿

Among
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

stochastic
✿✿✿✿✿✿✿✿✿✿✿

smoothers,
✿✿✿✿✿

the
✿✿✿✿

one

✿✿✿✿✿

based
✿✿✿

on
✿✿✿✿✿✿✿✿✿✿✿✿✿

Gauss-Newton
✿✿✿✿✿✿✿✿✿

(EnRML)
✿✿✿✿✿✿

scores
✿✿✿✿✿✿✿✿✿

noticeably
✿✿✿✿✿

lower

✿✿✿✿✿✿✿

averages
✿✿✿✿✿

than
✿✿✿✿

the
✿✿✿✿✿

one
✿✿✿✿✿✿

based
✿✿✿

on
✿✿✿✿✿✿✿✿✿✿

annealing
✿✿

(ES-MDA)
there is no clear-cut advantage. Among

✿

–
✿✿✿✿✿✿

when
✿✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

nonlinearity
✿✿✿

is
✿✿✿✿✿✿

strong
✿✿✿✿✿✿✿✿✿✿✿✿✿

(∆tobs ≥ 0.4),
✿✿✿✿

and
✿✿✿

for
✿✿✿✿✿

small
✿✿✿✿

N .
✿✿

A

✿✿✿✿✿✿

similar
✿✿✿✿✿

trend
✿✿✿✿✿

holds
✿✿✿✿

for the deterministic smoothers, :
✿

the
IEnKS performs slightly better than ES-MDA , though
this is hardly significant. This result came as a surprise
because, in contrast with

✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿

∆tobs = 0.6.
✿✿✿✿✿

The
✿✿✿✿✿✿

likely

✿✿✿✿✿✿✿✿✿✿

explanation
✿✿✿

for
✿✿✿✿

this
✿✿✿✿✿✿

result
✿✿

is
✿✿✿✿

that
✿

EnRML/IEnKS which
can iterate indefinitely, we thought that

✿✿✿✿

while
✿

ES-MDA
would suffer from occasionally

✿✿✿✿

may
✿✿✿✿✿✿✿✿✿✿✿

occasionally
✿✿✿✿✿✿

suffer

✿✿✿✿

from
✿

not “reaching” the optimum.
One explanation could be that

✿✿✿✿✿✿✿✿✿✿✿✿

Furthermore,
✿✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿

performance
✿✿

of
✿

EnRML/IEnKS need a lowering of
✿✿✿✿✿

could

✿✿✿✿✿✿✿

possibly
✿✿✿✿

be
✿✿✿✿✿✿✿✿✿

improved
✿✿✿✿

by
✿✿✿✿✿✿✿✿✿

lowering
✿

the step lengths,
possibly as a function of the iteration number, to avoid
causing “unphysical” states, and to avoid “bouncing
around” near the optimum. Along with the related
MDA-inflation parameter,

✿✿✿

The
✿

tuning of the step length
has been

✿✿✿✿✿✿✿✿✿

parameter
✿✿✿✿

that
✿✿✿✿✿✿✿

controls
✿✿✿

the
✿✿✿✿

step
✿✿✿✿✿✿✿

length,
✿✿✿✿✿

(e.g.,
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

trust-region
✿✿✿✿✿✿✿✿✿✿

parameter
✿✿✿

and
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

MDA-inflation
✿✿✿✿✿✿✿✿✿✿

parameter)

✿✿✿

has
✿✿✿✿✿

been
✿✿✿

the
✿

subject of several studies [Chen and Oliver,
2012; Bocquet and Sakov, 2012; Ma et al., 2017; Le et al.,
2016; Rafiee and Reynolds, 2017]. However, our superficial
trials with this parameter (not shown) yielded little or no
improvement.

5 Summary

This paper has presented a new and simpler (on paper and
computationally) formulation of the iterative, stochastic
ensemble smoother known as ensemble randomized
maximum likelihood (EnRML). Notably, there is no
explicit computation of the sensitivity matrix Mi, while
the product Yi = MiX is computed without any pseudo-
inversions of the matrix of parameter

✿✿✿✿

state
✿

anomalies.
This fixes issues of noise, computational cost, and
covariance localization, and there is no longer any
temptation to omit the prior increment from the update.
Moreover, the Levenberg-Marquardt variant is now a
trivial modification of the Gauss-Newton variant.

