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Author response to reviewer comments

To begin, we would like to thank all reviewers for their close reading and appreciative comments

on this paper. It was quite gratifying to receive so many positive remarks. Below, we address the

individual comments of each reviewer. Our responses are in italics. Line numbers in our responses

refer to the revised paper draft, while those in the reviewer comments refer to the discussion pa-5

per version. Following these responses is the manuscript with changes from the initial submission

marked: red indicates removal and blue indicates addition.

Reviewer 1

1. A sketch of the flow would be helpful when first discussed in detail, showing both the rotating

flow, the Ekman layers, and the off-center perturbation.10

A sketch of the flow was also requested by reviewer 3. A new first figure has been created for

this request. It shows the 3D cylinder with the direction of flow and labels indicating Ekman layers.

Figure caption: Sketch of the qualitative velocity field, Eqn.s 7-9. Ekman layers at the top and bottom

are where flow has a larger radial component. Ω is the rotation rate of the system. X0 is the offset

between the lid and cylinder rotational centers, as set for the Navier-Stokes simulations.15

2. The Batchelor scale is a little difficult to follow when first presented at the beginning of section

3, but then there is an outstanding discussion of this in section 3.1 (on p. 11) with ample references.

Perhaps move that discussion a little earlier.

Reviewers 2 and 3 also requested the start of this section be cleaned up. In the revised paper we

have re-arranged section 3. We have moved the Batchelor scale discussion forward to the beginning20

of section 3 (lines 253–283), and we have moved the discussion of dimensionalization from the
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beginning of section 3 to after Okubo’s diffusivity is introduced in section 3.1, which is where it

becomes relevant.

3. I will admit that by the time I got halfway through section 5, I was beginning to fade. Although

I think that the detail is useful overall, perhaps some trimming of section 5 would be helpful to the25

readability of the paper. But this isn’t critical – it’s fine if the authors leave it as is.

Reviewer 3 also commented that section 5 was challenging. This was indeed a difficult section to

write and was the target of a number of revisions and reduction prior to submission. We took another

look at it and feel that it would be difficult to condense further without sacrificing important content,

but we went through and made a number of minor changes intended to make it a little easier to read:30

Line 550: X0 is clarified: “The symmetry–breaking perturbation is created by moving the central

axis of the imposed surface lid stress a fraction of the radius X0 from the cylinder axis"

Line 565: Figure 9 reference now specifies panels (a)—(c)

Line 589: Changed “see Figure 10(h)" to “look ahead to Figure 10(h)"

Line 598 and Fig. 11 caption: We now include the diffusivity, k, in the description of the case we35

discuss.

Line 641 Changed “κeff/k" to “as measured by ‘κeff/k"

We also changed the color scheme of Figs 9-10 (10-11 in the revised version) and improved the

quality of these figures to allow more accurate reading of the values.

Reviewer 240

1. Line 69: I would rather talk about important characteristic for the problem considered instead

of a “person”. Something like: The terms “important" and “relevant" are somewhat subjective, and a

particular aspect, such as the existence of barriers, that is of interest for one scientific question may

not be so to another.

Changed to: The terms “important" and “relevant" are somewhat subjective, and a particular45

aspect, such as the existence of barriers, that is of interest for one scientific question may not be so

for another.

2. Line 244: though

Changed, thank you! (Now on line 250)

3. Fig.2/Fig.3: The scale of the upper row of figures looks not equidistant in my viewer. It is also50

confusing that the lower plots have a scaling range and the upper ones do not. Further it is said in

the caption that the simulations are from another work while in the text the simulations are claimed

to be done within this study. This is a bit confusing.

The non-equidistant ticks in the top panels of Figs. 3 and 4 were due to problems in changing

image format. In the revision, we have used higher-quality images and removed the ticks.55

The difference between the top and bottom panels in Figs 3 and 4 are that the top panels were

computed using velocities from a dynamically-consistent numerical model, whereas bottom panels

were computed using velocities from our analytic (non-dynamically consistent) model. This is now
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clarified in the caption and in the text. The purpose of these plots was to show that our analytic model

(bottom panels) correctly captures the qualitative features of the dynamically-consistent solution60

(top panels).

In this paper we did not re-run the dynamically-consistent NS solver to get the top panels; we

simply took these images from P2014. This is now clearly stated in lines 229-230 of the text. Since

P2014 only computed Poincare sections but did not compute FTLEs, we have no color images in the

top panels. For our analytic model in the bottom panels, however, we have computed both Poincare65

sections for comparison with the top panels, as well as FTLE fields, whose values we show using the

colorbar. These FTLE values will be used in section 3 to compute the Batchelor scales.

The new caption for the first of these figures (3) now reads: “Structures in the kinematic model and

dynamical simulation for Ekman numbers of 0.25 (a)(c) and 0.125 (b)(d). Top, (a)(b): Poincare maps

from P2014 (their Fig. 10), resulting from a dynamically consistent numerical simulation. Bottom,70

(c)(d): Poincare maps (black) and largest FTLEs (color) resulting from our non-dynamically con-

sistent kinematic analytic model, with ε= 0.01 and x0 either -0.5 (c) or -0.9 (d); in color, maximum

FTLEs calculated for the kinematic model with integration time 400. In (d), red oval approximately

separates the resonant and regular layers (inside) from the chaotic sea region (outside), with the

blue line segment showing the width of the chaotic sea. The blue diamond shows the width of an75

island, which is also the width of the resonant layer."

4. Line 252: Maybe I missed it but was the chaotic layer thickness introduced before being used

here? I feel like maybe it is necessary to revise the usage of chaotic sea, width of chaotic sea, chaotic

layer and chaotic region, see also line 16 in the abstract. A mere note would help easier reading.

Reviewer 1 also found the start of section 3 to be a bit confusing. Now, near the beginning (lines80

260-268), we have: “If δ is larger than the structures in the flow induced by chaos, then diffusion

will overcome advection and wipe out these structures. The structures of interest, induced by the

deterministic, symmetry–breaking perturbation (see Fig.s 3–4) are the bands of chaos, called reso-

nant layers, surrounding regular island chains (see blue diamond in Fig. 3d), and the chaotic sea

region (outside the red oval in Fig. 3d) located near the cylinder perimeter and central axis, which85

are identified by visual inspection of Poincare sections. When we compare δ to these structures, we

define their widths as the difference between distances from the central orbit, (r,z) = (0.5,0.5), to

the outermost/innermost part of the structure, measured in Poincare sections like Fig.s 3-4."

5. Line 264: Should it not be equation (13)?

In fact, it should be equation (9), for the background azimuthal velocity of the kinematic model.90

This has been changed.

6. Line 273: Does it make sense to talk of a timescale of a non-dimensional timestep? In general

I was sometimes confused by the varying usage of non-dimensional units and dimensional ones.

Maybe it could be helpful to use only adimensional ones in the text and make a little table for the

conversion?95
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Thank you for your suggestion on making the text more readable. We have added Table 1 with

the correspondence between dimensional and nondimensional values, and removed references to

dimensional values of model variables in sections 3-5 (e.g. lines 364,367,461,463).

7. Line 319: Cauchy-Green.

Changed, thank you.100

8. Line 341: γ = σ ?

Several errors existed in this equation, which is derived in Appendix B. It is now corrected.

9. Line 349: I feel like there is some other reference missing (or not?). Did not Okubo just study

up to a scale of 100km in that report?

You are correct, we have updated the upper limit (line 332).105

10. Fig.5, caption: Which δ values? (22) or (15)? Even though it becomes clear studying the text

it would be easier if it was stated. Just to be curious: What is the result for (15)?

These values are computed with Eqn. 22, which is now indicated in the caption. With Eqn. 15, the

Batchelor scale is similar to or larger than the layer widths in all cases.

11. Line 364: Fig. S 2-3110

These are in fact referencing figures (plural) 2 and 3, not supplementary figures. This matter has

been corrected in the revision (line 363).

12. Line 366: 10-20 rotations <-are those the integration times for the FTLE?

The reviewer is correct. We have clarified the sentence in question as follows: “FTLEs were

estimated over an integration time of 400; the range of FTLE magnitudes does not noticeably change115

when the integration time is decreased by half."

13. Line 377: “rotating can model" is it the standard name for the model used? Why not introduced

before? It difficultates understanding using a new name.

This now reads “kinematic model"; thank you for pointing this out.

14. Line 421: pf→of120

This has been changed, thank you.

15. Line 507: Year of citation of Shuckburgh, E. and Haynes, P. should be 2003.

In this case, we are citing Haynes and Shuckburgh’s work on the application of the Nakamura

effective diffusivity to the atmosphere, which is described in a pair of papers in JGR in 2000, not

the 2003 Shuckburgh and Haynes work on the quantitative applicability of the effective diffusivity in125

Physics of Fluids in 2003. (The latter is also relevant for our paper and is cited on line 519.)

16. Line 545: The numerical simulations are run using the solver NEK5000...

We have added “the solver”, thank you.

17. Fig. 8: X0 instead of epsilon in caption and in legend the x is small? Further I would find it

really helpful for the comparison of the temporal evolution and the peaks of the different cases to130

have a grid in the background of the plots.

X0 has replaced epsilon and x0, thank you. We have also added a grid.
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18. Line 596: After “dye contours" put reference to Fig 10(e)?

We have referenced Fig 10i, thank you for demonstrating how confusing this can be without that

reference.135

19. Line 599: A caveat is that k eff is a nonlocal property, the value of which at any point in space

and time is influenced by processes occurring at all other locations having the same C at a distinct

time t (?). This time dependence could also be explicitly noted in equation (25) to clarify. I must

admit that I am still a bit confused about the details of the calculations of k eff here. As I understand

it the keff values are calculated at each time step from volumes of equal concentrations (and dC/dV140

is taken from the cumulative distribution of volumes with concentrations c < = C as in the reference

[Shuckburgh and Haynes, 2003]). One then gets a function k eff ( C,t ). The plots of k eff at fixed

instances t would thus just be derived by finding the corresponding value of k eff at that C (t)? Or is

there any such thing as an equivalent latitude used here? I wonder why the two plots of keff(t) and

C(t) look so different. The keff looks much more noisy. How does keff(C,t= 39) look like?145

You are correct about the calculation of keff. The plots of keff are noisier than those of C be-

cause the function keff(C) is not very smooth: small variations in C can correspond to larger, non-

monotonic changes is keff. This is now addressed in the text lines 600-604: “A caveat is that keff is

a nonlocal property, so plots show the values keff(C) mapped onto the locations on the sections with

corresponding dye concentrations, C, while they are calculated using the distribution of C over the150

whole volume at that time. These mappings are noisier than the sections of C because the numeri-

cally computed keff(C) is nonmonotonic and can have large changes with small changes in C."

20. Line 607-608: Do the results depend on the details of the initial condition? What must be met

to ensure that the results are independent?

In our simulations, we see a transition from the large-scale vertical gradient in tracer concen-155

tration to approximately toroidal tracer distribution after several overturning cycles. For an initial

broad gradient in any direction, we expect the same realignment after the first few overturnings as

the tracer is passively advected by the background velocity field. We believe, then, that the tracer

distribution that exists at later times is somewhat independent of initial distribution. We have added

this idea to the text, lines 615–620, as: “With no disturbance present (X0 = 0) and k = 10−4 (Fig.160

10(b)), the initially horizontal lines of constant C have been advected by the axially symmetric

overturning circulation such that contours of constant C are roughly aligned with the overturning

streamfunction. For an initial broad gradient in any direction, we expect the same realignment after

the first few overturnings as the tracer is passively advected by the background velocity field. We

believe, then, that the tracer distribution that exists at later times is somewhat independent of initial165

distribution." It would be interesting to test this, but one would have to do it over a range of tracer

distributions. Our paper is quite long already, so this may have to be something to explore in the

future.
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21. Line 631: Thus the combined effect of smaller diffusivity and finer filaments (i.e., stronger

tracer gradients) leads to more rapid mixing across tracer contours. This is my favorite insight of the170

analysis and it is, at first glance, counterintuitive to me and still makes so much sense.

Thank you.

22. Line 667: Here I am confused about the statement: A smaller diffusivity leads to less mixing

(X2). Especially when compared to details of Fig. 8.

We agree with the reviewer that the wording of this sentence was indeed ambiguous. We have175

rewritten the sentence in question as follows (lines 680–681): “A smaller diffusivity leads to more

filamentation (higher χ2) and highly elevated enhancement (much larger keff)."

23. Line 681: I feel that pros and cons is a bit colloquial and would suggest advantages and

disadvantages (or so). But that is just my personal opinion.

We have changed this line, thank you for marking it.180

24. General comment 1: As a general remark to the Figures and their descriptions, there is quite

some mixed usage of either left-middle-right-bottom-top and a,b,c,d,.... Maybe it would become

easier to read just using a,b,c,d,... Especially Fig.’s 8/9/10.

In the text we have replaced references by location to references by panel letters. In the actual

captions of figures, we use positions of rows and columns in order to indicate the pattern of the185

panels- rows and columns generally have the same type of data or data from the same simulation

shown. However, we now also note the panel letters to avoid confusion.

25. General comment 2: On a similar vein I also find the usages of the word turbulence, turbulent

diffusivity, diffusion, eddy diffusion and similar expressions confusing too. I would try to avoid

using these concepts interchangeably and only use those expressions that were defined before.190

We have tried to clean up our lexicon. Both terms “eddy diffusion" and “eddy diffusivity" have

been eliminated. We now consistently use terms “chaotic advection" and “turbulent diffusion" to

refer to the two dominant processes that influence tracer evolution. For example, the new abstract

now reads:

“The importance of chaotic advection relative to turbulent diffusion is investigated in an ide-195

alized model of a 3D swirling and overturning ocean eddy. . . Turbulent diffusion is alternatively

represented by: 1) an explicit, observation–based, scale–dependent diffusivity, 2) stochastic noise,

added to a deterministic velocity field, or 3) explicit and implicit diffusion in a spectral numerical

model of Navier–Stokes equations."

Reviewer 3200

General comment 1: The methods are really well described but I believed some of the sections are

too long. I would like the authors to focus on results and maybe relayed some of the methodology

details to Appendix. For example, sec. 3-3.1 and add details to the results section in 3.2. Section 5 is

also a bit hard to follow as the reader is asked to compare two figures, maybe a reorganization of the

figures could improve the readability.205
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Reviewer 1 agreed that the structure of section 3 was not optimal and that section 5 was chal-

lenging. We have re-structured and streamlined section 3. Specifically, we have moved the Batchelor

scale discussion forward to the beginning of section 3, and the discussion of dimensionalization from

the beginning of section 3 to after Okubo’s diffusivity is introduced in section 3.1.

Section 5 was indeed difficult to write and was the target of a number of revisions and reduction210

prior to submission. We took another look at it and feel that it would be difficult to condense further

without sacrificing important content, but we went through and made a number of minor changes

intended to make it a little easier to read:

Line 550: X0 is clarified: “The symmetry–breaking perturbation is created by moving the central

axis of the imposed surface lid stress a fraction of the radius X0 from the cylinder axis"215

Line 565: Figure 9 reference now specifies panels (a)—(c)

Line 589: Changed “see Figure 10(h)" to “look ahead to Figure 10(h)"

Line 598 and Fig. 11 caption: We now include the diffusivity, k, in the description of the case we

discuss.

