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Abstract.

The importance of chaotic advection relative to turbulent diffusion is investigated in an idealized

model of a 3D swirling and overturning ocean eddy. Various measures of stirring and mixing are

examined in order to determine when and where chaotic advection is relevant. Turbulent diffusion

is alternatively represented by: 1) an explicit, observation–based, scale–dependent diffusivity, 2)5

stochastic noise, added to a deterministic velocity field, or 3) explicit and implicit diffusion in a

spectral numerical model of Navier–Stokes equations. Lagrangian chaos in our model occurs only

within distinct regions of the eddy, including a large chaotic ‘sea’ that fills much of the volume

near the perimeter and central axis of the eddy, and much smaller ‘resonant’ bands. The size and

distribution of these regions depends on factors such as the degree of axial asymmetry of the eddy10

and the Ekman number. The relative importance of chaotic advection and turbulent diffusion within

the chaotic regions is quantified using three measures: the Lagrangian Batchelor scale, the rate of

dispersal of closely spaced fluid parcels, and the Nakamura effective diffusivity. The role of chaotic

advection in the stirring of a passive tracer is generally found to be most important within the larger

chaotic ‘seas’, at intermediate times, with small diffusivities, and for eddies with strong asymmetry.15

In contrast, in thin chaotic regions, turbulent diffusion at oceanographically relevant rates is at least

as important as chaotic advection. Future work should address anisotropic and spatially–varying

representations of turbulent diffusion for more realistic models.
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1 Introduction

Chaotic advection (Aref (1984); Shepherd et al. (2000)) is a process by which rapid stirring, as20

manifested by the stretching and folding of material, is produced within a smooth and well orga-

nized Eulerian velocity field. The enhancement of stirring can be attributed to chaotic fluid parcel

trajectories and their rapid separation from nearby trajectories. There are many examples, ranging

from simple models of purely laminar flow (e.g. Rom-Kedar et al. (1990); Samelson (1992); Pierre-

humbert (1994); Malhotra et al. (1998); Poje and Haller (1999); Coulliette and Wiggins (2001) and25

other work reviewed in the texts of Ottino (1990); Samelson and Wiggins (2006)), to modeled or

observed, oceanographically or atmospherically relevant flows (e.g. Rogerson et al. (1999); Miller

et al. (2002); Deese et al. (2002); Olascoaga and Haller (2012); Sayol et al. (2013); Rypina et al.

(2007, 2009, 2011a, 2012)). In most cases the flow fields are two–dimensional and time–dependent,

and when observed, often occur at the sea surface or within the stratosphere (Polvani et al. (1995);30

Ngan and Shepherd (1997)). Three dimensional examples also exist (e.g. Fountain et al. (2000);

Rypina et al. (2015); Solomon and Mezić (2003); Yuan et al. (2004); Branicki and Kirwan Jr (2010),

and Pratt et al. (2014), hereafter P2014) and often involve numerically modeled velocity fields, due

to the limitations of observational methods.

A feature that is intriguing and quite common in these studies is that Lagrangian chaos is confined35

to certain sub–regions of the flow field, separated from each other by bands of material curves or

surfaces that contain no chaotic Lagrangian motion. The chaotic regions are rapidly stirred as a result

of the signature rapid separation of nearby trajectories, but the non–chaotic bands act as barriers that

confine the stirring. In textbook examples, including area–preserving maps of time–periodic 2D or

steady 3D velocity fields, the chaotic and non–chaotic regions form a fractal geometry, with bounded40

chaotic regions imbedded in larger chaotic seas, themselves bounded and imbedded in even larger

chaotic regions (Chirikov (1971, 1979); Casati and Ford (1979); Gromeka (1881); Dombre et al.

(1986)). In finite–time systems or systems with arbitrary time dependence, the distinction between

chaotic and regular trajectories is difficult to define. A great deal of recent work in the field has

resulted in the development of methods for identifying material barriers based on the notion of La-45

grangian coherence. These methods include, for instance, finding sets of trajectories that experience

fastest separation rates from their close neighbors, identifying contours that undergo minimal stretch-

ing, locating sets of trajectories that remain compact in some sense and/or share a common property,

or identifying trajectories that encounter the largest number of other trajectories (see Haller (2002);

Shadden et al. (2005); Froyland et al. (2007, 2012); Rypina and Pratt (2017); Rypina et al. (2018);50

Hadjighasem et al. (2017); Rypina et al. (2011b); Haller and Beron-Vera (2012, 2013) as well as

the review by Haller (2015) and references contained therein). Applications of these methods often

result in the identification of material contours and surfaces that act as barriers over finite time, thus

allowing for partitioning between strongly and weakly stirred regions of the flow field.
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Completely impenetrable material barriers only exist because of the deterministic nature of the55

trajectories. Even a low level of background turbulence at small scales, if represented as a diffusive

process, would cause the barriers to become permeable or fuzzy over sufficiently long periods of

time, and perhaps nonexistent in any practical sense if the time scale of interest is long enough. The

relevance of chaotic advection for the stirring of material within geophysical flows would appear to

rest on several criteria. The first is that the flow field contain persistent, long–lived (on the time–scale60

of interest) features such as gyres, eddies and jets, that by themselves generate regions of elevated

stirring as well as separating barriers. Secondly, the stirring within these regions should be at least

as important as that due to smaller scale, intermittent features (i.e. small scale turbulence). Third,

the barriers that exist in the absence of small–scale turbulence should retain meaning as suppressors

of exchange between the rapidly–stirred regions in the presence of the small–scale turbulence. For65

the flow considered in this paper the first aspect has been investigated and shown to be true (P2014;

Rypina et al. (2015)); this work concentrates on investigating the second and third aspects.

The terms “important" and “relevant" are somewhat subjective, and a particular aspect, such as

the existence of barriers, that is of interest for one scientific question may not be so for another. We

examine several measures of stirring and mixing in a particular case of a three–dimensional flow70

field: an idealized representation of an isolated eddy with horizontal swirl and vertical overturning.

This idealized eddy is most likely to be similar to a submesoscale eddy within a surface mixed layer

of the ocean, although the velocities of such eddies have not been well observed. The effects of

stirring and mixing at these smaller scales, where vertical velocities become important, is increas-

ingly under study (e.g. Mahadevan (2016)). Generally, increased resolution improves ocean model75

behavior (Griffies et al. (2015)), so at lower resolutions, an ongoing challenge is parameterizing

sub–grid–scale processes (e.g. Hallberg (2013)).

Our three–dimensional flow contains Ekman layers at the top and bottom of a cylindrical domain

and their thickness relative to the full depth is measured by an Ekman number. The Lagrangian struc-

ture of the steady as well as time–periodic, deterministic versions of this flow has previously been80

explored (P2014; Fountain et al. (2000); Rypina et al. (2015)). This deterministic flow field can be

approximated by an analytically described velocity field (Sect. 2), favorable for the efficient calcula-

tion of large numbers of trajectories. In this paper, we will add a stochastic disturbance representing

small–scale turbulent diffusion to the deterministic flow. In addition, some of our calculations are

done using velocity fields from a direct numerical integration of the Navier–Stokes equations (used85

in Sect. 5).

In order to examine the relevance and importance of stirring and mixing due to large–scale La-

grangian chaos compared to that due to small–scale turbulent diffusion, we use several distinct mea-

sures applied to our isolated eddy model. The first measure is a Lagrangian version of the Batchelor

scale (Sect. 3), a measure of the smallest tracer filament width that can be produced by chaotic ad-90

vection before small–scale turbulent diffusion arrests the progression to smaller scales. The second
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measure (Sect. 4) involves the dispersion of ensembles of initially closely spaced trajectories. The

final measure (Sect. 5) is a bulk or “effective" diffusivity (Nakamura (1996)) that indicates the rate

of irreversible mixing between volumes with different tracer concentrations. The analyses in Sec-

tions 3–4 are based on a “kinematic” analytical model with and without stochastic perturbation; the95

analysis in Sect. 5 is based on a “dynamical” numerical solution of the Navier–Stokes equations.

2 Models

We will consider the steady flow of a homogeneous and incompressible fluid in a rotating cylinder

of depth H, driven at the top by the stress due to a differentially rotating lid. The resulting circulation

has Ekman layers at the top and bottom, and thus a central parameter is the Ekman number100

E =
(
ν/ΩH2

)
= (δE/H)

2
, (1)

where ν is the kinematic viscosity, Ω is the angular rate of rotation of the cylinder, and δE is the

thickness of the Ekman layers. Much oceanographic literature has been devoted to the case in which

the differential lid rotation δΩ is small (δΩ/Ω)� 1), and the Ekman layers are relatively thin,

E� 1. In this case a linear, asymptotic solution is available (Greenspan (1968) and Appendix A105

of P2014). According to this solution (with δΩ> 0) , fluid is drawn up into the top Ekman layer

from an inviscid and vertically rigid interior region that rotates at half the angular velocity of the

lid. The fluid is carried radially outward and then downward within thin, viscous side–wall layers.

When it reaches the bottom, the fluid flows radially inward in a bottom Ekman layer and expelled

upward into the interior region. Fluid trajectories thus spiral upwards in the interior, outwards in the110

top Ekman layer, downwards near the side walls, and inward in the bottom Ekman layer; Fig. 1 is a

diagram of this flow (see also Fig. 1 of P2014).

Although the set–up described above and its linear asymptotic treatment have provided a foun-

dation for a wide variety of models with geophysical and industrial applications (e.g. Lopez and

Marques (2010)), it is not the most convenient for Lagrangian studies. One difficulty is that all fluid115

trajectories pass through small corner regions at the top and bottom of the cylinder. These regions

are not resolved by the asymptotic solution and can be difficult to resolve numerically, particularly

when the velocity field is to be used to accurately calculate trajectories that are cycling through the

cylinder numerous times. For this reason it is advantageous to modify the forcing at the upper sur-

face to conform to a stress that still acts in the azimuthal direction and is zero at the cylinder axis,120

but approaches zero at the cylinder boundary as well. P2014 used one such forcing distribution to

create a flow in which the downwelling occurs over a broad outer region of the inviscid interior, no

longer confined to the thin, viscous sidewall layers. We will use the same velocities (obtained from

a numerical model) for the tracer release experiments discussed later in this work.

