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1 Abstract17

Statistical Data Assimilation (SDA) is the transfer of information from field or lab-18

oratory observations to a user selected model of the dynamical system producing19

those observations. The data is noisy and the model has errors; the informa-20

tion transfer addresses properties of the conditional probability distribution of the21

states of the model conditioned on the observations. The quantities of interest22

in SDA are the conditional expected values of functions of the model state, and23

these require the approximate evaluation of high dimensional integrals. We in-24

troduce a conditional probability distribution and use the Laplace method with25

annealing to identify the maxima of the conditional probability distribution. The26

annealing method slowly increases the precision term of the model as it enters the27

Laplace method. In this paper, we extend the idea of precision annealing (PA) to28

Monte Carlo calculations of conditional expected values using Metropolis-Hastings29

methods.30

2 Introduction31

We begin with a description of a framework within which we will discuss transfer32

of information from data to a model of the processes producing the data.33

Within an observation window in time, [t0 ≤ t ≤ tF ], we make a set of measure-34

ments at times t = {τ1, τ2, ..., τk, τF}; t0 ≤ τk ≤ tF . At each of these measurement35

times, we observe L quantities y(τk) = {y1(τk), y2(τk), ..., yL(τk)}. The number L36

of observations at each measurement time τk is typically less, often much less, than37

the number of degrees of freedom D in the model of the observed system; D � L.38

The quantitative characterization of the dynamical processes is through a39

model we choose. It describes the interactions among the states of the observed40

system. From the data {y(τk)} we want to estimate the unmeasured states of the41

model as a function of time as well as estimate any time independent physical42

parameters in the model. At the end of the observation window t = tF , we use the43

estimated values of all model states and parameters to predict the model response44

to new forcing of the system for t ≥ tF . The predictions are used to validate the45

model (or not) as well as the estimation procedure.46

The D-dimensional state of the model we call xa(t); a = 1, 2, ..., D ≥ L. These47

are selected by the user to describe the dynamical behavior of the observations48

through a set of differential equations in continuous time49

dxa(t)

dt
= Fa(x(t),p), . (1)

Equivalently, in discrete time tn = t0 + n∆t; n = 0, 1, ..., N ; tN = tF , the50
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dynamics is written as51

xa(tn+1) = fa(x(tn),p) or xa(n+ 1) = fa(x(n),p), (2)

where p is a set of parameters, fixed in time, associated with the model. f(x(n),p)52

is related to F(x(t),p) through the choice the user makes for solving the continuous53

time flow for x(t) through a numerical solution method of choice (Press et al. 2007).54

To make the discussion here a bit more compact, we will work henceforth55

in discrete time tn = t0 + n∆t; n = 0, 1, ..., N ; tN = tF , and we will choose the56

observation times τk to be multiples of ∆t as well: τk = t0+k[nτ ] ∆t; k = 1, 2, ..., F .57

As we proceed from the initiation of observations at t0, we must use our model58

equations to move the state variables x(t0) = x(0), Eq. (2), from t0 to τ1 = t0 +59

1[nτ ] ∆t where the first measurement is made. Then we use the model dynamics60

again to move along to τ2 = t0 +2[nτ ] ∆t, where the second measurement is made,61

and so forth until we reach the time of the last measurement t = τF = t0+F [nτ ] ∆t62

and finally move the model from x(τF ) to x(tF ).63

We collect the x(tn) for all n into the path of the state of the model through64

D-dimensional space: X = {x(0),x(1), ...,x(n), ...,x(N) = x(F )}. The dimension65

of the path is (N + 1)D + Np, where Np is the number of parameters p in our66

model. In X we do not explicitly show the fixed parameters p. This notation is67

illustrated in Fig. (1).68

We now have two of the three required ingredients to effect our transfer of the69

information in the collection of all measurements Y = {y(τ1),y(τ2), ...,y(τF )} to70

the model f(x(n),p) along the path X through the observation window [t0, tF ]:71

• (1) our noisy data Y and72

• (2) a model of the processes producing the Y. This model is devised by73

our experience and knowledge of those processes. The notation and a visual74

presentation of this is found in Fig. (1).75

The third ingredient is comprised of methods to generate the transfer from76

Y to properties of the model. This will command our attention throughout this77

paper.78

If the transfer methods are successful and, according to some metric of success,79

we arrange matters so that at the measurement times τk, the L model variables80

x(t) associated with y(τk) are such that xl(τk) ≈ yl(τk); l = 1, 2, ..., L, we are not81