Line 641 Changed “κeff/k" to “as measured by κeff/k"220

We also changed the color scheme of Figs 9-10 (10-11 in the revised version) and improved the

quality of these figures to allow more accurate reading of the values. Finally, we now consistently

refer to the subpanels in the multi-panel figures by their letters (a,b,. . . ) instead of their location

(middle, left, etc.).

2: Lines 55-60: the authors should take a look at “Material barriers to diffusive and stochastic225

transport" by G. Haller, D. Karrasch and F. Kogelbauer, which seeks transport barriers with no

diffusion of tracers across it. Those structures could help extract the different regions analyzed in

figure 11.

We thank the reviewer for the reference to a relevant paper and for the suggestion regarding

figure 11. While we agree that it would be interesting to try re-doing the calculations presented for230

the slightly different regular region identified via this other technique, the resolution of the tracer

field in our existing simulations is too low to allow for a precise calculation of Keff within that exact

island. Note that we only use Poincare sections as guidance for picking red and blue regions with

qualitatively different behavior. We have added the following sentence to address this issue near the

end of section 5, line 667: “While we used Poincaré sections as guidance for defining regular and235

chaotic regions, other methods (for example, Haller et al., 2018) could be used instead for the more

precise delineation of the phase space."

3: Lines 575-580: is there a difference between x0 and X0, and later in the caption of Fig.8 there

is also an epsilon?

Yes, there is a difference. As noted in the first paragraph of section 2.2 (lines 215-220), x0 is a240

parameter for the offset in the perturbation for the kinematic model, while X0 is the offset in the

NS simulation. Epsilon is the strength of the perturbation for the kinematic model. In the caption
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of figure 8 the epsilon should be X0; this has been corrected. We have also labeled X0 in the new

figure (now Figure 1) requested by the first reviewer.

4: Lines 771-774: 3D dye released and tracking seem almost like an impossible task, especially245

when the tracers have to be followed for multiple days. Right now, none of those methods can be

calculated with observation data. Is there any plan for the applications of such analysis to 3D model

outputs (ECCO, HYCOM, etc.) that assimilate data from floats, drifters, CTD casts, etc.? An analysis

performed for example on a Loop Current or Agulhas Current eddy would be interesting.

We thank the reviewer for the comment and suggestion. We agree that any application to the ocean250

in 3D is extraordinarily challenging for any of our measures. It would be quite interesting to apply

our analysis to data-assimilative models, but that is outside the scope of our work. There is also the

question of whether any of the cited models can reproduce the vertical velocity field correctly. Often,

a certain degree of horizontal averaging is needed to get a vertical velocity that looks sensible.

5. Line 140: the streamfunction is not intuitive at all, I believed a sketch of the flow in section two255

could improve the readability.

To better relate the streamfunction to the velocities, we have added at its introduction (line 145)

“The streamfunction relates to the velocities by the negative z-derivative of Ψ being the radial ve-

locity and the radial derivative being the vertical velocity." A sketch of the flow was also requested

by reviewer 1 and is now presented as the first figure.260

6. Line 299: for a for a

Now one for a, thank you.

7. Line 319: Caushy-Green

Cauchy, thank you.

8. Line 421: move out pf265

Of, thank you.

9. Line 445: a scale with square root of time could be included in the left panels of figure 7

The square root of time curve has been added to panel (a).

10. Equation 20: I believe it should be σ instead of γ ?

Several errors existed in this equation, which is derived in Appendix B. It is now corrected.270

Reviewer 4

Here we paraphrase the comments in order to shorten them and address each individually.

1. The kinematic model assumes 1) there is a separation of scales between the background flow

and the turbulent perturbation; 2) the background flow is steady; and 3) the turbulence can be param-

eterized as a diffusive process (in the simulations of this model there is no actual turbulent flow). It is275

my view that the validity of almost all of the conclusions/inferences presented in the paper is limited

to flows for which assumptions 1) and 2) (again, maybe also 3)) apply. None of these assumptions

apply to the NS simulations. Indeed, there is no guarantee that those simulations approach anything

resembling a quasi-steady flow. Assumption 2) is both especially important and especially restrictive,
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and this should be stated clearly by the authors. It is assumption 2) – together with incompressibility280

– that leads to the underlying structure of a 2 dof autonomous Hamiltonian system.

You are correct that a separation in spatial and temporal scales between the background flow and

the turbulent perturbation is necessary for the analysis we perform. This is explicitly stated in the

introduction (lines 58–68): “The relevance of chaotic advection for the stirring of material within

geophysical flows would appear to rest on several criteria. The first is that the flow field contain285

persistent, long–lived (on the time–scale of interest) features such as gyres, eddies and jets, that

by themselves generate regions of elevated stirring as well as separating barriers. Secondly, the

stirring within these regions should be at least as important as that due to smaller scale, intermittent

features (i.e. small scale turbulence). Third, the barriers that exist in the absence of small–scale

turbulence should retain meaning as suppressors of exchange between the rapidly–stirred regions290

in the presence of the small–scale turbulence. For the flow considered in this paper the first aspect

has been investigated and shown to be true (citations); this work concentrates on investigating the

second and third aspects."

As for the NS simulations, they do reach a nearly steady flow, as have laboratory experiments with

similar setups (e.g. Fountain et al. 2001). In our work, NS simulations produced a circulation that295

was observed to be steady over hundreds of azimuthal cycling times, as evidenced by the replication

of periodic orbits in the stroboscopic sections in the top panels (labelled a,c) of our figs. 3 and 4

(previously 2 and 3). Please also see Pratt et al., 2014 for more examples of NS-based Poincare

sections over a wide range of parameters.

We have added to the conclusion (lines 792-794) “Although the focus of this current paper is on300

the behavior of a steady 3D eddy flow subject to a turbulent diffusion, similar results are expected to

hold for 3D eddy flows with time-periodic and time-quasiperiodic behavior." To expand on that idea,

note that treatment of a time-periodic 3D eddy flow (but without the focus on advection vs diffusion)

is described in Rypina et al. (2015), who used theoretical arguments, analytic kinematic model and

NS simulations to study Lagrangian transport and transport barriers arising in a time-dependent 3d305

idealized eddy. We could have carried out the same suite of experiments for that time-dependent flow

as here, invoking the same assumptions of time scale separation and parameterization of turbulence

as a diffusive process. So one does not lose the features induced by chaotic advection just because of

time dependence. Our hope is to analyze time-dependent and otherwise more complex flows in the

future using the presented set of tools, and to inspire others to consider our measures of the relative310

impacts of chaotic advection and turbulence or diffusion in other flows. Note also that a flow that

varies on a significantly longer timescale than more intermittent perturbations could be amenable

to analysis similar to the steady case.

2. In many cases throughout the text the authors make statements about exponential stretching,

exponential growth, positive Lyapunov exponents, etc. The authors should be a bit more careful315

about saying that these behaviors are average behaviors for long times.
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We agree with the reviewer and in the revised paper we now avoid such non-rigorous statements.

Instead, we use terms akin to “fast chaotic-advection-induced separation/stretching" (lines 445, 482,

for example) and phrases like “average exponential growth, as measured by FTLEs" (lines 256, 286,

440, 745). We have also rewritten the sentence introducing FTLEs as follows (lines 292-293): “The320

FTLE quantifies the average exponential separation rate between a trajectory and its close neighbors

over a finite time interval."

3. For the trajectory integrations in the kinematic model with added stochasticity, the algorithm

that the authors use to integrate the stochastic differential equation, Eq 23, is quite crude; there are

simple explicit integration schemes for stochastic differential equations (SDEs). (Does the mystery325

factor of 1/3 described on lines 405-407 somehow account for the fact that a Runge-Kutta algorithm

is trying to mimic a real SDE integrator?)

Yes, we used a very simple method for integrating a stochastic process. Other integration schemes

might provide a more accurate solution. However, we carefully tested that its mean and standard

deviation behaved properly over time without a background velocity before applying it. The stochas-330

tic perturbations are added to the deterministic velocity at each full timestep. The 1/3 factor is due

to the fourth-order integration function, which estimates the next point using the weighted sum of

estimates of the velocity at the current position (v1, weight 1/6), the halfway point estimated from

the current position (v2, weight 1/3), the halfway point estimated using v2 (v3, weight 1/3), and the

final point estimated using v3 (v4, weight 1/6). Only v1 and v4 include stochastic additions, leading335

to the 1/3 factor. We have added the following at lines 393–408 to clarify:

“Using the described stochastic perturbation, although it is quite simple, with Ubi = 0 or a con-

stant, the variance of a set of trajectories grows linearly in time, while the standard deviation grows

linearly with the square root of time, as expected for diffusion. . . This diffusivity requires a certain

step size s for the stochastic perturbation, which relates to the distribution of u′ by s= σ∆t/3, with340

σ the standard deviation of u′, ∆t the numerical timestep (0.01), and the factor of 3 due to the details

of a fourth–order Runga–Kutta integration. The next position, using this method, is estimated using

the weighted sum of estimates of the velocity at the current position (v1, weight 1/6), the halfway

point estimated from the current position (v2, weight 1/3), the halfway point estimated using v2 (v3,

weight 1/3), and the final point estimated using v3 (v4, weight 1/6). Only v1 and v4 include stochastic345

additions, leading to the 1/3 factor."
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Abstract.

The importance of chaotic advection relative to turbulent diffusion is investigated in an idealized

model of a 3D swirling and overturning ocean eddy. Various measures of stirring and mixing are

examined in order to determine when and where chaotic advection is relevant. Turbulence
::::::::
Turbulent350

:::::::
diffusion

:
is alternatively represented by: 1) an explicit, observation–based, scale–dependent eddy

diffusivity, 2) stochastic noise, added to a deterministic velocity field, or 3) explicit and implicit

diffusion in a spectral numerical model of Navier–Stokes equations. Lagrangian chaos in our model

occurs only within distinct regions of the eddy, including a large chaotic ‘sea’ that fills much of the

volume near the perimeter and central axis of the eddy, and much smaller ‘resonant’ bands. The size355

and distribution of these regions depends on factors such as the degree of axial asymmetry of the

eddy and the Ekman number. The relative importance of chaotic advection and turbulent diffusion

within the chaotic regions is quantified using three measures: the ratio of the tracer filament arrest

scaleto the width of the chaotic region
::::::::::
Lagrangian

::::::::
Batchelor

:::::
scale, the rate of dispersal of closely

spaced fluid parcels, and the Nakamura effective diffusivity. The role of chaotic advection in the360

stirring of a passive tracer is generally found to be most important within the larger chaotic ‘seas’,

at intermediate times, with small diffusivities, and for eddies with strong asymmetry. In contrast, in

thin chaotic regions, turbulent diffusion at oceanographically relevant rates is at least as important

as chaotic advection. Future work should address anisotropic and spatially–varying representations

of turbulence
:::::::
turbulent

::::::::
diffusion for more realistic models.365

1 Introduction

Chaotic advection (Aref (1984); Shepherd et al. (2000)) is a process by which rapid stirring, as

manifested by the stretching and folding of material, is produced within a smooth and well orga-

nized Eulerian velocity field. The enhancement of stirring can be attributed to chaotic fluid parcel

trajectories and their rapid separation from nearby trajectories. There are many examples, ranging370

from simple models of purely laminar flow (e.g. Rom-Kedar et al. (1990); Samelson (1992); Pierre-

humbert (1994); Malhotra et al. (1998); Poje and Haller (1999); Coulliette and Wiggins (2001) and

other work reviewed in the texts of Ottino (1990); Samelson and Wiggins (2006)), to modeled or

observed, oceanographically or atmospherically relevant flows (e.g. Rogerson et al. (1999); Miller

et al. (2002); Deese et al. (2002); Olascoaga and Haller (2012); Sayol et al. (2013); Rypina et al.375

(2007, 2009, 2011a, 2012)). In most cases the flow fields are two–dimensional and time–dependent,

and when observed, often occur at the sea surface or within the stratosphere (Polvani et al. (1995);

Ngan and Shepherd (1997)). Three dimensional examples also exist (e.g. Fountain et al. (2000);

Rypina et al. (2015); Solomon and Mezić (2003); Yuan et al. (2004); Branicki and Kirwan Jr (2010),

and Pratt et al. (2014), hereafter P2014) and often involve numerically modeled velocity fields, due380

to the limitations of observational methods.
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A feature that is intriguing and quite common in these studies is that Lagrangian chaos is confined

to certain sub–regions of the flow field, separated from each other by bands of material curves or

surfaces that contain no chaotic Lagrangian motion. The chaotic regions are rapidly stirred as a result

of the signature rapid separation of nearby trajectories, but the non–chaotic bands act as barriers that385

confine the stirring. In textbook examples, including area–preserving maps of time–periodic 2D or

steady 3D velocity fields, the chaotic and non–chaotic regions form a fractal geometry, with bounded

chaotic regions imbedded in larger chaotic seas, themselves bounded and imbedded in even larger

chaotic regions (Chirikov (1971, 1979); Casati and Ford (1979); Gromeka (1881); Dombre et al.

(1986)). In finite–time systems or systems with arbitrary time dependence, the distinction between390

chaotic and regular trajectories is difficult to define. A great deal of recent work in the field has

resulted in the development of methods for identifying material barriers based on the notion of La-

grangian coherence. These methods include, for instance, finding sets of trajectories that experience

fastest separation rates from their close neighbors, identifying contours that undergo minimal stretch-

ing, locating sets of trajectories that remain compact in some sense and/or share a common property,395

or identifying trajectories that encounter the largest number of other trajectories (see Haller (2002);

Shadden et al. (2005); Froyland et al. (2007, 2012); Rypina and Pratt (2017); Rypina et al. (2018);

Hadjighasem et al. (2017); Rypina et al. (2011b); Haller and Beron-Vera (2012, 2013) as well as

the review by Haller (2015) and references contained therein). Applications of these methods often

result in the identification of material contours and surfaces that act as barriers over finite time, thus400

allowing for partitioning between strongly and weakly stirred regions of the flow field.

Completely impenetrable material barriers only exist because of the deterministic nature of the

trajectories. Even a low level of background turbulence at small scales, if represented as a diffusive

process, would cause the barriers to become permeable or fuzzy over sufficiently long periods of

time, and perhaps nonexistent in any practical sense if the time scale of interest is long enough. The405

relevance of chaotic advection for the stirring of material within geophysical flows would appear to

rest on several criteria. The first is that the flow field contain persistent, long–lived (on the time–scale

of interest) features such as gyres, eddies and jets, that by themselves generate regions of elevated

stirring as well as separating barriers. Secondly, the stirring within these regions should be at least

as important as that due to smaller scale, intermittent features (i.e. small scale turbulence). Third,410

the barriers that exist in the absence of small–scale turbulence should retain meaning as suppressors

of exchange between the rapidly–stirred regions in the presence of the small–scale turbulence. For

the flow considered in this paper the first aspect has been investigated and shown to be true (P2014;

Rypina et al. (2015)); this work concentrates on investigating the second and third aspects.

