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Author response to reviewer comments

To begin, we would like to thank all reviewers for their close reading and appreciative comments
on this paper. It was quite gratifying to receive so many positive remarks. Below, we address the
individual comments of each reviewer. Our responses are in italics. Line numbers in our responses
refer to the revised paper draft, while those in the reviewer comments refer to the discussion pa-
per version. Following these responses is the manuscript with changes from the initial submission
marked: red indicates removal and blue indicates addition.

Reviewer 1

1. A sketch of the flow would be helpful when first discussed in detail, showing both the rotating
flow, the Ekman layers, and the off-center perturbation.

A sketch of the flow was also requested by reviewer 3. A new first figure has been created for
this request. It shows the 3D cylinder with the direction of flow and labels indicating Ekman layers.
Figure caption: Sketch of the qualitative velocity field, Eqn.s 7-9. Ekman layers at the top and bottom
are where flow has a larger radial component. ) is the rotation rate of the system. X is the offset
between the lid and cylinder rotational centers, as set for the Navier-Stokes simulations.

2. The Batchelor scale is a little difficult to follow when first presented at the beginning of section
3, but then there is an outstanding discussion of this in section 3.1 (on p. 11) with ample references.
Perhaps move that discussion a little earlier.

Reviewers 2 and 3 also requested the start of this section be cleaned up. In the revised paper we
have re-arranged section 3. We have moved the Batchelor scale discussion forward to the beginning

of section 3 (lines 253—-283), and we have moved the discussion of dimensionalization from the
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beginning of section 3 to after Okubo’s diffusivity is introduced in section 3.1, which is where it
becomes relevant.

3.1 will admit that by the time I got halfway through section 5, I was beginning to fade. Although
I think that the detail is useful overall, perhaps some trimming of section 5 would be helpful to the
readability of the paper. But this isn’t critical — it’s fine if the authors leave it as is.

Reviewer 3 also commented that section 5 was challenging. This was indeed a difficult section to
write and was the target of a number of revisions and reduction prior to submission. We took another
look at it and feel that it would be difficult to condense further without sacrificing important content,
but we went through and made a number of minor changes intended to make it a little easier to read:

Line 550: X0 is clarified: “The symmetry—breaking perturbation is created by moving the central
axis of the imposed surface lid stress a fraction of the radius X0 from the cylinder axis"

Line 565: Figure 9 reference now specifies panels (a)—(c)

Line 589: Changed “see Figure 10(h)" to “look ahead to Figure 10(h)"

Line 598 and Fig. 11 caption: We now include the diffusivity, k, in the description of the case we
discuss.

Line 641 Changed “k.yy/k" to “as measured by ‘keysy/k"

We also changed the color scheme of Figs 9-10 (10-11 in the revised version) and improved the
quality of these figures to allow more accurate reading of the values.

Reviewer 2

1. Line 69: I would rather talk about important characteristic for the problem considered instead
of a “person”. Something like: The terms “important” and “relevant” are somewhat subjective, and a
particular aspect, such as the existence of barriers, that is of interest for one scientific question may
not be so to another.

Changed to: The terms “important" and “relevant” are somewhat subjective, and a particular
aspect, such as the existence of barriers, that is of interest for one scientific question may not be so
for another.

2. Line 244: though

Changed, thank you! (Now on line 250)

3. Fig.2/Fig.3: The scale of the upper row of figures looks not equidistant in my viewer. It is also
confusing that the lower plots have a scaling range and the upper ones do not. Further it is said in
the caption that the simulations are from another work while in the text the simulations are claimed
to be done within this study. This is a bit confusing.

The non-equidistant ticks in the top panels of Figs. 3 and 4 were due to problems in changing
image format. In the revision, we have used higher-quality images and removed the ticks.

The difference between the top and bottom panels in Figs 3 and 4 are that the top panels were
computed using velocities from a dynamically-consistent numerical model, whereas bottom panels

were computed using velocities from our analytic (non-dynamically consistent) model. This is now
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clarified in the caption and in the text. The purpose of these plots was to show that our analytic model
(bottom panels) correctly captures the qualitative features of the dynamically-consistent solution
(top panels).

In this paper we did not re-run the dynamically-consistent NS solver to get the top panels; we
simply took these images from P2014. This is now clearly stated in lines 229-230 of the text. Since
P2014 only computed Poincare sections but did not compute FTLEs, we have no color images in the
top panels. For our analytic model in the bottom panels, however, we have computed both Poincare
sections for comparison with the top panels, as well as FTLE fields, whose values we show using the
colorbar. These FTLE values will be used in section 3 to compute the Batchelor scales.

The new caption for the first of these figures (3) now reads: “Structures in the kinematic model and
dynamical simulation for Ekman numbers of 0.25 (a)(c) and 0.125 (b)(d). Top, (a)(b): Poincare maps
from P2014 (their Fig. 10), resulting from a dynamically consistent numerical simulation. Bottom,
(c)(d): Poincare maps (black) and largest FTLEs (color) resulting from our non-dynamically con-
sistent kinematic analytic model, with ¢ = 0.01 and xq either -0.5 (c) or -0.9 (d); in color, maximum
FTLEs calculated for the kinematic model with integration time 400. In (d), red oval approximately
separates the resonant and regular layers (inside) from the chaotic sea region (outside), with the
blue line segment showing the width of the chaotic sea. The blue diamond shows the width of an
island, which is also the width of the resonant layer."

4. Line 252: Maybe I missed it but was the chaotic layer thickness introduced before being used
here? I feel like maybe it is necessary to revise the usage of chaotic sea, width of chaotic sea, chaotic
layer and chaotic region, see also line 16 in the abstract. A mere note would help easier reading.

Reviewer I also found the start of section 3 to be a bit confusing. Now, near the beginning (lines
260-268), we have: “If 0 is larger than the structures in the flow induced by chaos, then diffusion
will overcome advection and wipe out these structures. The structures of interest, induced by the
deterministic, symmetry—breaking perturbation (see Fig.s 3—4) are the bands of chaos, called reso-
nant layers, surrounding regular island chains (see blue diamond in Fig. 3d), and the chaotic sea
region (outside the red oval in Fig. 3d) located near the cylinder perimeter and central axis, which
are identified by visual inspection of Poincare sections. When we compare § to these structures, we
define their widths as the difference between distances from the central orbit, (r,z) = (0.5,0.5), to
the outermost/innermost part of the structure, measured in Poincare sections like Fig.s 3-4."

5. Line 264: Should it not be equation (13)?

In fact, it should be equation (9), for the background azimuthal velocity of the kinematic model.
This has been changed.

6. Line 273: Does it make sense to talk of a timescale of a non-dimensional timestep? In general
I was sometimes confused by the varying usage of non-dimensional units and dimensional ones.
Maybe it could be helpful to use only adimensional ones in the text and make a little table for the

conversion?
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Thank you for your suggestion on making the text more readable. We have added Table 1 with
the correspondence between dimensional and nondimensional values, and removed references to
dimensional values of model variables in sections 3-5 (e.g. lines 364,367,461,463).

7. Line 319: Cauchy-Green.

Changed, thank you.

8.Line341: y=0?

Several errors existed in this equation, which is derived in Appendix B. It is now corrected.

9. Line 349: I feel like there is some other reference missing (or not?). Did not Okubo just study
up to a scale of 100km in that report?

You are correct, we have updated the upper limit (line 332).

10. Fig.5, caption: Which § values? (22) or (15)? Even though it becomes clear studying the text
it would be easier if it was stated. Just to be curious: What is the result for (15)?

These values are computed with Eqn. 22, which is now indicated in the caption. With Egn. 15, the
Batchelor scale is similar to or larger than the layer widths in all cases.

11. Line 364: Fig. S 2-3

These are in fact referencing figures (plural) 2 and 3, not supplementary figures. This matter has
been corrected in the revision (line 363).

12. Line 366: 10-20 rotations <-are those the integration times for the FTLE?

The reviewer is correct. We have clarified the sentence in question as follows: “FTLEs were
estimated over an integration time of 400; the range of FTLE magnitudes does not noticeably change
when the integration time is decreased by half."

13. Line 377: “rotating can model" is it the standard name for the model used? Why not introduced
before? It difficultates understanding using a new name.

This now reads “kinematic model"; thank you for pointing this out.

14. Line 421: pf—of

This has been changed, thank you.

15. Line 507: Year of citation of Shuckburgh, E. and Haynes, P. should be 2003.

In this case, we are citing Haynes and Shuckburgh’s work on the application of the Nakamura
effective diffusivity to the atmosphere, which is described in a pair of papers in JGR in 2000, not
the 2003 Shuckburgh and Haynes work on the quantitative applicability of the effective diffusivity in
Physics of Fluids in 2003. (The latter is also relevant for our paper and is cited on line 519.)

16. Line 545: The numerical simulations are run using the solver NEK5000...

We have added “the solver”, thank you.

17. Fig. 8: X0 instead of epsilon in caption and in legend the x is small? Further I would find it
really helpful for the comparison of the temporal evolution and the peaks of the different cases to
have a grid in the background of the plots.

X0 has replaced epsilon and x0, thank you. We have also added a grid.
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18. Line 596: After “dye contours" put reference to Fig 10(e)?

We have referenced Fig 10i, thank you for demonstrating how confusing this can be without that
reference.

19. Line 599: A caveat is that k eff is a nonlocal property, the value of which at any point in space
and time is influenced by processes occurring at all other locations having the same C at a distinct
time t (?). This time dependence could also be explicitly noted in equation (25) to clarify. I must
admit that I am still a bit confused about the details of the calculations of k eff here. As I understand
it the keff values are calculated at each time step from volumes of equal concentrations (and dC/dV
is taken from the cumulative distribution of volumes with concentrations ¢ < = C as in the reference
[Shuckburgh and Haynes, 2003]). One then gets a function k eff ( C,t ). The plots of k eff at fixed
instances t would thus just be derived by finding the corresponding value of k eff at that C (t)? Or is
there any such thing as an equivalent latitude used here? I wonder why the two plots of keff(t) and
C(t) look so different. The keff looks much more noisy. How does keff(C,t= 39) look like?

You are correct about the calculation of keff. The plots of keff are noisier than those of C be-
cause the function keff(C) is not very smooth: small variations in C can correspond to larger, non-
monotonic changes is keff. This is now addressed in the text lines 600-604: “A caveat is that keff is
a nonlocal property, so plots show the values keff{C) mapped onto the locations on the sections with
corresponding dye concentrations, C, while they are calculated using the distribution of C over the
whole volume at that time. These mappings are noisier than the sections of C because the numeri-
cally computed keff{C) is nonmonotonic and can have large changes with small changes in C."

20. Line 607-608: Do the results depend on the details of the initial condition? What must be met
to ensure that the results are independent?

In our simulations, we see a transition from the large-scale vertical gradient in tracer concen-
tration to approximately toroidal tracer distribution after several overturning cycles. For an initial
broad gradient in any direction, we expect the same realignment after the first few overturnings as
the tracer is passively advected by the background velocity field. We believe, then, that the tracer
distribution that exists at later times is somewhat independent of initial distribution. We have added
this idea to the text, lines 615-620, as: “With no disturbance present (Xo =0) and k =104 (Fig.
10(b)), the initially horizontal lines of constant C have been advected by the axially symmetric
overturning circulation such that contours of constant C are roughly aligned with the overturning
streamfunction. For an initial broad gradient in any direction, we expect the same realignment after
the first few overturnings as the tracer is passively advected by the background velocity field. We
believe, then, that the tracer distribution that exists at later times is somewhat independent of initial
distribution.” It would be interesting to test this, but one would have to do it over a range of tracer
distributions. Our paper is quite long already, so this may have to be something to explore in the

future.
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21. Line 631: Thus the combined effect of smaller diffusivity and finer filaments (i.e., stronger
tracer gradients) leads to more rapid mixing across tracer contours. This is my favorite insight of the
analysis and it is, at first glance, counterintuitive to me and still makes so much sense.

Thank you.

22. Line 667: Here I am confused about the statement: A smaller diffusivity leads to less mixing
(X2). Especially when compared to details of Fig. 8.

We agree with the reviewer that the wording of this sentence was indeed ambiguous. We have
rewritten the sentence in question as follows (lines 680-681): “A smaller diffusivity leads to more
filamentation (higher x?) and highly elevated enhancement (much larger keff)."

23. Line 681: I feel that pros and cons is a bit colloquial and would suggest advantages and
disadvantages (or so). But that is just my personal opinion.

We have changed this line, thank you for marking it.

24. General comment 1: As a general remark to the Figures and their descriptions, there is quite
some mixed usage of either left-middle-right-bottom-top and a,b,c.d,.... Maybe it would become
easier to read just using a,b,c.d,... Especially Fig.’s 8/9/10.