finished. We have then only demonstrated that the model is consistent with the82

known data Y. We must further use the model, completed by the estimates of83

the p and the state of the model at tF , x(tF ), to predict forward for t > tF , and84

we should succeed in comparison with measurements for y(τr) for τr > tF . As the85

measure of success for predictions, we may use the same metric as utilized in the86
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Figure 1: A visual representation of the time window t0 ≤ t ≤ tF during which
L-dimensional observations y(τk) are performed at observation times t = τk; k =
1, , ..., F ; t0 ≤ τk ≤ tF . We also show times at which the D-dimensional model
developed by the user x(n+ 1) = f(x(n),p) is used to move forward from time n
to time n+ 1: tn = t0 + n∆t; n = 0, 1, ..., N ; tF = tN . D ≥ L.
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observation window. In the prediction window no further information from the87

observations is passed to the model.88

As a small aside, the same overall setup applies to supervised machine learning89

networks (Abarbanel, Rozdeba, and Shirman 2018) where the observation window90

is called the training set; the prediction window is called the test set, and prediction91

is called generalization.92

2.1 The Data are Noisy; the Model has Errors93

Inevitably, the data we collect is noisy, and with equal assurance the model we94

select to describe the production of those data has errors. This means we must,95

at the outset, address a conditional probability distribution P (X|Y) as our goal96

in the data assimilation transfer from Y to the model. In Abarbanel 2013, we97

describe how to use the Markov nature of the model dynamics x(n)→ x(n+ 1) =98

f(x(n),p) and the definition of conditional probabilities to derive the recursion99

relation connecting observations and dynamics at times tn+1 and tn:100

P (X(n+ 1)|Y(n+ 1)) =
P (y(n+ 1),x(n+ 1),X(n)|Y(n))

P (y(n+ 1)|Y(n))P (x(n+ 1),X(n+ 1)|Y(n))
•

P (x(n+ 1)|x(n))P (X(n)|Y(n))

= exp[CMI(y(n+ 1),x(n+ 1),X(n)|Y(n))] •

=
P (y(n+ 1)|x(n+ 1),X(n),Y(n))

P (y(n+ 1)|Y(n))
•

P (x(n+ 1)|x(n))P (X(n)|Y(n)), (3)

where we have identified CMI(a, b|c) = log[ (P (a,b|c)
P (a|c)P (a|c) ]. This is Shannon’s con-101

ditional mutual information (Fano 1961) telling us how many bits (for log2) we102

know about a when observing b conditioned on c. For us a = {y(n + 1)}, b =103

{x(n+ 1),X(n+ 1)}, c = {Y(n)}.104

Using this recursion relation to move backwards from the end of the observation105

window from tF = t0 +N∆t through the measurements at times τk to the start of106

the window at t0, we may write, up to factors independent of X107

P (X|Y) =

{ F∏

k=1

P (y(τk)|X(τk),Y(k − 1))
F−1∏

n=0

P (x(n+ 1)|x(n))

}
P (x(0)). (4)

If we now write P (X|Y) ∝ exp[−A(X)]. A(X), the negative of the log likelihood,108

we call the action. Conditional expected values for functions G(X) along the path109

X are defined by110

E[G(X)|Y] = 〈G(X)〉 =

∫
dXG(X)e−A(X)

∫
dX e−A(X)

, (5)
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dX =
∏N

n=0 d
Dx(n), and all factors in the action independent of X cancel out111

here. The action takes the convenient expression112

A(X) = −
F∑

k=1

{
log[P (y(τk)|X(τk),Y(k − 1))]−

N∑

n=0

log[P (x(n+ 1)|x(n))]

}

− log[P (x(0))], (6)

which is the sum of the terms which modify the conditional probability distribution113

when an observation is made at t = τk and the sum of the stochastic version of114

x(n) → x(n + 1) − f(x(n),p) and finally the distribution when the observation115

window opens at t0.116

What quantities G(X) are of interest? One natural one is the path of model117

states and parameters G(X) = Xµ;µ = {a, n}; a = 1, 2, ..., D;n = 0, 1, 2, ...N118

itself; another is the covariance around that mean 〈Xµ〉 = X̄µ : 〈(Xµ − X̄µ)(Xν −119