The terms “important" and “relevant" are somewhat subjective, and a particular aspect, such as415

the existence of barriers, that is of interest to one person
:::
for

:::
one

::::::::
scientific

:::::::
question may not be so to

anotherperson
:::
for

::::::
another. We examine several measures of stirring and mixing in a particular case

of a three–dimensional flow field: an idealized representation of an isolated eddy with horizontal
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swirl and vertical overturning. This idealized eddy is most likely to be similar to a submesoscale

eddy within a surface mixed layer of the ocean, although the velocities of such eddies have not been420

well observed. The effects of stirring and mixing at these smaller scales, where vertical velocities

become important, is increasingly under study (e.g. Mahadevan (2016)). Generally, increased reso-

lution improves ocean model behavior (Griffies et al. (2015)), so at lower resolutions, an ongoing

challenge is parameterizing sub–grid–scale processes (e.g. Hallberg (2013)).

Our three–dimensional flow contains Ekman layers at the top and bottom of a cylindrical domain425

and their thickness relative to the full depth is measured by an Ekman number. The Lagrangian

structure of the steady as well as time–periodic, deterministic versions of this flow has previously

been explored (P2014; Fountain et al. (2000); Rypina et al. (2015)). This deterministic flow field

can be approximated by an analytically described velocity field (Sect. 2), favorable for the efficient

calculation of large numbers of trajectories. In this paper, we will add a stochastic disturbance repre-430

senting small–scale turbulence
:::::::
turbulent

::::::::
diffusion to the deterministic flow. In addition, some of our

calculations are done using velocity fields from a direct numerical integration of the Navier–Stokes

equations (used in Sect. 5).

In order to examine the relevance and importance of stirring and mixing due to large–scale La-

grangian chaos compared to that due to small–scale turbulence
:::::::
turbulent

::::::::
diffusion, we use several435

distinct measures applied to our isolated eddy model. The first measure is a Lagrangian version of

the Batchelor scale (Sect. 3), a measure of the smallest tracer filament width that can be produced by

chaotic advection before small scale–diffusion
::::::::::
small–scale

::::::::
turbulent

:::::::
diffusion

:
arrests the progres-

sion to smaller scales. The second measure (Sect. 4) involves the dispersion of ensembles of initially

closely spaced trajectories. The final measure (Sect. 5) is a bulk or “effective" diffusivity (Nakamura440

(1996)) that indicates the rate of irreversible mixing between volumes with different tracer concen-

trations. The analyses in Sections 3–4 are based on a “
:
“kinematic” analytical model with and without

stochastic perturbation; the analysis in Sect. 5 is based on a “
:
“dynamical” numerical solution of the

Navier–Stokes equations.

2 Models445

We will consider the steady flow of a homogeneous and incompressible fluid in a rotating cylinder

of depth H, driven at the top by the stress due to a differentially rotating lid. The resulting circulation

has Ekman layers at the top and bottom, and thus a central parameter is the Ekman number

E =
(
ν/ΩH2

)
= (δE/H)

2
, (1)

where ν is the kinematic viscosity, Ω is the angular rate of rotation of the cylinder, and δE is the450

thickness of the Ekman layers. Much oceanographic literature has been devoted to the case in which

the differential lid rotation δΩ is small (δΩ/Ω)� 1), and the Ekman layers are relatively thin,

E� 1. In this case a linear, asymptotic solution is available (Greenspan (1968) and Appendix A
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of P2014). According to this solution (with δΩ> 0) , fluid is drawn up into the top Ekman layer

from an inviscid and vertically rigid interior region that rotates at half the angular velocity of the455

lid. The fluid is carried radially outward and then downward within thin, viscous side–wall layers.

When it reaches the bottom, the fluid flows radially inward in a bottom Ekman layer and expelled

upward into the interior region. Fluid trajectories thus spiral upwards in the interior, outwards in the

top Ekman layer, downwards near the side walls, and inward in the bottom Ekman layer.
:
;
:::
Fig.

::
1

::
is

:
a
:::::::
diagram

::
of

:::
this

:::::
flow

:::
(see

::::
also

::::
Fig.

:
1
::
of

:::::::
P2014).

:
460

Although the set–up described above and its linear asymptotic treatment have provided a foun-

dation for a wide variety of models with geophysical and industrial applications (e.g. Lopez and

Marques (2010)), it is not the most convenient for Lagrangian studies. One difficulty is that all fluid

trajectories pass through small corner regions at the top and bottom of the cylinder. These regions

are not resolved by the asymptotic solution and can be difficult to resolve numerically, particularly465

when the velocity field is to be used to accurately calculate trajectories that are cycling through the

cylinder numerous times. For this reason it is advantageous to modify the forcing at the upper sur-

face to conform to a stress that still acts in the azimuthal direction and is zero at the cylinder axis,

but approaches zero at the cylinder boundary as well. P2014 used one such forcing distribution to

create a flow in which the downwelling occurs over a broad outer region of the inviscid interior, no470

longer confined to the thin, viscous sidewall layers. We will use the same velocities (obtained from

a numerical model) for the tracer release experiments discussed later in this work.

Since numerical solutions are required to get a complete, dynamically consistent velocity field for

the rotating cylinder, Lagrangian calculations requiring long integration times can become cumber-

some, making it difficult to explore the variations in the governing parameters. As a compromise,475

past investigators have developed phenomenological models in which an incompressible Eulerian

velocity field containing the qualitative features of the dynamically consistent fields is specified an-

alytically and fluid trajectories are computed from it. Many of the calculations described below are

based on such a model, hereafter referred to as the “kinematic" model. This new model is an im-

provement on the phenomenological model used by P2014 and Rypina et al. (2015) in terms of its480

more realistic portrayal of Ekman layers and inclusion of the Ekman number as a parameter.

The kinematic model specifies an analytically prescribed background velocity field that is steady,

incompressible, and has no azimuthal structure. Under these conditions, all trajectories are regu-

lar, or non–chaotic. When perturbed through the addition of an analytically prescribed symmetry–

breaking disturbance, one with azimuthal structure, Lagrangian chaos arises in portions of the three–485

dimensional flow field.
::
To

:::
see

::::
the

:::::::::
qualitative

:::::::
behavior

::
of
::::

the
::::
flow,

:::::::
examine

::::::
figure

::
1.

:
The velocity

field is specified in nondimensional cylindrical coordinates (r,θ,z), with (1≥ z ≥ 0) and (r ≤ a),

where a is the width–to–height ratio of the domain. The background flow has ∂/∂θ = 0 and can be
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expressed as the sum of an azimuthal velocity V (r,z) and an overturning circulation with radial and

vertical velocity components U(r,z) and W (r,z). The latter are specified by the streamfunction
::
Ψ:

:
490

Ψ =−E1/2R(r)F (z), (2)

where F (z) is the vertical portion of the streamfunction, andR(r) is the radial portion of the stream-

function. The vertical
::::::::::::
streamfunction

:::::
relates

::
to

:::
the

::::::::
velocities

:::
by

:::
the

:::::::
negative

::::::::::
z-derivative

::
of

::
Ψ

:::::
being

::
the

::::::
radial

:::::::
velocity

:::
and

:::
the

::::::
radial

::::::::
derivative

:::::
being

:::
the

:::::::
vertical

:::::::
velocity.

::::
The

:::::::
vertical portion of the

streamfunction is495

F (z) =A[sin(ζ)sinh(ζ)− cos(ζ)cosh(ζ)] +B[sin(ζ)sinh(ζ) + cos(ζ)cosh(ζ)]−D, (3)

where ζ is a transformed vertical coordinate,

ζ =
z− 1/2

E1/2
, (4)

and the constants are defined by

A = −1
2

cS
s2C2+c2S2 , B =

1

2

sC

s2C2 + c2S2
, D =A(sS− cC) +B(sS+ cC)500

s = sin
(

1
2E1/2

)
, c= cos

(
1

2E1/2

)
, S = sinh

(
1

2E1/2

)
, C = cosh

(
1

2E1/2

)
. (5)

In the limit of infinite cylinder radius, a→∞, the radial portion of the streamfunction,R(r) = r2/s,

yields a dynamically consistent solution for flow between two differentially rotating, horizontal

plates. Fluid flows radially inward within the bottom Ekman layer and is expelled upward and even-

tually into the top Ekman layer, where it moves radially outward. When a is finite the velocity needs505

to vanish at the cylinder walls, and this can be accomplished by choosing R as

R(r) = r(a− r)2/2, (6)

giving velocities

U = −∂Ψ
∂z = r(a− r)2[Asin(ζ)cosh(ζ) +B cos(ζ)sinh(ζ)], (7)

W = 1
r
∂rΨ
∂r =−(a− r)(a− 2r)E1/2F (z) (8)510

where U is radial and W is vertical.

The axisymmetric azimuthal velocity V , satisfying the incompressibility condition in 3D, is de-

fined as

V (r,z) = r(a− r)2[
1

2
+B sin(ζ)cosh(ζ)−Acos(ζ)sinh(ζ)]. (9)

This velocity leads to typical nondimensional trajectory rotation times of 18–200
::::::
20–200

:
for all515

Ekman numbers examined; the central orbit at (r,z) = (0.5,0.5) has a period of 16π ≈ 50.
::
At

:::
the
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::::::::
maximum

:::::::::
azimuthal

:::::::
velocity,

:::::
which

::::::
occurs

::
at

:::::::::
r = aH/3,

:::
the

::::::
period

::
is

:::::
about

:::
20.

:
Model horizontal

velocities are typically between 0.01 and 0.1 in magnitude, which are reasonable ocean velocities

in meters per second. This choice of the velocity scale being 1ms-1 gives rotation times of several

hours assuming the eddy radius is equal to its height (a= 1). Using the same scaling for vertical520

velocities, whose nondimensional values are E1/2 smaller, gives overturning times of 7 hours to

2 months; although eddies with this structure have not been carefully observed, vertical velocities

near submesoscale fronts reach 30m day-1, which is in line with these rates.
:::::
These

:::
and

:::
all

:::::
other

::::::::::
relationships

:::::::
between

::::::::::::::
nondimensional

:::::
model

::::::
values

:::
and

:::::
their

::::::::::
dimensional

::::::::::
equivalents

:::
are

:::::
listed

::
in

::::
Table

::
1.
:

For all parameter values, there is upwelling in the center (r = 0) and weaker downwelling525

near the sides of the cylinder (strongest at r = 0.75a). There is horizontal convergence near the

bottom and divergence near the top; for E near one, these are true for the full bottom and top halves

of the system.

As the Ekman number varies, the overturning streamfunction changes qualitatively (Fig. 2). For

E > 1/60 the overturning circulation is rounded and has a single internal fixed point corresponding530

to the horizontal, circular trajectory described above as the central orbit (Fig. 2a,b). For E < 1/60

additional fixed points in the overturning circulation arise at r=0.5 (Fig. 2c). These fixed points in Fig.

1c are again circular periodic trajectories in 3D, and the increasing number arise through pitchfork

bifurcations asE decreases (see appendix A for more details). The additional circular trajectories are

associated with smaller overturning cells imbedded in the larger cell (detailed example in appendix535

A, Fig. 14). The overturning streamfunction also exhibits more vertical rigidity as E decreases, anal-

ogous to deeper oceanic columns, in accordance with the Taylor–Proudman Theorem (Greenspan

(1968)).

2.1 Symmetry–breaking Perturbation

In the kinematic axially symmetric analytically prescribed background flow described above all tra-540

jectories move along toroidal surfaces and are thus non–chaotic. In order to use this system to study

the interplay of chaotic advection and turbulent diffusion, we must perturb the system to break the

axial symmetry, which will introduce chaotic trajectories. The applied perturbation, approximating

the flow produced by a lid rotating off–center, is a horizontal flow that decays in strength with depth

and is described by the streamfunction:545

Ψ̃ = ε
−sinh(z/E1/2)

2sinh(1/E1/2)
(a2− r2)(γ2a2− s2), s=

√
(x−x0)2 + y2. (10)

This general form allows for an r– and z– dependent adjustment to the strength of the azimuthal

velocity, with amplitude ε, and a symmetry breaking component governed by the offset parameter

x0. If x0 = 0, the disturbance is axially symmetric; if it is nonzero, the disturbance has an azimuthal

variation of amplitude εx0. The parameter γ can be used to make adjustments in the radial structure550

of the disturbance. This streamfunction is for velocities in the x and y directions, unlike r– and z–
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Ekman layer

W

Ekman layer

lid rotation axiscylinder rotation axis
Xo

Figure 1.
:::::
Sketch

:
of
:::
the

::::::::
qualitative

::::::
velocity

::::
field,

:::::
Eqn.s

:::
7-9.

:::::
Ekman

:::::
layers

::
at

::
the

:::
top

:::
and

::::::
bottom

::
are

:::::
where

::::
flow

::
has

::
a
::::
larger

:::::
radial

:::::::::
component.

:
Ω
::
is
:::
the

::::::
rotation

:::
rate

::
of

::
the

::::::
system.

:::
X0::

is
::
the

:::::
offset

::::::
between

:::
the

::
lid

:::
and

:::::::
cylinder

:::::::
rotational

::::::
centers,

::
as

::
set

:::
for

::
the

:::::::::::
Navier-Stokes

:::::::::
simulations.

:
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Figure 2. Top
:
,
:::::::
(a)(b)(c): Background overturning streamfunction for a= 1Left to right: overturning

:
;
:::
(a)

E = 0.125,
::
(b)

:
E = 0.02,

::
(c)

:
E = 0.0005. Blue dots are rz–fixed points. Bottom,

:::
(d): horizontal perturba-

tion streamfunction for γ = 2, x0 =−0.5. Note that the center of rotation in the perturbation streamfunction is

not at the origin.

dependent background overturning streamfunction; the velocities from the two are added together.

The perturbation velocities in x and y are

ũ = ∂Ψ̃/∂y = 4yε sinh(z/
√
E)

sinh(1/
√
E)

[
(a2− r2) + (γ2a2− s2)

]
, (11)

ṽ =−∂Ψ̃/∂y =−4yε sinh(z/
√
E)

sinh(1/
√
E)

[
(x−x0)(a2− r2) +x(γ2a2− s2)

]
. (12)555

The corresponding azimuthal and radial velocity perturbations are

Ṽ =−2ε
sinh(z/

√
E)

sinh(1/
√
E)

[
(a2− r2) + (γ2a2− s2)− x0

r
cos(θ)(a2− r2)

]
, (13)

Ũ = 2εx0
sinh(z/

√
E)

sinh(1/
√
E)

sin(θ)(a2− r2). (14)

The perturbation streamfunction’s overall strength decays with depth and goes to 0 at the bottom560

(z = 0). For the rest of the work, we will use a= 1 and γ = 2 (Fig. 2d). We note that the total, i.e.,

background plus perturbation, azimuthal velocity can be zero at some locations in the domain for

certain choices of ε, but with ε < 0.05 these locations are all very close to the boundaries of the

cylinder.