In the text we have replaced references by location to references by panel letters. In the actual
captions of figures, we use positions of rows and columns in order to indicate the pattern of the
panels- rows and columns generally have the same type of data or data from the same simulation
shown. However, we now also note the panel letters to avoid confusion.

25. General comment 2: On a similar vein I also find the usages of the word turbulence, turbulent
diffusivity, diffusion, eddy diffusion and similar expressions confusing too. I would try to avoid
using these concepts interchangeably and only use those expressions that were defined before.

We have tried to clean up our lexicon. Both terms “eddy diffusion” and “eddy diffusivity" have
been eliminated. We now consistently use terms “chaotic advection" and “turbulent diffusion” to
refer to the two dominant processes that influence tracer evolution. For example, the new abstract
now reads:

“The importance of chaotic advection relative to turbulent diffusion is investigated in an ide-
alized model of a 3D swirling and overturning ocean eddy. .. Turbulent diffusion is alternatively
represented by: 1) an explicit, observation—based, scale—dependent diffusivity, 2) stochastic noise,
added to a deterministic velocity field, or 3) explicit and implicit diffusion in a spectral numerical
model of Navier—Stokes equations."”

Reviewer 3

General comment 1: The methods are really well described but I believed some of the sections are
too long. I would like the authors to focus on results and maybe relayed some of the methodology
details to Appendix. For example, sec. 3-3.1 and add details to the results section in 3.2. Section 5 is
also a bit hard to follow as the reader is asked to compare two figures, maybe a reorganization of the

figures could improve the readability.



210

215

220

225

230

235

240

Reviewer 1 agreed that the structure of section 3 was not optimal and that section 5 was chal-
lenging. We have re-structured and streamlined section 3. Specifically, we have moved the Batchelor
scale discussion forward to the beginning of section 3, and the discussion of dimensionalization from
the beginning of section 3 to after Okubo’s diffusivity is introduced in section 3.1.

Section 5 was indeed difficult to write and was the target of a number of revisions and reduction
prior to submission. We took another look at it and feel that it would be difficult to condense further
without sacrificing important content, but we went through and made a number of minor changes
intended to make it a little easier to read:

Line 550: X is clarified: “The symmetry—breaking perturbation is created by moving the central
axis of the imposed surface lid stress a fraction of the radius X0 from the cylinder axis"

Line 565: Figure 9 reference now specifies panels (a)—(c)

Line 589: Changed “see Figure 10(h)" to “look ahead to Figure 10(h)"

Line 598 and Fig. 11 caption: We now include the diffusivity, k, in the description of the case we
discuss.

Line 641 Changed “F sy /k" to “as measured by keyr/k"

We also changed the color scheme of Figs 9-10 (10-11 in the revised version) and improved the
quality of these figures to allow more accurate reading of the values. Finally, we now consistently
refer to the subpanels in the multi-panel figures by their letters (a,b,...) instead of their location
(middle, left, etc.).

2: Lines 55-60: the authors should take a look at “Material barriers to diffusive and stochastic
transport” by G. Haller, D. Karrasch and F. Kogelbauer, which seeks transport barriers with no
diffusion of tracers across it. Those structures could help extract the different regions analyzed in
figure 11.

We thank the reviewer for the reference to a relevant paper and for the suggestion regarding
figure 11. While we agree that it would be interesting to try re-doing the calculations presented for
the slightly different regular region identified via this other technique, the resolution of the tracer
field in our existing simulations is too low to allow for a precise calculation of Keff within that exact
island. Note that we only use Poincare sections as guidance for picking red and blue regions with
qualitatively different behavior. We have added the following sentence to address this issue near the
end of section 5, line 667: “While we used Poincaré sections as guidance for defining regular and
chaotic regions, other methods (for example, Haller et al., 2018) could be used instead for the more
precise delineation of the phase space.”

3: Lines 575-580: is there a difference between x0 and X0, and later in the caption of Fig.8 there
is also an epsilon?

Yes, there is a difference. As noted in the first paragraph of section 2.2 (lines 215-220), xq is a
parameter for the offset in the perturbation for the kinematic model, while X is the offset in the

NS simulation. Epsilon is the strength of the perturbation for the kinematic model. In the caption
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of figure 8 the epsilon should be X, this has been corrected. We have also labeled X in the new
figure (now Figure 1) requested by the first reviewer.

4: Lines 771-774: 3D dye released and tracking seem almost like an impossible task, especially
when the tracers have to be followed for multiple days. Right now, none of those methods can be
calculated with observation data. Is there any plan for the applications of such analysis to 3D model
outputs (ECCO, HYCOM, etc.) that assimilate data from floats, drifters, CTD casts, etc.? An analysis
performed for example on a Loop Current or Agulhas Current eddy would be interesting.

We thank the reviewer for the comment and suggestion. We agree that any application to the ocean
in 3D is extraordinarily challenging for any of our measures. It would be quite interesting to apply
our analysis to data-assimilative models, but that is outside the scope of our work. There is also the
question of whether any of the cited models can reproduce the vertical velocity field correctly. Often,
a certain degree of horizontal averaging is needed to get a vertical velocity that looks sensible.

5. Line 140: the streamfunction is not intuitive at all, I believed a sketch of the flow in section two
could improve the readability.

To better relate the streamfunction to the velocities, we have added at its introduction (line 145)
“The streamfunction relates to the velocities by the negative z-derivative of U being the radial ve-
locity and the radial derivative being the vertical velocity." A sketch of the flow was also requested
by reviewer I and is now presented as the first figure.

6. Line 299: for a for a

Now one for a, thank you.

7. Line 319: Caushy-Green

Cauchy, thank you.

8. Line 421: move out pf

Of, thank you.

9. Line 445: a scale with square root of time could be included in the left panels of figure 7

The square root of time curve has been added to panel (a).

10. Equation 20: I believe it should be o instead of y ?

Several errors existed in this equation, which is derived in Appendix B. It is now corrected.

Reviewer 4

Here we paraphrase the comments in order to shorten them and address each individually.

1. The kinematic model assumes 1) there is a separation of scales between the background flow
and the turbulent perturbation; 2) the background flow is steady; and 3) the turbulence can be param-
eterized as a diffusive process (in the simulations of this model there is no actual turbulent flow). It is
my view that the validity of almost all of the conclusions/inferences presented in the paper is limited
to flows for which assumptions 1) and 2) (again, maybe also 3)) apply. None of these assumptions
apply to the NS simulations. Indeed, there is no guarantee that those simulations approach anything

resembling a quasi-steady flow. Assumption 2) is both especially important and especially restrictive,
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and this should be stated clearly by the authors. It is assumption 2) — together with incompressibility
— that leads to the underlying structure of a 2 dof autonomous Hamiltonian system.

You are correct that a separation in spatial and temporal scales between the background flow and
the turbulent perturbation is necessary for the analysis we perform. This is explicitly stated in the
introduction (lines 58—-68): “The relevance of chaotic advection for the stirring of material within
geophysical flows would appear to rest on several criteria. The first is that the flow field contain
persistent, long—lived (on the time—scale of interest) features such as gyres, eddies and jets, that
by themselves generate regions of elevated stirring as well as separating barriers. Secondly, the
stirring within these regions should be at least as important as that due to smaller scale, intermittent
features (i.e. small scale turbulence). Third, the barriers that exist in the absence of small-scale
turbulence should retain meaning as suppressors of exchange between the rapidly—stirred regions
in the presence of the small-scale turbulence. For the flow considered in this paper the first aspect
has been investigated and shown to be true (citations); this work concentrates on investigating the
second and third aspects."

As for the NS simulations, they do reach a nearly steady flow, as have laboratory experiments with
similar setups (e.g. Fountain et al. 2001). In our work, NS simulations produced a circulation that
was observed to be steady over hundreds of azimuthal cycling times, as evidenced by the replication
of periodic orbits in the stroboscopic sections in the top panels (labelled a,c) of our figs. 3 and 4
(previously 2 and 3). Please also see Pratt et al., 2014 for more examples of NS-based Poincare
sections over a wide range of parameters.

We have added to the conclusion (lines 792-794) “Although the focus of this current paper is on
the behavior of a steady 3D eddy flow subject to a turbulent diffusion, similar results are expected to
hold for 3D eddy flows with time-periodic and time-quasiperiodic behavior." To expand on that idea,
note that treatment of a time-periodic 3D eddy flow (but without the focus on advection vs diffusion)
is described in Rypina et al. (2015), who used theoretical arguments, analytic kinematic model and
NS simulations to study Lagrangian transport and transport barriers arising in a time-dependent 3d
idealized eddy. We could have carried out the same suite of experiments for that time-dependent flow
as here, invoking the same assumptions of time scale separation and parameterization of turbulence
as a diffusive process. So one does not lose the features induced by chaotic advection just because of
time dependence. Our hope is to analyze time-dependent and otherwise more complex flows in the
future using the presented set of tools, and to inspire others to consider our measures of the relative
impacts of chaotic advection and turbulence or diffusion in other flows. Note also that a flow that
varies on a significantly longer timescale than more intermittent perturbations could be amenable
to analysis similar to the steady case.

2. In many cases throughout the text the authors make statements about exponential stretching,
exponential growth, positive Lyapunov exponents, etc. The authors should be a bit more careful

about saying that these behaviors are average behaviors for long times.
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We agree with the reviewer and in the revised paper we now avoid such non-rigorous statements.
Instead, we use terms akin to “fast chaotic-advection-induced separation/stretching" (lines 445, 482,
for example) and phrases like “average exponential growth, as measured by FTLEs" (lines 256, 286,
440, 745). We have also rewritten the sentence introducing FTLEs as follows (lines 292-293): “The
FTLE quantifies the average exponential separation rate between a trajectory and its close neighbors
over a finite time interval."

3. For the trajectory integrations in the kinematic model with added stochasticity, the algorithm
that the authors use to integrate the stochastic differential equation, Eq 23, is quite crude; there are
simple explicit integration schemes for stochastic differential equations (SDEs). (Does the mystery
factor of 1/3 described on lines 405-407 somehow account for the fact that a Runge-Kutta algorithm
is trying to mimic a real SDE integrator?)

Yes, we used a very simple method for integrating a stochastic process. Other integration schemes
might provide a more accurate solution. However, we carefully tested that its mean and standard
deviation behaved properly over time without a background velocity before applying it. The stochas-
tic perturbations are added to the deterministic velocity at each full timestep. The 1/3 factor is due
to the fourth-order integration function, which estimates the next point using the weighted sum of
estimates of the velocity at the current position (vl, weight 1/6), the halfway point estimated from
the current position (v2, weight 1/3), the halfway point estimated using v2 (v3, weight 1/3), and the
final point estimated using v3 (v4, weight 1/6). Only v1 and v4 include stochastic additions, leading
to the 1/3 factor. We have added the following at lines 393—408 to clarify:

“Using the described stochastic perturbation, although it is quite simple, with Uy; = 0 or a con-
stant, the variance of a set of trajectories grows linearly in time, while the standard deviation grows
linearly with the square root of time, as expected for diffusion. .. This diffusivity requires a certain
step size s for the stochastic perturbation, which relates to the distribution of v’ by s = 0 At /3, with
o the standard deviation of u', At the numerical timestep (0.01), and the factor of 3 due to the details
of a fourth—order Runga—Kutta integration. The next position, using this method, is estimated using
the weighted sum of estimates of the velocity at the current position (vI, weight 1/6), the halfway
point estimated from the current position (v2, weight 1/3), the halfway point estimated using v2 (v3,
weight 1/3), and the final point estimated using v3 (v4, weight 1/6). Only vl and v4 include stochastic
additions, leading to the 1/3 factor.”

10
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Abstract.

The importance of chaotic advection relative to turbulent diffusion is investigated in an idealized
model of a 3D swirling and overturning ocean eddy. Various measures of stirring and mixing are
examined in order to determine when and where chaotic advection is relevant. Furbulenee-Turbulent
diffusion is alternatively represented by: 1) an explicit, observation-based, scale—dependent eddy
diffusivity, 2) stochastic noise, added to a deterministic velocity field, or 3) explicit and implicit
diffusion in a spectral numerical model of Navier—Stokes equations. Lagrangian chaos in our model
occurs only within distinct regions of the eddy, including a large chaotic ‘sea’ that fills much of the
volume near the perimeter and central axis of the eddy, and much smaller ‘resonant’ bands. The size
and distribution of these regions depends on factors such as the degree of axial asymmetry of the
eddy and the Ekman number. The relative importance of chaotic advection and turbulent diffusion
within the chaotic regions is quantified using three measures: the ratio-ef-the-tracer-filament-arrest
sealeto-the-width-of-the-chaetieregionLagrangian Batchelor scale, the rate of dispersal of closely
spaced fluid parcels, and the Nakamura effective diffusivity. The role of chaotic advection in the
stirring of a passive tracer is generally found to be most important within the larger chaotic ‘seas’,
at intermediate times, with small diffusivities, and for eddies with strong asymmetry. In contrast, in
thin chaotic regions, turbulent diffusion at oceanographically relevant rates is at least as important
as chaotic advection. Future work should address anisotropic and spatially—varying representations

of turbutenee-turbulent diffusion for more realistic models.