X̄ν)〉. Other moments are of interest, of course. If one has an anticipated form for120

the distribution at large X, then G(X) may be chosen as a parametrized version121

of that form and those parameters determined near the maximum of P (X|Y).122

The action simplifies to what we call the ‘standard model’ of data assimilation123

when (1) observations y are related to their model counterparts via Gaussian124

noise with zero mean and diagonal precision matrix Rm, and (2) model errors are125

associated with Gaussian errors of mean zero and diagonal precision matrix Rf :126

A(X) =
F∑

k=1

L∑

l=1

Rm

2
(xl(τk)−yl(τk))2+

N−1∑

n=0

D∑

a=1

Rf (a)

2
(xa(n+1)−fa(x(n),p))2. (7)

If we have knowledge of the distribution P (x(0)) at t0 we may add it to this action,127

Eq. (6). If we have no knowledge of P (x(0)), we may take its distribution to be128

uniform over the dynamic range of the model variables, then it, as here, is absent,129

canceling numerator and denominator in Eq. (5).130

2.2 The Goal of SDA131

Our challenge is to perform integrals such as Eq. (5). One should anticipate132

that the dominant contribution to the expected value comes from the maxima of133

P (X|Y) or, equivalently the minima of A(X).134

We note, as before, that when f(x(n),p) is nonlinear in X, as it always is in135

interesting examples, the expected value integral Eq. (5) is not Gaussian. So,136

some thinking is in order before approximating this high dimensional integral. We137

turn to that now. After consideration of methods to do the integral, we will return138

to an example taken from an instructional model often used in the geosciences.139
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Two generally useful methods available for evaluating this kind of high-dimensional140

integral are Laplace’s method (Laplace 1774; Laplace 1986) and Monte Carlo tech-141

niques (Press et al. 2007; Kostuk et al. 2012; Neal 2011). The Laplace methods,142

including the idea of precision annealing for the model error term are discussed in143

Quinn 2010; Ye 2016; Ye, Rey, et al. 2015; Ye, Kadakia, et al. 2015.144

The drawbacks of using Laplace methods, including precision annealing meth-145

ods, include the need for evaluating very high dimensional derivatives of A(X)146

with respect to X and using them in the nonlinear optimization algorithms se-147

lected. Further, when successful in identifying the path yielding the smallest value148

of A(X), thus the potentially dominant contribution to Eq. (5), we do not sample149

the desired conditional probability distribution away from its maximum. Evalu-150

ating corrections to the leading Laplace contributions is familiar as perturbation151

theory in statistical physics. The convergence of such perturbation methods can152

depend sensitively on the functional form of the action in X.153

We now turn to extending the annealing techniques that explore the variation154

of 〈G(X)〉 in the magnitude of the precision matrix Rf for the model error from155

Laplace’s method to Monte Carlo methods for approximating the path integral for156

〈G(X)〉.157

3 Precision Annealing Monte Carlo Methods158

Monte Carlo methods for the approximate evaluation of quantities such as 〈G(X)〉159

via Eq. (5) have been intensively explored and utilized for decades (Metropolis160

et al. 1953; Hastings 1970; Neal 2011).161

Standard MC calculations, following many years of developments from Metropo-162

lis et al. 1953; Hastings 1970, seek to estimate the conditional probability distribu-163

tion P (X|Y) by starting somewhere in path space X[init], making moves in path164

space from this initial path and accepting and rejecting proposed moves according165

to a criterion based on detailed balance.166

The folklore about these calculations is that one can begin more-or-less any-167

where in path space and after a large enough number of steps leading to rejected168

paths and accepted paths proceeding from X[init], one will arrive at a good ex-169

pected value in Eq. (5). Indeed the error is order the inverse square root of170

the number of accepted paths with the numerator essentially the variance in the171

function G(X) whose expected value one wishes to estimate.172

In practice, if one can choose X[init] ‘close’ to the maximum of P (X|Y) the173

more efficient the procedure is expected to be; namely high accuracy may be174

achieved with fewer steps. Of course, if we knew where the maximum of P (X|Y)175

were located (Shirman 2018), we’d start there and sample, through proposals for176

acceptable paths, a sufficient neighborhood of that minimum action path to arrive177
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at a good estimation of 〈G(X)〉. It is not hard to see that as we do not know178

the global minimum of the action, there is a lot of room for algorithms that make179

good proposals for new acceptable paths and clever choices for X[init].180

Our idea in this paper is to follow the suggestions of Quinn 2010; Ye 2016; Ye,181

