
Dear Prof. Talagrand and three anonymous referees: 
We are really grateful to the editor and three anonymous reviewers for the careful reviews 
and constructive suggestions. Our point-by-point responses to each of the review 
comments follow. 
 
=== Response to the editor 
Dear Dr. Kondo, 

I have received three referee reports on the revised version of your paper. The referees 
are the same as those of the previous version (and identified by the same numbers). 

Referee 3, who had asked for major revisions, considers the paper can be published as it 
stands. 

Referee 2, who had asked for only minor revisions, considers some improvement is still 
necessary on the English of the paper. Here is his comment to the Editor Technically, I'm 
fine with the manuscript. There is still some pretty rough language in places, especially 
in a few of the new sentences. 

Referee 1, who had asked for major revisions, is slightly more critical, and suggests a 
number of specific corrections. The first one of these is purely scientific. Most of the 
other ones have to do with editing, intended in particular at improving the English. 

I agree with the referees, and intend to accept your paper, provided you correct it along 
the suggestions of referees 1 and 2. I agree with them in that the English, although 
perfectly understandable, must be improved in places. When accepted, your paper will be 
submitted to a free copy-editing, intended in particular at correcting the language. But the 
best would be, if you can, that you have it checked by a native English speaker. 

I add a last comment. You quote as Talagrand and Vautard a paper of which I was a co- 
author. There were actually three authors to it, and the correct quotation is 

O. Talagrand, R. Vautard and B. Strauss, 1999, Evaluation of Probabilistic Prediction 
Systems, Proceedings of Workshop on Predictability, European Centre for Medium-
range Weather Forecasts, Reading, England, October 1997, 1-25. 

I look forward to receiving the final version of your paper. 

Response: We did our best to polish the English, particularly in new sentences. Also, we 



corrected the reference to Talagrand et al. (1999) (l. 349). 

 

=== Response to RC1 

The authors have properly responded to my comments and suggestions (except for one 
point, see below). In particular, it is instructive to see that non-Gaussian pdf’s are 
generally less accurate, from the point of view of reliability and resolution, than Gaussian 
ones. 

I recommend acceptance of the paper, provided a number of additional corrections and 
modifications are made. I list them below in approximate order of decreasing importance. 
Some of these comments or suggestions below could have been made on the first version 
of the paper, but I did not do so because I considered them of lesser importance. 

The line numbers below are those in the file which contains explicitly the latest 
modifications made the authors. Bold face characters are only meant to highlight the 
changes I suggest, and are of course not to be included in the final corrections. 

The one point on which the authors have not responded correctly is the reference to one 
of the three horizontal wind components (ll. 470-471 and 711-712). The horizontal wind 
has two components, not three. The reference to the paper by Satoh et al. is not sufficient. 
Either you explain clearly what the unusual quantity you consider exactly is (and why 
you have chosen it for your diagnostics), or else you remove panel 10c (and possibly 
replace it by a panel relative to another quantity). 

Response: Following the suggestion, we calculated the zonal wind and replaced Fig. 20c. 
We revised the related descriptions accordingly. (ll. 422-425) 

 

Ll. 392-395, Change text to Kalman filters provide, under the Gaussian and linear 
additive assumption, the minimum variance estimator, which then coincides with the 
maximum likelihood estimator. 

Response: This sentence was revised to be a more accurate description (ll. 373-374). We 
understand that the Kalman filter (KF) does not assume Gaussian PDF to obtain the 
minimum variance estimate. When we derive the Kalman gain matrix, we require the 



minimum variance of the posterior PDF, which can be non-Gaussian (i.e., minimize tr(Pa) 
ignoring third- and higher-moment statistics, not necessarily assuming zero). If we 
assume Gaussian PDF (i.e., assume zero for third- and higher-moment statistics), the KF’s 
minimum variance estimate becomes equivalent to the maximum likelihood estimate. 

 

L. 280-282, The members of the upper side cluster at the 159th cycle generally become 
stable in the forecast step, and their instability is mitigated in the model. Sentence is 
difficult to understand. Where is all that you say visible (and first of all the upper side 
cluster, which has not been alluded to before)? No stability is actually visible on Fig. 10a, 
where the value of dθe is everywhere negative. 