2.2 Comparison to Dynamic Model565

In this section we compare our kinematic model to the Navier–Stokes (NS) simulation of a rotating

cylinder flow by P2014. We will use the kinematic model for the analyses in sections 3.1 and 3.2,
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and the NS simulation for the analysis in Sect. 3.3. We are interested in comparing the qualitative

features of the two model flows under steady symmetry–breaking perturbation. It is important to

note that the parameters of the two systems are slightly different. The parameters that arise in the570

NS simulation are the Ekman number, E, the aspect ratio, α, the displacement X0 of the lid’s center

(
:::::
labeled

:::
in

::::
Fig.

::
1;

:
not to be confused with x0 in the kinematic model), and the Rossby number,

Ro= δΩ/Ω. The kinematic model parameters are the Ekman number, E, the aspect ratio, a, the

perturbation offset parameter, x0, and the strength of the perturbation, ε. For matching the kinematic

model to the NS simulation, we set α= a= 1 and examine four Ekman numbers used in P2014,575

E ∈ {0.25,0.125,0.02,0.0005}. The displacement and strength of the kinematic perturbation are

adjusted to match the behavior for a given Rossby number and displacement of the lid in the dynamic

simulation. The chosen values are maintained throughout the rest of the work unless otherwise noted.

We do this rather than attempting a mathematical equivalence because the kinematic perturbation

has a different form than that describing a physical lid rotating off–center. Our model mimics a flow580

with a small Rossby number, so we compare our results to those from P2014’s Ro= 0.2, with lid

displacement X0 =−0.02.

Figures 3–4 show some examples of Poincaré maps from the NS simulation (top rows
:
,
::::::
panels

:::::
(a)(b),

::::::::::
reproduced

::::
from

::::::
P2014) with maps from the kinematic model (bottom rows). It is important

for our purposes to achieve qualitative agreement in terms of the depth of the Ekman layers, the ver-585

tical rigidity of the interior regions, and the overall layout of regular, chaotic, and resonant regions.

For the choice of the parameters described above, there is a good match of these qualitative features.

Each case is marked by the presence of a substantial chaotic region that extends from the radial cen-

ter around the top and bottom boundaries and to our largest radii near the perimeter of the cylinder.

We henceforth refer to this region as the “chaotic sea”. Also, in all cases there are many more points590

near the surface than near the bottom; this is due to the higher azimuthal velocities near the surface,

and is seen in both the dynamic and kinematic model. In E = 0.25, both Poincare sections show

a series of nested closed curves centered around (r,z) = (0.5,0.5) corresponding to quasiperiodic

trajectories on nested tori. Between these are some thin resonant layers with high numbers of small

islands. For E = 0.125, the main feature is a series of larger islands between a set of nested tori and595

the chaotic sea. For E = 0.02, there is one large island with a number of resonant layers surrounding

it, including small islands. For E = 0.0005, the vertical structure of both models is more rigid, the

kinematic model more so than the NS simulation. Altogether, the kinematic model reproduces the

general features of the NS simulations, through
::::::
though

:
there are often differences in details such as

the number and widths of islands.600

3 Lagrangian Batchelor Scale
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Figure 3. Structures in the kinematic model and dynamical simulation for Ekman numbers of 0.25
::::

(a)(c) and

0.125
::::
(b)(d). Top,

:::::
(a)(b): Poincaré maps from Pratt et al. (2014) (their Fig. 10), using the dynamic

:::::::
resulting

:::
from

::
a
:::::::::
dynamically

::::::::
consistent

:::::::
numerical simulation. Bottom: in black,

::::
(c)(d):

:
Poincaré maps

::::::
(black)

:::
and

:::::
largest

:::::
FTLEs

:::::
(color)

:::::::
resulting

:
from the current

:::
our

:::::::::::::
non-dynamically

:::::::
consistent

:
kinematic

:::::
analytic

:
model

:
, with ε=

0.01 and x0 either−0.5 (left
:
c) or−0.9 (right

:
d); in color, maximum FTLEs calculated for the kinematic model

with integration time 400. ForE = 0.125
:

In
::
(d), red oval approximately separates the resonant and regular layers

(inside) from the chaotic sea region (outside), with the blue line segment showing the width of the chaotic sea.

The blue diamond shows the width of an island, which is also the width of the resonant layer.

We
::
In

::::
this

:::::::
section,

:::
we

:
examine the relative importance of chaotic advection and eddy

::::::::
turbulent

diffusion for tracer distribution using three types of methods. We begin with scaling arguments:

a Lagrangian Batchelor scaledefines the thinnest filaments that can form based on the balance

between advection and diffusion. At scales above the
:
.
::::
The Batchelor scale, advection dominates605

over diffusion, and vice versa. If the Batchelor scale is wider than the chaotic layer thickness, then

we conclude that diffusion is the dominant process in that chaotic layer.

To relate our dimensionless kinematic model variables to ocean eddies, we need to set dimensional

length and velocity scaling factors. The main parameter of the background model is the Ekman

number, the square of the ratio of Ekman layer thickness to eddy depth. Due to the unstratified nature610

of our flow, we focus on two intermediate Ekman numbers: E = 0.125 and E = 0.02. Assuming an

Ekman depth of about 40m, which is within the range of open–ocean observations (see Lenn and Chereskin (2009)

and references therein), our shallower eddy is about 110m deep, whereasE = 0.02 would correspond

to an eddy depth of about 280m. Depending on region and season, it is possible for either of these
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Figure 4. Structures in the kinematic model
:
,
:::::
(c)(d), and dynamical simulation

:
,
:::::
(a)(b), for Ekman numbers of

0.02
:
,
::::
(a)(c),

:
and 0.0005,

::::
(b)(d),

:
same format as Fig. 3.

to be within the surface mixed layer of the ocean, which can reach 500m in subpolar regions in the615

winter, but may decrease to a few meters in the summer. Since the aspect ratio of the width–to–depth

of our eddy is 1, the corresponding eddy radius is also between roughly 100 and 300m.

The axisymmetric azimuthal velocity in (10) has a maximum at r = a/3, which gives the winding–around–the–eddy

:
δ,
::

is
::::

the length 2πa/3 = 200–600 m. Dimensionless model velocities are typically between 0.01

and 0.1 in magnitude. To dimensionalize these velocity values, a velocity scaling factor must be620

chosen. Unfortunately, the background model has only one parameter, which we already used to

dimensionalize the eddy depth. So the choice of the velocity scaling factor is arbitrary. However,

choosing the velocity scaling factor of 1 ms-1, the resulting model azimuthal velocities of 0.01–0.1

ms-1 seem reasonable for the horizontal ocean velocities associated with eddies with length scales

of a few hundred meters. This choice gives horizontal rotation, or winding, times around the eddy625

between 0.5 and 16 hours dimensionally, or 20–210 nondimensionally (for these two Ekman numbers).

This relationship also gives a timescale of 100–300s per nondimensional timestep.

3.1 Scaling Derivations

::::
scale

::
at

:::::
which

::::::::
advection

::::
and

:::::::
diffusion

:::::::
balance

::
in

::::
their

::::::::
respective

:::::::
thinning

::::
and

:::::::
widening

:::
of

:
a
:::::
patch

::
of

:::::
tracer.

:
Chaotic advection thins tracer patches through

:::::::
averaged exponential contraction in the con-630

tracting direction(s), decreasing the relevant lengthscale towards small scales where
:::::::
turbulent

:
dif-
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fusion is dominant. Diffusion
::
In

:::
this

:::::::
section,

:::
we

::::::::
represent

::::::::
turbulent

::::::::
diffusion

::
as

:
a
::::::::::::::
scale-dependent

:::::::::
diffusivity.

::::
This

:::::::
diffusion

:
widens tracer patches by moving tracer down its gradient, spreading it out

from its maximum. The length scale at which advection and diffusion balance in their respective

thinning and widening of a patch of tracer is the Batchelor scale, δ. Below δ, diffusion dominates635

tracer behavior, while above δ advection dominates. If δ is larger than the structures in the flow

induced by chaos, then diffusion will overcome advection and wipe out these structures. The struc-

tures of interest, induced by the deterministic, symmetry–breaking perturbation (see Fig.s 3–4) are

the bands of chaos, called resonant layers, surrounding regular island chains (see blue diamond in

Fig. 3, lower right
:
d), and the chaotic sea region (outside the red oval in Fig. 3, lower right

:
d) located640

near the cylinder perimeter and central axis.
:
,
:::::
which

:::
are

::::::::
identified

:::
by

:::::
visual

:::::::::
inspection

::
of

::::::::
Poincaré

:::::::
sections.

:::::
When

:::
we

::::::::
compare

:
δ
::
to
:::::
these

:::::::::
structures,

:::
we

:::::
define

:::::
their

:::::
widths

:::
as

:::
the

::::::::
difference

::::::::
between

:::::::
distances

:::::
from

:::
the

::::::
central

:::::
orbit,

:::::::::::::::
(r,z) = (0.5,0.5),

::
to

:::
the

:::::::::::::::::
outermost/innermost

:::
part

:::
of

:::
the

::::::::
structure,

::::::::
measured

::
in

:::::::
Poincaré

:::::::
sections

::::
like

::::
Fig.s

::::
3–4.

:

In principle, the width of a tracer filament should approach the Batchelor scale regardless of initial645

conditions. If we consider an initial patch of tracer that is far from the Batchelor scale, advection

and diffusion will not balance. If the patch is larger than the Batchelor scale, chaotic advection

exponentially constricts the patch in the direction of fastest contraction so that it approaches the

Batchelor scale. If the patch of tracer is smaller than the Batchelor scale, diffusion widens the patch

to approach the Batchelor scale. When the width of a filament is at the Batchelor scale, the width650

will be steady in time but the concentration will continue falling.

Traditional formulations of the Batchelor scale use the Eulerian quantity — strain rate — to quan-

tify advection and to find the scale at which advective and diffusive effects balance. Several rigorous

derivations of a Lagrangian Batchelor scale have been presented (eg. Thiffeault (2004); Fereday and

Haynes (2004); Son (1999)), and a few papers have used less rigorous scaling arguments to estimate655

the importance of chaotic advection (Rypina et al. (2010); Ledwell et al. (1993, 1998)). Below we

present a simple explanation for the Lagrangian Batchelor scale to gain intuition about this quantity,

followed by a rigorous derivation of a Lagrangian Batchelor scale for a for a Gaussian tracer in a 3D

linear strain flow. The latter extends the work of Flierl and Woods (2015) from 2D to 3D.

The first formulation of the Lagrangian Batchelor scale uses dimensional arguments to construct a660

quantity that has units of [length] from the diffusivity κ, which quantifies the intensity of diffusion

and has units of [length2time−1], and the
::::::
average

:
exponential contraction rate λ3, which quantifies

the thinning of a filament due to chaotic advection and has units of [time−1]:

δ =
√
κ/|λ3|. (15)

In a flow field with uniform steady strain, one could simply use the Eulerian strain rate as the665

filament thinning rate. However, in flows with non–constant strain rate, the tracer will feel different

strain as it is advected by the flow so a Lagrangian quantity such as the Finite Time Lyapunov Ex-

ponent (FTLE) would be more appropriate. The FTLE quantifies the
::::::
average

:
exponential separation
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rate between a trajectory and its close neighbors over
:
a
::::
finite

:
time interval ∆t,

∆x= ∆x0e
λ∆t. (16)670

Since separation rates between trajectories are generally different in different directions, in 3D

flows there are 3 FTLEs that can be ordered λ1 ≥ λ2 ≥ λ3 and can be though of as the stretch-

ing/contraction rates of the 3 major axes of an infinitesimal spherical blob of fluid as it deforms

into an ellipsoid under the influence of the flow field (see Fig. 5). For incompressible flows, λ1 ≥ 0,

λ3 ≤ 0 and λ1 +λ2 +λ3 = 0. For the Batchelor scale in eq. (16), the appropriate FTLE is that for675

the most contracting direction, i.e., λ3. FTLEs are most commonly computed as

λi = 1/|T | ln
√
σi (17)

where σi are the eigenvalues of the right Caushy–Green
::::::::::::
Cauchy–Green

:
deformation tensor

G= [∆xi/∆x0j]
T [∆xi/∆x0j]. (18)

Here ∆xi and ∆xi0 are the final and initial displacements in the i–th direction between initially680

nearby particles that are advected by the flow over time interval ∆t. G can be calculated directly

from dense grids of simulated Lagrangian trajectories. We use this latter method in our calculations

to estimate λ3.

As an alternative motivation of the Lagrangian Batchelor scale, we show analytically that the

width of a Gaussian tracer distribution asymptotically approaches the Batchelor scale in a simple685

flow field. This derivation is an extension to three dimensions of a two–dimensional calculation by

Flierl and Woods (2015). The main steps of the derivation are described below, with more details in

the Appendix B. First, we assume that in the Lagrangian frame the velocity field is a steady linear

strain with rates λi in each direction, such that the sum of the λ is zero, giving an incompressible

flow. Second, we assume that the tracer concentration C initially has a Gaussian distribution in each690

direction, and we look for a solution to the tracer evolution equation where it remains Gaussian. In

this case we can use the standard deviation of the Gaussian distribution to measure the width of the

filament in each direction. The width in the most–contracting direction, which is shrinking with rate

λ3, is denoted by σ. As shown in the Appendix, the differential equation for σ has a fixed point at

σ =
√
κ/|λ3|, (19)695

meaning that the width of the Gaussian patch in the fastest contracting direction has a fixed point at

the Batchelor scale, as expected from the physical arguments about the balance between advection

and diffusion. This fixed point is attracting, meaning that for any initial width, the width in the λ3

direction will converge to the Lagrangian Batchelor scale. Mathematically there are also fixed points

with negative λ3 and with negative σ for positive λ3, but neither corresponds to a real positive tracer700

distribution. The full solution for σ is

γσ
:

=
√
|λ3|/κ

√
κ/|λ3|

:::::::

(
(λ3γσ:0

−22/κ− 1)e2λ3t + 1

)1/2

. (20)
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Figure 5. An initial sphere in a linear strain field evolving into an ellipsoid during a time of 1. Ellipsoid axes

marked by bars, with figure axes ticks showing their endpoint values. Velocity field u= 1.5+x, v = 0.5y, w =

−1.5z. Color shows z values at t= 0.

More details and the full solution for C are in Appendix B.

3.1 Results of Batchelor Scale Analysis

In order to calculate the Lagrangian Batchelor scale, δ, we use the oceanic diffusivity estimates from705

Okubo (1971). In the ocean, diffusivity is scale–dependent, increasing with size, as described by

Okubo. He used observations of horizontal dye diffusion at various scales ranging between about

20m and 2000
:::
100km to find the empirical relationship

κ= 0.0103l1.15, (21)

where l is the horizontal lengthscale of the dye patch in cm and κ is in cm2s-1. Consistent with710

the lack of density stratification in our model, we assume an isotropic three–dimensional diffusivity.

This assumption is supportable in the upper ocean mixed layer and is consistent with our assumption

of shallow eddies.

The variable nature of Okubo’s κ makes determination of the Batchelor scale a bit more subtle.