Rey, et al. 2015; Ye, Kadakia, et al. 2015 about how we can ‘anneal’ the precision182

of the model error term of the action starting with Rf = 0, at which the global183

minimum of the standard model action is clear. From there, we slowly increase Rf184

until it is very large and imposes the underlying dynamical model more and more185

precisely. This method was developed in the context of Laplace approximations186

to the expected value integrals (Quinn 2010; Ye 2016; Ye, Rey, et al. 2015; Ye,187

Kadakia, et al. 2015) and has been extensively tested in several areas of application188

of SDA.189

3.1 Rf = 0; Choosing Initial Paths Xq[init]; q = 1, 2, ..., NI190

for the PAMC Procedure191

Our strategy in this paper is to vary the ‘hyperparameter’ Rf that sets the scale192

for the precision of the model error term in Eq. (7). When Rf →∞ the model is193

very precise and deterministic.194

In our precision annealing strategy, we start at the other end of the scale where195

Rf = 0. At this value the model error term is absent, and the ‘standard’ model196

action is quadratic in the measured variables xl(n). At Rf = 0 the action is a197

minimum when we select xl(τk = t0 +k[nτ ]∆t) = yl(τk); l = 1, 2, ..., L. This is the198

global minimum of the action at Rf = 0, and it is quite degenerate as the action199

does not depend on the unmeasured model state variables or the parameters in200

the model.201

The path of the model state (not showing the Np fixed parameters p) is com-202

prised of203

X = {x1(0), x2(0), ..., xD(0), x1(1), x2(1), ..., xD(1), . . . x1(N), x2(N), ..., xD(N)}.
(8)

In our NI initial paths for the Monte Carlo search, Xq[init], we always choose204

xl(τk = t0 + [nτk]∆t) = yl(τk); l = 1, 2, ..., L, and we wish to select the other205

components of X[init] in a manner that is ‘close’ to a minimum action path. We206

select q = 1, 2, ..., NI initial paths Xq[init] so we will be tracking an ensemble of207

paths using various Monte Carlo protocols.208

To complete our choice of initial paths, we now split the state variables xa(n)209

into those observed a = 1, 2, ..., L and those unobserved a > L. The latter we210

call the ‘rest’ and write them as xR(n); R = L + 1, L + 2, ..., D. The dynamical211

equations (in discrete time) can now be written212

xl(n+ 1) = fl(xl(n), xR(n)) xR(n+ 1) = fR(xl(n), xR(n)). (9)
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Starting with any initial condition {xql (0), xqR(0)} we generate solutions to these213

dynamical equations by using Eq. (9) . We proceed by choosing q = 1, 2, ..., NI214

initial conditions {xql (0), xqR(0)} from a uniform distribution over the ranges of215

{xl(0), xR(0)} which we can infer from the data and from forward integration216

of the model. Using the NI {xql (0), xqR(0)} we generate NI paths. However, we217

substitute for xl(t0 + k[nτ ]), whenever it occurs in the equations Eq. (9), the218

observed value yl(τk = t0 + k[nτ ]∆t) = xl(t0 + k[nτ ]).219

This generates q = 1, 2, ..., NI initial paths Xq[init], one from each selection220

of {xql (0), xqR(0)}, everyone of which has zero standard action. Each of these221

paths corresponds to an initial action at the global minimum for Rf = 0, namely222

A(Xq[init]) = 0.223

3.2 Precision Annealing Procedure224

We next move from Rf = 0 → Rf0 > 0 and using the NI Xq[init] paths, perform225

an MCMC procedure.226

Our first procedure is to use a fixed number of iterations of Metropolis-Hastings227

(M-H) proposals/acceptance steps comprised of a fixed number of “burn-in” steps228

followed by a fixed number of iteration steps. The M-H step size is changed as we229

go along to assure a good acceptance rate.230

At the termination of the M-H steps, we will have j = 1, 2, ..., NA(q, 0) accepted231

paths Xq
j [init] for each of the q = 1, 2, ..., NI initial paths. We use these NA(q, 0)232

accepted paths to estimate NI expected paths X̄
q
[0] using233

X̄
q
[0] =

1

NA(q, 0)

NA(q,0)∑

j=1

Xq
j [init]. (10)

These NI paths, X̄
q
[0], evaluated at Rf = Rf0α

0 are set aside and retained for use234

as initial paths for the next step in the PA procedure. This completes the first235

step of the PAMC process; Rf = Rf0α
0 at this step.236

The PA strategy is exposed now: at Rf = 0 choose a dynamically selected set237

of NI initial paths Xq[init]. All these paths have zero action. Then raise the value238

of Rf to a small positive number Rf → Rf0 > 0, thus introducing the model error239

into the action, but keeping Rf quite small, and at this value of Rf use the NI240

paths Xq[init] in the selected M-H procedure resulting in a set of paths ‘near’ the241