Response: Following the suggestions, the sentences and Fig. 10 were revised (ll. 278-
281) “We find many lines crossing in the forecast step from the analyses at the 158th cycle 
to the background at the 159th cycle. Namely, many of the upper side cluster A at the 159th 
cycle come from the lower side analyses in the previous 158th cycle, generally reducing 
the instability (increasing values of dθe) in the forecast step, and vice versa for the lower 
side cluster B.” 

 

Ll. 450-451, Although the frequency of non-Gaussian PDF seems to depend primarily on 
the density of observations, it also seems to reflect the contrast between the continents 
and oceans (see Fig. 8). I have two comments about this sentence. 

- Although the frequency of non-Gaussian PDF seems to depend primarily on 
the density of observations This does not seem to have been shown, let alone 
mentioned, before. 
- it also seems to reflect the contrast between the continents and oceans (see Fig. 
8). This too does not seem to have been mentioned before, nor does it seem to 
be visible on Fig. 8. 

Response: We agree. We modified a sentence in Section 4 (ll. 259-261), and removed this 
paragraph from Section 5. 

 

Ll. 118 and 121. The values you give there are inconsistent. There is no simple 
proportionality between the mean number of elements in a sample that are beyond a given 



threshold (l. 118), and the probability that there is at least one element in the sample that 
is beyond the threshold (l. 121). More precisely, if p(σ) is the probability that a given 
element is within the threshold σ, and N is the size of the sample (here, N = 10240), the 
mean number of elements beyond the threshold is N(1-p(σ)), while the probability that 
there is at least one element beyond the threshold is 1-(p(σ))N. Please check and correct 
as necessary (I mention that the value 0.59% you give on l. 121 is consistent with the 
value 5767 you give on l. 165 for a sample with size 106. So I think it is the values you 
give on l. 121 that are correct). 

And the sentence starting l. 119, Namely, …, whether correct or not, only repeats what 
has just been said. Remove it in any case. 

Response: Following the suggestions, the sentences were revised as follows (ll. 116-121) 
“If we make 10240 independent random draws from a Gaussian PDF, statistically 27.6, 
0.65, and 0.0059 samples (0.270, 0.00633, and 0.0000573 %) are expected beyond the 
±3σ, ±4σ, and ±5σ thresholds, respectively. Namely, with the threshold of ±3σ, we would 
expect to detect 27.6 outliers at every grid point. With the ±4σ threshold, we would expect 
to detect 1.3 outliers in two grid points (20480 random draws). With the ±5σ threshold, 
we would expect to detect 1.18 outliers in 200 grid points (2048000 random draws).” 

 

Figures 8 and 9. DKL is defined for ensembles, LOF for individual ensemble elements. 
How has the frequency shown in Fig. 9 been defined? On ensemble elements taken 
individually, or on ensembles in which one element at least has LOF value > 8 (or still 
something else)? 

Response: We meant the latter one, and revised the sentence and caption of Fig. 9 as 
follows (ll. 253-255). “Figs. 8 and 9 show the frequencies of non-Gaussian PDF with high 
KL divergence DKL > 0.01 and identifying at least one outlier with high LOF > 8.0 on a 
10240-member ensemble, respectively.”, and (Fig. 9) “Similar to Fig. 8, but showing the 
frequency of identifying at least one outlier with high LOF > 8.0 on a 10240-member 
ensemble.” 

 

L. 264, … and especially the frequency in South America is over 95%, .. It is apparently 
over 95% elsewhere than in South America (see panel 8c over the tropical area south of 



Asia). 

Response: The frequency over 95% appears only in South America. In the other regions 
the frequencies are all less than 90%. The sentence was revised (ll. 261-263) “In the 
tropics, the frequency reaches up to 90%, and in South America the frequency reaches 
the highest value over 95%,” 

 

Ll. 111-112, … large KL divergence DKL, as well as large skewness and kurtosis, shown 
in Fig. 2b. 

Response: Revised as suggested (l. 111). 

 

Ll. 168-169, the sentence starting For the LOF method, ... announces something that is 
discussed in detail ll. 230-248. Modify it to For the LOF method, we choose k = 20 and, 
as discussed below in Section 4, the threshold value LOF = 8.0. 

Response: Revised as suggested (ll. 165-166). 

 

And change the sentence l. 247 starting Based on the results, … to Based on these results, 
and as already said in Section 2, we adopt LOF = 8 …. 

Response: Revised as suggested (ll. 243-244). 