Since numerical solutions are required to get a complete, dynamically consistent velocity field for125

the rotating cylinder, Lagrangian calculations requiring long integration times can become cumber-
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some, making it difficult to explore the variations in the governing parameters. As a compromise,

past investigators have developed phenomenological models in which an incompressible Eulerian

velocity field containing the qualitative features of the dynamically consistent fields is specified an-

alytically and fluid trajectories are computed from it. Many of the calculations described below are130

based on such a model, hereafter referred to as the “kinematic" model. This new model is an im-

provement on the phenomenological model used by P2014 and Rypina et al. (2015) in terms of its

more realistic portrayal of Ekman layers and inclusion of the Ekman number as a parameter.

The kinematic model specifies an analytically prescribed background velocity field that is steady,

incompressible, and has no azimuthal structure. Under these conditions, all trajectories are regu-135

lar, or non–chaotic. When perturbed through the addition of an analytically prescribed symmetry–

breaking disturbance, one with azimuthal structure, Lagrangian chaos arises in portions of the three–

dimensional flow field. To see the qualitative behavior of the flow, examine figure 1. The velocity

field is specified in nondimensional cylindrical coordinates (r,θ,z), with (1≥ z ≥ 0) and (r ≤ a),

where a is the width–to–height ratio of the domain. The background flow has ∂/∂θ = 0 and can be140

expressed as the sum of an azimuthal velocity V (r,z) and an overturning circulation with radial and

vertical velocity components U(r,z) and W (r,z). The latter are specified by the streamfunction Ψ:

Ψ =−E1/2R(r)F (z), (2)

where F (z) is the vertical portion of the streamfunction, andR(r) is the radial portion of the stream-

function. The streamfunction relates to the velocities by the negative z-derivative of Ψ being the145

radial velocity and the radial derivative being the vertical velocity. The vertical portion of the stream-

function is

F (z) =A[sin(ζ)sinh(ζ)− cos(ζ)cosh(ζ)] +B[sin(ζ)sinh(ζ) + cos(ζ)cosh(ζ)]−D, (3)

where ζ is a transformed vertical coordinate,

ζ =
z− 1/2

E1/2
, (4)150

and the constants are defined by

A = −1
2

cS
s2C2+c2S2 , B =

1

2

sC

s2C2 + c2S2
, D =A(sS− cC) +B(sS+ cC)

s = sin
(

1
2E1/2

)
, c= cos

(
1

2E1/2

)
, S = sinh

(
1

2E1/2

)
, C = cosh

(
1

2E1/2

)
. (5)

In the limit of infinite cylinder radius, a→∞, the radial portion of the streamfunction,R(r) = r2/s,

yields a dynamically consistent solution for flow between two differentially rotating, horizontal155

plates. Fluid flows radially inward within the bottom Ekman layer and is expelled upward and even-

tually into the top Ekman layer, where it moves radially outward. When a is finite the velocity needs

to vanish at the cylinder walls, and this can be accomplished by choosing R as

R(r) = r(a− r)2/2, (6)
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giving velocities160

U = −∂Ψ
∂z = r(a− r)2[Asin(ζ)cosh(ζ) +B cos(ζ)sinh(ζ)], (7)

W = 1
r
∂rΨ
∂r =−(a− r)(a− 2r)E1/2F (z) (8)

where U is radial and W is vertical.

The axisymmetric azimuthal velocity V , satisfying the incompressibility condition in 3D, is de-

fined as165

V (r,z) = r(a− r)2[
1

2
+B sin(ζ)cosh(ζ)−Acos(ζ)sinh(ζ)]. (9)

This velocity leads to typical nondimensional trajectory rotation times of 20–200 for all Ekman

numbers examined; the central orbit at (r,z) = (0.5,0.5) has a period of 16π ≈ 50. At the maximum

azimuthal velocity, which occurs at r = aH/3, the period is about 20. Model horizontal velocities

are typically between 0.01 and 0.1 in magnitude, which are reasonable ocean velocities in meters per170

second. This choice of the velocity scale being 1ms-1 gives rotation times of several hours assuming

the eddy radius is equal to its height (a= 1). Using the same scaling for vertical velocities, whose

nondimensional values are E1/2 smaller, gives overturning times of 7 hours to 2 months; although

eddies with this structure have not been carefully observed, vertical velocities near submesoscale

fronts reach 30m day-1, which is in line with these rates. These and all other relationships between175

nondimensional model values and their dimensional equivalents are listed in Table 1. For all param-

eter values, there is upwelling in the center (r = 0) and weaker downwelling near the sides of the

cylinder (strongest at r = 0.75a). There is horizontal convergence near the bottom and divergence

near the top; for E near one, these are true for the full bottom and top halves of the system.

As the Ekman number varies, the overturning streamfunction changes qualitatively (Fig. 2). For180

E > 1/60 the overturning circulation is rounded and has a single internal fixed point corresponding

to the horizontal, circular trajectory described above as the central orbit (Fig. 2a,b). For E < 1/60

additional fixed points in the overturning circulation arise at r=0.5 (Fig. 2c). These fixed points in Fig.

1c are again circular periodic trajectories in 3D, and the increasing number arise through pitchfork

bifurcations asE decreases (see appendix A for more details). The additional circular trajectories are185

associated with smaller overturning cells imbedded in the larger cell (detailed example in appendix

A, Fig. 14). The overturning streamfunction also exhibits more vertical rigidity as E decreases, anal-

ogous to deeper oceanic columns, in accordance with the Taylor–Proudman Theorem (Greenspan

(1968)).

2.1 Symmetry–breaking Perturbation190

In the kinematic axially symmetric analytically prescribed background flow described above all tra-

jectories move along toroidal surfaces and are thus non–chaotic. In order to use this system to study

the interplay of chaotic advection and turbulent diffusion, we must perturb the system to break the

6



Ekman layer

W

Ekman layer

lid rotation axiscylinder rotation axis
Xo

Figure 1. Sketch of the qualitative velocity field, Eqn.s 7-9. Ekman layers at the top and bottom are where flow

has a larger radial component. Ω is the rotation rate of the system. X0 is the offset between the lid and cylinder

rotational centers, as set for the Navier-Stokes simulations.
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Figure 2. Top, (a)(b)(c): Background overturning streamfunction for a= 1; (a) E = 0.125, (b) E = 0.02,

(c) E = 0.0005. Blue dots are rz–fixed points. Bottom, (d): horizontal perturbation streamfunction for γ = 2,

x0 =−0.5. Note that the center of rotation in the perturbation streamfunction is not at the origin.

axial symmetry, which will introduce chaotic trajectories. The applied perturbation, approximating

the flow produced by a lid rotating off–center, is a horizontal flow that decays in strength with depth195

and is described by the streamfunction:

Ψ̃ = ε
−sinh(z/E1/2)

2sinh(1/E1/2)
(a2− r2)(γ2a2− s2), s=

√
(x−x0)2 + y2. (10)

This general form allows for an r– and z– dependent adjustment to the strength of the azimuthal

velocity, with amplitude ε, and a symmetry breaking component governed by the offset parameter

x0. If x0 = 0, the disturbance is axially symmetric; if it is nonzero, the disturbance has an azimuthal200

variation of amplitude εx0. The parameter γ can be used to make adjustments in the radial structure

of the disturbance. This streamfunction is for velocities in the x and y directions, unlike r– and z–

dependent background overturning streamfunction; the velocities from the two are added together.

The perturbation velocities in x and y are

ũ = ∂Ψ̃/∂y = 4yε sinh(z/
√
E)

sinh(1/
√
E)

[
(a2− r2) + (γ2a2− s2)

]
, (11)205

ṽ =−∂Ψ̃/∂y =−4yε sinh(z/
√
E)

sinh(1/
√
E)

[
(x−x0)(a2− r2) +x(γ2a2− s2)

]
. (12)

The corresponding azimuthal and radial velocity perturbations are

Ṽ =−2ε
sinh(z/

√
E)

sinh(1/
√
E)

[
(a2− r2) + (γ2a2− s2)− x0

r
cos(θ)(a2− r2)

]
, (13)

Ũ = 2εx0
sinh(z/

√
E)

sinh(1/
√
E)

sin(θ)(a2− r2). (14)210
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The perturbation streamfunction’s overall strength decays with depth and goes to 0 at the bottom

(z = 0). For the rest of the work, we will use a= 1 and γ = 2 (Fig. 2d). We note that the total, i.e.,

background plus perturbation, azimuthal velocity can be zero at some locations in the domain for

certain choices of ε, but with ε < 0.05 these locations are all very close to the boundaries of the

cylinder.215

2.2 Comparison to Dynamic Model

In this section we compare our kinematic model to the Navier–Stokes (NS) simulation of a rotating

cylinder flow by P2014. We will use the kinematic model for the analyses in sections 3.1 and 3.2,

and the NS simulation for the analysis in Sect. 3.3. We are interested in comparing the qualitative

features of the two model flows under steady symmetry–breaking perturbation. It is important to220

note that the parameters of the two systems are slightly different. The parameters that arise in the

NS simulation are the Ekman number, E, the aspect ratio, α, the displacement X0 of the lid’s center

(labeled in Fig. 1; not to be confused with x0 in the kinematic model), and the Rossby number,

Ro= δΩ/Ω. The kinematic model parameters are the Ekman number, E, the aspect ratio, a, the

perturbation offset parameter, x0, and the strength of the perturbation, ε. For matching the kinematic225

model to the NS simulation, we set α= a= 1 and examine four Ekman numbers used in P2014,

E ∈ {0.25,0.125,0.02,0.0005}. The displacement and strength of the kinematic perturbation are

adjusted to match the behavior for a given Rossby number and displacement of the lid in the dynamic

simulation. The chosen values are maintained throughout the rest of the work unless otherwise noted.