Xq[init] as Rf is small. The resulting NI paths at this small value of Rf are then242

used as initial paths when we raise Rf → Rf0α. This sequential use of accepted243

paths from the previous value of Rf comprises the precision annealing approach.244

Now we describe this in a bit more detail.245

As the second step in PAMC we move Rf from Rf0 → Rf0α
1 with α > 1. At246

this increased value of Rf we use the same MCMC procedure but now starting at247
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the X̄
q
[0] as NI initial paths. This results in j = 1, 2, ..., NA(q, 1) accepted paths248

X̄
q
j [0]for each q. Again we form NI expected paths using249

X̄
q
[1] =

1

NA(q, 1)

NA(q,1)∑

j=1

X̄
q
j [0]. (11)

This completes the second step of the PAMC process; Rf = Rf0α
1 at this step.250

Next we move Rf from Rf0α
1 → Rf0α

2 with α > 1. At this increased value of251

Rf we use the same MCMC procedure but now starting at the X̄
q
[1] as NI initial252

paths. This results in j = 1, 2, ..., NA(q, 2) accepted paths X̄
q
j [1] for each q. Again253

we form NI expected paths254

X̄
q
[2] =

1

NA(q, 2)

NA(q,2)∑

j=1

X̄
q
j [1]. (12)

This completes the third step of the PAMC process; Rf = Rf0α
2 at this step.255

Continue on in this manner increasing the value of Rf from Rf = Rf0α
β−1 to256

Rf = Rf0α
β. At this new value of Rf we use the same MCMC procedure but now257

starting at the X̄
q
[β − 1] as NI initial paths. This results in j = 1, 2, ..., NA(q, β)258

accepted paths X̄
q
j [β] for each q. Form the NI expected paths259

X̄
q
[β] =

1

NA(q, β)

NA(q,β)∑

j=1

X̄
q
j [β − 1]. (13)

This completes the βth step of the PAMC process; Rf = Rf0α
β at this step.260

This ‘stepping in β’ continues until β is ’large enough’; we will discuss a criterion261

for that shortly. At this value of ‘large enough’ β, we will have performed the262

MCMC procedure one last time (at Rf = Rf0α
β) to collect, for each q, NA(q, β)263

accepted paths X̄[β]j; j = 1, 2, ..., NA(q, β).264

Finally, we estimate 〈G(X)〉 as the average (expected value) over the NI paths265

reached at Rf = Rf0α
β

266

〈G(X)〉 =
1

NI

NI∑

q=1

G(X̄q[β]), (14)

and this completes our PA Monte Carlo procedure. Note that at each increment267

of β we use as initial paths the NI expected paths from the previous β.268

We evaluate the action on each of the NI paths at each value of Rf and plot269

A(Xq) versus log[Rf/Rf0]. In such an ‘action level’ plot, as the precision of the270
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model is increased, if the model is consistent with the data and the number of271

observed measurements, L, at each τk is large enough, the action level plot values272

will become independent of Rf and one will stand out as lower than the rest. The273

path corresponding to that lowest action level will dominate the expected value274

integral of interest.275

We will see this happen in the example discussed in the next section. It also276

happens in the Laplace approximation to finding the largest values of P (X|Y)277

(Quinn 2010; Ye 2016; Ye, Rey, et al. 2015; Ye, Kadakia, et al. 2015). The interpre-278

tation of this transition is that the number of directions in model state space that279

are explored by the L, independent measurements at each τk, yl(τk); l = 1, 2, ..., L280

reveal, and through the estimation procedure (PAMC), ‘cure’ the intrinsic local281

unstable directions in the nonlinear model x(n + 1) = f(x(n),p). This happens282

with higher precision as Rf becomes larger and larger.283

4 Example of PAMC Calculations284

We explore the instructional model from Lorenz 2006, widely used in numerical285

weather prediction analyses, as a test bed for methods of data assimilation. This286

model has a D-dimensional state variable x(t) = {x1(t), x2(t), ..., xD(t)} satisfying287

dxa(t)

dt
= xa−1(t)[xa+1 − xa−2(t)]− xa(t) + ν a = 1, 2, ..., D, (15)

in which x−1(t) = xD−1(t), x0(t) = xD(t), and x1(t) = xD+1(t). ν is a constant288

forcing term; the solutions of these equations for D ≥ 4 are chaotic when ν ≈ 8.0 or289

more. We will report on calculations with D = 5 and with D = 20 with ν = 8.17.290