 

L. 653 … for dθe (see text for definition) from … . 

Response: Revised as suggested (ll. 604). 

 

L. 658, add at end of caption (the cross shows the location of the point considered in 
panel a). 

Response: Revised as suggested (l. 610). 



 

Ll. 233-234, … should not be divided into outliers because the small cluster may…→  … 
should not be considered as consisting of outliers because it may …. 

Response: Revised as suggested (ll. 230-231). 

 

Ll. 403-405, These results suggest that the non-Gaussian PDF be mainly driven by 
precipitation processes such as cumulus parameterization … → These results suggest 
that the non-Gaussianity is mainly caused by precipitation processes such those 
associated with cumulus convection, … . 

Response: Revised as suggested (ll. 382-383). 

 

Ll. 266-267, change to … the intensity of non-Gaussianity, as evaluated by other 
measures, is also weak … . 

Response: Revised as suggested (ll. 264-265). 

 

L. 240, Remove sentence starting Hereafter, … (already said ll. 168-169) 

Response: Following the suggestion, we removed the sentence. 

 

L. 111, one or several members ... 

Response: Revised as suggested (l. 110). 

 

L. 122, Since the outliers appear too frequently … → Since the outliers appear too 
frequently … 

Response: Revised as suggested (l. 121). 



 

Ll. 156-157, change to … depends on the data set, as shown by Breunig et al. (2000), 
who suggested … 

Response: Revised as suggested (ll. 153-154). 

 

L. 304, As shown in Fig. 8a, … → In agreement with what has been seen on Fig. 8a, … . 

Response: Revised as suggested (ll. 301-302). 

 

L. 315, … (Fig. 14, crosses) … . 

Response: Revised as suggested (l. 312). 

 

Ll. 23-24, … correspond well with … → … is similar to … 

Response: Revised as suggested (l. 26). 

 

Ll. 398-399, … to represent the non-Gaussian PDF which is more vulnerable to the 
sampling error. → … to identify the possible non-Gaussianity of PDFs, which may be 
difficult to detect in the presence of sampling error. 

Response: Revised as suggested (ll. 377-378). 

 

L. 23, … the non-Gaussian PDF is caused by … → … non-Gaussianity is caused in those 
PDFs by … 

Response: Revised as suggested (l. 25). 

 



Similarly, l. 432, … the non-Gaussian PDF … → … non-Gaussianity … 

Response: Revised as suggested (l. 392). 

 

L. 436, The members with their instabilities mitigated … → The members with reduced 
instabilities … 

Response: Revised as suggested (l. 396). 

 

L. 221, … correspond to each other. → … tend to coincide. 

Response: Revised as suggested (l. 218). 

 

Ll. 79-80, without contaminated → without contamination 

Response: Revised as suggested (l. 79). 

 

L. 117, … draws from a Gaussian PDF, … 

Response: Revised as suggested (l. 116). 

 

L. 478, … we would have an abundance of non-Gaussianity. → … we would presumably 
have more frequent occurrence of non-Gaussianity. 

Response: Revised as suggested (ll. 427-428). 

 

L. 503, … is remained as … → … remains as … 

Response: Revised as suggested (ll. 453). 

 



P. 40, caption of Figure 8. Although it is said in the text, it might be good to mention 
explicitly here that the crosses indicate the locations of observations. 

Response: Following the suggestion, we added the sentence in the caption of Fig. 8. “The 
crosses indicate the radiosonde-like locations.” 

 

L. 222, … grid point B (35.256°N, … This figure corresponds to an accuracy of about 
100 m, totally meaningless with a grid with 48 points in the meridional direction, 
corresponding to a resolution of about 400 km (the same remark applies elsewhere). 

Response: Following the suggestion, all longitudes and latitudes were rounded off to the 
first decimal place. 

 

=== Response to RC2 

I am satisfied with the authors response to my comments in the earlier version. There are 
some residual grammatical problems in the revised section that should be cleaned up 
before final acceptance. 