We do this rather than attempting a mathematical equivalence because the kinematic perturbation230

has a different form than that describing a physical lid rotating off–center. Our model mimics a flow

with a small Rossby number, so we compare our results to those from P2014’s Ro= 0.2, with lid

displacement X0 =−0.02.

Figures 3–4 show some examples of Poincaré maps from the NS simulation (top rows, panels

(a)(b), reproduced from P2014) with maps from the kinematic model (bottom rows). It is important235

for our purposes to achieve qualitative agreement in terms of the depth of the Ekman layers, the ver-

tical rigidity of the interior regions, and the overall layout of regular, chaotic, and resonant regions.

For the choice of the parameters described above, there is a good match of these qualitative features.

Each case is marked by the presence of a substantial chaotic region that extends from the radial cen-

ter around the top and bottom boundaries and to our largest radii near the perimeter of the cylinder.240

We henceforth refer to this region as the “chaotic sea”. Also, in all cases there are many more points

near the surface than near the bottom; this is due to the higher azimuthal velocities near the surface,

and is seen in both the dynamic and kinematic model. In E = 0.25, both Poincare sections show

a series of nested closed curves centered around (r,z) = (0.5,0.5) corresponding to quasiperiodic

trajectories on nested tori. Between these are some thin resonant layers with high numbers of small245

islands. For E = 0.125, the main feature is a series of larger islands between a set of nested tori and
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Figure 3. Structures in the kinematic model and dynamical simulation for Ekman numbers of 0.25 (a)(c) and

0.125 (b)(d). Top, (a)(b): Poincaré maps from Pratt et al. (2014) (their Fig. 10), resulting from a dynamically

consistent numerical simulation. Bottom, (c)(d): Poincaré maps (black) and largest FTLEs (color) resulting

from our non-dynamically consistent kinematic analytic model, with ε= 0.01 and x0 either −0.5 (c) or −0.9

(d); in color, maximum FTLEs calculated for the kinematic model with integration time 400. In (d), red oval

approximately separates the resonant and regular layers (inside) from the chaotic sea region (outside), with the

blue line segment showing the width of the chaotic sea. The blue diamond shows the width of an island, which

is also the width of the resonant layer.

the chaotic sea. For E = 0.02, there is one large island with a number of resonant layers surround-

ing it, including small islands. For E = 0.0005, the vertical structure of both models is more rigid,

the kinematic model more so than the NS simulation. Altogether, the kinematic model reproduces

the general features of the NS simulations, though there are often differences in details such as the250

number and widths of islands.

3 Lagrangian Batchelor Scale

In this section, we examine the relative importance of chaotic advection and turbulent diffusion for

tracer distribution using a Lagrangian Batchelor scale. The Batchelor scale, δ, is the length scale at

which advection and diffusion balance in their respective thinning and widening of a patch of tracer.255

Chaotic advection thins tracer patches through averaged exponential contraction in the contracting

direction(s), decreasing the relevant lengthscale towards small scales where turbulent diffusion is
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Figure 4. Structures in the kinematic model, (c)(d), and dynamical simulation, (a)(b), for Ekman numbers of

0.02, (a)(c), and 0.0005, (b)(d), same format as Fig. 3.

dominant. In this section, we represent turbulent diffusion as a scale-dependent diffusivity. This dif-

fusion widens tracer patches by moving tracer down its gradient, spreading it out from its maximum.

Below δ, diffusion dominates tracer behavior, while above δ advection dominates. If δ is larger than260

the structures in the flow induced by chaos, then diffusion will overcome advection and wipe out

these structures. The structures of interest, induced by the deterministic, symmetry–breaking per-

turbation (see Fig.s 3–4) are the bands of chaos, called resonant layers, surrounding regular island

chains (see blue diamond in Fig. 3d), and the chaotic sea region (outside the red oval in Fig. 3d)

located near the cylinder perimeter and central axis, which are identified by visual inspection of265

Poincaré sections. When we compare δ to these structures, we define their widths as the difference

between distances from the central orbit, (r,z) = (0.5,0.5), to the outermost/innermost part of the

structure, measured in Poincaré sections like Fig.s 3–4.

In principle, the width of a tracer filament should approach the Batchelor scale regardless of initial

conditions. If we consider an initial patch of tracer that is far from the Batchelor scale, advection and270

diffusion will not balance. If the patch is larger than the Batchelor scale, chaotic advection constricts

the patch in the direction of fastest contraction so that it approaches the Batchelor scale. If the patch

of tracer is smaller than the Batchelor scale, diffusion widens the patch to approach the Batchelor

scale. When the width of a filament is at the Batchelor scale, the width will be steady in time but the

concentration will continue falling.275
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Traditional formulations of the Batchelor scale use the Eulerian quantity — strain rate — to quan-

tify advection and to find the scale at which advective and diffusive effects balance. Several rigorous

derivations of a Lagrangian Batchelor scale have been presented (eg. Thiffeault (2004); Fereday and

Haynes (2004); Son (1999)), and a few papers have used less rigorous scaling arguments to estimate

the importance of chaotic advection (Rypina et al. (2010); Ledwell et al. (1993, 1998)). Below we280

present a simple explanation for the Lagrangian Batchelor scale to gain intuition about this quantity,

followed by a rigorous derivation of a Lagrangian Batchelor scale for a Gaussian tracer in a 3D linear

strain flow. The latter extends the work of Flierl and Woods (2015) from 2D to 3D.

The first formulation of the Lagrangian Batchelor scale uses dimensional arguments to construct a

quantity that has units of [length] from the diffusivity κ, which quantifies the intensity of diffusion285

and has units of [length2time−1], and the average exponential contraction rate λ3, which quantifies

the thinning of a filament due to chaotic advection and has units of [time−1]:

δ =
√
κ/|λ3|. (15)

In a flow field with uniform steady strain, one could simply use the Eulerian strain rate as the

filament thinning rate. However, in flows with non–constant strain rate, the tracer will feel different290

strain as it is advected by the flow so a Lagrangian quantity such as the Finite Time Lyapunov Ex-

ponent (FTLE) would be more appropriate. The FTLE quantifies the average exponential separation

rate between a trajectory and its close neighbors over a finite time interval ∆t,

∆x= ∆x0e
λ∆t. (16)

Since separation rates between trajectories are generally different in different directions, in 3D295

flows there are 3 FTLEs that can be ordered λ1 ≥ λ2 ≥ λ3 and can be though of as the stretch-

ing/contraction rates of the 3 major axes of an infinitesimal spherical blob of fluid as it deforms

into an ellipsoid under the influence of the flow field (see Fig. 5). For incompressible flows, λ1 ≥ 0,

λ3 ≤ 0 and λ1 +λ2 +λ3 = 0. For the Batchelor scale in eq. (16), the appropriate FTLE is that for

the most contracting direction, i.e., λ3. FTLEs are most commonly computed as300

λi = 1/|T | ln
√
σi (17)

where σi are the eigenvalues of the right Cauchy–Green deformation tensor

G= [∆xi/∆x0j]
T [∆xi/∆x0j]. (18)

Here ∆xi and ∆xi0 are the final and initial displacements in the i–th direction between initially

nearby particles that are advected by the flow over time interval ∆t. G can be calculated directly305

from dense grids of simulated Lagrangian trajectories. We use this latter method in our calculations

to estimate λ3.

As an alternative motivation of the Lagrangian Batchelor scale, we show analytically that the

width of a Gaussian tracer distribution asymptotically approaches the Batchelor scale in a simple

12



flow field. This derivation is an extension to three dimensions of a two–dimensional calculation by310

Flierl and Woods (2015). The main steps of the derivation are described below, with more details in

the Appendix B. First, we assume that in the Lagrangian frame the velocity field is a steady linear

strain with rates λi in each direction, such that the sum of the λ is zero, giving an incompressible

flow. Second, we assume that the tracer concentration C initially has a Gaussian distribution in each

direction, and we look for a solution to the tracer evolution equation where it remains Gaussian. In315

this case we can use the standard deviation of the Gaussian distribution to measure the width of the

filament in each direction. The width in the most–contracting direction, which is shrinking with rate

λ3, is denoted by σ. As shown in the Appendix, the differential equation for σ has a fixed point at

σ =
√
κ/|λ3|, (19)

meaning that the width of the Gaussian patch in the fastest contracting direction has a fixed point at320

the Batchelor scale, as expected from the physical arguments about the balance between advection

and diffusion. This fixed point is attracting, meaning that for any initial width, the width in the λ3

direction will converge to the Lagrangian Batchelor scale. Mathematically there are also fixed points

with negative λ3 and with negative σ for positive λ3, but neither corresponds to a real positive tracer

distribution. The full solution for σ is325

σ =
√
κ/|λ3|

(
(λ3σ

2
0/κ− 1)e2λ3t + 1

)1/2
. (20)

More details and the full solution for C are in Appendix B.

3.1 Results of Batchelor Scale Analysis

In order to calculate the Lagrangian Batchelor scale, δ, we use the oceanic diffusivity estimates from

Okubo (1971). In the ocean, diffusivity is scale–dependent, increasing with size, as described by330

Okubo. He used observations of horizontal dye diffusion at various scales ranging between about

20m and 100km to find the empirical relationship

κ= 0.0103l1.15, (21)

where l is the horizontal lengthscale of the dye patch in cm and κ is in cm2s-1. Consistent with

the lack of density stratification in our model, we assume an isotropic three–dimensional diffusivity.335

This assumption is supportable in the upper ocean mixed layer and is consistent with our assumption

of shallow eddies.

The variable nature of Okubo’s κ makes determination of the Batchelor scale a bit more subtle.

In the case of spatially variable κ, the thinning of an initially large tracer patch will occur as before,

but as the filaments decrease in width, the corresponding κ decreases as well. Following Rypina340

et al. (2010), we hypothesize that equilibration will occur if during this process the tracer scale L

approaches (κ(L)/|λ3|)1/2 = (0.0103L1.15/|λ3|)1/2. Solving for L yields the Batchelor scale

δ = 0.0046|λ3|−1.1765 (22)
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Figure 5. An initial sphere in a linear strain field evolving into an ellipsoid during a time of 1. Ellipsoid axes

marked by bars, with figure axes ticks showing their endpoint values. Velocity field u= 1.5+x, v = 0.5y, w =

−1.5z. Color shows z values at t= 0.

where λ3 in s-1 yields δ in cms-1.