Our numerical calculations are ‘twin experiments’ in which for a selected D we291

choose x(t0) = x(0) and using a time step ∆t = 0.025 generate solutions x(t) over292

an observation window [t0, tF ] : t0 ≤ t ≤ t0 + N∆t = tF . To each xa(t) we add293

Gaussian noise with mean zero and variance σ2, these now comprise our library294

of ‘observed data;’ ya(t) = xa(t) + σN(0, 1). We then select L ≤ D of these noisy295

data, and form the action296

A(X) =
N∑

n=0

L∑

l=1

Rm(n)

2
(yl(n)− xl(n))2 +

Rf

2

N−1∑

n=0

D∑

a=1

[xa(n+ 1)− fa(x(n))]2, (16)

and Rm(n) is nonzero only when there is a measurement at tn, and at each of these297

times L quantities are observed. The first term on the right in Eq. (16) is the298

measurement error, and the second, the model error.299

Our calculations were performed with the choices: D = 20, α = 1.4, Rf0 = 1.0,300

Rm = 1.0, NI = 50, ∆t = 0.025, and various choices of L from 5 to 12.301
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In Fig. (2) we display the action levels as a function of β at L = 5. We302

can see that PAMC identifies many action levels, corresponding to many peaks in303

the conditional probability distribution P (X|Y) ∝ exp[−A(X)], Eq. (16). From304

β ≈ 30 we see one level moving away from the collection of larger action levels305

as β increases. However, no action level has become essentially independent of306

Rf suggesting that the accuracy with which the model is enforced remains too307

small. We expect that as the number of measurements at each τk is increased308

more information about the phase space instabilities will be passed from the data309

to the model and that the structure of the action level plot will change.310

In Fig. (3) we now display the action levels and its components, the measure-311

ment errors and the model errors, when L = 12. Here the behavior of the action312

levels is quite different. The model error decreases over a large range of Rf until313

the numerical stability of the evaluation of this term is reduced as small errors in314

x(n+ 1)− f(x(n),p) are magnified by large values of Rf . As this result appears,315

the action for each of the NI paths at each β levels off, becoming essentially inde-316

pendent of Rf , and matches the measurement error, as it must do for consistency317

(Quinn 2010; Ye 2016; Ye, Rey, et al. 2015; Ye, Kadakia, et al. 2015).318

The PAMC procedure, as does the Laplace approximation version of precision319

annealing (Quinn 2010; Ye 2016; Ye, Rey, et al. 2015; Ye, Kadakia, et al. 2015),320

permits the estimation of the parameter ν at each value of β. In Fig. (4) we display321

all NI = 50 estimated values of ν at each value of β. As PAMC is an ensemble322

method sampling in the neighborhood of a peak (or peaks) of the conditional323

probability distribution, we do not arrive at a single value for ν. Taking the NI324

values of ν(β) and evaluating the means and standard deviation at each β, we show325

the result in Fig. (5) in which it is clear that the estimated value of ν becomes326

essentially independent of β for β ≈ 40 and larger.327

Until this point we have examined outcomes of the PAMC estimation pro-328

cedure. All of the state variables, measured and unmeasured, as well as the329

forcing parameter were reported over the observation window [0 ≤ t ≤ 5.0]. In a330

‘twin experiment’ as here, we have generated the data by solving a known dynam-331

ical equation and adding noise to the output of the D = 20 times series with a332

known value of ν. The point of a twin experiment is to test the method of transfer333

of information in SDA. As we have D− L unobserved state variables at each L,334

and an unobserved parameter ν, the only tool to determine how well the estima-335

tion procedure has done in its task is to predict for t > 5 into a prediction window336

where no information from observations is passed back from the model. We now337

examine how well the estimation has been performed by predicting both an ob-338

served and an unobserved time series among the D available. We already see from339