1 Introduction

Chaotic advection (Arefl (1984); Shepherd et al.| (2000)) is a process by which rapid stirring, as
manifested by the stretching and folding of material, is produced within a smooth and well orga-
nized Eulerian velocity field. The enhancement of stirring can be attributed to chaotic fluid parcel
trajectories and their rapid separation from nearby trajectories. There are many examples, ranging
from simple models of purely laminar flow (e.g.[Rom-Kedar et al.|(1990); Samelson| (1992)); Pierre-
humbert| (1994); Malhotra et al.| (1998); |Poje and Haller (1999); |Coulliette and Wiggins| (2001) and
other work reviewed in the texts of |Ottino| (1990); [Samelson and Wiggins| (2006)), to modeled or
observed, oceanographically or atmospherically relevant flows (e.g. Rogerson et al.| (1999)); [Miller|
et al.| (2002); |[Deese et al.[ (2002); |Olascoaga and Haller| (2012); |Sayol et al.| (2013); Rypina et al.
(20072009, 20114, [2012)). In most cases the flow fields are two—dimensional and time—dependent,
and when observed, often occur at the sea surface or within the stratosphere (Polvani et al.|(1995);
Ngan and Shepherd| (1997)). Three dimensional examples also exist (e.g. [Fountain et al.| (2000);
Rypina et al.| (2015);|Solomon and Mezi¢|(2003)); | Yuan et al.|(2004)); Branicki and Kirwan Jr{(2010),
and [Pratt et al.| (2014), hereafter P2014) and often involve numerically modeled velocity fields, due

to the limitations of observational methods.
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A feature that is intriguing and quite common in these studies is that Lagrangian chaos is confined
to certain sub-regions of the flow field, separated from each other by bands of material curves or
surfaces that contain no chaotic Lagrangian motion. The chaotic regions are rapidly stirred as a result
of the signature rapid separation of nearby trajectories, but the non—chaotic bands act as barriers that
confine the stirring. In textbook examples, including area—preserving maps of time—periodic 2D or
steady 3D velocity fields, the chaotic and non—chaotic regions form a fractal geometry, with bounded
chaotic regions imbedded in larger chaotic seas, themselves bounded and imbedded in even larger
chaotic regions (Chirikov| (1971} |{1979); |Casati and Ford| (1979); (Gromeka (1881); Dombre et al.
(1986)). In finite—time systems or systems with arbitrary time dependence, the distinction between
chaotic and regular trajectories is difficult to define. A great deal of recent work in the field has
resulted in the development of methods for identifying material barriers based on the notion of La-
grangian coherence. These methods include, for instance, finding sets of trajectories that experience
fastest separation rates from their close neighbors, identifying contours that undergo minimal stretch-
ing, locating sets of trajectories that remain compact in some sense and/or share a common property,
or identifying trajectories that encounter the largest number of other trajectories (see Haller| (2002);
Shadden et al.| (2005); Froyland et al.| (2007, 2012); Rypina and Pratt| (2017); Rypina et al.| (2018);
Hadjighasem et al.| (2017); Rypina et al. (2011b); [Haller and Beron-Vera (2012} 2013) as well as
the review by Haller| (2015) and references contained therein). Applications of these methods often
result in the identification of material contours and surfaces that act as barriers over finite time, thus
allowing for partitioning between strongly and weakly stirred regions of the flow field.

Completely impenetrable material barriers only exist because of the deterministic nature of the
trajectories. Even a low level of background turbulence at small scales, if represented as a diffusive
process, would cause the barriers to become permeable or fuzzy over sufficiently long periods of
time, and perhaps nonexistent in any practical sense if the time scale of interest is long enough. The
relevance of chaotic advection for the stirring of material within geophysical flows would appear to
rest on several criteria. The first is that the flow field contain persistent, long—lived (on the time—scale
of interest) features such as gyres, eddies and jets, that by themselves generate regions of elevated
stirring as well as separating barriers. Secondly, the stirring within these regions should be at least
as important as that due to smaller scale, intermittent features (i.e. small scale turbulence). Third,
the barriers that exist in the absence of small-scale turbulence should retain meaning as suppressors
of exchange between the rapidly—stirred regions in the presence of the small-scale turbulence. For
the flow considered in this paper the first aspect has been investigated and shown to be true (P2014;
Rypina et al.|(2015)); this work concentrates on investigating the second and third aspects.

The terms “important” and “relevant” are somewhat subjective, and a particular aspect, such as
the existence of barriers, that is of interest to-one-person-for one scientific question may not be so to
anotherpersonfor another. We examine several measures of stirring and mixing in a particular case

of a three—dimensional flow field: an idealized representation of an isolated eddy with horizontal
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swirl and vertical overturning. This idealized eddy is most likely to be similar to a submesoscale
eddy within a surface mixed layer of the ocean, although the velocities of such eddies have not been
well observed. The effects of stirring and mixing at these smaller scales, where vertical velocities
become important, is increasingly under study (e.g. Mahadevan|(2016)). Generally, increased reso-
lution improves ocean model behavior (Griffies et al.|(2015)), so at lower resolutions, an ongoing
challenge is parameterizing sub—grid—scale processes (e.g.[Hallberg| (2013))).

Our three—dimensional flow contains Ekman layers at the top and bottom of a cylindrical domain
and their thickness relative to the full depth is measured by an Ekman number. The Lagrangian
structure of the steady as well as time—periodic, deterministic versions of this flow has previously
been explored (P2014; Fountain et al.| (2000); Rypina et al.| (2015)). This deterministic flow field
can be approximated by an analytically described velocity field (Sect. 2), favorable for the efficient
calculation of large numbers of trajectories. In this paper, we will add a stochastic disturbance repre-
senting small-scale turbulenee-turbulent diffusion to the deterministic flow. In addition, some of our
calculations are done using velocity fields from a direct numerical integration of the Navier—Stokes
equations (used in Sect. 5).

In order to examine the relevance and importance of stirring and mixing due to large—scale La-
grangian chaos compared to that due to small-scale turbuleneeturbulent diffusion, we use several
distinct measures applied to our isolated eddy model. The first measure is a Lagrangian version of
the Batchelor scale (Sect. 3), a measure of the smallest tracer filament width that can be produced by
chaotic advection before smal-seale—diffusion—small—scale turbulent diffusion arrests the progres-
sion to smaller scales. The second measure (Sect. 4) involves the dispersion of ensembles of initially
closely spaced trajectories. The final measure (Sect. 5) is a bulk or “effective” diffusivity (Nakamural
(1996)) that indicates the rate of irreversible mixing between volumes with different tracer concen-
trations. The analyses in Sections 3—4 are based on a ““’kinematic” analytical model with and without

[3373

stochastic perturbation; the analysis in Sect. 5 is based on a ““‘dynamical” numerical solution of the

Navier—Stokes equations.

2 Models

We will consider the steady flow of a homogeneous and incompressible fluid in a rotating cylinder
of depth H, driven at the top by the stress due to a differentially rotating lid. The resulting circulation

has Ekman layers at the top and bottom, and thus a central parameter is the Ekman number
E=(v/QH?) = (0p/H)*, (1)

where v is the kinematic viscosity, € is the angular rate of rotation of the cylinder, and Jg is the
thickness of the Ekman layers. Much oceanographic literature has been devoted to the case in which
the differential lid rotation 02 is small (02/Q2) < 1), and the Ekman layers are relatively thin,
I’ < 1. In this case a linear, asymptotic solution is available (Greenspan| (1968)) and Appendix A
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of P2014). According to this solution (with 62 > 0) , fluid is drawn up into the top Ekman layer
from an inviscid and vertically rigid interior region that rotates at half the angular velocity of the
lid. The fluid is carried radially outward and then downward within thin, viscous side—wall layers.
When it reaches the bottom, the fluid flows radially inward in a bottom Ekman layer and expelled
upward into the interior region. Fluid trajectories thus spiral upwards in the interior, outwards in the
top Ekman layer, downwards near the side walls, and inward in the bottom Ekman layer—; Fig.[Tlis

Although the set—up described above and its linear asymptotic treatment have provided a foun-
dation for a wide variety of models with geophysical and industrial applications (e.g. [Lopez and
Marques|(2010)), it is not the most convenient for Lagrangian studies. One difficulty is that all fluid
trajectories pass through small corner regions at the top and bottom of the cylinder. These regions
are not resolved by the asymptotic solution and can be difficult to resolve numerically, particularly
when the velocity field is to be used to accurately calculate trajectories that are cycling through the
cylinder numerous times. For this reason it is advantageous to modify the forcing at the upper sur-
face to conform to a stress that still acts in the azimuthal direction and is zero at the cylinder axis,
but approaches zero at the cylinder boundary as well. P2014 used one such forcing distribution to
create a flow in which the downwelling occurs over a broad outer region of the inviscid interior, no
longer confined to the thin, viscous sidewall layers. We will use the same velocities (obtained from
a numerical model) for the tracer release experiments discussed later in this work.

Since numerical solutions are required to get a complete, dynamically consistent velocity field for
the rotating cylinder, Lagrangian calculations requiring long integration times can become cumber-
some, making it difficult to explore the variations in the governing parameters. As a compromise,
past investigators have developed phenomenological models in which an incompressible Eulerian
velocity field containing the qualitative features of the dynamically consistent fields is specified an-
alytically and fluid trajectories are computed from it. Many of the calculations described below are
based on such a model, hereafter referred to as the “kinematic" model. This new model is an im-
provement on the phenomenological model used by P2014 and Rypina et al.|(2015) in terms of its
more realistic portrayal of Ekman layers and inclusion of the Ekman number as a parameter.

The kinematic model specifies an analytically prescribed background velocity field that is steady,
incompressible, and has no azimuthal structure. Under these conditions, all trajectories are regu-
lar, or non—chaotic. When perturbed through the addition of an analytically prescribed symmetry—
breaking disturbance, one with azimuthal structure, Lagrangian chaos arises in portions of the three—
dimensional flow field. To see the qualitative behavior of the flow, examine figure [Il The velocity
field is specified in nondimensional cylindrical coordinates (r,6,z), with (1 > z > 0) and (r < a),

where a is the width—to-height ratio of the domain. The background flow has 9/90 = 0 and can be
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expressed as the sum of an azimuthal velocity V (r, z) and an overturning circulation with radial and

vertical velocity components U (r, z) and W (r, z). The latter are specified by the streamfunction ¥:

U =—FEY2R(r)F(z), (2)

where F'(z) is the vertical portion of the streamfunction, and R(r) is the radial portion of the stream-

function. The vertieal-streamfunction relates to the velocities by the negative z-derivative of ¥ bein

the radial velocity and the radial derivative being the vertical velocity. The vertical portion of the
streamfunction is

F(z) = A[sin(¢) sinh(¢) — cos(¢) cosh(¢)] + Blsin(¢) sinh(¢) + cos({) cosh(¢)] — D, 3)
where ( is a transformed vertical coordinate,

—1/2
C="Zis )

and the constants are defined by

1 sC
_ -1 .S _ _
A =3 ;2026“2527, B= 2207 4 252 D= A(sS—cC)+ B(sS+cC)
1 1 1
g 1 _ o _
s —Sln(—QEl/g), c-cos(2 1/2), S—smh(2 1/2>, C—cosh(2 1/2>. 5)

In the limit of infinite cylinder radius, @ — oo, the radial portion of the streamfunction, R(r) = r2 /s,
yields a dynamically consistent solution for flow between two differentially rotating, horizontal
plates. Fluid flows radially inward within the bottom Ekman layer and is expelled upward and even-
tually into the top Ekman layer, where it moves radially outward. When a is finite the velocity needs

to vanish at the cylinder walls, and this can be accomplished by choosing R as
R(r)=r(a—7)/2, ©)

giving velocities

U = —592\11 =r(a— T)Q[Asin(C) cosh(¢) + Bcos(¢)sinh(¢)], (7)

W =19 — _(a—r)(a—2r)EY2F(2) (8)

where U is radial and W is vertical.
The axisymmetric azimuthal velocity V, satisfying the incompressibility condition in 3D, is de-

fined as
V(r,z) = r(a—r)? [% + Bsin(¢) cosh(¢) — Acos(¢)sinh(C)]. ©)

This velocity leads to typical nondimensional trajectory rotation times of +8—2606-20-200 for all
Ekman numbers examined; the central orbit at (r,z) = (0.5,0.5) has a period of 167 ~ 50. At the
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maximum azimuthal velocity, which occurs at r = aH /3, the period is about 20. Model horizontal

velocities are typically between 0.01 and 0.1 in magnitude, which are reasonable ocean velocities
in meters per second. This choice of the velocity scale being 1ms™! gives rotation times of several
hours assuming the eddy radius is equal to its height (a = 1). Using the same scaling for vertical
velocities, whose nondimensional values are E'/2 smaller, gives overturning times of 7 hours to
2 months; although eddies with this structure have not been carefully observed, vertical velocities
near submesoscale fronts reach 30m day™!, which is in line with these rates. These and all other
relationships between nondimensional model values and their dimensional equivalents are listed in
Table [l For all parameter values, there is upwelling in the center (r = 0) and weaker downwelling
near the sides of the cylinder (strongest at 7 = 0.75a). There is horizontal convergence near the
bottom and divergence near the top; for E near one, these are true for the full bottom and top halves
of the system.