To relate our dimensionless kinematic model FTLEs to Okubo’s diffusivities, we need to set di-345

mensional time and diffusivity scaling factors. We previously discussed the winding times and as-

sociated velocity scaling of 1ms-1; our desired scaling factors can be computed with this velocity

scaling and a lengthscale. The main parameter of the background model is the Ekman number, the

square of the ratio of Ekman layer thickness to eddy depth. Due to the unstratified nature of our

flow, we focus on two intermediate Ekman numbers: E = 0.125 and E = 0.02. Assuming an Ekman350

depth of about 40m, which is within the range of open–ocean observations (see Lenn and Chereskin

(2009) and references therein), our shallower eddy is about 110m deep, whereas E = 0.02 would

correspond to an eddy depth of about 280m. Depending on region and season, it is possible for ei-

ther of these to be within the surface mixed layer of the ocean, which can reach 500m in subpolar

regions in the winter, but may decrease to a few meters in the summer. Since the aspect ratio of355

the width–to–depth of our eddy is 1, the corresponding eddy radius is also between roughly 100 and

300m. Using the product of the dimensional depth of the eddy and the chosen velocity scale, Okubo’s

diffusivities can be nondimensionalized. Vice-versa, the FTLEs could be made dimensional using

the timestep in seconds. These scalings are explicitly given in Table 1; we will discuss the results in

nondimensional terms.360
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Variable Nondimensional Scaling Dimensional value,

Value factor E=0.25 E=0.125 E=0.02 E=0.0005

δE a/
√
E 40m 40m 40m 40m

H 1 aδE/
√
E 80m 113m 283m 1789m

u 0.01–0.1 1m/s 0.01–0.1m/s 0.01–0.1m/s 0.01–0.1m/s 0.01–0.1m/s

w 2 · 10−4–0.05 1m/s 0.005–0.05m/s 0.003–0.04m/s 0.001–0.014m/s 2 · 10−4–2 · 10−3m/s

timestep 1 (1000) H/1ms-1 84s (23h) 113s (31h) 283s (3.3d) 1789s (20.7d)

winding time 20–200 time 28min–4.6hr 39min–6.6hr 1.5–16.5hr 3.3–33hr

overturning time 30–400 time 42min–9h 1–12h 2–31h 15h–8d

κ e.g. 10−5 Hm2s-1 8 · 10−4m2s-1 1.1 · 10−3m2s-1 2.8 · 10−3m2s-1 1.8 · 10−2m2s-1

Table 1. Nondimensional variables, their scale factors, and their dimensional equivalents.

The calculated δ values are shown in Fig. 6 next to the widths of chaotic regions; both widths

are dimensionalized using the eddy depths. The range of δ values is due to the spatial variation of

the most contracting FTLE, λ3, in the region (see Fig.s 3–4 for most stretching FTLE, which are

of the same magnitude). FTLEs were estimated over an integration time of 400; the range of FTLE

magnitudes does not noticeably change when the integration time is decreased by half. The widths365

of the chaotic sea and smaller resonant regions were estimated from inspection of Poincaré sections.

The Batchelor scale is generally about 0.01–0.08, which is similar to the resonant layer widths and

smaller than the chaotic sea widths. The dimensional diffusivities at these scales range from 2 ·10−4

m2s-1 at 1m to 0.06 m2s-1 at 140m, which are considerably smaller than diffusivities on the horizontal

scale of eddies themselves, about 0.5–8.2 m2s-1 for 1–10km. The Batchelor scale results imply that370

chaotic advection is expected to influence tracer distribution throughout the system, but dominate

only in the wider chaotic sea region.

4 Particle Dispersion

In this section, we quantify the relative effects of turbulent diffusion and chaotic advection using

the dispersion (or spread) of sets of initially nearby trajectories in the kinematic model. We consider375

chaotic advection dominant compared to diffusion when the ensemble spread is greater for the deter-

ministic perturbation that induces chaos than for the stochastic perturbation that simulates turbulent

diffusion. Ensembles of one hundred to three hundred trajectories that begin inside a small sphere

have been examined for their behavior under various perturbations. Other initial conditions, on a

torus or axial circle, give similar results (not shown). The spread of trajectories is measured in terms380

of Ψ values, the streamfunction of the background flow given by Eqn. (2). Examining the spread in

Ψ is convenient because it leads to zero spread for particles following the background flow. How-

ever, it is important to note that this interpretation limits the directions of chaotic stretching that are
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Figure 6. Layer widths in blue, Lagrangian Batchelor scale δ (Eqn. 22) in the same region in yellow. Left half,

chaotic resonant region between islands; right half, the chaotic sea region. The diffusivities at the Batchelor

scale in m2s-1 are between 10−4 and 6 · 10−3 for the three larger Ekman numbers and between 1 · 10−2 and

6 · 10−2 for E = 0.0005.

considered— it is possible for the fastest spreading direction to be along the background streamlines,

which would not be visible in the coordinates chosen.385

To simulate turbulent diffusion, we add a stochastic velocity perturbation to the background model

flow. The stochastic perturbation is a random flight model created by adding small pseudorandom

values with a Gaussian distribution to the velocity at fixed intervals of time ∆t. The equation gov-

erning a fluid particle trajectory is then:

dxi
dt

= Ubi(x) +u′i, (23)390

where i is a direction index, Ubi is the background velocity, and u′i are the stochastic additions. These

velocity additions are uncorrelated and lead to a Gaussian random walk behavior (Zambianchi and

Griffa (1994)). Using the described stochastic perturbation, although it is quite simple, with Ubi = 0

or a constant, the variance of a set of trajectories grows linearly in time, while the standard deviation

grows linearly with the square root of time, as expected for diffusion. The diffusivity, κ, is computed395

from the 1D relationship for a Gaussian random walk: κ= s2/2∆t, where s is the standard deviation

of step size in the random walk. To choose the level of diffusivity for the stochastic perturbation, we

consider the turbulent diffusivities near the Batchelor scale as computed in the previous section.

The Okubo diffusivities at the Batchelor scale are in the range κ ∈ [10−4,10−2]m2s-1 across the four

Ekman numbers examined, which is nondimensionally κ ∈ [10−6,3·10−5].As our primary example,400

we will discuss the level of diffusivity κ= 10−6. This diffusivity requires a certain step size s for

the stochastic perturbation, which relates to the distribution of u′ by s= σ∆t/3, with σ the standard

deviation of u′, ∆t the numerical timestep (0.01), and the factor of 3 due to the details of a fourth–

order Runga–Kutta integration. The next position,using this method, is estimated using the weighted

sum of estimates of the velocity at the current position (v1, weight 1/6), the halfway point estimated405
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from the current position (v2, weight 1/3), the halfway point estimated using v2 (v3, weight 1/3),

and the final point estimated using v3 (v4, weight 1/6). Only v1 and v4 include stochastic additions,

leading to the 1/3 factor. Together, these give

κ=
σ2∆t

18
, (24)

and so σ = 0.042. We will also discuss a smaller stochastic perturbation, κ= 10−7, σ = 0.013, and410

a larger one, κ= 10−5, σ = 0.13. The stochastic perturbation with κ= 10−6 has kinetic energy (in-

tegrated over the cylinder) about the same as the background flow:
∫

(u;)2 ≈
∫

(U2
b)≈ 0.63. The

perturbation with κ= 10−7 has kinetic energy about the same as the deterministic perturbation with

ε= 0.01, x0 =−0.5, such that
∫

(u′
d)2 ≈

∫
(u′

s)2 ≈ 0.075, where u′
d is the deterministic perturba-

tion velocity and u′
s is stochastic.415

We begin with an example for E = 0.125 showing the spread of trajectories (measured in terms

of the background streamfunction Ψ) in the presence of either the deterministic or the stochastic

perturbation. Trajectories are started on a small sphere located entirely in the chaotic sea region

centered on (r,z) = (0.1,0.5) (see Fig. 3 for the Poincaré section). For the deterministic perturbation

at early times, trajectories oscillate through the background streamfunction because the perturbation420

velocities form an azimuthal wave (Fig. 7(a)). The frequency of this oscillation depends on the exact

location of the trajectory, so with time, trajectories move out of phase due to the cumulative effect

of their slightly different oscillatory frequencies. It takes a few cycles of overturning to develop

noticeable spreading, but then the spread grows quickly.

For the stochastic perturbation (Fig. 7(b)), trajectories are uncorrelated as they spread across the425

background streamfunction. There are no oscillations in time because the perturbation acts sepa-

rately on each trajectory at each timestep, leading to continuous and monotonic spreading of the

ensemble. This spreading is similar to diffusion, but the increase in the range of trajectories does

not depend on the gradients of concentration– Fick’s law does not apply. If both perturbations are

included (Fig. 7(c)), trajectory ensembles maintain some of their oscillatory behavior but spread out430

in a more continuous fashion due to the stochastic perturbation. In this example, and over time scales

considered, we conclude that the stochastic perturbation dominates at early times but chaotic spread-

ing takes over at times larger than about 1000. Over an even longer time period, turbulent diffusive

spreading is expected to overtake chaotic spreading.

We next compare the spreading of trajectory ensembles in Ψ with a variety of perturbations for435

the same initial conditions as in Fig. 7 using the range over time (Fig. 8); results are similar when

the variance in Ψ is used for comparison (not shown). Chaotic advection dominates when the spread

in Ψ for an ensemble under deterministic perturbation is larger than the spread under stochastic

perturbation. The spread from the deterministic perturbation is very fast, appearing qualitatively ex-

ponential, for a period of time, as expected for a region with high FTLEs, which indicate exponential440

growth on average, but is limited to the width of the chaotic region in which the ensemble begins
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(e.g. red curve in Fig. 8(a)). In contrast, the stochastic perturbation will spread with the square root

of time until it reaches the cylinder boundaries (e.g. dark blue curve in Fig. 8(a)). Therefore, the

time when the deterministic perturbation has greater spread will be limited to between when fast

chaotic-advection-induced separation starts in the deterministic perturbation, which requires suffi-445

cient interaction with hyperbolic regions, and when the stochastic perturbation spreads the ensemble

to the width of the chaotic region.