In the case of spatially variable κ, the thinning of an initially large tracer patch will occur as before,715

but as the filaments decrease in width, the corresponding κ decreases as well. Following Rypina

et al. (2010), we hypothesize that equilibration will occur if during this process the tracer scale L
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::::::
Variable

: ::::::::::::
Nondimensional

: ::::::
Scaling

:::::::::
Dimensional

:::::
value,

:

::::
Value

: ::::
factor

: :::::
E=0.25

: ::::::
E=0.125

: :::::
E=0.02

: :::::::
E=0.0005

::
δE: :::::

a/
√
E

:::
40m

: :::
40m

: :::
40m

: :::
40m

:

::
H

:
1
: :::::::

aδE/
√
E

: :::
80m

: ::::
113m

: ::::
283m

: :::::
1789m

:
u
: :::::::

0.01–0.1
::::
1m/s

:::::::::
0.01–0.1m/s

: :::::::::
0.01–0.1m/s

: :::::::::
0.01–0.1m/s

:::::::::
0.01–0.1m/s

::
w

::::::::::
2 · 10−4–0.05

: ::::
1m/s

:::::::::::
0.005–0.05m/s

:::::::::::
0.003–0.04m/s

::::::::::::
0.001–0.014m/s

:::::::::::::::
2 · 10−4–2 · 10−3m/s

::::::
timestep

: :
1
:::::
(1000)

::::::
H/1ms-1

: :::
84s

::::
(23h)

::::
113s

::::
(31h)

::::
283s

::::
(3.3d)

:::::
1789s

:::::
(20.7d)

:

::::::
winding

::::
time

::::::
20–200

:::
time

: :::::::::
28min–4.6hr

: :::::::::
39min–6.6hr

: ::::::::
1.5–16.5hr

:::::::
3.3–33hr

:::::::::
overturning

:::
time

: ::::::
30–400

:::
time

: ::::::::
42min–9h

:::::
1–12h

:::::
2–31h

::::::
15h–8d

:
κ
: :::

e.g.
::::
10−5

: ::::::
Hm2s-1

::::::::::
8 · 10−4m2s-1

:::::::::::
1.1 · 10−3m2s-1

: :::::::::::
2.8 · 10−3m2s-1

: :::::::::::
1.8 · 10−2m2s-1

:

Table 1.
::::::::::::
Nondimensional

::::::::
variables,

:::
their

:::::
scale

:::::
factors,

:::
and

::::
their

:::::::::
dimensional

:::::::::
equivalents.

approaches (κ(L)/|λ3|)1/2 = (0.0103L1.15/|λ3|)1/2. Solving for L yields the Batchelor scale

δ = 0.0046|λ3|−1.1765 (22)

where λ3 in s-1 yields δ in cms-1.720

::
To

:::::
relate

::::
our

::::::::::::
dimensionless

:::::::::
kinematic

:::::
model

:::::::
FTLEs

::
to

::::::::
Okubo’s

:::::::::::
diffusivities,

:::
we

::::
need

:::
to

:::
set

::::::::::
dimensional

::::
time

::::
and

:::::::::
diffusivity

::::::
scaling

:::::::
factors.

:::
We

:::::::::
previously

:::::::::
discussed

:::
the

:::::::
winding

:::::
times

::::
and

::::::::
associated

:::::::
velocity

::::::
scaling

:::
of

:::::
1ms-1;

::::
our

::::::
desired

::::::
scaling

::::::
factors

:::
can

:::
be

::::::::
computed

::::
with

::::
this

:::::::
velocity

::::::
scaling

:::
and

::
a

::::::::::
lengthscale.

:::
The

:::::
main

:::::::::
parameter

::
of

:::
the

::::::::::
background

:::::
model

::
is
:::
the

:::::::
Ekman

:::::::
number,

:::
the

:::::
square

::
of

:::
the

::::
ratio

::
of

:::::::
Ekman

::::
layer

::::::::
thickness

::
to

::::
eddy

::::::
depth.

:::
Due

::
to
:::
the

::::::::::
unstratified

:::::
nature

::
of

:::
our

:::::
flow,725

::
we

:::::
focus

::
on

::::
two

::::::::::
intermediate

::::::
Ekman

::::::::
numbers:

:::::::::
E = 0.125

:::
and

:::::::::
E = 0.02.

::::::::
Assuming

:::
an

::::::
Ekman

:::::
depth

::
of

::::
about

:::::
40m,

:::::
which

::
is

:::::
within

:::
the

:::::
range

::
of

::::::::::
open–ocean

::::::::::
observations

::::
(see

:::::::::::::::::::::::
Lenn and Chereskin (2009)

:::
and

::::::::
references

::::::::
therein),

:::
our

::::::::
shallower

::::
eddy

::
is

:::::
about

::::
110m

:::::
deep,

:::::::
whereas

::::::::
E = 0.02

:::::
would

::::::::::
correspond

::
to

::
an

::::
eddy

::::::
depth

::
of

:::::
about

:::::
280m.

::::::::::
Depending

::
on

::::::
region

::::
and

::::::
season,

::
it

::
is

:::::::
possible

:::
for

:::::
either

::
of

:::::
these

::
to

::
be

::::::
within

:::
the

::::::
surface

:::::
mixed

:::::
layer

::
of

:::
the

::::::
ocean,

:::::
which

::::
can

:::::
reach

:::::
500m

::
in

:::::::
subpolar

:::::::
regions

::
in

:::
the730

::::::
winter,

::
but

::::
may

::::::::
decrease

::
to

:
a
:::
few

::::::
meters

::
in

:::
the

:::::::
summer.

:::::
Since

:::
the

::::::
aspect

::::
ratio

::
of

:::
the

:::::::::::::
width–to–depth

::
of

:::
our

::::
eddy

::
is
::
1,
::::

the
::::::::::::
corresponding

::::
eddy

::::::
radius

::
is

:::
also

::::::::
between

::::::
roughly

::::
100

::::
and

:::::
300m.

::::::
Using

:::
the

::::::
product

::
of

::::
the

::::::::::
dimensional

:::::
depth

::
of

:::
the

:::::
eddy

::::
and

:::
the

::::::
chosen

:::::::
velocity

:::::
scale,

::::::::
Okubo’s

::::::::::
diffusivities

:::
can

::
be

:::::::::::::::::
nondimensionalized.

::::::::::
Vice-versa,

:::
the

::::::
FTLEs

::::
could

:::
be

:::::
made

::::::::::
dimensional

:::::
using

::
the

::::::::
timestep

::
in

:::::::
seconds.

:::::
These

:::::::
scalings

:::
are

::::::::
explicitly

:::::
given

::
in

::::
Table

::
1;
:::
we

::::
will

::::::
discuss

:::
the

:::::
results

::
in
::::::::::::::
nondimensional735

:::::
terms.

The calculated δ values are shown in Fig. 6 next to the widths of chaotic regions;
:::::

both
::::::
widths

::
are

::::::::::::::
dimensionalized

:::::
using

:::
the

:::::
eddy

:::::
depths. The range of δ values is due to the spatial variation of

the most contracting FTLE, λ3, in the region (see Fig.s 3–4 for most stretching FTLE, which are

of the same magnitude). FTLEs were estimated over an integration time of about 20 rotations of740

the central orbit (dimensionally about three days)
:::
400; the range of FTLE magnitudes does not no-
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Figure 6. Layer widths in blue, Lagrangian Batchelor scale δ
::::
(Eqn.

::
22)

:
in the same region in yellow. Left half,

chaotic resonant region between islands; right half, the chaotic sea region. The diffusivities at the Batchelor

scale in m2s-1 are between 10−4 and 6 · 10−3 for the three larger Ekman numbers and between 1 · 10−2 and

6 · 10−2 for E = 0.0005.

ticeably change from 10 to 20 rotations
::::
when

:::
the

::::::::::
integration

::::
time

::
is

::::::::
decreased

:::
by

::::
half. The widths

of the chaotic sea and smaller resonant regions were estimated from inspection of Poincaré sec-

tions. The Batchelor scale is generally about 0.01–0.08in nondimensional length units, or about

1–8m dimensionally for E = 0.25 and 20–140m for E = 0.0005, which are
:
,
:::::
which

::
is
:
similar to745

the resonant layer widths and smaller than the chaotic sea widths. The dimensional diffusivities at

these scales range from 2 · 10−4 m2s-1 at 1m to 0.06 m2s-1 at 140m, which are considerably smaller

than diffusivities on the horizontal scale of eddies themselves, about 0.5–8.2 m2s-1 for 1–10km.

The Batchelor scale results imply that chaotic advection is expected to influence tracer distribution

throughout the system, but dominate only in the wider chaotic sea region.750

4 Particle Dispersion

In this section, we quantify the relative effects of turbulent diffusion and chaotic advection using the

dispersion (or spread) of sets of initially nearby trajectories in the kinematic rotating can model. We

consider chaotic advection dominant compared to diffusion when the ensemble spread is greater for

the deterministic perturbation that induces chaos than for the stochastic perturbation that simulates755

:::::::
turbulent

:
diffusion. Ensembles of one hundred to three hundred trajectories that begin inside a small

sphere have been examined for their behavior under various perturbations. Other initial conditions,

on a torus or axial circle, give similar results (not shown). The spread of trajectories is measured

in terms of Ψ values, the streamfunction of the background flow given by Eqn. (2). Examining the

spread in Ψ is convenient because it leads to zero spread for particles following the background flow.760

However, it is important to note that this interpretation limits the directions of chaotic stretching
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that are considered— it is possible for the fastest spreading direction to be along the background

streamlines, which would not be visible in the coordinates chosen.

To simulate
:::::::
turbulent diffusion, we add a stochastic velocity perturbation to the background model

flow. The stochastic perturbation is a random flight model created by adding small pseudorandom765

values with a Gaussian distribution to the velocity at fixed intervals of time ∆t. The equation gov-

erning a fluid particle trajectory is then:

dxi
dt

= Ubi(x) +u′i, (23)

where i is a direction index, Ubi is the background velocity, and u′i are the stochastic additions.

These velocity additions are uncorrelated and lead to a Gaussian random walk behavior (Zambianchi770

and Griffa (1994)). With
:::::
Using the described stochastic perturbation,

:::::::
although

:
it
::

is
:::::

quite
:::::::
simple,

::::
with

::::::
Ubi = 0

:::
or

:
a
::::::::

constant,
:
the variance of a set of trajectories will grow

:::::
grows

:
linearly in time,

while the standard deviation grows linearly with the square root of time, as expected for diffusion.

The diffusivity, κ, is computed from the 1D relationship for a Gaussian random walk: κ= s2/2∆t,

where s is the standard deviation of step size in the random walk. To choose the level of diffusivity775

for the stochastic perturbation, we consider the
::::::::
turbulent diffusivities near the Batchelor scale as

computed in the previous section. The Okubo diffusivities at the Batchelor scale are in the range

κ ∈ [10−4,10−2]m2s-1 across the four Ekman numbers examined, which is nondimensionally κ ∈
[10−6,3 ·10−5], using the depths of the domains and a velocity scale of 1ms-1 to scale diffusivity..As

our primary example, we will discuss the level of diffusivity κ= 10−6. This diffusivity requires780

a certain step size s for the stochastic perturbation, which relates to the distribution of u′ by s=

σ∆t/3, with σ the standard deviation of u′, ∆t the numerical timestep (0.01), and the factor of 3

due to the details of a fourth–order Runga–Kutta integration(the stochastic velocities are added only

at full timesteps).
:
.
:::
The

:::::
next

::::::::::::
position,using

:::
this

:::::::
method,

:::
is

::::::::
estimated

:::::
using

:::
the

::::::::
weighted

::::
sum

:::
of

:::::::
estimates

:::
of

:::
the

:::::::
velocity

::
at

:::
the

::::::
current

:::::::
position

::::
(v1,

::::::
weight

::::
1/6),

:::
the

:::::::
halfway

:::::
point

::::::::
estimated

:::::
from785

::
the

:::::::
current

:::::::
position

:::
(v2,

::::::
weight

::::
1/3),

:::
the

:::::::
halfway

:::::
point

::::::::
estimated

:::::
using

::
v2::::

(v3,
::::::
weight

::::
1/3),

::::
and

:::
the

::::
final

::::
point

::::::::
estimated

:::::
using

:::
v3 :::

(v4,
::::::
weight

::::
1/6).

:::::
Only

::
v1::::

and
::
v4::::::

include
:::::::::

stochastic
::::::::
additions,

:::::::
leading

::
to

:::
the

::::
1/3

:::::
factor.

:
Together, these give

κ=
σ2∆t

18
, (24)

and so σ = 0.042. We will also discuss a smaller stochastic perturbation, κ= 10−7, σ = 0.013, and790

a larger one, κ= 10−5, σ = 0.13. The stochastic perturbation with κ= 10−6 has kinetic energy (in-

tegrated over the cylinder) about the same as the background flow:
∫

(u;)2 ≈
∫

(U2
b)≈ 0.63. The

perturbation with κ= 10−7 has kinetic energy about the same as the deterministic perturbation with

ε= 0.01, x0 =−0.5, such that
∫

(u′
d)2 ≈

∫
(u′

s)2 ≈ 0.075, where u′
d is the deterministic perturba-

tion velocity and u′
s is stochastic.795

We begin with an example for E = 0.125 showing the spread of trajectories (measured in terms

of the background streamfunction Ψ) in the presence of either the deterministic or the stochastic
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perturbation. Trajectories are started on a small sphere located entirely in the chaotic sea region

centered on (r,z) = (0.1,0.5) (see Fig. 3 for the Poincaré section). For the deterministic perturbation

at early times, trajectories oscillate through the background streamfunction because the perturbation800

velocities form an azimuthal wave (Fig. 7(a)). The frequency of this oscillation depends on the exact

location of the trajectory, so with time, trajectories move out pf
:
of

:
phase due to the cumulative effect

of their slightly different oscillatory frequencies. It takes a few cycles of overturning to develop

noticeable spreading, but then the spread grows quickly.

For the stochastic perturbation (Fig. 7(b)), trajectories are uncorrelated as they spread across the805

background streamfunction. There are no oscillations in time because the perturbation acts sepa-

rately on each trajectory at each timestep, leading to continuous and monotonic spreading of the

ensemble. This spreading is similar to diffusion, but the increase in the range of trajectories does not

depend on the gradients of concentration the way a diffusing tracer would
::::::::::::
concentration–

:::::
Fick’s

::::
law

::::
does

:::
not

:::::
apply. If both perturbations are included (Fig. 7(c)), trajectory ensembles maintain some of810

their oscillatory behavior but spread out in a more continuous fashion due to the stochastic perturba-

tion. In this example, and over time scales considered, we conclude that the stochastic perturbation

dominates at early times but chaotic spreading takes over at times larger than about 1000. Over an

even longer time period,
:::::::
turbulent

:
diffusive spreading is expected to overtake chaotic spreading.

We next compare the spreading of trajectory ensembles in Ψ with a variety of perturbations for815

the same initial conditions as in Fig. 7 using the range over time (Fig. 8); results are similar when

the variance in Ψ is used for comparison (not shown). Chaotic advection dominates when the spread

in Ψ for an ensemble under deterministic perturbation is larger than the spread under stochastic per-

turbation. The spread from the deterministic perturbation appears exponential
:
is
::::
very

::::
fast,

:::::::::
appearing

::::::::::
qualitatively

::::::::::
exponential,

:
for a period of time, as expected ,

:::
for

:
a
::::::
region

::::
with

::::
high

:::::::
FTLEs,

::::::
which820

::::::
indicate

::::::::::
exponential

::::::
growth

:::
on

:::::::
average, but is limited to the width of the chaotic region in which the

ensemble begins (e.g. red curve in Fig. 8(a)). In contrast, the stochastic perturbation will spread with

the square root of time until it reaches the cylinder boundaries (e.g. dark blue curve in Fig. 8(a)).