As the Ekman number varies, the overturning streamfunction changes qualitatively (Fig. [2). For
E > 1/60 the overturning circulation is rounded and has a single internal fixed point corresponding
to the horizontal, circular trajectory described above as the central orbit (Fig. ,b). For E < 1/60
additional fixed points in the overturning circulation arise at r=0.5 (Fig.[2k). These fixed points in Fig.
1c are again circular periodic trajectories in 3D, and the increasing number arise through pitchfork
bifurcations as E decreases (see appendix A for more details). The additional circular trajectories are
associated with smaller overturning cells imbedded in the larger cell (detailed example in appendix
A, Fig.[[4). The overturning streamfunction also exhibits more vertical rigidity as E decreases, anal-
ogous to deeper oceanic columns, in accordance with the Taylor-Proudman Theorem (Greenspan

(1968))).
2.1 Symmetry-breaking Perturbation

In the kinematic axially symmetric analytically prescribed background flow described above all tra-
jectories move along toroidal surfaces and are thus non—chaotic. In order to use this system to study
the interplay of chaotic advection and turbulent diffusion, we must perturb the system to break the
axial symmetry, which will introduce chaotic trajectories. The applied perturbation, approximating
the flow produced by a lid rotating off—center, is a horizontal flow that decays in strength with depth
and is described by the streamfunction:

~  —sinh(z/E"Y?)

_GW(G —7"2)(’}/20/2—52), s = ($—.T0)2+y2. (10)

This general form allows for an r— and z— dependent adjustment to the strength of the azimuthal
velocity, with amplitude ¢, and a symmetry breaking component governed by the offset parameter
xo. If zo = 0, the disturbance is axially symmetric; if it is nonzero, the disturbance has an azimuthal
variation of amplitude ex(. The parameter v can be used to make adjustments in the radial structure

of the disturbance. This streamfunction is for velocities in the x and y directions, unlike r— and z—
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Figure 2. Top, (a)(b)(c): Background overturning streamfunction for a = lkeft-to—right—everturning—; (a)
E =0.125, (b) £=0.02, (c) F=0.0005. Blue dots are rz—fixed points. Bottom, (d): horizontal perturba-

tion streamfunction for v = 2, xg = —0.5. Note that the center of rotation in the perturbation streamfunction is

not at the origin.

dependent background overturning streamfunction; the velocities from the two are added together.

The perturbation velocities in x and y are

ﬂ :8@/8y:4y67:22g§\/\/% [(a® —r?) + (y2a® — s%)], (11)
b =—0V/oy= —4ye% [(z —z0)(a® — r?) + z(y2a® — s%)] . (12)

The corresponding azimuthal and radial velocity perturbations are

o sinh(z/VE) 2 2 2 2 2_@005 a2 — 2

V=2 ) L@ ) 07 =) = aos()(a — ). (13)
~ sinh(z/VE) Sin(0)(a? — 12

U=2ero sinh(1/VE) 6)( ) (19

The perturbation streamfunction’s overall strength decays with depth and goes to O at the bottom
(z = 0). For the rest of the work, we will use a = 1 and v = 2 (Fig. EH). We note that the total, i.e.,
background plus perturbation, azimuthal velocity can be zero at some locations in the domain for
certain choices of ¢, but with € < 0.05 these locations are all very close to the boundaries of the

cylinder.
2.2 Comparison to Dynamic Model

In this section we compare our kinematic model to the Navier—Stokes (NS) simulation of a rotating

cylinder flow by P2014. We will use the kinematic model for the analyses in sections 3.1 and 3.2,
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and the NS simulation for the analysis in Sect. 3.3. We are interested in comparing the qualitative
features of the two model flows under steady symmetry—breaking perturbation. It is important to
note that the parameters of the two systems are slightly different. The parameters that arise in the
NS simulation are the Ekman number, F, the aspect ratio, «, the displacement X of the lid’s center
(Mnot to be confused with z( in the kinematic model), and the Rossby number,
Ro = 0Q/9). The kinematic model parameters are the Ekman number, E, the aspect ratio, a, the
perturbation offset parameter, z(, and the strength of the perturbation, e. For matching the kinematic
model to the NS simulation, we set « = a = 1 and examine four Ekman numbers used in P2014,
E € {0.25,0.125,0.02,0.0005}. The displacement and strength of the kinematic perturbation are
adjusted to match the behavior for a given Rossby number and displacement of the lid in the dynamic
simulation. The chosen values are maintained throughout the rest of the work unless otherwise noted.
We do this rather than attempting a mathematical equivalence because the kinematic perturbation
has a different form than that describing a physical lid rotating off—center. Our model mimics a flow
with a small Rossby number, so we compare our results to those from P2014’s Ro = 0.2, with lid
displacement Xy = —0.02.

Figures show some examples of Poincaré maps from the NS simulation (top rows, panels
(a)(b), reproduced from P2014) with maps from the kinematic model (bottom rows). It is important
for our purposes to achieve qualitative agreement in terms of the depth of the Ekman layers, the ver-
tical rigidity of the interior regions, and the overall layout of regular, chaotic, and resonant regions.
For the choice of the parameters described above, there is a good match of these qualitative features.
Each case is marked by the presence of a substantial chaotic region that extends from the radial cen-
ter around the top and bottom boundaries and to our largest radii near the perimeter of the cylinder.
We henceforth refer to this region as the “chaotic sea”. Also, in all cases there are many more points
near the surface than near the bottom; this is due to the higher azimuthal velocities near the surface,
and is seen in both the dynamic and kinematic model. In £ = 0.25, both Poincare sections show
a series of nested closed curves centered around (r,z) = (0.5,0.5) corresponding to quasiperiodic
trajectories on nested tori. Between these are some thin resonant layers with high numbers of small
islands. For £ = (0.125, the main feature is a series of larger islands between a set of nested tori and
the chaotic sea. For E¥ = 0.02, there is one large island with a number of resonant layers surrounding
it, including small islands. For E = 0.0005, the vertical structure of both models is more rigid, the
kinematic model more so than the NS simulation. Altogether, the kinematic model reproduces the
general features of the NS simulations, thretugh-though there are often differences in details such as

the number and widths of islands.

3 Lagrangian Batchelor Scale
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Figure 3. Structures in the kinematic model and dynamical simulation for Ekman numbers of 0.25 (a)(c) and

0.125 (b)(d). Top, (a)(b): Poincaré maps from (2014) (their Fig. 10), using—the-dynamie-resulting
from a dynamically consistent numerical simulation. Bottom:in-btack, (c)(d): Poincaré maps (black) and largest

FTLESs (color) resulting from the-eurrent-our non-dynamically consistent kinematic analytic model, with € =
0.01 and x( either —0.5 (feftc) or —0.9 (rightd); in color, maximum FTLESs calculated for the kinematic model

with integration time 400. For#—6-+25In (d), red oval approximately separates the resonant and regular layers
(inside) from the chaotic sea region (outside), with the blue line segment showing the width of the chaotic sea.

The blue diamond shows the width of an island, which is also the width of the resonant layer.

We-In this section, we examine the relative importance of chaotic advection and eddy—turbulent

diffusion for tracer distribution using three-types—of-methods—We-begin—with-sealingarguments:
a Lagrangian Batchelor scaledefines—the-thinnest{ilaments—that-can—form—based-on—the-balance

between-advection-and-diffusion—At-seales-above-the-. The Batchelor scale, advection-dominates




E=0.02 E=0.0005

Figure 4. Structures in the kinematic model, (c)(d), and dynamical simulation, (a)(b), for Ekman numbers of

0.02, (a)(c), and 0.0005, (b)(d), same format as Fig. E}
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scale at which advection and diffusion balance in their respective thinning and widening of a patch of

630 tracer. Chaotic advection thins tracer patches through averaged exponential contraction in the con-

tracting direction(s), decreasing the relevant lengthscale towards small scales where turbulent dif-
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fusion is dominant. Biffasten-In this section, we represent turbulent diffusion as a scale-dependent
diffusivity. This diffusion widens tracer patches by moving tracer down its gradient, spreading it out

from its maximum.

thinning-and-widening-of-apateh-of traceris-the Batchelorseale;4—Below 9, diffusion dominates

tracer behavior, while above § advection dominates. If § is larger than the structures in the flow
induced by chaos, then diffusion will overcome advection and wipe out these structures. The struc-
tures of interest, induced by the deterministic, symmetry—breaking perturbation (see Fig.s[3H4) are

the bands of chaos, called resonant layers, surrounding regular island chains (see blue diamond in

Fig. @,—}eweﬁighfg), and the chaotic sea region (outside the red oval in Fig. @f‘ﬂ%f—ﬂghﬂl) located
near the cylinder perimeter and central axis—, which are identified by visual inspection of Poincaré
sections. When we compare 9 to these structures, we define their widths as the difference between
distances from the central orbit, (7,2) = (0.5.0.5), to the outermost/innermost part of the structure

In principle, the width of a tracer filament should approach the Batchelor scale regardless of initial
conditions. If we consider an initial patch of tracer that is far from the Batchelor scale, advection
and diffusion will not balance. If the patch is larger than the Batchelor scale, chaotic advection
exponentially—constricts the patch in the direction of fastest contraction so that it approaches the
Batchelor scale. If the patch of tracer is smaller than the Batchelor scale, diffusion widens the patch
to approach the Batchelor scale. When the width of a filament is at the Batchelor scale, the width
will be steady in time but the concentration will continue falling.

Traditional formulations of the Batchelor scale use the Eulerian quantity — strain rate — to quan-
tify advection and to find the scale at which advective and diffusive effects balance. Several rigorous
derivations of a Lagrangian Batchelor scale have been presented (eg. Thiffeault (2004); Fereday and
Haynes| (2004); Son| (1999)), and a few papers have used less rigorous scaling arguments to estimate
the importance of chaotic advection (Rypina et al.| (2010); Ledwell et al.| (1993 [1998))). Below we
present a simple explanation for the Lagrangian Batchelor scale to gain intuition about this quantity,
followed by a rigorous derivation of a Lagrangian Batchelor scale for a for-a-Gaussian tracer in a 3D
linear strain flow. The latter extends the work of |[Flierl and Woods| (2015) from 2D to 3D.

The first formulation of the Lagrangian Batchelor scale uses dimensional arguments to construct a
quantity that has units of [length] from the diffusivity «, which quantifies the intensity of diffusion
and has units of [length?time '], and the -average exponential contraction rate Az, which quantifies

the thinning of a filament due to chaotic advection and has units of [time1]:

§ = /k/|As]- (15)

In a flow field with uniform steady strain, one could simply use the Eulerian strain rate as the
filament thinning rate. However, in flows with non—constant strain rate, the tracer will feel different
strain as it is advected by the flow so a Lagrangian quantity such as the Finite Time Lyapunov Ex-

ponent (FTLE) would be more appropriate. The FTLE quantifies the average exponential separation
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rate between a trajectory and its close neighbors over a finite time interval At,
Az = Azge*?. (16)

Since separation rates between trajectories are generally different in different directions, in 3D
flows there are 3 FTLEs that can be ordered A1 > A\ > A3 and can be though of as the stretch-
ing/contraction rates of the 3 major axes of an infinitesimal spherical blob of fluid as it deforms
into an ellipsoid under the influence of the flow field (see Fig. . For incompressible flows, A\; > 0,
A3 <0 and A + A2 + A3 = 0. For the Batchelor scale in eq. (16), the appropriate FTLE is that for

the most contracting direction, i.e., A3. FTLEs are most commonly computed as

Ai=1/|T|n Vo, an
where o, are the eigenvalues of the right Caushy—Green-Cauchy—Green deformation tensor

G = [Ax;/Axoj) " [Azi/ Axoj]. (18)

Here Ax; and Axz;y are the final and initial displacements in the i—th direction between initially
nearby particles that are advected by the flow over time interval At. G can be calculated directly
from dense grids of simulated Lagrangian trajectories. We use this latter method in our calculations
to estimate 3.