In the chaotic sea region (Fig. 8(a)(c)), ensembles with stochastic perturbations all have their

ranges in Ψ grow in a manner similar to the square root of time and the spreading is faster for larger

κ. The ensembles with deterministic, chaos–inducing perturbations experience an initial delay before450

they begin quickly growing. Once rapid growth sets in, they spread to the width of the chaotic region

between times 500 and 3000. Larger deterministic perturbations lead to earlier and faster spreading,

as well as wider chaotic regions. For the weaker deterministic perturbation ε= 0.01, there are some

time intervals over which chaotic spreading in the chaotic sea dominates stochastic spreading. These

instances occur more readily in the case of the shallower eddy (E = 0.125, Fig. 8(a)) and less so for455

the deeper eddy (E = 0.02, Fig. 8(c)). However, larger deterministic perturbations (e.g. ε= 0.08)

produce chaos that is dominant over longer times, an extreme example being the pink curve in Fig.

8(a).

We can also consider the timescales over which diffusive and advective processes with similar

kinetic energy (red and light blue curves in Fig. 8) dominate over each other. The ensembles released460

in the chaotic sea show that over the first few hundred timesteps, turbulent diffusion dominates the

spread (Fig. 8(a)(c) at t < 1000), as chaotic advection does not yet show significant growth. After

that we see a period of fast growth due to chaotic advection, which quickly overtakes the slower

diffusive spreading. This rapid growth stops when the advective spread reaches the width of the

chaotic region, and the diffusive spreading, which is not limited by the chaotic region width, is then465

able to catch up and exceed chaotic advection. Of course, these processes will be acting at the same

time, not separately; the green curves in Fig. 8 are examples when small perturbations of both types

are present. In this case, spreading of the ensemble begins immediately, as in simulations with only

stochastic perturbation, but then has a time period of pronounced growth and some oscillations, as

seen in simulations with only the steady perturbations.470

We also examined the behavior of trajectories beginning at (r,z) = (0.4,0.5), a small distance

from the central fixed orbit, within the region containing resonant layers (Fig.s 3–4). In these cases,

the same behavior as in the chaotic sea region occurs for the spreading under stochastic perturbations

(Fig. 8(b)(d)). The spreading under deterministic perturbations is much slower than in the outer

chaotic sea region for ε= 0.01 (red curves in Fig.s 8(b)(d)) and diffusion dominates at all times for475

all values of κ shown. With ε= 0.08, the chaotic region is larger and growth due to the deterministic

perturbation is generally more rapid than that due to diffusion, at least within the time window when

chaotic advection begins and until saturation occurs (pink curves in Fig.s 8(b)(d)).
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Figure 7. Grey lines are individual trajectories in ψ starting from a sphere of radius 0.002 at (r,z) = (0.1,0.5)

with E = 0.125. Solid black curves are the mean; black dash–dot lines are ±1 standard deviations from the

mean.

From the spreading of ensembles of trajectories, we see that the wider chaotic regions are where

chaotic advection dominates over turbulent diffusion (at least over some time intervals), as expected480

from our scaling arguments. However, those scalings did not include considerations of time includ-

ing considerations of when fast chaotic-advection-induced stretching begins, as FTLEs are time av-

erages; the delay in chaotic stretching decreases the period of time when chaotic advection is impor-

tant. This time period begins when fast advective stretching is first apparent and ends when turbulent

diffusion has spread across the region under consideration. From these ensembles, we would expect485

a set of passive 3D drifters or an injected tracer beginning in a blob to spread out diffusively, then

be stretched and folded throughout the chaotic sea, producing strong filamentation, then gradually

diffuse across the barriers of the chaotic sea and into the remainder of the eddy. During the later stage

tracer variance due to the formation of filaments by chaotic advection would be gradually eroded by

turbulent diffusion. This sequence of events will be apparent in tracer simulations shown in the next490

section.
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Figure 8. Range in ψ for ensembles of trajectories started from a sphere of radius 0.002. Steady perturba-

tion (ε ∈ {0.01,0.08}), stochastic perturbations (κ ∈ {10−5,10−6,10−7}), or both (κ= 10−7, ε= 0.01), are

added to the background flow. Left, (a)(c): Initial sphere in the chaotic sea region, away from fixed points,

at (r,z) = (0.1,0.5). Right, (b)(d): Initial sphere centered on (r,z) = (0.4,0.5), a resonant region. In (a), the

dashed black line is 10−5
√
t.

5 Tracer Simulations and Nakamura Effective Diffusivity

In this section we analyze the effects of the symmetry–breaking, chaos–inducing deterministic ve-

locity perturbation on the stirring and mixing of a diffusive tracer in a dynamically consistent nu-

merical model of a rotating cylinder flow. Dye experiments are often used in both the ocean and the495

laboratory to understand the stirring and mixing in a fluid (examples include Fountain et al. (2000);

Ledwell et al. (1993, 1998)). The distributions of passive tracers like dye are created by the advec-

tive and diffusive patterns without the feedback onto the flow that would occur with temperature or

salinity, allowing for insight into those processes. For our simulations we turn away from the kine-

matic model and take advantage of the existing numerical model that solves Navier–Stokes equations500

corresponding to the rotating cylinder flow accompanied by integration of the advection/diffusion

equation with diffusivity k for a passive tracer, both described in P2014. As discussed earlier, these

simulations have the advantage of being dynamically consistent at the cost of being computationally

expensive, whereas economy of the kinematic model allows us to explore a wider range of parame-

ters.505
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Our main quantification tool is Nakamura’s effective diffusivity: a background diffusivity scaled

by a representation of the stretching of dye concentration contours by advection. Two–dimensional

and quasi–three–dimensional analyses of effective diffusivity have been applied to the atmosphere

and ocean (Nakamura (1996); Nakamura and Ma (1997); Haynes and Shuckburgh (2000); Aber-

nathey et al. (2010)). For our fully three–dimensional system with constant density, the effective510

diffusivity can be written as

κeff (C) = k
1

(∂C/∂V )2
|̂∇C|

2
, (25)

where C is tracer concentration, V is volume, and f̂ indicates an average of function f over the area

of a concentration surface. The imposed small–scale diffusivity k is constant and so is more closely

related to the κ used in Sect. 4 for the stochastic perturbation than the scale–dependent Okubo κ in515

Sect. 3. (It is not clear how one would incorporate a scale–dependent diffusivity into Nakamura’s

formulation.) The volume V is a one–to–one mapping of tracer concentration and volume such that

V (C) is the volume occupied by fluid with concentrations greater than C. The derivation leading

to the above definition for κeff can be found in Shuckburgh and Haynes (2003), who perform the

algebra in 2D but note that the 3D development is identical. Equation 25 describes an effective520

diffusivity that is amplified from the small–scale diffusivity by a factor of the degree of contortion

of the concentration contour. The units of the effective diffusivity are those of k, typically m2s-1,

multiplied by m4, or volume squared divided by length squared, which is the same as surface area

squared. Larger effective diffusivity leads to larger diffusive fluxes of tracer. This amplification can

be understood as being caused by advective stretching and folding of tracer contours which increases525

the area of surfaces of constant C, thereby amplifying gradients of C and speeding up diffusive

fluxes. This amplification factor is precisely the surface area squared in the rare situation where

|∇C| is constant on a C surface (see Appendix C for proof).

Both advection and diffusion redistribute tracer concentration and influence effective diffusivity.

The effective diffusivity allows the effects of advection to be included in a diffusive term:530

∂C

∂t
=

∂

∂V

(
κeff

∂C

∂V

)
. (26)

As advection stretches and folds the initial tracer, creating filaments, the surface area of a contour

and gradients of the tracer increase, leading to larger κeff . Then, as diffusion smooths the tracer

field, wiping away the filaments, gradients decrease and contours become smoother, with a lower

surface area to volume ratio. We compare the effective diffusivity with a deterministic perturbation535

to that without; any increase is due to increased stirring, which gives a quantitative measure of how

important that stirring is for the distribution of tracer in each region of the flow.

As a secondary quantification tool, we use the volume–integrated tracer variance function, χ2

(Pattanayak (2001)):

χ2 =

∫
V

|∇C|2dV
/∫

V

|C|2dV, (27)540

21



where V here is simple volume. Stirring increases the variance of a tracer, while mixing decreases

it. When χ2 is increasing, stirring is dominant and the slope of χ2(t) quantifies the stirring rate. The

tracer variance function was used to relate Ekman number, perturbation strength, and stirring rate

for the rotating cylinder in P2014; the authors found that stirring increased with larger perturbations

and was nonmonotonic with E, peaking near E = 0.01.545

The numerical simulations are run using the solver NEK5000 for several diffusivities and strengths

of the symmetry breaking deterministic perturbation. This model solves the incompressible Navier–

Stokes equations using a spectral element method (see https://nek5000.mcs.anl.gov, P2014, Fischer

(1997)). The domain has identical radius and height, matching the aspect ratio assumed in our kine-

matic model. The symmetry–breaking perturbation is created by moving the central axis of the im-550

posed surface lid stress a fraction of the radius X0 from the cylinder axis, so that X0 becomes the

primary parameter determining the perturbation strength. The X0 =−0.02 case is what was used

to compare Poincaré sections with the kinematic model, so qualitative features match the ε= 0.01

cases. The X0 =−0.16 case is a significantly larger perturbation, similar to the ε= 0.08 case in the

previous section. The nondimensional imposed tracer diffusivity, k, is 10−4 or 10−6. Using Okubo’s555

scaling, the lower diffusivity is appropriate for scales near 1m, while the larger is appropriate for

scales near 50m. After the simulated velocity field is spun up, the tracer concentration, C, is initial-

ized with a constant vertical gradient, C = 1− z.