The new EnRML formulation was obtained by
improvements to the background theory and derivation.
Notably, Theorem 1 established the relation of
the ensemble-estimated, least-squares linear regression
coefficients, Mi, to “average sensitivity”. Section 3.6 then
showed that the computation of its action on the prior
anomalies, Yi = MiX, simplifies into a de-conditioning
transformation, Yi =M(Ei) T+

i . Further computational
gains resulted from expressing Ti in terms of the control

✿✿✿✿✿✿✿✿✿

coefficient
✿

vectors, Wi, except that it also involves the
“annoying” ΠXT . Although it usually vanishes, the
appearance of this projection is likely the reason why most
expositions of the EnKF do not go the length of declaring

✿✿✿✿✿✿✿

venture
✿✿

to
✿✿✿✿✿✿✿

declare
✿

that its implicit linearization of M
is that of least-squares linear regression. Section 3.6.3
showed that the projection is merely the result of using
the chain rule for indirect regression to the ensemble space,
and argued that it is preferable to use the direct regression
of the standard EnKF.

The other focus of the derivation was rank issues,
with Cx not assumed invertible. Using the Woodbury
matrix lemma, and avoiding implicit pseudo-inversions and
premature insertion of SVDs, it was shown that the rank
deficiency invalidates the Hessian form of the RML update,
which should be restricted to the ensemble subspace. On
the other hand, the subspace form and Kalman gain form
of the update remain equivalent and valid. Furthermore,
Theorem 2 of appendix A prove

✿✿✿✿✿✿

proves
✿

that the ensemble
does not lose rank during the updates of EnRML (or
EnKF).

The paper has also drawn significantly on the
theory of the deterministic counterpart to EnRML:
the iterative ensemble Kalman smoother (IEnKS).
Comparative benchmarks using the Lorenz-96 model with
these two and the ensemble multiple data assimilation
(ES-MDA) smoother were shown in section 4.

✿✿✿✿✿

Little

✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿

was
✿✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿✿✿

between
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

performances
✿✿✿

of

✿✿✿✿✿✿✿✿✿✿✿

deterministic
✿✿✿✿✿✿

(resp.
✿✿✿✿✿✿✿✿✿✿✿

stochastic)
✿✿✿✿✿✿✿✿

ES-MDA
✿✿✿✿✿✿

versus
✿✿✿✿✿✿✿✿

EnRML

✿✿✿✿✿

(resp.
✿✿✿✿✿✿✿✿✿

IEnKS),
✿✿✿✿✿✿✿✿✿

although
✿✿✿✿

the
✿✿✿✿✿✿

latter
✿✿✿

did
✿✿✿✿✿✿✿✿

achieve
✿✿✿✿✿✿

better

✿✿✿✿✿✿✿✿

accuracy
✿✿✿✿

for
✿✿✿✿✿✿

small
✿✿✿✿✿✿✿✿✿✿

ensembles
✿✿✿✿

and
✿✿✿✿✿✿

large
✿✿✿✿✿✿✿✿✿✿✿✿

nonlinearity.
As in the non-iterative case[e.g., Sakov and Oke, 2008]
, the deterministic smoothers achieved better accuracy
than the stochastic methods. Surprisingly, there was
is little performance difference between ES-MDA and
EnRML/IEnKS.
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A Proofs

A.1 Preliminary

Proof of Theorem 1. Assume 0 < |Cx| < ∞, and that
each element of CM(x),x and E[M′(x)] is finite. Then

Cx is a strongly consistent estimator of Cx. Likewise,
CM(x),x → CM(x),x almost surely, as N → ∞. Thus,

since M = CM(x),x C
−1

x for sufficiently large N , Slutsky’s

theorem yields M → CM(x),x C−1
x , almost surely. The

equality to E[M′(x)] follows directly from “Stein’s lemma”
[Liu, 1994].

Theorem 2 (EnKF rank preservation). The posterior
ensemble’s covariance, obtained using the EnKF, has the
same rank as the prior’s, almost surely (a.s.).

Proof. The updated anomalies, both for the square-root
and the stochastic EnKF, can be written Xa = XTa for
some Ta ∈ R

N×N .

For a deterministic EnKF, Ta =
√

N − 1C
−1/2

w for
some matrix square-root [Sakov and Oke, 2008]. Indeed,
Cw is symmetric , positive , definite , and full-rank

✿✿✿

the

✿✿✿✿✿✿✿✿✿

symmetric
✿✿✿✿✿✿✿✿

positive
✿✿✿✿✿✿✿✿

definite
✿✿✿✿✿✿

square
✿✿✿✿✿

root
✿✿✿

of
✿✿✿✿✿

Cw,
✿✿✿

or
✿✿✿

an

✿✿✿✿✿✿✿✿✿

orthogonal
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

transformation
✿✿✿✿✿✿✿

thereof
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

[Sakov and Oke, 2008].
Hence rank(Xa) = rank(X).