As an alternative motivation of the Lagrangian Batchelor scale, we show analytically that the
width of a Gaussian tracer distribution asymptotically approaches the Batchelor scale in a simple
flow field. This derivation is an extension to three dimensions of a two—dimensional calculation by
Flier]l and Woods| (2015). The main steps of the derivation are described below, with more details in
the Appendix B. First, we assume that in the Lagrangian frame the velocity field is a steady linear
strain with rates \; in each direction, such that the sum of the )\ is zero, giving an incompressible
flow. Second, we assume that the tracer concentration C initially has a Gaussian distribution in each
direction, and we look for a solution to the tracer evolution equation where it remains Gaussian. In
this case we can use the standard deviation of the Gaussian distribution to measure the width of the
filament in each direction. The width in the most—contracting direction, which is shrinking with rate

A3, is denoted by o. As shown in the Appendix, the differential equation for ¢ has a fixed point at

= V/w/l, 19

meaning that the width of the Gaussian patch in the fastest contracting direction has a fixed point at
the Batchelor scale, as expected from the physical arguments about the balance between advection
and diffusion. This fixed point is attracting, meaning that for any initial width, the width in the A3
direction will converge to the Lagrangian Batchelor scale. Mathematically there are also fixed points
with negative A3 and with negative o for positive A3, but neither corresponds to a real positive tracer

distribution. The full solution for o is

1/2
va = Val/ry/K/|Xs] <)\3 o0 2 5—1)62A3t+1) : (20)
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Figure 5. An initial sphere in a linear strain field evolving into an ellipsoid during a time of 1. Ellipsoid axes
marked by bars, with figure axes ticks showing their endpoint values. Velocity field u = 1.5+, v = 0.5y, w =

—1.5z. Color shows z values at t = 0.

More details and the full solution for C' are in Appendix B.
3.1 Results of Batchelor Scale Analysis

In order to calculate the Lagrangian Batchelor scale, §, we use the oceanic diffusivity estimates from
(1971). In the ocean, diffusivity is scale—dependent, increasing with size, as described by
Okubo. He used observations of horizontal dye diffusion at various scales ranging between about

20m and 2066100km to find the empirical relationship
K =0.01031"17, an

where [ is the horizontal lengthscale of the dye patch in cm and « is in cm?s™!. Consistent with
the lack of density stratification in our model, we assume an isotropic three—dimensional diffusivity.
This assumption is supportable in the upper ocean mixed layer and is consistent with our assumption
of shallow eddies.

The variable nature of Okubo’s x makes determination of the Batchelor scale a bit more subtle.
In the case of spatially variable &, the thinning of an initially large tracer patch will occur as before,
but as the filaments decrease in width, the corresponding ~ decreases as well. Following
(2010), we hypothesize that equilibration will occur if during this process the tracer scale L
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Table 1. Nondimensional variables, their scale factors, and their dimensional equivalents.

approaches (x(L)/|A\3])*/? = (0.0103L** /| \3|)'/2. Solving for L yields the Batchelor scale

§ = 0.0046|\3| 711767 (22)

where )3 in s! yields § in cms™!.

To relate our dimensionless kinematic model FTLEs to Okubo’s diffusivities, we need to set

dimensional time and diffusivity scaling factors. We previously discussed the winding times and
associated velocity scaling of Ims'; our desired scaling factors can be computed with this velocity.
scaling and a lengthscale. The main parameter of the background model is the Ekman number, the
square of the ratio of Ekman layer thickness to eddy depth. Due to the unstratified nature of our flow,
we focus on two intermediate Ekman numbers: £ = 0.125 and £ = 0.02. Assuming an Ekman depth
of about 40m, which is within the range of open—ocean observations (see/Lenn and Chereskin| (2009)
and references therein), our shallower eddy is about 110m deep, whereas £ = 0.02 would correspond
to an eddy depth of about 280m. Depending on region and season, it is possible for either of these
to be within the surface mixed layer of the ocean, which can reach 500m in subpolar regions in the
winter, but may decrease to a few meters in the summer. Since the aspect ratio of the width—to—depth
of our eddy is 1, the corresponding eddy radius is also between roughly 100 and 300m. Using the
product of the dimensional depth of the eddy and the chosen velocity scale, Okubo’s diffusivities
can be nondimensionalized. Vice-versa, the FTLEs could be made dimensional using the timestep in

seconds. These scalings are explicitly given in Table|1} we will discuss the results in nondimensional

terms.

The calculated ¢ values are shown in Fig. |§| next to the widths of chaotic regions; both widths
are dimensionalized using the eddy depths. The range of  values is due to the spatial variation of
the most contracting FTLE, A3, in the region (see Fig.s BH4] for most stretching FTLE, which are
of the same magnitude). FTLEs were estimated over an integration time of about20-rotations—of

the-eentral-orbit-(dimensionally-abeut-three-days)400; the range of FTLE magnitudes does not no-
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Figure 6. Layer widths in blue, Lagrangian Batchelor scale § (Eqn. 22) in the same region in yellow. Left half,
chaotic resonant region between islands; right half, the chaotic sea region. The diffusivities at the Batchelor
scale in m’s” are between 10~ and 6- 1072 for the three larger Ekman numbers and between 1-10~2 and

6-1072 for E = 0.0005.

ticeably change from—1+6-to-20-rotationswhen the integration time is decreased by half. The widths
of the chaotic sea and smaller resonant regions were estimated from inspection of Poincaré sec-
tions. The Batchelor scale is generally about 0.01-0.08in—nendimenstonal-length—units;-or-abeut
1-8m-dimensionallyfor - =0-25-and-20—140m-forF==0-0005;:—~whieh-are-, which is similar to
the resonant layer widths and smaller than the chaotic sea widths. The dimensional diffusivities at
these scales range from 2- 104 m?s™! at Im to 0.06 m?s™' at 140m, which are considerably smaller
than diffusivities on the horizontal scale of eddies themselves, about 0.5-8.2 m2s™! for 1-10km.
The Batchelor scale results imply that chaotic advection is expected to influence tracer distribution

throughout the system, but dominate only in the wider chaotic sea region.

4 Particle Dispersion

In this section, we quantify the relative effects of turbulent diffusion and chaotic advection using the
dispersion (or spread) of sets of initially nearby trajectories in the kinematic retating-ean-model. We
consider chaotic advection dominant compared to diffusion when the ensemble spread is greater for
the deterministic perturbation that induces chaos than for the stochastic perturbation that simulates
turbulent diffusion. Ensembles of one hundred to three hundred trajectories that begin inside a small
sphere have been examined for their behavior under various perturbations. Other initial conditions,
on a torus or axial circle, give similar results (not shown). The spread of trajectories is measured
in terms of ¥ values, the streamfunction of the background flow given by Eqn. (Z). Examining the
spread in WU is convenient because it leads to zero spread for particles following the background flow.

However, it is important to note that this interpretation limits the directions of chaotic stretching
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that are considered— it is possible for the fastest spreading direction to be along the background
streamlines, which would not be visible in the coordinates chosen.

To simulate turbulent diffusion, we add a stochastic velocity perturbation to the background model
flow. The stochastic perturbation is a random flight model created by adding small pseudorandom
values with a Gaussian distribution to the velocity at fixed intervals of time At. The equation gov-

erning a fluid particle trajectory is then:

dx i
dt

where ¢ is a direction index, Uy; is the background velocity, and u; are the stochastic additions.

= Upi(z) +u}, (23)

These velocity additions are uncorrelated and lead to a Gaussian random walk behavior (Zambianchi
and Griffa (1994)). With-Using the described stochastic perturbation, although it is quite simple,
with Up; = 0 or a constant, the variance of a set of trajectories wil-grow-grows linearly in time,
while the standard deviation grows linearly with the square root of time, as expected for diffusion.
The diffusivity, x, is computed from the 1D relationship for a Gaussian random walk: xk = s2 /2At,
where s is the standard deviation of step size in the random walk. To choose the level of diffusivity
for the stochastic perturbation, we consider the turbulent diffusivities near the Batchelor scale as
computed in the previous section. The Okubo diffusivities at the Batchelor scale are in the range
k € [107%,1072]m?s™! across the four Ekman numbers examined, which is nondimensionally » €
[1076,3-1075);-using

our primary example, we will discuss the level of diffusivity x = 1075. This diffusivity requires

a certain step size s for the stochastic perturbation, which relates to the distribution of u’ by s =
oAt/3, with o the standard deviation of v/, At the numerical timestep (0.01), and the factor of 3
due to the details of a fourth—order Runga—Kutta integrationfthe-stochastic-velocities-are-added-only
at-fult-timesteps)—. The next position,using this method, is estimated using the weighted sum of

final point estimated using v3 (v4, weight 1/6). Only v, and v, include stochastic additions, leadin

to the 1/3 factor. Together, these give
a2 At
R =
18 7

and so o0 = 0.042. We will also discuss a smaller stochastic perturbation, x = 10’7, o =0.013, and

(24)

a larger one, K = 1075, o = 0.13. The stochastic perturbation with x = 10~ has kinetic energy (in-
tegrated over the cylinder) about the same as the background flow: [(u;)? =~ [(U7) ~ 0.63. The
perturbation with x = 10~7 has kinetic energy about the same as the deterministic perturbation with
€ =0.01, zg = —0.5, such that [(u};)? ~ [(u/)? =~ 0.075, where u/, is the deterministic perturba-
tion velocity and w’, is stochastic.

We begin with an example for £ = 0.125 showing the spread of trajectories (measured in terms

of the background streamfunction W) in the presence of either the deterministic or the stochastic
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perturbation. Trajectories are started on a small sphere located entirely in the chaotic sea region
centered on (r, z) = (0.1,0.5) (see Fig.3|for the Poincaré section). For the deterministic perturbation
at early times, trajectories oscillate through the background streamfunction because the perturbation
velocities form an azimuthal wave (Fig.[7(a)). The frequency of this oscillation depends on the exact
location of the trajectory, so with time, trajectories move out pf-of phase due to the cumulative effect
of their slightly different oscillatory frequencies. It takes a few cycles of overturning to develop
noticeable spreading, but then the spread grows quickly.

For the stochastic perturbation (Fig. [7(b)), trajectories are uncorrelated as they spread across the
background streamfunction. There are no oscillations in time because the perturbation acts sepa-
rately on each trajectory at each timestep, leading to continuous and monotonic spreading of the
ensemble. This spreading is similar to diffusion, but the increase in the range of trajectories does not
depend on the gradients of concentration-the-way-a-diffusing-tracer-wouldconcentration— Fick’s law
does not apply. If both perturbations are included (Fig. c)), trajectory ensembles maintain some of
their oscillatory behavior but spread out in a more continuous fashion due to the stochastic perturba-
tion. In this example, and over time scales considered, we conclude that the stochastic perturbation
dominates at early times but chaotic spreading takes over at times larger than about 1000. Over an
even longer time period, turbulent diffusive spreading is expected to overtake chaotic spreading.

We next compare the spreading of trajectory ensembles in ¥ with a variety of perturbations for
the same initial conditions as in Fig. [7] using the range over time (Fig. [§); results are similar when
the variance in W is used for comparison (not shown). Chaotic advection dominates when the spread

in ¥ for an ensemble under deterministic perturbation is larger than the spread under stochastic per-
turbation. The spread from the deterministic perturbation appears-exponentialis very fast, appearing

ualitatively exponential, for a period of time, as expected —for a region with high FTLEs, which
indicate exponential growth on average, but is limited to the width of the chaotic region in which the

ensemble begins (e.g. red curve in Fig.[§[(a)). In contrast, the stochastic perturbation will spread with
the square root of time until it reaches the cylinder boundaries (e.g. dark blue curve in Fig. [§a)).
Therefore, the time when the deterministic perturbation has greater spread will be limited to be-
tween when expenenttal-growth-fast chaotic-advection-induced separation starts in the deterministic
perturbation, which requires sufficient interaction with hyperbolic regions, and when the stochastic
perturbation spreads the ensemble to the width of the chaotic region.