The set of simulations performed allows for an examination of the effects of changing E, k,

and X0. They are E = 0.125, k = 10−4, X0 ∈ {0,−0.02,−0.16} and E = 0.02, k ∈ {10−4,10−6},560

X0 ∈ {0,−0.02}, for a total of seven simulations. Each simulation is run for a time of 300 after the

tracer is initialized. The evolution in time of the tracer variance function and Nakamura effective dif-

fusivity integrated over the volume of the cylinder are described first; we then discuss the evolution

of the dye, and finally the spatial characteristics of the Nakamura effective diffusivity.

The tracer variance function over time, Fig. 9(a)–(c), initially grows nearly linearly as stirring565

creates filaments and large gradients. The function then has a single maximum that occurs at the

time when diffusive mixing starts to overcome stirring, so that the variance of the tracer begins to

decrease. The maximum occurs earlier when either the imposed diffusivity or the strength of the

deterministic perturbation increase. Increasing the diffusivity makes the maximum occur earlier by

increasing the strength of the mixing (Fig. 9 (a) to (b)). Increasing the deterministic perturbation570

also makes the maximum occur earlier as faster stirring creates larger gradients, in turn increasing

diffusive fluxes (Fig. 9 (c), red curve).

The maximum of the tracer variance function increases with decreased diffusivity, as more fil-

amentation can occur before diffusion wipes the filaments out. This change of maximum is most

evident in the difference between k = 10−4 and k = 10−6 for E = 0.02, where the decrease in dif-575

fusivity increases the maximum of the tracer variance function by an order of magnitude (Fig. 9 (a)

to (b)). Changes in the maximum as the size ofX0 is increased from 0 to 0.02 are small and negative,
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because the slightly earlier time of maximum combined with similar stirring rates leads to a slightly

smaller maximum with the perturbation. In the case of E = 0.125, X0 =−0.16, the maximum is

larger than with either X0 = 0 or X0 =−0.02 due to faster stirring and a different spatial pattern of580

the dye, which will be discussed later.

The effective diffusivity, κeff , integrated over the total volume shows an overall progression sim-

ilar to the tracer variance function, which indicates the dominance of the gradient term over both

the ∂C/∂V term in κeff and the |C|2 term in χ2 (Fig. 9(d)–(f)). The initial slope and details of the

maximum can be understood as relating to perturbation and diffusivity strengths in the same manner585

as for χ2. At longer times, the integrated effective diffusivity reaches a nearly constant positive value

unlike χ2, which aproaches zero. This constant value can be estimated by using the surface area rep-

resentation of κeff . At long times, here meaning after many overturns but before diffusion removes

all gradients, the shape of tracer surfaces are distorted nested tori (look ahead to Fig. 10(h)). If the C

surfaces were nested circular tori, |∇C| would be constant along the surfaces, and then κeff = kA2,590

where A is the surface area of a given toroidal tracer contour. The volume integral of the squared

surface area of circular tori nested around (r,z) = (0.5,0.5) multiplied by the background diffusiv-

ity is kπ6/8, which we expect to be the minimum for
∫
κeffdV in this system while gradients are

nonzero (see Appendix C for details). This value is shown as black dashed lines in Fig. 9(d)–(f) and

is just below the lowest
∫
κeffdV value seen. The higher values for κeff with steady perturbations595

at long times corresponds to persistent asymmetries in the tracer field which result in larger constant

concentration surface areas. The extreme case is E = 0.125, X0 =−0.16, k = 10−4, which has the

most asymmetric dye contours (Fig. 11(i)); here, the long time value of
∫
κeffdV is about twice as

large as for circular tori.

Further insight can be gained by perusal of vertical sections of C and κeff (Fig.s 10 and 11).600

A caveat is that κeff is a nonlocal property, so plots show the values κeff (C) mapped onto the

locations on the sections with corresponding dye concentrations, C, while they are calculated using

the distribution ofC over the whole volume at that time. These mappings are noisier than the sections

of C because the numerically computed κeff (C) is nonmonotonic and can have large changes with

small changes in C. Nevertheless, these plots can yield some insights into the time–histories shown605

in Fig. 9. Figure 10 is restricted to cases with E = 0.02 while Fig. 11 is restricted to E = 0.125.

The two are laid out differently, with the former designed to emphasize the effects of varying k and

the latter designed to explore variations in the strength X0 of the perturbation. Both figures contain

snapshots from an early time (t= 39) in the simulation, before diffusion has had a chance to arrest

growth in the tracer variance function, and at a late time (t= 299) when κeff has reached a quasi–610

steady value. In all cases, the C sections become smoother and their range decreases between the

snapshots, due to continued mixing. The high κeff values are enhanced over much of the sections’

area at the early time, and localized to mostly the chaotic sea region at the late time.
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The early development (t= 39) of the tracer field, C, and of κeff can be seen in Fig. 10 ((a)–(f)).

With no disturbance present (X0 = 0) and k = 10−4 (Fig. 10(b)), the initially horizontal lines of615

constant C have been advected by the axially symmetric overturning circulation such that contours

of constant C are roughly aligned with the overturning streamfunction. For an initial broad gradient

in any direction, we expect the same realignment after the first few overturnings as the tracer is

passively advected by the background velocity field. We believe, then, that the tracer distribution

that exists at later times is somewhat independent of initial distribution. The corresponding κeff at620

t= 39 (Fig. 10(e)) exhibits high values at the edges of filaments created by the straining motion of

the symmetric background flow, despite the fact that no trajectories are chaotic. When a disturbance

is added (X0 =−0.02, Fig.s 10(c)(f)) the axial symmetry is broken and the peak values of κeff are

reduced. The latter is somewhat surprising since we have already seen (Fig. 9(b)) that the volume

integrated values of κeff are nearly the same for the disturbed and undisturbed case. The situation625

is made clearer if one notes that moderate values of κeff (yellow in Fig. 10(f)) are more widely

distributed in the disturbed case. A similar result can be seen by comparing the case X0 = 0 (Fig.

11(a)(d)) to X0 =−0.02 (Fig.s 11(b)(e)), all for E=0.125. Again, the unperturbed (symmetric case)

has larger peak values while the perturbed case has more locations with moderate values of κeff ,

resulting in a similar volume integrated value of κeff (Fig. 9(f)). It is possible that slight increases in630

stirring in the perturbed cases has caused more mixing than in the unperturbed cases, even over the

short interval before these snapshots, leading to a lower range of C and smaller average gradients

in the perturbed cases. However, the volume–integrated measures (Fig. 9) do not show any clear

indications of that process occurring.

When the imposed diffusivity k is decreased by two orders of magnitude, with X0 fixed at−0.02,635

the results are remarkably different. To begin with, a comparison of Fig. 9(d) with 9(e) shows that

κeff is generally larger at any particular time when k takes the smaller value. As Fig. 10(a) and (c)

show, the tracer field contains much finer filaments when k = 10−6, consistent with the reduction of

the Batchelor scale. The distribution of κeff is broader and with larger peak values for this lower nu-

merical diffusivity (compare Fig. 10(d) and (f)). The higher κeff indicates that despite the decrease640

in k, the effects of stirring on the contours, as measured by κeff/k, have more than compensated,

resulting in a higher rate of irreversible property exchange. Thus the combined effect of smaller dif-

fusivity and finer filaments (i.e., stronger tracer gradients) leads to more rapid mixing across tracer

contours.

The results that have just been described occur early (t= 39) in the evolution of the tracer field,645

at a time when fluid parcels have overturned just a few times and the perturbation amplitude X0

has been small. For this weakly perturbed flow, Lagrangian chaos requires many overturns to be

significant, so we now turn attention to the results for t= 299 (Fig.s 10(g-l) and 11(g-l)). Here a

comparison between the unperturbed and perturbed cases (contrast panels 10(h)(k) with 10(i)(l) and

also 11(g)(j) with 11(h)(k)) reveal only modest differences in the spatial distribution and magnitude650
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of C and κeff . As in the early snapshots, there is a tendency for the unperturbed flows to have

higher peak values of κeff , while the perturbed flows produce moderate values over a larger area.

Decreasing the value of k again has the effect of creating more fine structure (Fig. 10(g)) and of

increasing the peak values of κeff by an order of magnitude (Fig. 10(j)).

So far, the consequences of the symmetry–breaking disturbance are modest. However, dramatic655

differences occur when X0 is increased from −0.02 to −0.16 for E = 0.125. The tracer distribution

is markedly distorted at early times (compare Fig. 11b with 11c) and strong tracer gradients remain

present even at t= 299, at a time when the gradients in the unperturbed and weakly perturbed cases

have been strongly eroded (compare Fig. 11(g)(h) with 11(i)). The peak values of κeff at t= 299

(Fig. 11(l)) remain comparable to those of the weakly perturbed case (11(k)) but occupy a much660

larger volume, making the volume integrated κeff much larger, in agreement with Fig. 9(f).

For a different perspective, we examine the mean κeff in subdomains of the system corresponding

to a regular island and a region of the chaotic resonant layer of roughly the same size. The cross–

sections of the cylinder along the x and y axes are broken into different regions using the match-

ing Poincaré sections of the perturbed flow (Fig. 12). Demarcation of these subdomains was most665

straightforward for the case E = 0.02, due to its large island and extended resonant region. While

we used Poincaré sections as guidance for defining regular and chaotic regions, other methods (for

example, Haller et al. (2018)) could be used instead for the more precise delineation of the phase

space. The mean κeff in the chosen subdomains gives a clear result in the E = 0.02, k = 10−4 case

(Fig. 12(c)), where at long times, when the overall gradients have smoothed out, the resonant regions670

have about twice the effective diffusivity as the islands. The islands’ κeff at that time approximately

matches the value from the same region in the unperturbed simulation, indicating that chaos has not

affected this area. In the E = 0.02, k = 10−6 case (Fig. 12(d)) the mean κeff is typically higher in

the resonant region than in the island, but the differences are less pronounced. It is notable that at

t > 130, κeff is larger in the island than in the same unperturbed region, perhaps because islands675

are not completely regular and contain smaller chaotic resonant regions within them.