Therefore, the time when the deterministic perturbation has greater spread will be limited to be-

tween when exponential growth
:::
fast

:::::::::::::::::::::
chaotic-advection-induced

:::::::::
separation

:
starts in the deterministic825

perturbation, which requires sufficient interaction with hyperbolic regions, and when the stochastic

perturbation spreads the ensemble to the width of the chaotic region.

In the chaotic sea region (left panels of Fig. 8)
:::::
(a)(c)), ensembles with stochastic perturbations

all have their ranges in Ψ grow in a manner similar to the square root of time and the spreading is

faster for larger κ. The ensembles with deterministic, chaos–inducing perturbations experience an830

initial delay before they begin quickly growing. Once rapid growth sets in, they spread to the width

of the chaotic region between times 500 and 3000. Larger deterministic perturbations lead to earlier

and faster spreading, as well as wider chaotic regions. For the weaker deterministic perturbation

ε= 0.01, there are some time intervals over which chaotic spreading in the chaotic sea dominates
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stochastic spreading. These instances occur more readily in the case of the shallower eddy (E =835

0.125, Fig. 8(a)) and less so for the deeper eddy (E = 0.02, Fig. 8(c)). However, larger deterministic

perturbations (e.g. ε= 0.08) produce chaos that is dominant over longer times, an extreme example

being the pink curve in Fig. 8(a).

We can also consider the timescales over which diffusive and advective processes with similar

kinetic energy (red and light blue curves in Fig. 8) dominate over each other. As discussed for the840

winding time, the advective timescale is dimensionally 1–5min, which means each section of length

t= 1000 is about 2 days. The ensembles released in the chaotic sea show that during the first several

hours or day
:::
over

:::
the

::::
first

::::
few

:::::::
hundred

::::::::
timesteps, turbulent diffusion dominates the spread (Fig.

8(a)(c) at t < 1000), as chaotic advection does not yet show significant growth. After that , on time

scales of about one day we see a period of fast growth due to chaotic advection, which quickly845

overtakes the slower diffusive spreading. This rapid growth stops when the advective spread reaches

the width of the chaotic region, and the diffusive spreading, which is not limited by the chaotic

region width, is then able to catch up and exceed chaotic advection. Of course, these processes

will be acting at the same time, not separately; the green curves in Fig. 8 are examples when small

perturbations of both types are present. In this case, spreading of the ensemble begins immediately,850

as in simulations with only stochastic perturbation, but then has a time period of pronounced growth

and some oscillations, as seen in simulations with only the steady perturbations.

We also examined the behavior of trajectories beginning at (r,z) = (0.4,0.5), a small distance

from the central fixed orbit, within the region containing resonant layers (Fig.s 3–4). In these cases,

the same behavior as in the chaotic sea region occurs for the spreading under stochastic perturbations855

(Fig. 8(b)(d)). The spreading under deterministic perturbations is much slower than in the outer

chaotic sea region for ε= 0.01 (red curves in Fig.s 8(b)(d)) and diffusion dominates at all times for

all values of κ shown. With ε= 0.08, the chaotic region is larger and growth due to the deterministic

perturbation is generally more rapid than that due to diffusion, at least within the time window when

chaotic advection begins and until saturation occurs (pink curves in Fig.s 8(b)(d)).860

From the spreading of ensembles of trajectories, we see that the wider chaotic regions are where

chaotic advection dominates over turbulent diffusion (at least over some time intervals), as expected

from our scaling arguments. However, those scalings did not include considerations of time , includ-

ing considerations of when exponential stretching begins
:::
fast

::::::::::::::::::::::
chaotic-advection-induced

:::::::::
stretching

::::::
begins,

::
as

::::::
FTLEs

:::
are

::::
time

:::::::
averages; the delay in chaotic stretching decreases the period of time when865

chaotic advection is important. This time period begins when exponential
:::
fast

::::::::
advective

:
stretching

is first apparent and ends when turbulent diffusion has spread across the region under consideration.

From these ensembles, we would expect a set of passive 3D drifters or an injected tracer beginning

in a blob to spread out diffusively, then be stretched and folded throughout the chaotic sea, produc-

ing strong filamentation, then gradually diffuse across the barriers of the chaotic sea and into the870

remainder of the eddy. During the later stage tracer variance due to the formation of filaments by
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Figure 7. Grey lines are individual trajectories in ψ starting from a sphere of radius 0.002 at (r,z) = (0.1,0.5)

with E = 0.125. Solid black curves are the mean; black dash–dot lines are ±1 standard deviations from the

mean. Nondimensional time is shown; t= 1000 is between 1 and 2 days.

chaotic advection would be gradually eroded by turbulent diffusion. This sequence of events will be

apparent in tracer simulations shown in the next section.

5 Tracer Simulations and Nakamura Effective Diffusivity

In this section we analyze the effects of the symmetry–breaking, chaos–inducing deterministic ve-875

locity perturbation on the stirring and mixing of a diffusive tracer in a dynamically consistent nu-

merical model of a rotating cylinder flow. Dye experiments are often used in both the ocean and the

laboratory to understand the stirring and mixing in a fluid (examples include Fountain et al. (2000);

Ledwell et al. (1993, 1998)). The distributions of passive tracers like dye are created by the advec-

tive and diffusive patterns without the feedback onto the flow that would occur with temperature or880

salinity, allowing for insight into those processes. For our simulations we turn away from the kine-

matic model and take advantage of the existing numerical model that solves Navier–Stokes equations

corresponding to the rotating cylinder flow accompanied by integration of the advection/diffusion
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Figure 8. Range in ψ for ensembles of trajectories started from a sphere of radius 0.002. Steady perturba-

tion (ε ∈ {0.01,0.08}), stochastic perturbations (κ ∈ {10−5,10−6,10−7}), or both (κ= 10−7, ε= 0.01), are

added to the background flow. Left
:
,
::::
(a)(c): Initial sphere in the chaotic sea region, away from fixed points,

at (r,z) = (0.1,0.5). Right,
:::::
(b)(d): Initial sphere centered on (r,z) = (0.4,0.5), a resonant region.

::
In

:::
(a),

:::
the

:::::
dashed

::::
black

:::
line

::
is
:::::::
10−5

√
t.

equation with diffusivity k for a passive tracer, both described in P2014. As discussed earlier, these

simulations have the advantage of being dynamically consistent at the cost of being computationally885

expensive, whereas economy of the kinematic model allows us to explore a wider range of parame-

ters.

Our main quantification tool is Nakamura’s effective diffusivity: a background diffusivity scaled

by a representation of the stretching of dye concentration contours by advection. Two–dimensional

and quasi–three–dimensional analyses of effective diffusivity have been applied to the atmosphere890

and ocean (Nakamura (1996); Nakamura and Ma (1997); Haynes and Shuckburgh (2000); Aber-

nathey et al. (2010)). For our fully three–dimensional system with constant density, the effective

diffusivity can be written as

κeff (C) = k
1

(∂C/∂V )2
|̂∇C|

2
, (25)

where C is tracer concentration, V is volume, and f̂ indicates an average of function f over the area895

of a concentration surface. The imposed small–scale diffusivity k is constant and so is more closely
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related to the κ used in Sect. 4 for the stochastic perturbation than the scale–dependent Okubo κ in

Sect. 3. (It is not clear how one would incorporate a scale–dependent diffusivity into Nakamura’s

formulation.) The volume V is a one–to–one mapping of tracer concentration and volume such that

V (C) is the volume occupied by fluid with concentrations greater than C. The derivation leading900

to the above definition for κeff can be found in Shuckburgh and Haynes (2003), who perform the

algebra in 2D but note that the 3D development is identical. Equation 25 describes an effective

diffusivity that is amplified from the small–scale diffusivity by a factor of the degree of contortion

of the concentration contour. The units of the effective diffusivity are those of k, typically m2s-1,

multiplied by m4, or volume squared divided by length squared, which is the same as surface area905

squared. Larger effective diffusivity leads to larger diffusive fluxes of tracer. This amplification can

be understood as being caused by advective stretching and folding of tracer contours which increases

the area of surfaces of constant C, thereby amplifying gradients of C and speeding up diffusive

fluxes. This amplification factor is precisely the surface area squared in the rare situation where

|∇C| is constant on a C surface (see Appendix C for proof).910

Both advection and diffusion redistribute tracer concentration and influence effective diffusivity.

The effective diffusivity allows the effects of advection to be included in a diffusive term:

∂C

∂t
=

∂

∂V

(
κeff

∂C

∂V

)
. (26)

As advection stretches and folds the initial tracer, creating filaments, the surface area of a contour

and gradients of the tracer increase, leading to larger κeff . Then, as diffusion smooths the tracer915

field, wiping away the filaments, gradients decrease and contours become smoother, with a lower

surface area to volume ratio. We compare the effective diffusivity with a deterministic perturbation

to that without; any increase is due to increased stirring, which gives a quantitative measure of how

important that stirring is for the distribution of tracer in each region of the flow.

As a secondary quantification tool, we use the volume–integrated tracer variance function, χ2920

(Pattanayak (2001)):

χ2 =

∫
V

|∇C|2dV
/∫

V

|C|2dV, (27)

where V here is simple volume. Stirring increases the variance of a tracer, while mixing decreases

it. When χ2 is increasing, stirring is dominant and the slope of χ2(t) quantifies the stirring rate. The

tracer variance function was used to relate Ekman number, perturbation strength, and stirring rate925

for the rotating cylinder in P2014; the authors found that stirring increased with larger perturbations

and was nonmonotonic with E, peaking near E = 0.01.

The numerical simulations are run using
:::
the

:::::
solver NEK5000 for several diffusivities and strengths

of the symmetry breaking deterministic perturbation. This model solves the incompressible Navier–

Stokes equations using a spectral element method (see https://nek5000.mcs.anl.gov, P2014, Fischer930

(1997)). The domain has identical radius and height, matching the aspect ratio assumed in our kine-
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matic model. The symmetry–breaking perturbation is created by moving the central axis of the im-

posed surface lid stress a distance
::::::
fraction

:::
of

:::
the

:::::
radius

:
X0 from the cylinder axis, so that X0 be-

comes the primary parameter determining the perturbation strength. The X0 =−0.02 case is what

was used to compare Poincare
:::::::
Poincaré

:
sections with the kinematic model, so qualitative features935

match the ε= 0.01 cases. The X0 =−0.16 case is a significantly larger perturbation, similar to the

ε= 0.08 case in the previous section. The nondimensional imposed tracer diffusivity, k, is 10−4

or 10−6. Using Okubo’s scaling, the lower diffusivity is appropriate for scales near 1m, while the

larger is appropriate for scales near 50m. After the simulated velocity field is spun up, the tracer

concentration, C, is initialized with a constant vertical gradient, C = 1− z.940

The set of simulations performed allows for an examination of the effects of changing E, k,

and X0. They are E = 0.125, k = 10−4, X0 ∈ {0,−0.02,−0.16} and E = 0.02, k ∈ {10−4,10−6},
X0 ∈ {0,−0.02}, for a total of seven simulations. Each simulation is run for a time of 300 after the

tracer is initialized. The evolution in time of the tracer variance function and Nakamura effective dif-

fusivity integrated over the volume of the cylinder are described first; we then discuss the evolution945

of the dye, and finally the spatial characteristics of the Nakamura effective diffusivity.

The tracer variance function over time, Fig. 9
:::::
(a)–(c), initially grows nearly linearly as stirring

creates filaments and large gradients. The function then has a single maximum that occurs at the

time when diffusive mixing starts to overcome stirring, so that the variance of the tracer begins to

decrease. The maximum occurs earlier when either the imposed diffusivity or the strength of the950

deterministic perturbation increase. Increasing the diffusivity makes the maximum occur earlier by

increasing the strength of the mixing (Fig. 9 (a) to (b)). Increasing the deterministic perturbation

also makes the maximum occur earlier as faster stirring creates larger gradients, in turn increasing

diffusive fluxes (Fig. 9 (c), red curve).

The maximum of the tracer variance function increases with decreased diffusivity, as more fil-955

amentation can occur before diffusion wipes the filaments out. This change of maximum is most

evident in the difference between k = 10−4 and k = 10−6 for E = 0.02, where the decrease in dif-

fusivity increases the maximum of the tracer variance function by an order of magnitude (Fig. 9 (a)

to (b)). Changes in the maximum as the size ofX0 is increased from 0 to 0.02 are small and negative,

because the slightly earlier time of maximum combined with similar stirring rates leads to a slightly960

smaller maximum with the perturbation. In the case of E = 0.125, X0 =−0.16, the maximum is

larger than with either X0 = 0 or X0 =−0.02 due to faster stirring and a different spatial pattern of

the dye, which will be discussed later.

The effective diffusivity, κeff , integrated over the total volume shows an overall progression sim-

ilar to the tracer variance function, which indicates the dominance of the gradient term over both965

the ∂C/∂V term in κeff and the |C|2 term in χ2 (Fig. 9(d)
:
–(f)). The initial slope and details of the

maximum can be understood as relating to perturbation and diffusivity strengths in the same man-

ner as for χ2. At longer times, the integrated effective diffusivity reaches a nearly constant positive
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value unlike χ2, which aproaches zero. This constant value can be estimated by using the surface

area representation of κeff . At long times, here meaning after many overturns but before diffusion970

removes all gradients, the shape of tracer surfaces are distorted nested tori (see
:::
look

::::::
ahead

::
to

:
Fig.

10(h)). If the C surfaces were nested circular tori, |∇C| would be constant along the surfaces, and

then κeff = kA2, where A is the surface area of a given toroidal tracer contour. The volume integral

of the squared surface area of circular tori nested around (r,z) = (0.5,0.5) multiplied by the back-

ground diffusivity is kπ6/8, which we expect to be the minimum for
∫
κeffdV in this system while975

gradients are nonzero (see Appendix C for details). This value is shown as black dashed lines in

Fig. 9(d)(e)(
::
–(f) and is just below the lowest

∫
κeffdV value seen. The higher values for κeff with

steady perturbations at long times corresponds to persistent asymmetries in the tracer field which

result in larger constant concentration surface areas. The extreme case is E = 0.125, X0 =−0.16,

::::::::
k = 10−4,

:
which has the most asymmetric dye contours

:::
(Fig.

::::::
11(i)); here, the long time value of980 ∫

κeffdV is about twice as large as for circular tori.

Further insight can be gained by perusal of vertical sections of C and κeff (Fig.s 10 and 11).