In the chaotic sea region (left-panels-of Fig. [B)(a)(c)), ensembles with stochastic perturbations
all have their ranges in ¥ grow in a manner similar to the square root of time and the spreading is
faster for larger . The ensembles with deterministic, chaos—inducing perturbations experience an
initial delay before they begin quickly growing. Once rapid growth sets in, they spread to the width
of the chaotic region between times 500 and 3000. Larger deterministic perturbations lead to earlier
and faster spreading, as well as wider chaotic regions. For the weaker deterministic perturbation

e =0.01, there are some time intervals over which chaotic spreading in the chaotic sea dominates
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stochastic spreading. These instances occur more readily in the case of the shallower eddy (E =
0.125, Fig.[8a)) and less so for the deeper eddy (E = 0.02, Fig.[|c)). However, larger deterministic
perturbations (e.g. € = 0.08) produce chaos that is dominant over longer times, an extreme example
being the pink curve in Fig. [§[a).

We can also consider the timescales over which diffusive and advective processes with similar
kinetic energy (red and light blue curves in Fig. [8) dominate over each other. As-diseussed-forthe
+=10001s-abeut2-days-The ensembles released in the chaotic sea show that during-the-first-several

hoeurs-or-dayover the first few hundred timesteps, turbulent diffusion dominates the spread (Fig.
Eka)(c) at t < 1000), as chaotic advection does not yet show significant growth. After that -en-time

seales—ef-abeut-ene—day-we see a period of fast growth due to chaotic advection, which quickly
overtakes the slower diffusive spreading. This rapid growth stops when the advective spread reaches
the width of the chaotic region, and the diffusive spreading, which is not limited by the chaotic
region width, is then able to catch up and exceed chaotic advection. Of course, these processes
will be acting at the same time, not separately; the green curves in Fig. [8]are examples when small
perturbations of both types are present. In this case, spreading of the ensemble begins immediately,
as in simulations with only stochastic perturbation, but then has a time period of pronounced growth
and some oscillations, as seen in simulations with only the steady perturbations.

We also examined the behavior of trajectories beginning at (r,z) = (0.4,0.5), a small distance
from the central fixed orbit, within the region containing resonant layers (Fig.s BH4). In these cases,
the same behavior as in the chaotic sea region occurs for the spreading under stochastic perturbations
(Fig. [8(b)(d)). The spreading under deterministic perturbations is much slower than in the outer
chaotic sea region for ¢ = 0.01 (red curves in Fig.s Bkb)(d)) and diffusion dominates at all times for
all values of x shown. With € = 0.08, the chaotic region is larger and growth due to the deterministic
perturbation is generally more rapid than that due to diffusion, at least within the time window when
chaotic advection begins and until saturation occurs (pink curves in Fig.s[§[b)(d)).

From the spreading of ensembles of trajectories, we see that the wider chaotic regions are where
chaotic advection dominates over turbulent diffusion (at least over some time intervals), as expected
from our scaling arguments. However, those scalings did not include considerations of time ;-includ-
ing considerations of when expenential-stretching-beginsfast chaotic-advection-induced stretching
begins, as FTLESs are time averages; the delay in chaotic stretching decreases the period of time when
chaotic advection is important. This time period begins when exponentiat-fast advective stretching
is first apparent and ends when turbulent diffusion has spread across the region under consideration.
From these ensembles, we would expect a set of passive 3D drifters or an injected tracer beginning
in a blob to spread out diffusively, then be stretched and folded throughout the chaotic sea, produc-
ing strong filamentation, then gradually diffuse across the barriers of the chaotic sea and into the

remainder of the eddy. During the later stage tracer variance due to the formation of filaments by
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Figure 7. Grey lines are individual trajectories in 1 starting from a sphere of radius 0.002 at (r, z) = (0.1,0.5)

with &£ = 0.125. Solid black curves are the mean; black dash—dot lines are 41 standard deviations from the

mean. Nendimensional-time-is-shown:£=1000-is-betweent-and2-days:

chaotic advection would be gradually eroded by turbulent diffusion. This sequence of events will be

apparent in tracer simulations shown in the next section.

5 Tracer Simulations and Nakamura Effective Diffusivity

In this section we analyze the effects of the symmetry—breaking, chaos—inducing deterministic ve-
locity perturbation on the stirring and mixing of a diffusive tracer in a dynamically consistent nu-
merical model of a rotating cylinder flow. Dye experiments are often used in both the ocean and the
laboratory to understand the stirring and mixing in a fluid (examples include [Fountain et al.| (2000);
[Cedwell et al| (1993 [1998))). The distributions of passive tracers like dye are created by the advec-

tive and diffusive patterns without the feedback onto the flow that would occur with temperature or

salinity, allowing for insight into those processes. For our simulations we turn away from the kine-
matic model and take advantage of the existing numerical model that solves Navier—Stokes equations

corresponding to the rotating cylinder flow accompanied by integration of the advection/diffusion
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Figure 8. Range in ¢ for ensembles of trajectories started from a sphere of radius 0.002. Steady perturba-
tion (¢ € {0.01,0.08}), stochastic perturbations (x € {107°,107%,1077}), or both (x = 1077, ¢ = 0.01), are

added to the background flow. Left, (a)(c): Initial sphere in the chaotic sea region, away from fixed points,

at (r,z) = (0.1,0.5). Right, (b)(d): Initial sphere centered on (r, z) = (0.4,0.5), a resonant region. In (a), the

dashed black line is 10~°+/%.

equation with diffusivity & for a passive tracer, both described in P2014. As discussed earlier, these
simulations have the advantage of being dynamically consistent at the cost of being computationally
expensive, whereas economy of the kinematic model allows us to explore a wider range of parame-
ters.

Our main quantification tool is Nakamura’s effective diffusivity: a background diffusivity scaled
by a representation of the stretching of dye concentration contours by advection. Two—dimensional
and quasi—three—dimensional analyses of effective diffusivity have been applied to the atmosphere

and ocean (Nakamural (1996); [Nakamura and Ma| (1997); [Haynes and Shuckburgh| (2000); [Aber-
nathey et al| (2010)). For our fully three—dimensional system with constant density, the effective

diffusivity can be written as

1

—2
WW(J' ) (25)

kepf(C) =k

where C'is tracer concentration, V' is volume, and f indicates an average of function f over the area

of a concentration surface. The imposed small-scale diffusivity & is constant and so is more closely
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related to the x used in Sect. 4 for the stochastic perturbation than the scale-dependent Okubo « in
Sect. 3. (It is not clear how one would incorporate a scale—dependent diffusivity into Nakamura’s
formulation.) The volume V' is a one—to—one mapping of tracer concentration and volume such that
V(C) is the volume occupied by fluid with concentrations greater than C. The derivation leading
to the above definition for ks can be found in |Shuckburgh and Haynes| (2003), who perform the
algebra in 2D but note that the 3D development is identical. Equation [25] describes an effective
diffusivity that is amplified from the small-scale diffusivity by a factor of the degree of contortion
of the concentration contour. The units of the effective diffusivity are those of k, typically m?s!,
multiplied by m*, or volume squared divided by length squared, which is the same as surface area
squared. Larger effective diffusivity leads to larger diffusive fluxes of tracer. This amplification can
be understood as being caused by advective stretching and folding of tracer contours which increases
the area of surfaces of constant C, thereby amplifying gradients of C' and speeding up diffusive
fluxes. This amplification factor is precisely the surface area squared in the rare situation where
|[VC| is constant on a C surface (see Appendix C for proof).

Both advection and diffusion redistribute tracer concentration and influence effective diffusivity.
The effective diffusivity allows the effects of advection to be included in a diffusive term:

oC 0 oC

As advection stretches and folds the initial tracer, creating filaments, the surface area of a contour
and gradients of the tracer increase, leading to larger x.rys. Then, as diffusion smooths the tracer
field, wiping away the filaments, gradients decrease and contours become smoother, with a lower
surface area to volume ratio. We compare the effective diffusivity with a deterministic perturbation
to that without; any increase is due to increased stirring, which gives a quantitative measure of how
important that stirring is for the distribution of tracer in each region of the flow.

As a secondary quantification tool, we use the volume—integrated tracer variance function, x?
(Pattanayak| (2001)):

X2:/|VC|2dV//|Cde, 27)
1% 1%

where V' here is simple volume. Stirring increases the variance of a tracer, while mixing decreases
it. When x? is increasing, stirring is dominant and the slope of x?(t) quantifies the stirring rate. The
tracer variance function was used to relate Ekman number, perturbation strength, and stirring rate
for the rotating cylinder in P2014; the authors found that stirring increased with larger perturbations
and was nonmonotonic with I, peaking near &2 = 0.01.

The numerical simulations are run using the solver NEK5000 for several diffusivities and strengths
of the symmetry breaking deterministic perturbation. This model solves the incompressible Navier—
Stokes equations using a spectral element method (see https://nek5000.mcs.anl.gov, P2014, [Fischer

(1997)). The domain has identical radius and height, matching the aspect ratio assumed in our kine-
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matic model. The symmetry—breaking perturbation is created by moving the central axis of the im-
posed surface lid stress a distanee-fraction of the radius X, from the cylinder axis, so that X, be-
comes the primary parameter determining the perturbation strength. The Xy = —0.02 case is what
was used to compare Peineare-Poincaré sections with the kinematic model, so qualitative features
match the e = 0.01 cases. The Xy = —0.16 case is a significantly larger perturbation, similar to the
€ =0.08 case in the previous section. The nondimensional imposed tracer diffusivity, k, is 1074
or 1076, Using Okubo’s scaling, the lower diffusivity is appropriate for scales near 1m, while the
larger is appropriate for scales near 50m. After the simulated velocity field is spun up, the tracer
concentration, C), is initialized with a constant vertical gradient, C =1 — z.

The set of simulations performed allows for an examination of the effects of changing F, k,
and X,. They are E = 0.125, k = 10, X, € {0,—0.02,—0.16} and E = 0.02, k € {10=%,1076},
Xo € {0,—0.02}, for a total of seven simulations. Each simulation is run for a time of 300 after the
tracer is initialized. The evolution in time of the tracer variance function and Nakamura effective dif-
fusivity integrated over the volume of the cylinder are described first; we then discuss the evolution
of the dye, and finally the spatial characteristics of the Nakamura effective diffusivity.

The tracer variance function over time, Fig. EL@):@, initially grows nearly linearly as stirring
creates filaments and large gradients. The function then has a single maximum that occurs at the
time when diffusive mixing starts to overcome stirring, so that the variance of the tracer begins to
decrease. The maximum occurs earlier when either the imposed diffusivity or the strength of the
deterministic perturbation increase. Increasing the diffusivity makes the maximum occur earlier by
increasing the strength of the mixing (Fig. [0 (a) to (b)). Increasing the deterministic perturbation
also makes the maximum occur earlier as faster stirring creates larger gradients, in turn increasing
diffusive fluxes (Fig.[9](c), red curve).

The maximum of the tracer variance function increases with decreased diffusivity, as more fil-
amentation can occur before diffusion wipes the filaments out. This change of maximum is most
evident in the difference between k = 10~ and k = 10~ for E = 0.02, where the decrease in dif-
fusivity increases the maximum of the tracer variance function by an order of magnitude (Fig.[9] (a)
to (b)). Changes in the maximum as the size of X is increased from 0 to 0.02 are small and negative,
because the slightly earlier time of maximum combined with similar stirring rates leads to a slightly
smaller maximum with the perturbation. In the case of £ =0.125, Xy = —0.16, the maximum is
larger than with either Xy = 0 or Xy = —0.02 due to faster stirring and a different spatial pattern of
the dye, which will be discussed later.