Fig. (5) that the input value of ν = 8.17 has accurately been estimated; the ap-340

parent bias in this parameter estimation has also been seen in earlier Monte Carlo341
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Figure 2: The values of the actions Eq. (16) for the D = 20 dimensional Lorenz96
model when L = 5 of the dynamical variables x(t) are observed. The actions are
evaluated as a function of β = logα[Rf/Rf0] where α = 1.4 and Rf0 = 1.0. We
perform the Precision Annealing Monte Carlo (PAMC) calculation starting with
NI initial paths at each Rf . We used NI = 50 in these calculations. Displayed
here are NI action values at each Rf (or β). These actions are evaluated along the
expected path resulting from the accepted paths generated during the Metropolis-
Hastings procedures from each of the NI initial paths.
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Figure 3: The values of the actions Eq. (16), the measurement error, and
the model error for the D = 20 dimensional Lorenz96 model when L =
12 of the dynamical variables x(t) are observed; the observed variables are
[x1(t), x2(t), x4(t), x6(t), x7(t), x9(t), x11(t), x12(t), x14(t), x16(t), x17(t), x19(t)]. The
actions, the measurement error, and the model error are evaluated as a function
of β = logα[Rf/Rf0] where α = 1.4 and Rf0 = 1.0. We perform the Precision
Annealing Monte Carlo (PAMC) calculation starting with NI initial paths at each
Rf . We used NI = 50 in these calculations; on display here are NI action, mea-
surement error, and model error values at each Rf (or β). These are evaluated
along the expected path resulting from the accepted paths generated during the
Metropolis-Hastings procedures from each of the NI initial paths. In this case,
when L = 12, the model error becomes much smaller than the measurement error
as β is increased. This leads the action to become effectively equal to the action
itself and essentially independent of Rf . We have seen this before in the precision
annealing variational principle calculations (Quinn 2010; Ye 2016; Ye, Rey, et al.
2015; Ye, Kadakia, et al. 2015).
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Figure 4: The values of the Lorenz96 model forcing parameter ν at each value of
β for each of the NI paths associated with the NI Metropolis-Hastings procedures
from each of the NI initial paths.
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Figure 5: The estimated parameter in the Lorenz96, D = 20 data when L = 12.
The mean and standard deviation of ν at each β is shown.
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twin experiment Kostuk et al. 2012; Kostuk 2012, and its origins are discussed342

there.343

Fig. (6) shows the observed model variable x2(t) for the Lorenz96 model344

with D = 20, L = 12 and ∆t = 0.025. The noisy data from solutions of the345

model equations from the ‘observed’ variables [1, 2, 4, 6, 7, 9, 11, 12, 14, 16, 17, 19].346

The estimation of x2(t) during the observation window using PAMC to transfer347

information from the data to the model is shown in red, and the prediction using all348

the estimated states of the model, x(t = 5), and the estimated model parameter,349

is shown in green x(t ≥ 5). Our knowledge of this dynamical system (Kostuk350

2012) indicates that the largest global Lyapunov exponent is approximately 1.2 in351

the time units indicated by ∆t. The deviation of the predicted trajectory x2(t)352

from t ≈ 6.0 is consistent with the accuracy of the estimated state x(t) and this353

Lyapunov exponent.354

Fig. (7) shows the unobserved model variable x20(t) for the Lorenz96 model355

with D = 20, L = 12 and ∆t = 0.025. The noisy data from solutions of the356

model equations from the ‘observed’ variables [1, 2, 4, 6, 7, 9, 11, 12, 14, 16, 17, 19].357

The estimation of x20(t) during the observation window using PAMC to transfer358

information from the data to the model is shown in red, and the prediction using all359

the estimated states of the model, x(t = 5), and the estimated model parameter,360

is shown in blue x(t ≥ 5). Our knowledge of this dynamical system (Kostuk361

2012) indicates that the largest global Lyapunov exponent is approximately 1.2 in362

the time units indicated by ∆t. The deviation of the predicted trajectory x20(t)363

from t ≈ 6.4 is consistent with the accuracy of the estimated state x(t) and this364

Lyapunov exponent.365

5 Discussion and Summary366

In statistical data assimilation, one transfers information from a set of noisy data Y367

to models of the observations. The models have errors and the probability P (X|Y)368

of the model states, conditioned on the data, plays a central role. From this369

conditional probability distribution, we want to approximate conditional expected370

values of functions G(X) on the model state371

E[G(X)|Y] =

∫
dXP (X|Y)G(X) =

∫
dX exp[−A(X)]G(X)∫
dX exp[−A(X)]