For the stochastic EnKF, equations (23) and (25)
may be used to show that Ta = (N−1)CwΥΠ⊥

1
, with

Υ = IN +YTC−1
δ D/(N−1). Hence, for rank preservation,

it will suffice to show that Υ is a.s. full rank.
We begin by writing Υ more compactly:

Υ = IN + STZ with

{

S = (N−1)−1/2C
−1/2
δ Y ,

Z = (N−1)−1/2C
−1/2
δ D .

(38)

From equations (4), (14) and (38) it can be seen that
column n of Z follows the law zn ∼ N (0, IP /(N−1)).
Hence, column n of Υ follows υn ∼ N (en, STS/(N−1)),
and has sample space:

Sn = {υ ∈ R
N : υ = en + STz} . (39)

Now consider, for n = 0, . . . , N , the hypothesis:

rank([Υ:n, In:]) = N , (Hn)

where Υ:n denotes the first n columns of Υ, and In:

denotes the last N − n columns of IN . Clearly, H0 is
true. Now, suppose Hn−1 is true. Then the columns of
[Υ:n−1, In−1:] are all linearly independent. For column
n, this means that en /∈ col([Υ:n−1, In:]). By contrast,
from equation (39), en ∈ Sn. The existence of a point in
Sn \ col([Υ:n−1, In:]) means that

dim
(
Sn∩ col([Υ:n−1, In:])

)
< dim(Sn) . (40)

Since υn is absolutely continuous with sampling space
Sn, equation (40) means that the probability that υn ∈
col([Υ:n−1, In:]) is zero. This implies Hn a.s., establishing
the induction. Identifying the final hypothesis (HN ) with
rank(Υ) = N concludes the prooffor the EnKF.

A corollary of Theorem 2 and Lemma 1 is that the
ensemble subspace is also unchanged by the EnKF update.
Note that both the prior ensemble and the model (involved
through Y) are arbitrary in Theorem 2. However, Cδ is
assumed invertible. The result is therefore quite different
from the topic discussed by Kepert [2004]; Evensen [2004],
where rank deficiency arises due to a reduced-rank Cδ.

Conjecture 1. The rank of the ensemble is preserved by
the EnRML update (a.s.) and Wi is invertible.

We were not able to prove Conjecture 1, but it seems
a logical extension of Theorem 2, and is supported by
numerical trials. The following proofs utilize Conjecture 1,
without which some projections will not vanish. Yet, even
if Conjecture 1 should not hold (due to bugs, truncation,
or really bad luck), Algorithm 1 is still valid and optimal,
as discussed in sections 3.6.3 and 3.6.4.

A.2 The transform matrix

Theorem 3. (X+Xi)
+ = X+

i X.

Proof. Let T = X+Xi and S = X+
i X. The following

shows that S satisfies the four properties of the Moore-
Penrose characterization of the pseudo-inverse of T:

1. TST = (X+Xi)(X
+
i X)(X+Xi)

= X+ΠXi
ΠXXi [ΠA = AA+]

= X+ΠXi
Xi [Lemma 1]

= T . [ΠAA = A]

2. STS = S, as may be shown similarly to point 1.

3. TS = X+X, as may be shown similarly to point 1,
using Conjecture 1. The symmetry of TS follows
from that of X+X.

4. The symmetry of ST is shown as for point 3.

This proof was heavily inspired by appendix A of Sakov
et al. [2012]. However, our developments apply for EnRML
(rather than the deterministic, square-root IEnKS). This
means that Ti is not symmetric, which complicates the
proof in that the focus must be on X+Xi rather than
X+

i alone. Our result also shows the equivalence of
S+ and T in general, while the additional result of the
vanishing projection matrix in the case of N − 1 ≤ M is
treated as a corollary, shown in the following

✿✿✿✿✿✿✿✿✿

separately,
✿✿

in

✿✿✿✿✿✿✿✿✿✿✿✿

appendix A.3.

A.3 Proof of equation (34)

Lemma 2. Ωi is invertible (provided Wi is).

Proof. We show that Ωiu 6= 0 for any u 6= 0, where
Ωi = WiΠ

⊥
1

+ Π1. For u ∈ col(1): Ωiu = u. For
u ∈ col(1)⊥: Ωiu = Wiu 6= 0 (Conjecture 1).

Recall that equation (33) was obtained by inserting
Xi in the expression (30) for Ti. The following uses the
alternative of inserting

✿✿

By
✿✿✿✿✿✿✿✿✿

contrast,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

following
✿✿✿✿✿✿

inserts

X
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿

equation (35) in the expression (29) for T+
i .