The effective diffusivity, . s, integrated over the total volume shows an overall progression sim-
ilar to the tracer variance function, which indicates the dominance of the gradient term over both
the 9C/OV term in ks and the |C|? term in x* (Fig. Ekd):(f)). The initial slope and details of the
maximum can be understood as relating to perturbation and diffusivity strengths in the same man-

ner as for x2. At longer times, the integrated effective diffusivity reaches a nearly constant positive
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value unlike 2, which aproaches zero. This constant value can be estimated by using the surface
area representation of ksy. At long times, here meaning after many overturns but before diffusion
removes all gradients, the shape of tracer surfaces are distorted nested tori (see-look ahead to Fig.
h)). If the C surfaces were nested circular tori, | VC'| would be constant along the surfaces, and
then k. sy = kA?, where A is the surface area of a given toroidal tracer contour. The volume integral
of the squared surface area of circular tori nested around (r, z) = (0.5,0.5) multiplied by the back-
ground diffusivity is k7% /8, which we expect to be the minimum for [ ks ¢dV in this system while
gradients are nonzero (see Appendix C for details). This value is shown as black dashed lines in
Fig. Ekd){e}(:g) and is just below the lowest [ k. srdV value seen. The higher values for ks with
steady perturbations at long times corresponds to persistent asymmetries in the tracer field which
result in larger constant concentration surface areas. The extreme case is £ = 0.125, Xo = —0.16,
k =10"*, which has the most asymmetric dye contours (Fig. [TT[i)); here, the long time value of
[ keppdV is about twice as large as for circular tori.
Further insight can be gained by perusal of vertical sections of C' and k.s; (Fig.s @l and @)

A caveat is that x.¢¢ is a nonlocal property, the-value-of-which-at-any-point-in-space-and-timeis
VQ&WWMWWWC while
they are calculated using the distribution of (' over the whole volume at that time. These mappings

are noisier than the sections of C because the numerically computed ;¢ (C') is nonmonotonic and

can have large changes with small changes in C. Nevertheless, these plots can yield some insights
into the time-histories shown in Fig.[9] Figure[I0]is restricted to cases with £ = 0.02 while Fig. [TT]

is restricted to ' = 0.125. The two are laid out differently, with the former designed to emphasize
the effects of varying % and the latter designed to explore variations in the strength X of the pertur-
bation. Both figures contain snapshots from an early time (¢ = 39) in the simulation, before diffusion

has had a chance to arrest growth in the tracer variance function, and at a late time (¢t = 299) when

ke s has reached a quasi—steady value. In all cases, the C' sections become smoother and their range
decreases between the snapshots, due to continued mixing. The high s s values are enhanced over
much of the sections’ area at the early time, and localized to mostly the chaotic sea region at the late
time.

The early development (¢t = 39) of the tracer field, C, and of ks can be seen in Fig.@(a—ﬂ@):m
With no disturbance present (X, = 0) and k = 10~* (Fig. @P@), the initially horizontal lines of
constant C' have been advected by the axially symmetric overturning circulation such that contours

of constant C' are roughly aligned with the overturning streamfunction. For an initial broad gradient

in any direction, we expect the same realignment after the first few overturnings as the tracer is
assively advected by the background velocity field. We believe, then, that the tracer distribution

that exists at later times is somewhat independent of initial distribution. The corresponding ks at
t = 39 (Fig. @e)) exhibits high values at the edges of filaments created by the straining motion of
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the symmetric background flow, despite the fact that no trajectories are chaotic. When a disturbance
is added (Xy = —0.02, Fig.s @ke)(f)) the axial symmetry is broken and the peak values of K.y are
reduced. The latter is somewhat surprising since we have already seen (Fig. [0[b)) that the volume
integrated values of k.f; are nearly the same for the disturbed and undisturbed case. The situation
is made clearer if one notes that moderate values of k¢ (yellow in Fig. @kf)) are more widely
distributed in the disturbed case. A similar result can be seen by comparing the case Xy, = 0 (Fig.
[[T(a)(d)) to X = —0.02 (Fig.s[IT[b)(e)), all for E=0.125. Again, the unperturbed (symmetric case)
has larger peak values while the perturbed case has more locations with moderate values of sy,
resulting in a similar volume integrated value of s s (Fig. Ekf)). It is possible that slight increases in
stirring in the perturbed cases has caused more mixing than in the unperturbed cases, even over the
short interval before these snapshots, leading to a lower range of C and smaller average gradients
in the perturbed cases. However, the volume—integrated measures (Fig. [0) do not show any clear
indications of that process occurring.

When the background-eddy-imposed diffusivity k is decreased by two orders of magnitude, with
X, fixed at —0.02, the results are remarkably different. To begin with, a comparison of Fig.[9(d) with
Eke) shows that k. ¢ is generally larger at any particular time when k takes the smaller value. As Fig.
a) and (c) show, the tracer field contains much finer filaments when k& = 1076, consistent with the
reduction of the Batchelor scale. The distribution of x. is broader and with larger peak values for
this lower numerical diffusivity (compare Fig. @Kd) and (f)). The higher x. s indicates that despite
the decrease in k, the effects of stirring on the contours, as measured by k¢ /k, have more than
compensated, resulting in a higher rate of irreversible property exchange. Thus the combined effect
of smaller diffusivity and finer filaments (i.e., stronger tracer gradients) leads to more rapid mixing
across tracer contours.

The results that have just been described occur early (¢ = 39) in the evolution of the tracer field, ata
time when fluid parcels have overturned just a few times and the perturbation amplitude X has been
small. For this weakly perturbed flow, Lagrangian chaos requires many overturns to be significant,
so we now turn attention to the results for ¢ = 299 (bottomsix-panels-of-Fig.s [[0pn 0
[[1[g-1)). Here a comparison between the unperturbed and perturbed cases (contrast panels @Kh)(k)
with[T0[i)(1) and also[TT|g)(j) with[TT{h)(k)) reveal only modest differences in the spatial distribution

and magnitude of C' and k. s s. As in the early snapshots, there is a tendency for the unperturbed flows

to have higher peak values of «. sy, while the perturbed flows produce moderate values over a larger
area. Decreasing the value of k again has the effect of creating more fine structure (Fig. [I0[g)) and
of increasing the peak values of . by an order of magnitude (Fig. [T0fj)).

So far, the consequences of the symmetry—breaking disturbance are modest. However, dramatic
differences occur when X is increased from —0.02 to —0.16 for E' = 0.125(right-hand-panels-in
FigfH}— The tracer distribution is markedly distorted at early times (compare Fig. [TTp with[TTk)

and strong tracer gradients remain present even at ¢ =299, at a time when the gradients in the

35



1045

1050

1055

1060

1065

1070

1075

unperturbed and weakly perturbed cases have been strongly eroded (compare liig.vjzkg)(h) with
@i)). The peak values of ks at t =299 (Fig. @l)) remain comparable to those of the weakly
perturbed case @k)) but occupy a much larger volume, making the volume integrated k. sy much
larger, in agreement with Fig. [9ff).

For a different perspective, we examine the mean . sy in subdomains of the system corresponding
to a regular island and a region of the chaotic resonant layer of roughly the same size. The cross—
sections of the cylinder along the = and y axes are broken into different regions using the match-
ing Poincaré sections of the perturbed flow (Fig. [I2). Demarcation of these subdomains was most

straightforward for the case &/ = 0.02, due to its large island and extended resonant region. While

we used Poincaré sections as guidance for defining regular and chaotic regions, other methods (for

space. The mean k. in the chosen subdomains gives a clear result in the E = 0.02, k = 10~ case
(Fig.[12]c)), where at long times, when the overall gradients have smoothed out, the resonant regions
have about twice the effective diffusivity as the islands. The islands’ ks at that time approximately
matches the value from the same region in the unperturbed simulation, indicating that chaos has not
affected this area. In the E = 0.02, k = 10~° case (Fig. d)) the mean ks is typically higher in
the resonant region than in the island, but the differences are less pronounced. It is notable that at
t > 130, Keyy is larger in the island than in the same unperturbed region, perhaps because islands
are not completely regular and contain smaller chaotic resonant regions within them.

Overall, these dye experiments show that chaotic advection enhances Nakamura effective dif-
fusivity within the chaotic sea at some times in all cases examined. The amount of enhancement is
controlled by both the size of the perturbation and the imposed diffusivity. A larger perturbation leads
to greater enhancement (higher k. 7). A smaller diffusivity leads to less-mixing-(more filamentation
(higher x?) and highly elevated enhancement (much larger ke ).

6 Conclusions

The main thrust of this work is to establish whether the stirring due to chaotic advection in an
idealized model of an upper ocean eddy remains relevant in the presence of levels of background
tarbulenee-turbulent diffusion that are consistent with observations. The answer is that chaotic ad-
vection can indeed be relevant, and in some cases dominant, within certain regions of the flow field
and over certain time intervals. The region most likely to feel the effects of chaotic advection is
the extensive chaotic sea that exists in all simulations, and is especially pronounced when the eddy
is shallow. Chaotic stirring in the smaller and more isolated resonant regions is less likely to be
important. This conclusion comes with many caveats related to idealizations (e.g. homogeneous
turbuleneeturbulent diffusion) and uncertain parameter values (e.g. background diffusivity, strength

of perturbation).
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Figure 9. Top, (a)(b)(c), tracer variance, x?; bottom, (d),(e),(f), Kess integrated over volume. Left, (a)(d):
k=10"°% E =0.02, middle, (b)(e): k = 10~*, E = 0.02, right, (c)(f): k = 10~*, E = 0.125. Solid blue lines
include the deterministic perturbation which induces chaos, €=—6:62Xo = —0.02, green dashed lines are
unperturbed, solid red lines include the deterministic perturbation with e=—6-+6X, = —0.16. Black dashed

lines indicate .y integrated over volume in the case of nested circular tori.

A second focus of the work has been to explore different bases for comparison of the effects of
chaotic advection and homogeneous turbulenceturbulent diffusion. To this end we have identified
three metrics for comparison and are now in a position to discuss their pres-and-consadvantages
and disadvantages. The first metric is the Largrangian Batchelor scale (Sect. 3), an estimate of the
equilibrium width of a passive tracer filament. Equilibrium is achieved when transverse compression
due to advection, as quantified by the negative Lyapunov exponent with the largest magnitude (\3)
is balanced by the diffusive spreading of the tracer. Below the Batchelor scale, diffusion is stronger
than advection; when this width is larger/smaller than that of the chaotic regions, diffusion/advection
dominates. We fixed the turbulent diffusivity using Okubo’s empirical formula and calculated the
Batchelor scale  using the rate of chaotic filament stretching, A3, computed numerically as the
largest negative finite-time Lyapunov exponent for the kinematic model. The resulting Batchelor
scale varies from O(1m) for £ = 0.25 to O(100m) for £ = 0.0005. These values of ¢ are smaller
than the spatial extent of the chaotic sea over all E' values considered (0.25, 0.125, 0.02, and 0.0005),
but of similar magnitude to the widths of the resonant regions.

Interpretation of the Lagrangian Batchelor scale analysis would appear to be straightforward, but
it does not comprehend the fact that chaotic advection may only be dominant over a finite time in-
terval, which is averaged in the FTLEs. Even when the level of background turbulenee-turbulent
diffusion is weak, turbulent-diffusion-it will eventually spread beyond the region of Lagrangian
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applied background diffusivities.

chaos. There is also a level of uncertainty due to the choice of integration time over which Ag
is calculated. Finally, it is not yet possible to calculate A3 from ocean data with contemporary
float/drifter technology. Vertical velocities are typically very weak and Lagrangian drifters that are

able to follow water parcels in 3D are expensive and have only been deployed in small numbers

As a second basis for comparison, we computed the dispersion over time of initially small clusters
of trajectories (Sect. 4) as they spread across isosurfaces of the background streamfunction. Back-
ground turbulenee-turbulent diffusion is simulated as a Lagrangian random walk based on spatially
uniform diffusivity. We consider the dispersion characteristics that arise when this representation
of turbulent diffusion is added to a background flow with no chaotic advection and compare it to
flows that are undergoing chaotic advection but lack turbulent diffusion. Since the chaotic regions
occupy sub—volumes of the entire eddy, spread of trajectories or tracers due to turbulent diffusion
will eventually surpass that due to chaotic advection: chaos alone cannot distribute parcels across
Lagrangian boundaries. However, it remains meaningful to compare the rate of spreading of parcels
at earlier times. One immediate observation is that the character of ensemble spreading is qualita-

tively different for advective as opposed to diffusive perturbations. For the former, the spreading rate
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is significantly enhanced at some key times when trajectories pass near strong hyperbolic regions. In
the latter case, the spread grows similarly to the square—root of time at all times.

When the eddy is moderately shallow (E = 0.125) there are many instances in which chaotic
advection in the chaotic sea dominates turbulent diffusion, even at the higher ranges of turbulent dif-
fusivity. When the perturbation strength is moderately large (e = 0.08, zo = —.02), chaotic advection
produces more rapid spreading than diffusion for two of three diffusivities considered (pink curve in
Fig.[8[a)). Even when the perturbation strength is small (e = 0.01), spread due to chaotic advection
in the chaotic sea (red curve in a)) is of comparable order to turbulent diffusion at the lowest k&
values considered (light blue curve in Eka)). These results are in agreement with the Batchelor Scale
analysis.