, (17)

where A(X) ∝ − log[P (X|Y)] is the ‘action’ associated with the information372

transfer process during an observation window in time, when the information trans-373

fer occurs. Observations of the dynamical system underlying the measurements374

may be sparse; the number of measurements one is able to accomplish at any mo-375

ment in time is typically small compared to the degrees of freedom in the model.376
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Figure 6: We display the observed dynamical variable x2(t) for the time interval
0 ≤ t ≤ 10.0. In black is the full set of data. In red is the estimated x2(t) over
the observation window 0 ≤ t ≤ 5.0, and in green is the predicted x2(t) over the
prediction window 5.0 < t ≤ 10.0. The prediction uses the values of x(t = 5.0)
for the full estimated state at the end of the observation window as well as the
parameter ν estimated in the PAMC procedure. This calculation uses the Lorenz96
model with D = 20 and L = 12. ∆t = 0.025.
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Figure 7: We display the unobserved dynamical variable x20(t) for the time
interval 0 ≤ t ≤ 10.0. In black is the full set of data. In red is the estimated
x20(t) over the observation window 0 ≤ t ≤ 5.0, and in blue is the predicted x20(t)
over the prediction window 5.0 < t ≤ 10.0. The prediction uses the values of
x(t = 5.0) for the full estimated state at the end of the observation window as well
as the parameter ν estimated in the PAMC procedure. This calculation uses the
Lorenz96 model with D = 20 and L = 12. ∆t = 0.025.
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However, one requires some approximate knowledge of the full state of the model377

at the final time-point of the observation window. This means one must estimate378

the unmeasured model state variables as well as any unknown time independent379

model parameters, then validate the model with predictions for times after the380

observation window.381

In this paper we have addressed approximating such integrals using a precision382

annealing Monte Carlo method. In the context of a model x(tn+1) = f(x(tn),p)383

and observations yl(τk) at times t0 ≤ τk ≤ tF (with tF = t0 + N∆t), the action384

reflects Gaussian errors of the measurements and of the nonlinear model, given by385

A(X) =
N∑

n=0

L∑

l=1

Rm(n)

2
(yl(n)− xl(n))2 +

Rf

2

N−1∑

n=0

D∑

a=1

[xa(n+ 1)− fa(x(n))]2, (18)

where Rm(n) is nonzero only when there is a measurement at tn. The precision of386

the model error is Rf and the annealing procedure is initiated at Rf very small,387

then continued to a very large Rf . The core idea is that when Rf is small, the388

global minimum of A(X) is easily identifiable where xl(τk) ≈ yl(τk). Increasing Rf389

slowly allows one to track the global minimum as the nonlinearity in the action390

plays a more and more significant role.391

The details of this PAMC procedure, implemented by a Metropolis-Hastings392

Monte Carlo method at each Rf , are given as a general outline. We then present393

results in detail for an instructional model - the Lorenz 1996 equations (Lorenz394

2006), widely used to explore geophysical SDA methods.395

In addition to the PAMC method, we introduce an initialization method for396

selecting a starting point in path space X. From this starting point, we begin397

to make proposals and accept new samples in order to evaluate the conditional398

probability distribution.399

Our PAMC methods are clearly not restricted to the specific example we used400

to demonstrate its operation, nor is the use of a Metropolis-Hastings procedure401

required in its implementation. We will follow this paper with one describing the402

use of a Hamiltonian Monte Carlo (HMC) procedure (Duane et al. 1987; Neal403

2011; Betancourt 2018).404

How is one to choose between the use of a precision annealing method for405

the Laplace approximation to expected value integrals and Monte Carlo methods406

(Metropolis-Hastings or HMC)? The key difference among the methods is that407

the Metropolis-Hastings Monte-Carlo does not require carrying along Jacobians or408

Hessians of the action A(X) and samples the conditional probability distribution409

with paths X in model state space. The Laplace method requires solving for zeros410

of the Jacobian ∂A(X)/∂X and results in a single path in model state space at the411

overall minimum of the action. The HMC method is a hybrid of these in which412

requires a symplectic integrator of the ‘Hamiltonian’ H(P,X) = P2/2M + A(X)413
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and uses ∂A(X)/∂X to move about in ‘canonical’ {P,X} space. Neither Monte414

Carlo method requires evaluating or storing higher derivatives of the action, and415

each samples the conditional probability distribution in path space, while the416

Laplace method does not. At this early stage of development of these methods,417

we do not have a firm recommendation as to which one to select in general. From418

the calculations on a high dimensional Lorenz96 model, it appears that on this419

test model, all approaches yield excellent results when enough measurements are420

made at each measurement time in an observation window.421

6 Code Availability422

All of the code needed to reproduce our results are available here.423
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