A caveat is that κeff is a nonlocal property, the value of which at any point in space and timeis

influenced by processes occurring at all other locations having the same
:
so

:::::
plots

:::::
show

:::
the

::::::
values

:::::::
κeff (C)

:::::::
mapped

::::
onto

:::
the

:::::::
locations

:::
on

:::
the

::::::
sections

::::
with

::::::::::::
corresponding

::::
dye

::::::::::::
concentrations,

:
C

:
,
:::::
while985

:::
they

:::
are

:::::::::
calculated

:::::
using

:::
the

::::::::::
distribution

::
of

::
C

::::
over

:::
the

:::::
whole

:::::::
volume

::
at

:::
that

:::::
time.

:::::
These

:::::::::
mappings

::
are

::::::
noisier

::::
than

:::
the

:::::::
sections

::
of

:::
C

::::::
because

:::
the

::::::::::
numerically

:::::::::
computed

:::::::
κeff (C)

::
is
::::::::::::
nonmonotonic

::::
and

:::
can

::::
have

:::::
large

:::::::
changes

::::
with

:::::
small

:::::::
changes

::
in

::
C. Nevertheless, these plots can yield some insights

into the time–histories shown in Fig. 9. Figure 10 is restricted to cases with E = 0.02 while Fig. 11

is restricted to E = 0.125. The two are laid out differently, with the former designed to emphasize990

the effects of varying k and the latter designed to explore variations in the strength X0 of the pertur-

bation. Both figures contain snapshots from an early time (t= 39) in the simulation, before diffusion

has had a chance to arrest growth in the tracer variance function, and at a late time (t= 299) when

κeff has reached a quasi–steady value.
:
In

:::
all

:::::
cases,

:::
the

::
C

:::::::
sections

::::::
become

::::::::
smoother

::::
and

::::
their

:::::
range

::::::::
decreases

:::::::
between

:::
the

:::::::::
snapshots,

:::
due

::
to

::::::::
continued

:::::::
mixing.

::::
The

::::
high

::::
κeff::::::

values
:::
are

::::::::
enhanced

::::
over995

::::
much

:::
of

:::
the

:::::::
sections’

::::
area

::
at

:::
the

::::
early

:::::
time,

:::
and

::::::::
localized

::
to

::::::
mostly

:::
the

::::::
chaotic

:::
sea

:::::
region

::
at
:::
the

::::
late

::::
time.

:

The early development (t= 39) of the tracer field,C, and of κeff can be seen in Fig. 10 (a–f)
::::::
(a)–(f)).

With no disturbance present (X0 = 0) and k = 10−4 (Fig. 10b
::
(b)), the initially horizontal lines of

constant C have been advected by the axially symmetric overturning circulation such that contours1000

of constant C are roughly aligned with the overturning streamfunction.
:::
For

::
an

::::::
initial

:::::
broad

:::::::
gradient

::
in

:::
any

::::::::
direction,

::::
we

:::::
expect

::::
the

:::::
same

::::::::::
realignment

::::
after

:::
the

::::
first

::::
few

:::::::::::
overturnings

::
as

:::
the

::::::
tracer

::
is

:::::::
passively

::::::::
advected

:::
by

:::
the

::::::::::
background

:::::::
velocity

:::::
field.

:::
We

:::::::
believe,

:::::
then,

:::
that

::::
the

:::::
tracer

::::::::::
distribution

:::
that

:::::
exists

::
at

::::
later

:::::
times

::
is

:::::::::
somewhat

::::::::::
independent

::
of

:::::
initial

:::::::::::
distribution. The corresponding κeff ::

at

:::::
t= 39

:
(Fig. 10(e)) exhibits high values at the edges of filaments created by the straining motion of1005
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the symmetric background flow, despite the fact that no trajectories are chaotic. When a disturbance

is added (X0 =−0.02, Fig.s 10(c)(f)) the axial symmetry is broken and the peak values of κeff are

reduced. The latter is somewhat surprising since we have already seen (Fig. 9(b)) that the volume

integrated values of κeff are nearly the same for the disturbed and undisturbed case. The situation

is made clearer if one notes that moderate values of κeff (yellow in Fig. 10(f)) are more widely1010

distributed in the disturbed case. A similar result can be seen by comparing the case X0 = 0 (Fig.

11(a)(d)) to X0 =−0.02 (Fig.s 11(b)(e)), all for E=0.125. Again, the unperturbed (symmetric case)

has larger peak values while the perturbed case has more locations with moderate values of κeff ,

resulting in a similar volume integrated value of κeff (Fig. 9(f)). It is possible that slight increases in

stirring in the perturbed cases has caused more mixing than in the unperturbed cases, even over the1015

short interval before these snapshots, leading to a lower range of C and smaller average gradients

in the perturbed cases. However, the volume–integrated measures (Fig. 9) do not show any clear

indications of that process occurring.

When the background eddy
:::::::
imposed diffusivity k is decreased by two orders of magnitude, with

X0 fixed at−0.02, the results are remarkably different. To begin with, a comparison of Fig. 9(d) with1020

9(e) shows that κeff is generally larger at any particular time when k takes the smaller value. As Fig.

10(a) and (c) show, the tracer field contains much finer filaments when k = 10−6, consistent with the

reduction of the Batchelor scale. The distribution of κeff is broader and with larger peak values for

this lower numerical diffusivity (compare Fig. 10(d) and (f)). The higher κeff indicates that despite

the decrease in k, the effects of stirring on the contours,
:
as

:::::::::
measured

::
by

:
κeff/k, have more than1025

compensated, resulting in a higher rate of irreversible property exchange. Thus the combined effect

of smaller diffusivity and finer filaments (i.e., stronger tracer gradients) leads to more rapid mixing

across tracer contours.

The results that have just been described occur early (t= 39) in the evolution of the tracer field, at a

time when fluid parcels have overturned just a few times and the perturbation amplitudeX0 has been1030

small. For this weakly perturbed flow, Lagrangian chaos requires many overturns to be significant,

so we now turn attention to the results for t= 299 (bottom six panels of Fig.s 10and 11
:::
(g-l)

::::
and

::::::
11(g-l)). Here a comparison between the unperturbed and perturbed cases (contrast panels 10(h)(k)

with 10(i)(l) and also 11(g)(j) with 11(h)(k)) reveal only modest differences in the spatial distribution

and magnitude ofC and κeff . As in the early snapshots, there is a tendency for the unperturbed flows1035

to have higher peak values of κeff , while the perturbed flows produce moderate values over a larger

area. Decreasing the value of k again has the effect of creating more fine structure (Fig. 10(g)) and

of increasing the peak values of κeff by an order of magnitude (Fig. 10(j)).

So far, the consequences of the symmetry–breaking disturbance are modest. However, dramatic

differences occur when X0 is increased from −0.02 to −0.16 for E = 0.125(right–hand panels in1040

Fig. 11). .
:
The tracer distribution is markedly distorted at early times (compare

:::
Fig. 11b with 11c)

and strong tracer gradients remain present even at t= 299, at a time when the gradients in the
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unperturbed and weakly perturbed cases have been strongly eroded (compare
:::
Fig.

:
11(g)(h) with

11(i)). The peak values of κeff at t= 299 (Fig. 11(l)) remain comparable to those of the weakly

perturbed case (11(k)) but occupy a much larger volume, making the volume integrated κeff much1045

larger, in agreement with Fig. 9(f).

For a different perspective, we examine the mean κeff in subdomains of the system corresponding

to a regular island and a region of the chaotic resonant layer of roughly the same size. The cross–

sections of the cylinder along the x and y axes are broken into different regions using the match-

ing Poincaré sections of the perturbed flow (Fig. 12). Demarcation of these subdomains was most1050

straightforward for the case E = 0.02, due to its large island and extended resonant region.
:::::
While

::
we

:::::
used

:::::::
Poincaré

:::::::
sections

::
as

::::::::
guidance

:::
for

:::::::
defining

::::::
regular

::::
and

::::::
chaotic

:::::::
regions,

:::::
other

:::::::
methods

::::
(for

:::::::
example,

::::::::::::::::
Haller et al. (2018)

:
)
:::::
could

::
be

:::::
used

::::::
instead

:::
for

:::
the

:::::
more

::::::
precise

::::::::::
delineation

::
of

:::
the

::::::
phase

:::::
space. The mean κeff in the chosen subdomains gives a clear result in the E = 0.02, k = 10−4 case

(Fig. 12(c)), where at long times, when the overall gradients have smoothed out, the resonant regions1055

have about twice the effective diffusivity as the islands. The islands’ κeff at that time approximately

matches the value from the same region in the unperturbed simulation, indicating that chaos has not

affected this area. In the E = 0.02, k = 10−6 case (Fig. 12(d)) the mean κeff is typically higher in

the resonant region than in the island, but the differences are less pronounced. It is notable that at

t > 130, κeff is larger in the island than in the same unperturbed region, perhaps because islands1060

are not completely regular and contain smaller chaotic resonant regions within them.

Overall, these dye experiments show that chaotic advection enhances Nakamura effective dif-

fusivity within the chaotic sea at some times in all cases examined. The amount of enhancement is

controlled by both the size of the perturbation and the imposed diffusivity. A larger perturbation leads

to greater enhancement (
:::::
higher κeff ). A smaller diffusivity leads to less mixing (

::::
more

:::::::::::
filamentation1065

::::::
(higher χ2) and highly elevated enhancement (

:::::
much

:::::
larger κeff ).

6 Conclusions

The main thrust of this work is to establish whether the stirring due to chaotic advection in an

idealized model of an upper ocean eddy remains relevant in the presence of levels of background

turbulence
:::::::
turbulent

::::::::
diffusion

:
that are consistent with observations. The answer is that chaotic ad-1070

vection can indeed be relevant, and in some cases dominant, within certain regions of the flow field

and over certain time intervals. The region most likely to feel the effects of chaotic advection is

the extensive chaotic sea that exists in all simulations, and is especially pronounced when the eddy

is shallow. Chaotic stirring in the smaller and more isolated resonant regions is less likely to be

important. This conclusion comes with many caveats related to idealizations (e.g. homogeneous1075

turbulence
::::::::
turbulent

:::::::
diffusion) and uncertain parameter values (e.g. background diffusivity, strength

of perturbation).
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Figure 9. Top,
::::::
(a)(b)(c),

:
tracer variance, χ2; bottom,

::::::::
(d),(e),(f), κeff integrated over volume. Left,

:::::
(a)(d):

k = 10−6, E = 0.02, middle
:
,
::::
(b)(e): k = 10−4, E = 0.02, right

:
,
::::
(c)(f): k = 10−4, E = 0.125. Solid blue lines

include the deterministic perturbation which induces chaos, ε=−0.02
:::::::::
X0 =−0.02, green dashed lines are

unperturbed, solid red lines include the deterministic perturbation with ε=−0.16
:::::::::
X0 =−0.16. Black dashed

lines indicate κeff integrated over volume in the case of nested circular tori.

A second focus of the work has been to explore different bases for comparison of the effects of

chaotic advection and homogeneous turbulence
:::::::
turbulent

::::::::
diffusion. To this end we have identified

three metrics for comparison and are now in a position to discuss their pros and cons
:::::::::
advantages1080

:::
and

::::::::::::
disadvantages. The first metric is the Largrangian Batchelor scale (Sect. 3), an estimate of the

equilibrium width of a passive tracer filament. Equilibrium is achieved when transverse compression

due to advection, as quantified by the negative Lyapunov exponent with the largest magnitude (λ3)

is balanced by the diffusive spreading of the tracer. Below the Batchelor scale, diffusion is stronger

than advection; when this width is larger/smaller than that of the chaotic regions, diffusion/advection1085

dominates. We fixed the turbulent diffusivity using Okubo’s empirical formula and calculated the

Batchelor scale δ using the rate of chaotic filament stretching, λ3, computed numerically as the

largest negative finite–time Lyapunov exponent for the kinematic model. The resulting Batchelor

scale varies from O(1m) for E = 0.25 to O(100m) for E = 0.0005. These values of δ are smaller

than the spatial extent of the chaotic sea over allE values considered (0.25, 0.125, 0.02, and 0.0005),1090

but of similar magnitude to the widths of the resonant regions.

Interpretation of the Lagrangian Batchelor scale analysis would appear to be straightforward, but

it does not comprehend the fact that chaotic advection may only be dominant over a finite time in-

terval,
::::::
which

::
is

:::::::
averaged

:::
in

:::
the

::::::
FTLEs. Even when the level of background turbulence

::::::::
turbulent

:::::::
diffusion

:
is weak, turbulent diffusion

:
it will eventually spread beyond the region of Lagrangian1095
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Figure 10. Results from three Navier–Stokes simulations with E = 0.02: left,

x0 =−0.02, k = 10−6
::::::::
(a)(d)(g)(j),

::::::::::::::::::
x0 =−0.02, k = 10−6;

:::
middle, x0 = 0, k = 10−4

::::::::
(b)(e)(h)(k),

::::::::::::::
x0 = 0, k = 10−4;

:
right,

:::::::
(c)(f)(i)(l),

:
x0 =−0.02, k = 10−4. The x0 = 0, k = 10−6 case is not shown,

but is qulitatively similar to the x0 = 0, k = 10−4 case. Top
:
,
:::::::
(a)(b)(c): Dye, t= 39. Row 2,

:::::::
(d)(e)(f):

κeff , t= 39. Row 3
:
,
::::::
(g)(h)(i): Dye, t= 299. Bottom,

::::::
(j)(k)(l): κeff , t= 299.
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Figure 11. Results from Navier–Stokes simulations for E = 0.125
:
,
::::::::
k = 10−4,

:
with three deterministic per-

turbation levels: left,
::::::::
(a)(d)(g)(j),

:
X0 = 0; middle,

:::::::::
(b)(e)(h)(k),

:
X0 =−0.02; right,

:::::::
(c)(f)(i)(l),

:
X0 =−0.16.

Top,
:::::::
(a)(b)(c): Dye, t= 39. Row 2

:
,
::::::
(d)(e)(f): κeff , t= 39. Row 3,

:::::::
(g)(h)(i): Dye, t= 299. Bottom,

::::::
(j)(k)(l):

κeff , t= 299.
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Figure 12. E = 0.02 Poincaré sections in the (a)x–z and (b)y–z planes in black. Polygons show the island

(blue) and resonant (red) regions used for analysis (c) and (d), mean κeff over time in these regions under both

applied background diffusivities.

chaos. There is also a level of uncertainty due to the choice of integration time over which λ3

is calculated. Finally, it is not yet possible to calculate λ3 from ocean data with contemporary

float/drifter technology. Vertical velocities are typically very weak and Lagrangian drifters that are

able to follow water parcels in 3D are expensive and have only been deployed in small numbers

D’Asaro et al. (1996); D’Asaro (2015)
:::::::::::::::::::::::::::::::
(D’Asaro et al. (1996); D’Asaro (2015)

:
).1100

As a second basis for comparison, we computed the dispersion over time of initially small clusters

of trajectories (Sect. 4) as they spread across isosurfaces of the background streamfunction. Back-

ground turbulence
:::::::
turbulent

::::::::
diffusion

:
is simulated as a Lagrangian random walk based on spatially

uniform diffusivity. We consider the dispersion characteristics that arise when this representation

of turbulent diffusion is added to a background flow with no chaotic advection and compare it to1105

flows that are undergoing chaotic advection but lack turbulent diffusion. Since the chaotic regions

occupy sub–volumes of the entire eddy, spread of trajectories or tracers due to turbulent diffusion

will eventually surpass that due to chaotic advection: chaos alone cannot distribute parcels across

Lagrangian boundaries. However, it remains meaningful to compare the rate of spreading of parcels

at earlier times. One immediate observation is that the character of ensemble spreading is qualita-1110

tively different for advective as opposed to diffusive perturbations. For the former, the spreading rate
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is significantly enhanced at some key times when trajectories pass near strong hyperbolic regions. In

the latter case, the spread grows similarly to the square–root of time at all times.