Response: We did our best to polish the English, particularly in new sentences. 
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Abstract.  20 

We previously performed local ensemble transform Kalman filter (LETKF) experiments with up to 21 

10240 ensemble members using an intermediate atmospheric general circulation model (AGCM). 22 

While the previous study focused on the impact of localization on the analysis accuracy, the present 23 

study focuses on the probability density functions (PDFs) represented by the 10240-member 24 

ensemble. The 10240-member ensemble can resolve the detailed structures of the PDFs and indicates 25 

that the non-Gaussian PDFGaussianity is caused in those PDFs by multimodality and outliers. The 26 

results show that the spatial patterns of the analysis errors correspond well with theare similar to those 27 

of non-Gaussianity. While the outliers appear randomly, large multimodality corresponds well with 28 

large analysis error, mainly in the tropical regions and storm track regions where highly nonlinear 29 

processes appear frequently. Therefore, we further investigate the lifecycle of multimodal PDFs, and 30 

show that the multimodal PDFs are mainly generated by the on-off switch of convective 31 

parameterization in the tropical regions and by the instability associated with advection in the storm 32 

track regions. Sensitivity to the ensemble size suggests that approximately 1000 ensemble members 33 

be necessary in the intermediate AGCM-LETKF system to represent the detailed structures of the 34 

non-Gaussian PDF such as skewness and kurtosis; the higher-order non-Gaussian statistics are more 35 

vulnerable to the sampling errors due to a smaller ensemble size.   36 
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1 Introduction 37 

Data assimilation is a statistical approach to estimate a posterior probability density function (PDF) using 38 

information of a prior PDF and observations. Based on the posterior PDF estimate, the optimal initial state is 39 

given for numerical weather prediction (NWP). The ensemble Kalman filter (EnKF; Evensen 1994) 40 

is an ensemble data assimilation method based on the Kalman filter (Kalman 1960) and approximates 41 

the background error covariance matrix by an ensemble of forecasts. The EnKF can explicitly 42 

represent the PDF of the model state, where the ensemble size is essential because the sampling error 43 

contaminates the PDF represented by the ensemble. Although the sampling error is reduced by 44 

increasing the ensemble size, the EnKF is usually performed with a limited ensemble size up to 45 

O(100) due to the high computational cost of ensemble model runs. Recently, EnKF experiments with 46 

a large ensemble have been performed using powerful supercomputers. Miyoshi et al. (2014; hereafter 47 

MKI14) implemented a 10240-member EnKF with an intermediate atmospheric general circulation 48 

model (AGCM) known as the Simplified Parameterizations, Primitive Equation Dynamics model 49 

(SPEEDY; Molteni 2003), and found meaningful long-range error correlations. In addition, they 50 

reported that sampling errors in the error correlation were reduced by increasing the ensemble size. 51 

Further, Miyoshi et al. (2015) assimilated real atmospheric observations with a realistic model known 52 

as the Nonhydrostatic Icosahedral Atmospheric Model (NICAM; Tomita and Satoh 2004; Satoh et al. 53 

2008; 2014) using an EnKF with 10240 members. Kondo and Miyoshi (2016; hereafter KM16) 54 

investigated the impact of covariance localization on the accuracy of analysis using a modified 55 

version of the MKI14 system. 56 
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MKI14 also focused on the PDF and reported strong non-Gaussianity, such as a bimodal PDF. 57 

Previous studies investigated the impact of non-Gaussianity on the EnKF. Anderson (2010) reported 58 

that an N-member ensemble could contain an outlier and a cluster of N-1 ensemble members under 59 

nonlinear scenarios using the ensemble adjustment Kalman filter (EAKF; Anderson 2001). Anderson 60 

(2010) called this phenomenon ensemble clustering (EC), which leads to degradation of analysis 61 

accuracy. Amezcua et al. (2012) investigated EC with the ensemble transform Kalman filter (ETKF; 62 

Bishop et al. 2001) and local ensemble transform Kalman filter (LETKF; Hunt et al. 2007), and found 63 

that random rotations of the ensemble perturbations could avoid EC. Posselt and Bishop (2012) 64 

explored the non-Gaussian PDF of microphysical parameters using an idealized one-dimensional 65 

(1D) model of deep convection and showed that the non-Gaussianity of the parameter was generated 66 

by nonlinearity between the parameters and model output. 67 

Using the precious dataset of KM16 with 10240 ensemble members, we can make various 68 

investigations such as non-Gaussian statistics and sampling errors in the background error covariance. 69 

Here we focus on the non-Gaussian statistics in this study. Since the Gaussian assumption makes the 70 

minimum variance estimator of the EnKF coincide with the maximum likelihood estimator, the non-71 