When the eddy is deeper (E=0.02) spreading due to turbulent diffusion in the chaotic sea and
resonant regions generally dominates over spreading due to chaotic advection. This holds even when
the perturbation strength is moderately large (e = 0.08). These results are not in strict agreement with
the Batchelor Scale analysis (Fig.[6) result that the dimension of the chaotic sea is greater or equal to
that of the Lagrangian Batchelor scale for deeper eddies. To reconcile these inconsistencies, note that
as E gets small, a greater percentage of the eddy volume becomes occupied by an inviscid, vertically
rigid interior. For very small E, parcels experience relatively low levels of strain while rising or
descending through the region. When a fluid parcel nears the top or bottom boundary, however,
it become vertically squashed and horizontally stretched, suggesting that the main contribution to
A3 comes from close encounters with these boundaries. A Batchelor scale that is based only on a
single parameter measuring the time—averaged contraction over several overturning cycles may be
too simplistic when a parcel divides its time between kinematically distinct regions.

This method of comparison based on parcel spreading has several advantages over the Batchelor
scale. First, it offers a direct measure of fluid stirring. Also, it reveals information about the time his-
tory of dispersion that is hidden in the Lagrangian Batchelor scale analysis. Disadvantages include
the fact that the analysis, as presented, does not account for scale—dependent diffusivity. Also, like
the Batchelor scale analysis, it requires the tracking of fluid parcels in 3D, something that is currently
difficult in the ocean. The third method for comparison (Sect. 5) differs from the first two in that it is
based on metrics of irreversible property exchange (mixing). These metrics consist of the Nakamura
effective diffusivity, £, and a volume—integrated tracer variance function, 2. We consider a flow
with a given background turbulent diffusivity, %k, and calculate how much the irreversible property
exchange is amplified as a result of chaotic stirring. The volume—integrated x. ¢ s and x? both depend
on time and show rapid initial growth, a result of filamentation of an initially smooth tracer distribu-
tion. Growth is arrested when diffusion begins to dominate due to the enhanced gradients produced
by the filamentation process, at which time both measures, k. ¢y and x?, reach peak values. This is
followed by a long period in which x? slowly diminishes to zero and the volume integral of f.

reaches a nearly constant value. In most cases, chaotic advection leads to more rapid initial growth,
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a lower peak value for both measures, and a larger long—term, near—equilibrium value of xkss. In
weakly perturbed cases, the differences in initial growth and peak value of x.f; are minor, usually
on the order of 10 or 20%, while differences in the longer term, near—equilibrium value of x. s are
more significant. For strongly perturbed cases the initial growth is an order of magnitude larger and
the amplification in the long—term value of k. ¢y is larger by a factor of two than in the unperturbed
case.

The spatial structure of k.yy also yields interesting information, though one must be aware of
the caveat that the local value is due to non—local processes. The chaotic sea region generally has
enhanced values compared to the interior and its resonant regions. Under weak perturbation, maxi-
mum values of .y were smaller than in the unperturbed case, but the spatial extent of the interme-
diate values was larger, leading to the enhanced volume—integrated values discussed above. Larger
changes in ks are evident for lower k due to the occurrence of more numerous small-scale fila-
ments. With a larger perturbation, chaotic advection dramatically changes the effective diffusivity,
but there are also stronger barriers present, evident from isolated areas with different tracer concen-
tration. We conclude that the spatial structures of chaotic and regular regions can play an important
role in how a tracer is distributed.

The use of effective diffusivity as a metric has several advantages and disadvantages. First of all,
it provides a direct measure of irreversible property exchange between regions with different dye
concentration. Its time history leads to insights about the evolution of mixing and, in particular, the
time periods when chaotic advection is most relevant. Also, it can be measured, at least in principle,
by performing an ocean dye release and measuring the dye concentration along sections that cut
through the dye plume at different depths or angles, all in an attempt to recreate a concentration
map in 3D. Of the three methods proposed herein, it would appear to be the one most testable by
ocean observations. The main disadvantage of effective diffusivity is that it requires the background
diffusivity to be constant, which is strictly true only if the diffusivity is interpreted as the molecular
diffusivity.

In this work, we examined the relative strengths of advection and diffusion for the redistribution
of a passive tracer in a rotating cylinder flow as an analogue for an overturning submesoscale eddy.
Since a major challenge of this work has been to develop ways of thinking about the competition

between chaotic advection and turbulent diffusion, the numerical experiments described in this pa-

per have been necessarily idealized. Although the focus of this current paper is on the behavior of
a steady 3D eddy flow subject to a turbulent diffusion, similar results are expected to hold for 3D

eddy flows with time-periodic and time-quasiperiodic behavior. Exploration with models that are
more realistic for the ocean presents a number of challenges, including the development of more

anisotropic and spatially—varying representations of turbulence to account for differences between

the ocean surface mixed layer and the stratified fluid underneath. In addition, finite eddy lifetimes
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1185 must be confronted as a separation of timescales between feature lifetimes and the periods of trajec-

tories within them is needed for these analyses.
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Appendix A: Bifurcation Analysis of Fixed Points of the Background Streamfunction

Here we provide detail about the fixed points, and their bifurcations, of the background velocity
field in the kinematic model of the rotating cylinder. Then we present the bifurcation diagram and
an example of the flow with many fixed points in the overturning streamfunction.

The overturning streamfunction is described by Eqn.s (2-7), with radial and vertical velocities (8—
9) and azimuthal velocity (10). All 3 velocity components are zero at z = 0 and = a. The azimuthal
velocity V' only has 1 other zero at » = 0. However, there exist additional points with zero vertical
and radial velocity, which correspond to circular periodic orbits in the horizontal plane and which
we refer to as rz—fixed points.

All rz—fixed points in the interior occur at » = 0.5a, because this is the only place where W =
0. Finding the rz—fixed points is thus equivalent to finding points in z where U(r = 0.5a,z) = 0.
One such point exists for all E at z = 0.5. Additional rz—fixed points appear through pitchfork
bifurcations, where new pairs split from z = 0.5 and move apart in z as E' decreases from one (Fig.
13).

It is possible to classify the rz—fixed points as elliptic or hyperbolic according to their behavior in
the r—z plane: the overturning streamfunction is a local maximum in both z and 7 at elliptic points
and a saddle, i.e., a mininum in r but a maximum in z, at hyperbolic points. At E =1, the only
stationary point is at (r,z) = (0.5,0.5), and it is elliptic. As E decreases to about 1/62, the first
bifurcation creates two elliptic points above and below the now-hyperbolic central point at (r, z) =
(0.5,0.5). As E decreases, the newly created points move away vertically from the central point,
until the next bifurcation creates two new hyperbolic points, and the central fixed point becomes
elliptic again. This process continues; the number of fixed points increases as I decreases through a
repeated pitchfork bifurcations of the (7, z) = (0.5,0.5) fixed point. As these bifurcations occur, their
effects remain within a region bounded by trajectories between the first pair of hyperbolic points,
meaning that their effects are quite local. The spreading of the first pair of hyperbolic points, and
not the total increase in rz—fixed points, causes the increasing vertical homogeneity of the flow with
decreasing E/ which appears qualitatively similar to Taylor columns. An example with 9 rz—fixed
points is shown in Fig. 14| for ' = 0.00125; the central point is now elliptic. Trajectories in the
vertical plane are level curves of the streamfunction; these show the elliptic and hyperbolic nature
of the rz—fixed points, where trajectories near an elliptic point remain nearby but trajectories near a
hyperbolic point may travel a long distance before returning or may move toward another hyperbolic

point.

Appendix B: Gaussian Tracer in Linear Strain

In this appendix, we present the derivation of the evolution of a three—dimensional tracer in a steady

linear strain flow. This result was used in the main text to show that the thinnest width of the Gaussian

44



0.9F
0.8
0.7\
0.6

N 05

03

!

ol ! L L L L |
162 201 418 716 1093 1551 2000
1/E

Figure 13. z—positions of rz—fixed points. Black indicates elliptic points, blue hyperbolic, gray the neutrally
stable points at the top and bottom. New fixed point pairs separate symmetrically from z = 0.5 as E decreases.

At each bifurcation, the central fixed point changes stability.

0.7r

0.6f

N 0.5-

0.4f

0.3f

0.2

0.45 0.5 0.55 0.6

Figure 14. Trajectories in the vertical plane for £ = 0.00125, a = 1. There are 9 rz—fixed points along r = 0.5,
marked with red stars. Note the closed curves between the outermost hyperbolic points which surround the

interior 5 rz—fixed points; these limit the effects of those points to the local area.

45



1225

1230

1235

1240

1245

tracer distribution will asymptotically approach the Lagrangian Batchelor scale. We start with the
definitions of the velocity field, the tracer evolution equation, and the form of the solution. Then we
derive the full time—dependent solution for the tracer distribution.

We are solving for the evolution of tracer concentration, C, with a solution in the form of a

Gaussian function

—w*a’(t)  —y’B() —2272(7?)) ’ (B1)

C= Cmax (t) exXp ( 9 + 9 + 9

where ¢4, 1s the maximum concentration and «, f3, 7y are the reciprocal of the standard deviations
in each direction. In the Lagrangian frame of reference that is moving with the center of mass of
the tracer, these four parameters are dependent on time but not space. The smallest width of the
distribution is 0 = 1/« and in the main text we have used the fact that it has a stable fixed point
o= \/W , where A3 is the contraction rate of the velocity field. We are now going to formally
prove it.

The velocities are defined in the Lagrangian frame by

u = A3x(xo,t), (B2)
v = Aay(xo,t), (B3)
w = A\ z(xo,t), (B4)
A1 > Ao > Ag, (BS)
A1 >0, A3 <0, (B6)
with x(xo,t) indicating the initial position &g of the water parcel at ¢ = 0. The Lagrangian tracer

evolution equation is

oc  oc . ac . aC
E+)\3x%+/\gya—y+/\1z§—nv C, B7)

where « is the diffusivity.
The form of C' and the tracer evolution equation allow us to find differential equations for each of

our four parameters, which are

1 deman

Py A CL A D (BY)
Z—(; = —A3a — ka®, (BY)
B B, (B10)
”% I V" B11)
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The width parameters’ equations are nonlinear, but rewritten in terms like o~ 2 give:

d —2

Zt — 2302 + 2%, (B12)
d —2

/jlt =2X07 % + 25, (B13)
d —2

th — 2172+ 2%, (B14)

which are Bernoulli equations, solvable with integrating factors, giving

a=\/lkgl/m((kzaf/ﬁ—1)6”3%1)_1/2, (B15)
B=((By2+ K/ Aa)e® — i/2g) 2, (B16)

7= VAR (g 2 e+ et —1) T2, (B17)

where subscript 0 indicates the value at ¢ = 0. The differences in these equations is due to the differ-
ent signs of each A, with the ambiguity of the sign of Ay preventing its factoring.
The ¢4, €quation depends on the width parameters and is not simple to solve directly. However,

a careful inspection shows that ¢, /(a/37) is conserved, so we can write
Cmaz(t) = coa(t) B()V(1). (B18)

For anyone in doubt, we plug in this solution to check it:

demaz  d B do g dry
mar _ ) = co (ﬁw LY dt) |
=co (—aBy(As + ka®) — afy(Aa + £B%) — aBy (A + 7%))
=—coafy (M + X2+ A3+ k[a® + B2 ++%]),
1 deman - 2 2 2
Cmazx dt N K(a +6 +,Y)

The full solution for the tracer concentration C' then has been fully solved by (B1) with «, 5,7 and
Cmaz given by (B15-18).

For a three dimensional Gaussian tracer advected by a linear strain field in the presence of constant
diffusivity, in the Lagrangian frame the width of the tracer distribution will increase in the stretching

direction(s) forever, but reach a fixed value in the contracting direction(s).

Appendix C: Long-Time Limit of Effective Diffusivity For The Axially-Symmetric Rotating
Cylinder Flow

For the axially—symmetric rotating cylinder flow at long times, the dye contours resemble nested
tori, although with cross—sections that are somewhat between a circle and a square. Here, we derive
the expected limit of [ ks dV assuming that the dye iso—contours at late times are nested tori with a

circular cross—section, and that the gradient of the dye concentration is constant along each torus. In

47



1280

1285

1290

1295

1300

1305

this case the effective diffusivity on each torus is . s f = kA?, the background diffusivity multiplied
by the squared surface area of a torus.

Recall that the volume of a circular torus is
Ve = 27r27"2R7 (C1)

where r is the radius of the circular cross—section and R is the distance from the center of mass of

the torus to the center of the cross—section. The surface area is
Act =A4r 27"R.

Noting that A.; = dV,;/dr, we can calculate the volume—integrated effective diffusivity as

/ﬁefdeZ///kAQdV

Tmax

=k / A3dr

= 4375 R3k / ridr
0

=k79/8 (C2)

Tmax
=427°R? /<:7“4’

0
using R = 0.5 and 7,4, = 0.5. This circular—torus—based result gives a lower bound, because there
is still volume outside the largest torus that fits in the cylinder and the final cross—sections are some-

what square, thus having a larger surface area per volume.
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