When the eddy is moderately shallow (E = 0.125) there are many instances in which chaotic

advection in the chaotic sea dominates turbulent diffusion, even at the higher ranges of turbulent dif-1115

fusivity. When the perturbation strength is moderately large (ε= 0.08,x0 =−.02), chaotic advection

produces more rapid spreading than diffusion for two of three diffusivities considered (pink curve in

Fig. 8(a)). Even when the perturbation strength is small (ε= 0.01), spread due to chaotic advection

in the chaotic sea (red curve in 8(a)) is of comparable order to turbulent diffusion at the lowest k

values considered (light blue curve in 8(a)). These results are in agreement with the Batchelor Scale1120

analysis.

When the eddy is deeper (E=0.02) spreading due to turbulent diffusion in the chaotic sea and

resonant regions generally dominates over spreading due to chaotic advection. This holds even when

the perturbation strength is moderately large (ε= 0.08). These results are not in strict agreement with

the Batchelor Scale analysis (Fig. 6) result that the dimension of the chaotic sea is greater or equal to1125

that of the Lagrangian Batchelor scale for deeper eddies. To reconcile these inconsistencies, note that

asE gets small, a greater percentage of the eddy volume becomes occupied by an inviscid, vertically

rigid interior. For very small E, parcels experience relatively low levels of strain while rising or

descending through the region. When a fluid parcel nears the top or bottom boundary, however,

it become vertically squashed and horizontally stretched, suggesting that the main contribution to1130

λ3 comes from close encounters with these boundaries. A Batchelor scale that is based only on a

single parameter measuring the time–averaged contraction over several overturning cycles may be

too simplistic when a parcel divides its time between kinematically distinct regions.

This method of comparison based on parcel spreading has several advantages over the Batchelor

scale. First, it offers a direct measure of fluid stirring. Also, it reveals information about the time his-1135

tory of dispersion that is hidden in the Lagrangian Batchelor scale analysis. Disadvantages include

the fact that the analysis, as presented, does not account for scale–dependent diffusivity. Also, like

the Batchelor scale analysis, it requires the tracking of fluid parcels in 3D, something that is currently

difficult in the ocean. The third method for comparison (Sect. 5) differs from the first two in that it is

based on metrics of irreversible property exchange (mixing). These metrics consist of the Nakamura1140

effective diffusivity, κeff , and a volume–integrated tracer variance function, χ2. We consider a flow

with a given background turbulent diffusivity, k, and calculate how much the irreversible property

exchange is amplified as a result of chaotic stirring. The volume–integrated κeff and χ2 both depend

on time and show rapid initial growth, a result of filamentation of an initially smooth tracer distribu-

tion. Growth is arrested when diffusion begins to dominate due to the enhanced gradients produced1145

by the filamentation process, at which time both measures, κeff and χ2, reach peak values. This is

followed by a long period in which χ2 slowly diminishes to zero and the volume integral of κeff

reaches a nearly constant value. In most cases, chaotic advection leads to more rapid initial growth,
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a lower peak value for both measures, and a larger long–term, near–equilibrium value of κeff . In

weakly perturbed cases, the differences in initial growth and peak value of κeff are minor, usually1150

on the order of 10 or 20%, while differences in the longer term, near–equilibrium value of κeff are

more significant. For strongly perturbed cases the initial growth is an order of magnitude larger and

the amplification in the long–term value of κeff is larger by a factor of two than in the unperturbed

case.

The spatial structure of κeff also yields interesting information, though one must be aware of1155

the caveat that the local value is due to non–local processes. The chaotic sea region generally has

enhanced values compared to the interior and its resonant regions. Under weak perturbation, maxi-

mum values of κeff were smaller than in the unperturbed case, but the spatial extent of the interme-

diate values was larger, leading to the enhanced volume–integrated values discussed above. Larger

changes in κeff are evident for lower k due to the occurrence of more numerous small–scale fila-1160

ments. With a larger perturbation, chaotic advection dramatically changes the effective diffusivity,

but there are also stronger barriers present, evident from isolated areas with different tracer concen-

tration. We conclude that the spatial structures of chaotic and regular regions can play an important

role in how a tracer is distributed.

The use of effective diffusivity as a metric has several advantages and disadvantages. First of all,1165

it provides a direct measure of irreversible property exchange between regions with different dye

concentration. Its time history leads to insights about the evolution of mixing and, in particular, the

time periods when chaotic advection is most relevant. Also, it can be measured, at least in principle,

by performing an ocean dye release and measuring the dye concentration along sections that cut

through the dye plume at different depths or angles, all in an attempt to recreate a concentration1170

map in 3D. Of the three methods proposed herein, it would appear to be the one most testable by

ocean observations. The main disadvantage of effective diffusivity is that it requires the background

diffusivity to be constant, which is strictly true only if the diffusivity is interpreted as the molecular

diffusivity.

In this work, we examined the relative strengths of advection and diffusion for the redistribution1175

of a passive tracer in a rotating cylinder flow as an analogue for an overturning submesoscale eddy.

Since a major challenge of this work has been to develop ways of thinking about the competition

between chaotic advection and turbulent diffusion, the numerical experiments described in this pa-

per have been necessarily idealized.
::::::::
Although

:::
the

:::::
focus

::
of

::::
this

::::::
current

:::::
paper

::
is
:::
on

:::
the

:::::::
behavior

:::
of

:
a
::::::
steady

:::
3D

::::
eddy

::::
flow

:::::::
subject

::
to

:
a
::::::::
turbulent

::::::::
diffusion,

:::::::
similar

:::::
results

::::
are

:::::::
expected

::
to
:::::

hold
:::
for

:::
3D1180

::::
eddy

:::::
flows

::::
with

::::::::::::
time-periodic

:::
and

::::::::::::::::
time-quasiperiodic

:::::::
behavior. Exploration with models that are

more realistic for the ocean presents a number of challenges, including the development of more

anisotropic and spatially–varying representations of turbulence to account for differences between

the ocean surface mixed layer and the stratified fluid underneath. In addition, finite eddy lifetimes
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must be confronted as a separation of timescales between feature lifetimes and the periods of trajec-1185

tories within them is needed for these analyses.
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Appendix A: Bifurcation Analysis of Fixed Points of the Background Streamfunction

Here we provide detail about the fixed points, and their bifurcations, of the background velocity

field in the kinematic model of the rotating cylinder. Then we present the bifurcation diagram and

an example of the flow with many fixed points in the overturning streamfunction.1190

The overturning streamfunction is described by Eqn.s (2–7), with radial and vertical velocities (8–

9) and azimuthal velocity (10). All 3 velocity components are zero at z = 0 and r = a. The azimuthal

velocity V only has 1 other zero at r = 0. However, there exist additional points with zero vertical

and radial velocity, which correspond to circular periodic orbits in the horizontal plane and which

we refer to as rz–fixed points.1195

All rz–fixed points in the interior occur at r = 0.5a, because this is the only place where W =

0. Finding the rz–fixed points is thus equivalent to finding points in z where U(r = 0.5a,z) = 0.

One such point exists for all E at z = 0.5. Additional rz–fixed points appear through pitchfork

bifurcations, where new pairs split from z = 0.5 and move apart in z as E decreases from one (Fig.

13).1200

It is possible to classify the rz–fixed points as elliptic or hyperbolic according to their behavior in

the r–z plane: the overturning streamfunction is a local maximum in both z and r at elliptic points

and a saddle, i.e., a mininum in r but a maximum in z, at hyperbolic points. At E = 1, the only

stationary point is at (r,z) = (0.5,0.5), and it is elliptic. As E decreases to about 1/62, the first

bifurcation creates two elliptic points above and below the now–hyperbolic central point at (r,z) =1205

(0.5,0.5). As E decreases, the newly created points move away vertically from the central point,

until the next bifurcation creates two new hyperbolic points, and the central fixed point becomes

elliptic again. This process continues; the number of fixed points increases as E decreases through a

repeated pitchfork bifurcations of the (r,z) = (0.5,0.5) fixed point. As these bifurcations occur, their

effects remain within a region bounded by trajectories between the first pair of hyperbolic points,1210

meaning that their effects are quite local. The spreading of the first pair of hyperbolic points, and

not the total increase in rz–fixed points, causes the increasing vertical homogeneity of the flow with

decreasing E which appears qualitatively similar to Taylor columns. An example with 9 rz–fixed

points is shown in Fig. 14 for E = 0.00125; the central point is now elliptic. Trajectories in the

vertical plane are level curves of the streamfunction; these show the elliptic and hyperbolic nature1215

of the rz–fixed points, where trajectories near an elliptic point remain nearby but trajectories near a

hyperbolic point may travel a long distance before returning or may move toward another hyperbolic

point.

Appendix B: Gaussian Tracer in Linear Strain

In this appendix, we present the derivation of the evolution of a three–dimensional tracer in a steady1220

linear strain flow. This result was used in the main text to show that the thinnest width of the Gaussian
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Figure 13. z–positions of rz–fixed points. Black indicates elliptic points, blue hyperbolic, gray the neutrally

stable points at the top and bottom. New fixed point pairs separate symmetrically from z = 0.5 as E decreases.

At each bifurcation, the central fixed point changes stability.
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Figure 14. Trajectories in the vertical plane forE = 0.00125, a= 1. There are 9 rz–fixed points along r = 0.5,

marked with red stars. Note the closed curves between the outermost hyperbolic points which surround the

interior 5 rz–fixed points; these limit the effects of those points to the local area.
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tracer distribution will asymptotically approach the Lagrangian Batchelor scale. We start with the

definitions of the velocity field, the tracer evolution equation, and the form of the solution. Then we

derive the full time–dependent solution for the tracer distribution.

We are solving for the evolution of tracer concentration, C, with a solution in the form of a1225

Gaussian function

C = cmax(t)exp

(
−x2α2(t)

2
+
−y2β2(t)

2
+
−z2γ2(t)

2

)
, (B1)

where cmax is the maximum concentration and α, β, γ are the reciprocal of the standard deviations

in each direction. In the Lagrangian frame of reference that is moving with the center of mass of

the tracer, these four parameters are dependent on time but not space. The smallest width of the1230

distribution is σ = 1/α and in the main text we have used the fact that it has a stable fixed point

σ =
√
κ/|λ3|, where λ3 is the contraction rate of the velocity field. We are now going to formally

prove it.

The velocities are defined in the Lagrangian frame by

u= λ3x(x0, t), (B2)1235

v = λ2y(x0, t), (B3)

w = λ1z(x0, t), (B4)

λ1 > λ2 > λ3, (B5)

λ1 > 0, λ3 < 0, (B6)

with x(x0, t) indicating the initial position x0 of the water parcel at t= 0. The Lagrangian tracer1240

evolution equation is

∂C

∂t
+λ3x

∂C

∂x
+λ2y

∂C

∂y
+λ1z

∂C

∂z
= κ∇2C, (B7)

where κ is the diffusivity.

The form of C and the tracer evolution equation allow us to find differential equations for each of

our four parameters, which are1245

1

cmax

dcmax
dt

=−κ
(
α2 +β2 + γ2

)
, (B8)

dα

dt
=−λ3α−κα3, (B9)

dβ

dt
=−λ2β−κβ3, (B10)

dγ

dt
=−λ1γ−κγ3. (B11)
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The width parameters’ equations are nonlinear, but rewritten in terms like α−−2 give:1250

dα−2

dt
= 2λ3α

−2 + 2κ, (B12)

dβ−2

dt
= 2λ2β

−2 + 2κ, (B13)

dγ−2

dt
= 2λ1γ

−2 + 2κ, (B14)

which are Bernoulli equations, solvable with integrating factors, giving

α=
√
|λ3|/κ

(
(λ3α

−2
0 /κ− 1)e2λ3t + 1

)−1/2
, (B15)1255

β =
(
(β−2

0 +κ/λ2)e2λ2t−κ/λ2

)−1/2
, (B16)

γ =
√
λ1/κ

(
(λ1γ

−2
0 /κ+ 1)e2λ1t− 1

)−1/2
, (B17)

where subscript 0 indicates the value at t= 0. The differences in these equations is due to the differ-

ent signs of each λ, with the ambiguity of the sign of λ2 preventing its factoring.

The cmax equation depends on the width parameters and is not simple to solve directly. However,1260

a careful inspection shows that cmax/(αβγ) is conserved, so we can write

cmax(t) = c0α(t)β(t)γ(t). (B18)

For anyone in doubt, we plug in this solution to check it:

dcmax
dt

=
d

dt
(c0αβγ) = c0

(
βγ

dα

dt
+αγ

dβ

dt
+αβ

dγ

dt

)
,

= c0
(
−αβγ(λ3 +κα2)−αβγ(λ2 +κβ2)−αβγ(λ1 +κγ2)

)
,1265

=−c0αβγ
(
λ1 +λ2 +λ3 +κ[α2 +β2 + γ2]

)
,

=⇒ 1

cmax

dcmax
dt

=−κ
(
α2 +β2 + γ2

)
.

The full solution for the tracer concentration C then has been fully solved by (B1) with α,β,γ and

cmax given by (B15–18).

For a three dimensional Gaussian tracer advected by a linear strain field in the presence of constant1270

diffusivity, in the Lagrangian frame the width of the tracer distribution will increase in the stretching

direction(s) forever, but reach a fixed value in the contracting direction(s).

Appendix C: Long–Time Limit of Effective Diffusivity For The Axially–Symmetric Rotating

Cylinder Flow

For the axially–symmetric rotating cylinder flow at long times, the dye contours resemble nested1275

tori, although with cross–sections that are somewhat between a circle and a square. Here, we derive

the expected limit of
∫
κeffdV assuming that the dye iso–contours at late times are nested tori with a

circular cross–section, and that the gradient of the dye concentration is constant along each torus. In
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this case the effective diffusivity on each torus is κeff = kA2, the background diffusivity multiplied

by the squared surface area of a torus.1280

Recall that the volume of a circular torus is

Vct = 2π2r2R, (C1)

where r is the radius of the circular cross–section and R is the distance from the center of mass of

the torus to the center of the cross–section. The surface area is

Act = 4π2rR.1285

Noting that Act = dVct/dr, we can calculate the volume–integrated effective diffusivity as∫
κeffdV =

∫∫∫
kA2dV

= k

rmax∫
0

A3dr

= k

rmax∫
0

(4π2rR)3dr

= 43π6R3k

rmax∫
0

r3dr1290

= 42π6R3kr4
∣∣∣rmax

0
= kπ6/8 (C2)

using R= 0.5 and rmax = 0.5. This circular–torus–based result gives a lower bound, because there

is still volume outside the largest torus that fits in the cylinder and the final cross–sections are some-

what square, thus having a larger surface area per volume.
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