Overall, these dye experiments show that chaotic advection enhances Nakamura effective dif-

fusivity within the chaotic sea at some times in all cases examined. The amount of enhancement

is controlled by both the size of the perturbation and the imposed diffusivity. A larger perturbation

leads to greater enhancement (higher κeff ). A smaller diffusivity leads to more filamentation (higher680

χ2) and highly elevated enhancement (much larger κeff ).

6 Conclusions

The main thrust of this work is to establish whether the stirring due to chaotic advection in an

idealized model of an upper ocean eddy remains relevant in the presence of levels of background

turbulent diffusion that are consistent with observations. The answer is that chaotic advection can685
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Figure 9. Top, (a)(b)(c), tracer variance, χ2; bottom, (d),(e),(f), κeff integrated over volume. Left, (a)(d):

k = 10−6, E = 0.02, middle, (b)(e): k = 10−4, E = 0.02, right, (c)(f): k = 10−4, E = 0.125. Solid blue lines

include the deterministic perturbation which induces chaos, X0 =−0.02, green dashed lines are unperturbed,

solid red lines include the deterministic perturbation with X0 =−0.16. Black dashed lines indicate κeff inte-

grated over volume in the case of nested circular tori.

indeed be relevant, and in some cases dominant, within certain regions of the flow field and over

certain time intervals. The region most likely to feel the effects of chaotic advection is the extensive

chaotic sea that exists in all simulations, and is especially pronounced when the eddy is shallow.

Chaotic stirring in the smaller and more isolated resonant regions is less likely to be important. This

conclusion comes with many caveats related to idealizations (e.g. homogeneous turbulent diffusion)690

and uncertain parameter values (e.g. background diffusivity, strength of perturbation).

A second focus of the work has been to explore different bases for comparison of the effects of

chaotic advection and homogeneous turbulent diffusion. To this end we have identified three metrics

for comparison and are now in a position to discuss their advantages and disadvantages. The first

metric is the Largrangian Batchelor scale (Sect. 3), an estimate of the equilibrium width of a passive695

tracer filament. Equilibrium is achieved when transverse compression due to advection, as quantified

by the negative Lyapunov exponent with the largest magnitude (λ3) is balanced by the diffusive

spreading of the tracer. Below the Batchelor scale, diffusion is stronger than advection; when this

width is larger/smaller than that of the chaotic regions, diffusion/advection dominates. We fixed the

turbulent diffusivity using Okubo’s empirical formula and calculated the Batchelor scale δ using700

the rate of chaotic filament stretching, λ3, computed numerically as the largest negative finite–time

Lyapunov exponent for the kinematic model. The resulting Batchelor scale varies from O(1m) for

E = 0.25 to O(100m) for E = 0.0005. These values of δ are smaller than the spatial extent of the
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Figure 10. Results from three Navier–Stokes simulations with E = 0.02: left, (a)(d)(g)(j), x0 =−0.02, k =

10−6; middle, (b)(e)(h)(k), x0 = 0, k = 10−4; right, (c)(f)(i)(l), x0 =−0.02, k = 10−4. The x0 = 0, k =

10−6 case is not shown, but is qulitatively similar to the x0 = 0, k = 10−4 case. Top, (a)(b)(c): Dye, t= 39.

Row 2, (d)(e)(f): κeff , t= 39. Row 3, (g)(h)(i): Dye, t= 299. Bottom, (j)(k)(l): κeff , t= 299.
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Figure 11. Results from Navier–Stokes simulations for E = 0.125, k = 10−4, with three deterministic per-

turbation levels: left, (a)(d)(g)(j), X0 = 0; middle, (b)(e)(h)(k), X0 =−0.02; right, (c)(f)(i)(l), X0 =−0.16.

Top, (a)(b)(c): Dye, t= 39. Row 2, (d)(e)(f): κeff , t= 39. Row 3, (g)(h)(i): Dye, t= 299. Bottom, (j)(k)(l):

κeff , t= 299.
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Figure 12. E = 0.02 Poincaré sections in the (a)x–z and (b)y–z planes in black. Polygons show the island

(blue) and resonant (red) regions used for analysis (c) and (d), mean κeff over time in these regions under both

applied background diffusivities.

chaotic sea over all E values considered (0.25, 0.125, 0.02, and 0.0005), but of similar magnitude to

the widths of the resonant regions.705

Interpretation of the Lagrangian Batchelor scale analysis would appear to be straightforward, but it

does not comprehend the fact that chaotic advection may only be dominant over a finite time interval,

which is averaged in the FTLEs. Even when the level of background turbulent diffusion is weak, it

will eventually spread beyond the region of Lagrangian chaos. There is also a level of uncertainty due

to the choice of integration time over which λ3 is calculated. Finally, it is not yet possible to calculate710

λ3 from ocean data with contemporary float/drifter technology. Vertical velocities are typically very

weak and Lagrangian drifters that are able to follow water parcels in 3D are expensive and have only

been deployed in small numbers (D’Asaro et al. (1996); D’Asaro (2015)).

As a second basis for comparison, we computed the dispersion over time of initially small clusters

of trajectories (Sect. 4) as they spread across isosurfaces of the background streamfunction. Back-715

ground turbulent diffusion is simulated as a Lagrangian random walk based on spatially uniform

diffusivity. We consider the dispersion characteristics that arise when this representation of turbulent

diffusion is added to a background flow with no chaotic advection and compare it to flows that are

undergoing chaotic advection but lack turbulent diffusion. Since the chaotic regions occupy sub–

volumes of the entire eddy, spread of trajectories or tracers due to turbulent diffusion will eventually720
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surpass that due to chaotic advection: chaos alone cannot distribute parcels across Lagrangian bound-

aries. However, it remains meaningful to compare the rate of spreading of parcels at earlier times.

One immediate observation is that the character of ensemble spreading is qualitatively different for

advective as opposed to diffusive perturbations. For the former, the spreading rate is significantly

enhanced at some key times when trajectories pass near strong hyperbolic regions. In the latter case,725

the spread grows similarly to the square–root of time at all times.

When the eddy is moderately shallow (E = 0.125) there are many instances in which chaotic

advection in the chaotic sea dominates turbulent diffusion, even at the higher ranges of turbulent dif-

fusivity. When the perturbation strength is moderately large (ε= 0.08,x0 =−.02), chaotic advection

produces more rapid spreading than diffusion for two of three diffusivities considered (pink curve in730

Fig. 8(a)). Even when the perturbation strength is small (ε= 0.01), spread due to chaotic advection

in the chaotic sea (red curve in 8(a)) is of comparable order to turbulent diffusion at the lowest k

values considered (light blue curve in 8(a)). These results are in agreement with the Batchelor Scale

analysis.

When the eddy is deeper (E=0.02) spreading due to turbulent diffusion in the chaotic sea and735

resonant regions generally dominates over spreading due to chaotic advection. This holds even when

the perturbation strength is moderately large (ε= 0.08). These results are not in strict agreement with

the Batchelor Scale analysis (Fig. 6) result that the dimension of the chaotic sea is greater or equal to

that of the Lagrangian Batchelor scale for deeper eddies. To reconcile these inconsistencies, note that

asE gets small, a greater percentage of the eddy volume becomes occupied by an inviscid, vertically740

rigid interior. For very small E, parcels experience relatively low levels of strain while rising or

descending through the region. When a fluid parcel nears the top or bottom boundary, however,

it become vertically squashed and horizontally stretched, suggesting that the main contribution to

λ3 comes from close encounters with these boundaries. A Batchelor scale that is based only on a

single parameter measuring the time–averaged contraction over several overturning cycles may be745

too simplistic when a parcel divides its time between kinematically distinct regions.

This method of comparison based on parcel spreading has several advantages over the Batchelor

scale. First, it offers a direct measure of fluid stirring. Also, it reveals information about the time his-

tory of dispersion that is hidden in the Lagrangian Batchelor scale analysis. Disadvantages include

the fact that the analysis, as presented, does not account for scale–dependent diffusivity. Also, like750

the Batchelor scale analysis, it requires the tracking of fluid parcels in 3D, something that is currently

difficult in the ocean. The third method for comparison (Sect. 5) differs from the first two in that it is

based on metrics of irreversible property exchange (mixing). These metrics consist of the Nakamura

effective diffusivity, κeff , and a volume–integrated tracer variance function, χ2. We consider a flow

with a given background turbulent diffusivity, k, and calculate how much the irreversible property755

exchange is amplified as a result of chaotic stirring. The volume–integrated κeff and χ2 both depend

on time and show rapid initial growth, a result of filamentation of an initially smooth tracer distribu-
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tion. Growth is arrested when diffusion begins to dominate due to the enhanced gradients produced

by the filamentation process, at which time both measures, κeff and χ2, reach peak values. This is

followed by a long period in which χ2 slowly diminishes to zero and the volume integral of κeff760

reaches a nearly constant value. In most cases, chaotic advection leads to more rapid initial growth,

a lower peak value for both measures, and a larger long–term, near–equilibrium value of κeff . In

weakly perturbed cases, the differences in initial growth and peak value of κeff are minor, usually

on the order of 10 or 20%, while differences in the longer term, near–equilibrium value of κeff are

more significant. For strongly perturbed cases the initial growth is an order of magnitude larger and765

the amplification in the long–term value of κeff is larger by a factor of two than in the unperturbed

case.

The spatial structure of κeff also yields interesting information, though one must be aware of

the caveat that the local value is due to non–local processes. The chaotic sea region generally has

enhanced values compared to the interior and its resonant regions. Under weak perturbation, maxi-770

mum values of κeff were smaller than in the unperturbed case, but the spatial extent of the interme-

diate values was larger, leading to the enhanced volume–integrated values discussed above. Larger

changes in κeff are evident for lower k due to the occurrence of more numerous small–scale fila-

ments. With a larger perturbation, chaotic advection dramatically changes the effective diffusivity,

but there are also stronger barriers present, evident from isolated areas with different tracer concen-775

tration. We conclude that the spatial structures of chaotic and regular regions can play an important

role in how a tracer is distributed.