Gaussian PDF may bring some negative impacts on the LETKF analysis. KM16 showed that the 72 

improvement in the tropics was relatively small by increasing the ensemble size up to 10240, and 73 

suggested that the small improvement be related to the convectively dominated tropical dynamics. 74 

This study aims to investigate the non-Gaussian statistics of the atmospheric dynamics in more detail 75 

to investigate the relationship between the analysis error and the non-Gaussian PDF, as well as the 76 
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behavior and lifecycle of the non-Gaussian PDF. To the best of the authors’ knowledge, this is the 77 

first study investigating the non-Gaussian PDF using a 10240-member ensemble of an intermediate 78 

AGCM. This study also discusses how many ensemble members are necessary to represent non-79 

Gaussian PDF without contaminatedcontamination by the sampling error, since in general higher-80 

order non-Gaussian statistics are more vulnerable to the sampling error due to a limited ensemble size. 81 

This paper is organized as follows. Section 2 describes measures for the non-Gaussian PDF. Section 82 

3 describes experimental settings, and Section 4 presents the results. Finally, summary and 83 

discussions are provided in Section 5. 84 

 85 

2 Non-Gaussian measures 86 

Sample skewness 𝛽𝛽1
1 2⁄  and sample excess kurtosis 𝛽𝛽2 are well-known parametric properties of a 87 

non-Gaussian PDF, and are defined as follows: 88 

 𝛽𝛽1
1 2⁄ =

𝑁𝑁
(𝑁𝑁 − 1)(𝑁𝑁 − 2)

∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)3𝑁𝑁
𝑖𝑖=1

𝜎𝜎3
 (1) 

 𝛽𝛽2 =
𝑁𝑁(𝑁𝑁 + 1)

(𝑁𝑁 − 1)(𝑁𝑁 − 2)(𝑁𝑁 − 3)
∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)4𝑁𝑁
𝑖𝑖=1

𝜎𝜎4
−

3(𝑁𝑁 − 1)2

(𝑁𝑁 − 2)(𝑁𝑁 − 3) (2) 

where 𝑥𝑥𝑖𝑖 and �̅�𝑥 denote the ith ensemble member and N-member ensemble mean, respectively; σ 89 

denotes the sample standard deviation, i.e., 𝜎𝜎 = � 1

𝑁𝑁−1
∑ (𝑥𝑥𝑖𝑖 − 𝑥𝑥�)2𝑁𝑁
𝑖𝑖=1 , and skewness 𝛽𝛽1

1 2⁄  represents 90 

the asymmetry of the PDF. Positive (negative) skewness 𝛽𝛽1
1 2⁄   corresponds to the PDF with the 91 

longer tail on the right (left) side. Positive (negative) kurtosis 𝛽𝛽2 corresponds to the PDF with a more 92 
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pointed (rounded) peak and longer (shorter) tails on both sides. When the PDF is Gaussian, both 93 

skewness 𝛽𝛽1
1 2⁄  and kurtosis 𝛽𝛽2 go to zero in the limit of infinite sample size. In addition, we also 94 

use Kullback–Leibler divergence (KL divergence, Kullback and Leibler 1951) from the Gaussian 95 

PDF. KL divergence is a direct measure of the difference between two PDFs. Let p(x) and q(x) be two 96 

PDFs. The KL divergence DKL between the two PDFs is defined as 97 

 𝐷𝐷𝐾𝐾𝐾𝐾 = �𝑝𝑝(𝑥𝑥)log
𝑝𝑝(𝑥𝑥)
𝑞𝑞(𝑥𝑥)𝑑𝑑𝑥𝑥 (3) 

Here, we obtain p(x) from the histogram based on the ensemble, and q(x) from the theoretical 98 

Gaussian function with the ensemble mean �̅�𝑥 and standard deviation σ, respectively. DKL measures 99 

the difference between the ensemble-based histogram and the fitted Gaussian function. Figure 1 100 

shows examples of ensemble-based histograms and corresponding skewness 𝛽𝛽1
1 2⁄ , kurtosis 𝛽𝛽2, and 101 