11



By equation (35) and Lemma 2, X = XiΩ
−1
i and so

T+
i = ΠXT

i

Ω−1
i . We now re-introduce Π⊥

1
, which was

omitted for equation (19b), by prepending it to T+
i ; this

does not change its value. In summary, equation (29)
becomes: ,

✿✿✿✿✿✿✿✿

yielding
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

T+
i = X+

i X = XiXiΩ
−1
i = ΠXT

i

Ω−1
i = Π⊥

1
ΠXT

i

Ω−1
i ,

✿✿✿

and
✿✿✿✿✿✿

hence

Yi = [M(Ei)Π
⊥
1

]ΠXT

i

Ω−1
i ., (41)

Next, it is shown that, under certain conditions, the
projection matrix ΠXT

i

vanishes:

Yi = [M(Ei)Π
⊥
1

]Ω−1
i . (42)

Thereafter,
✿✿✿✿✿✿✿✿✿✿✿✿✿

equation (47)
✿

of
✿

appendix A.4 can be used to

write Ω−1
i in terms of (WiΠ

⊥
1

)+
✿

,
✿✿✿✿✿✿✿✿

reducing
✿✿✿✿✿✿✿✿✿✿✿✿✿

equation (42)

✿✿

to
✿✿✿✿

(34).

The case of N−1 ≤M

In the case of N−1 ≤M , the null space of X is the range
of 1 [with probability 1, Muirhead, 1982, Theorem 3.1.4].
By Lemma 2, the same applies for Xi, and so ΠXT

i

in

equation (41) reduces to Π⊥
1

. �

The case of linearity

Let M be the matrix of the observation model M, here
assumed linear: M(Ei) = MEi. By equation (41),
Yi = MEiΠXT

i

Ω−1
i . But EiΠXT

i

= Xi = EiΠ
⊥
1

. �

A.4 The pseudo-inverse version
✿✿✿✿✿✿✿✿

Inverse

✿✿✿✿✿✿✿✿✿✿✿✿✿

transforms

The results of this section do not depend on whether the
projection ΠX is included in Yi or not. Either way,

✿✿✿✿✿

Recall

✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿

equation (22)
✿✿✿✿

that Yi1 = 0, and so
✿

.
✿✿✿✿✿✿✿✿✿

Therefore
✿

Cw,i
−1±1

✿✿

1 = (N−1)∓1

✿✿✿✿✿✿✿✿

1=1 , (43)

where Cw,i is defined in equation (24), and the second
equality follows from the first

✿✿✿✿✿✿✿

identity
✿✿✿

for
✿✿✿✿

Cw,i
✿✿✿✿✿✿✿

follows
✿✿✿✿

from

✿✿✿✿

that
✿✿

of
✿✿✿✿✿

C
−1

w,i. Similarly, the following identities are valid

also when Wi and W−1
i are swapped.

WT

i 1 = 1 ; (44)

WiΠ
⊥
1

= Π⊥
1

WiΠ
⊥
1

; (45)

(WiΠ
⊥
1

)+ = W−1
i Π⊥

1
. (46)

Equation (44) is proven inductively (in i) using (43)
in ?? 10

✿✿

by
✿✿✿✿✿✿✿✿✿

inserting
✿✿✿✿✿

(43)
✿

in
✿✿✿✿

line
✿✿✿

10
✿

of Algorithm 1. It
enables showing (45), using Π⊥

1
= IN − Π1. This

enables showing (46), similarly to Theorem 3. These
identities can then

✿✿✿✿

Note
✿✿✿✿

that
✿✿✿✿

this
✿✿✿✿✿✿✿

implies
✿✿✿✿✿

that
✿✿✿✿✿✿✿✿

Yi1 = 0

✿✿✿

also
✿✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Yi =M(Ei) (WiΠ
⊥
1

)+,
✿✿✿✿✿

and
✿✿✿✿✿✿

hence
✿✿✿✿✿

that
✿✿✿✿

the

✿✿✿✿✿✿✿✿

identities
✿✿✿

of
✿✿✿✿

this
✿✿✿✿✿✿✿

section
✿✿✿✿

also
✿✿✿✿✿

hold
✿✿✿✿✿

with
✿✿✿✿✿

this
✿✿✿✿✿✿✿✿✿

definition.

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Equations (45) and (46)
✿✿✿

can
✿

be used to verify
✿✿✿✿

show
✿

(by
multiplying with Ωi) that

Ω−1
i = (WiΠ

⊥
1

)+ + Π1 . (47)

Substituting this formula for Ω−1
i into equation (42) then

reduces it to the pseudo-inverse version (34). As for
equation (19b), the projection Π⊥

1
can again be omitted.
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