The use of effective diffusivity as a metric has several advantages and disadvantages. First of all,

it provides a direct measure of irreversible property exchange between regions with different dye

concentration. Its time history leads to insights about the evolution of mixing and, in particular, the780

time periods when chaotic advection is most relevant. Also, it can be measured, at least in principle,

by performing an ocean dye release and measuring the dye concentration along sections that cut

through the dye plume at different depths or angles, all in an attempt to recreate a concentration

map in 3D. Of the three methods proposed herein, it would appear to be the one most testable by

ocean observations. The main disadvantage of effective diffusivity is that it requires the background785

diffusivity to be constant, which is strictly true only if the diffusivity is interpreted as the molecular

diffusivity.

In this work, we examined the relative strengths of advection and diffusion for the redistribution

of a passive tracer in a rotating cylinder flow as an analogue for an overturning submesoscale eddy.

Since a major challenge of this work has been to develop ways of thinking about the competition790

between chaotic advection and turbulent diffusion, the numerical experiments described in this pa-

per have been necessarily idealized. Although the focus of this current paper is on the behavior of a

steady 3D eddy flow subject to a turbulent diffusion, similar results are expected to hold for 3D eddy

flows with time-periodic and time-quasiperiodic behavior. Exploration with models that are more re-

31



alistic for the ocean presents a number of challenges, including the development of more anisotropic795

and spatially–varying representations of turbulence to account for differences between the ocean

surface mixed layer and the stratified fluid underneath. In addition, finite eddy lifetimes must be

confronted as a separation of timescales between feature lifetimes and the periods of trajectories

within them is needed for these analyses.
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Appendix A: Bifurcation Analysis of Fixed Points of the Background Streamfunction800

Here we provide detail about the fixed points, and their bifurcations, of the background velocity

field in the kinematic model of the rotating cylinder. Then we present the bifurcation diagram and

an example of the flow with many fixed points in the overturning streamfunction.

The overturning streamfunction is described by Eqn.s (2–7), with radial and vertical velocities (8–

9) and azimuthal velocity (10). All 3 velocity components are zero at z = 0 and r = a. The azimuthal805

velocity V only has 1 other zero at r = 0. However, there exist additional points with zero vertical

and radial velocity, which correspond to circular periodic orbits in the horizontal plane and which

we refer to as rz–fixed points.

All rz–fixed points in the interior occur at r = 0.5a, because this is the only place where W =

0. Finding the rz–fixed points is thus equivalent to finding points in z where U(r = 0.5a,z) = 0.810

One such point exists for all E at z = 0.5. Additional rz–fixed points appear through pitchfork

bifurcations, where new pairs split from z = 0.5 and move apart in z as E decreases from one (Fig.

13).

It is possible to classify the rz–fixed points as elliptic or hyperbolic according to their behavior in

the r–z plane: the overturning streamfunction is a local maximum in both z and r at elliptic points815

and a saddle, i.e., a mininum in r but a maximum in z, at hyperbolic points. At E = 1, the only

stationary point is at (r,z) = (0.5,0.5), and it is elliptic. As E decreases to about 1/62, the first

bifurcation creates two elliptic points above and below the now–hyperbolic central point at (r,z) =

(0.5,0.5). As E decreases, the newly created points move away vertically from the central point,

until the next bifurcation creates two new hyperbolic points, and the central fixed point becomes820

elliptic again. This process continues; the number of fixed points increases as E decreases through a

repeated pitchfork bifurcations of the (r,z) = (0.5,0.5) fixed point. As these bifurcations occur, their

effects remain within a region bounded by trajectories between the first pair of hyperbolic points,

meaning that their effects are quite local. The spreading of the first pair of hyperbolic points, and

not the total increase in rz–fixed points, causes the increasing vertical homogeneity of the flow with825

decreasing E which appears qualitatively similar to Taylor columns. An example with 9 rz–fixed

points is shown in Fig. 14 for E = 0.00125; the central point is now elliptic. Trajectories in the

vertical plane are level curves of the streamfunction; these show the elliptic and hyperbolic nature

of the rz–fixed points, where trajectories near an elliptic point remain nearby but trajectories near a

hyperbolic point may travel a long distance before returning or may move toward another hyperbolic830

point.

Appendix B: Gaussian Tracer in Linear Strain

In this appendix, we present the derivation of the evolution of a three–dimensional tracer in a steady

linear strain flow. This result was used in the main text to show that the thinnest width of the Gaussian

33



Figure 13. z–positions of rz–fixed points. Black indicates elliptic points, blue hyperbolic, gray the neutrally

stable points at the top and bottom. New fixed point pairs separate symmetrically from z = 0.5 as E decreases.

At each bifurcation, the central fixed point changes stability.
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Figure 14. Trajectories in the vertical plane forE = 0.00125, a= 1. There are 9 rz–fixed points along r = 0.5,

marked with red stars. Note the closed curves between the outermost hyperbolic points which surround the

interior 5 rz–fixed points; these limit the effects of those points to the local area.
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tracer distribution will asymptotically approach the Lagrangian Batchelor scale. We start with the835

definitions of the velocity field, the tracer evolution equation, and the form of the solution. Then we

derive the full time–dependent solution for the tracer distribution.

We are solving for the evolution of tracer concentration, C, with a solution in the form of a

Gaussian function

C = cmax(t)exp

(
−x2α2(t)

2
+
−y2β2(t)

2
+
−z2γ2(t)

2

)
, (B1)840

where cmax is the maximum concentration and α, β, γ are the reciprocal of the standard deviations

in each direction. In the Lagrangian frame of reference that is moving with the center of mass of

the tracer, these four parameters are dependent on time but not space. The smallest width of the

distribution is σ = 1/α and in the main text we have used the fact that it has a stable fixed point

σ =
√
κ/|λ3|, where λ3 is the contraction rate of the velocity field. We are now going to formally845

prove it.

The velocities are defined in the Lagrangian frame by

u= λ3x(x0, t), (B2)

v = λ2y(x0, t), (B3)

w = λ1z(x0, t), (B4)850

λ1 > λ2 > λ3, (B5)

λ1 > 0, λ3 < 0, (B6)

with x(x0, t) indicating the initial position x0 of the water parcel at t= 0. The Lagrangian tracer

evolution equation is

∂C

∂t
+λ3x

∂C

∂x
+λ2y

∂C

∂y
+λ1z

∂C

∂z
= κ∇2C, (B7)855

where κ is the diffusivity.

The form of C and the tracer evolution equation allow us to find differential equations for each of

our four parameters, which are

1

cmax

dcmax
dt

=−κ
(
α2 +β2 + γ2

)
, (B8)

dα

dt
=−λ3α−κα3, (B9)860

dβ

dt
=−λ2β−κβ3, (B10)

dγ

dt
=−λ1γ−κγ3. (B11)
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The width parameters’ equations are nonlinear, but rewritten in terms like α−−2 give:

dα−2

dt
= 2λ3α

−2 + 2κ, (B12)

dβ−2

dt
= 2λ2β

−2 + 2κ, (B13)865

dγ−2

dt
= 2λ1γ

−2 + 2κ, (B14)

which are Bernoulli equations, solvable with integrating factors, giving

α=
√
|λ3|/κ

(
(λ3α

−2
0 /κ− 1)e2λ3t + 1

)−1/2
, (B15)

β =
(
(β−2

0 +κ/λ2)e2λ2t−κ/λ2

)−1/2
, (B16)

γ =
√
λ1/κ

(
(λ1γ

−2
0 /κ+ 1)e2λ1t− 1

)−1/2
, (B17)870

where subscript 0 indicates the value at t= 0. The differences in these equations is due to the differ-

ent signs of each λ, with the ambiguity of the sign of λ2 preventing its factoring.

The cmax equation depends on the width parameters and is not simple to solve directly. However,

a careful inspection shows that cmax/(αβγ) is conserved, so we can write

cmax(t) = c0α(t)β(t)γ(t). (B18)875

For anyone in doubt, we plug in this solution to check it:

dcmax
dt

=
d

dt
(c0αβγ) = c0

(
βγ

dα

dt
+αγ

dβ

dt
+αβ

dγ

dt

)
,

= c0
(
−αβγ(λ3 +κα2)−αβγ(λ2 +κβ2)−αβγ(λ1 +κγ2)

)
,

=−c0αβγ
(
λ1 +λ2 +λ3 +κ[α2 +β2 + γ2]

)
,

=⇒ 1

cmax

dcmax
dt

=−κ
(
α2 +β2 + γ2

)
.880

The full solution for the tracer concentration C then has been fully solved by (B1) with α,β,γ and

cmax given by (B15–18).

For a three dimensional Gaussian tracer advected by a linear strain field in the presence of constant

diffusivity, in the Lagrangian frame the width of the tracer distribution will increase in the stretching

direction(s) forever, but reach a fixed value in the contracting direction(s).885

Appendix C: Long–Time Limit of Effective Diffusivity For The Axially–Symmetric Rotating

Cylinder Flow

For the axially–symmetric rotating cylinder flow at long times, the dye contours resemble nested

tori, although with cross–sections that are somewhat between a circle and a square. Here, we derive

the expected limit of
∫
κeffdV assuming that the dye iso–contours at late times are nested tori with a890

circular cross–section, and that the gradient of the dye concentration is constant along each torus. In

36



this case the effective diffusivity on each torus is κeff = kA2, the background diffusivity multiplied

by the squared surface area of a torus.

Recall that the volume of a circular torus is

Vct = 2π2r2R, (C1)895

where r is the radius of the circular cross–section and R is the distance from the center of mass of

the torus to the center of the cross–section. The surface area is

Act = 4π2rR.

Noting that Act = dVct/dr, we can calculate the volume–integrated effective diffusivity as∫
κeffdV =

∫∫∫
kA2dV900

= k

rmax∫
0

A3dr

= k

rmax∫
0

(4π2rR)3dr

= 43π6R3k

rmax∫
0

r3dr

= 42π6R3kr4
∣∣∣rmax

0
= kπ6/8 (C2)

using R= 0.5 and rmax = 0.5. This circular–torus–based result gives a lower bound, because there905

is still volume outside the largest torus that fits in the cylinder and the final cross–sections are some-

what square, thus having a larger surface area per volume.
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