KL divergence DKL with 10240 samples. Here, the Scott’s choice method (Scott 1979) is applied to 102 

decide the bin width for histograms. The histogram with KL divergence DKL = 0.01 looks 103 

approximately Gaussian while the other three histograms with larger DKL values show significant 104 

discrepancies from the Gaussian function. The skewness and kurtosis measure the degrees of 105 

symmetry and tailedness, respectively, while the KL divergence DKL is more suitable for measuring 106 

the degrees of difference between a given PDF and the fitted Gaussian function. Based on the 107 

subjective observation of Fig. 1, hereafter, the PDF is considered to be non-Gaussian when DKL > 108 

0.01. 109 

A non-Gaussian PDF can also be caused by outliers. Although detailed results are shown in 110 

Section 4, one or several ensemble members are detached from the main cluster; this also results in 111 



 7 

the large KL divergence DKL, as well as large skewness and kurtosis, shown in Fig. 2b. We tested two 112 

outlier detection methods: the standard deviation-based method (SD method) and the local outlier 113 

factor method (LOF method; Breunig et al. 2000). Here, univariate PDFs are considered, so that SD 114 

and LOF methods are computed for each variable at each grid point separately. 115 

In the SD method, the ensemble members beyond a prescribed threshold in the unit of SD are 116 

defined as outliers. If we make 10240 independent random draws from thea Gaussian PDF, 117 

statistically 27.6, 0.65, and 0.0059 samples (0.270, 0.00633, and 0.0000573 %) are expected beyond 118 

the ±3σ, ±4σ, and ±5σ thresholds, respectively. Namely, with the threshold of ±3σ, we would expect 119 

to detect 27.6 outliers at every grid point. Using ±4σ and ±5σ thresholds,With the probabilities±4σ 120 

threshold, we would expect to detect at least one outlier at a given1.3 outliers in two grid point is 121 

65 % and 0.59 %, respectively.points (20480 random draws). With the ±5σ threshold, we would 122 

expect to detect 1.18 outliers in 200 grid points (2048000 random draws). Since the outliers appear 123 

too frequently with ±3σ and ±4σ thresholds, we choose the ±5σ threshold for the SD method in this 124 

study. 125 

Unlike the SD method, the LOF method is based on the local density, not on the distance from 126 

the sample mean. For a given two-dimensional dataset D, let d(p, o) denote the distance between two 127 

objects p ∈ D and o ∈ D. For any positive integer k, define k-distance(p) to be the distance 128 

between the object p and the kth nearest neighbor. The k-distance neighborhood of p, or simply Nk 129 

(p), is defined as the k nearest objects: 130 
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 Nk (p) = {q ∈ D | q ≠ p, d(p, q) ≤ k-distance(p)} (4) 

The cardinality of Nk (p), or |Nk (p)|, is greater than or equal to the number of objects (except for the 131 

object p itself) within k-distance(p). We define the reachability distance of p with respect to the object 132 

o as 133 

 reach-distk (p, o) = max{k-distance(o), d(p, o)} (5) 

That is, if the object p is sufficiently distant from the object o, reach-distk (p, o) is d(p, o). If they are 134 

sufficiently close to each other, reach-distk (p, o) is replaced by k-distance(o) instead of d(p, o). Figure 135 

3 shows a schematic diagram of reach-distk (p, o) with k = 3. Nk (p) includes o1, o2, o3, and o4, and 136 

|Nk (p)| is 4. In Fig. 3 (a), reach-distk (p, o1) is k-distance(o1) = d(o1, o4) because k-distance(o1) is 137 

greater than d(p, o1). In contrast, in Fig. 3 (b), reach-distk (p, o1) is d(p, o1). We further define the local 138 

reachability density of p, or simply lrdk (p), as the inverse of the average of reachability distance of 139 

p: 140 

𝑙𝑙𝑙𝑙𝑑𝑑𝑘𝑘(𝑝𝑝) =
|𝑁𝑁𝑘𝑘(𝑝𝑝)|

∑ 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟ℎ-𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑘𝑘(𝑝𝑝, 𝑜𝑜)𝑜𝑜 ∈ 𝑁𝑁𝑘𝑘(𝑝𝑝)
                                                (6) 141 

Finally, the local outlier factor of p, denoted as LOFk (p), is defined as: 142 

𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘(𝑝𝑝) =
∑ 𝑙𝑙𝑙𝑙𝑑𝑑𝑘𝑘(𝑜𝑜)

𝑙𝑙𝑙𝑙𝑑𝑑𝑘𝑘(𝑝𝑝)𝑜𝑜 ∈ 𝑁𝑁𝑘𝑘(𝑝𝑝)

|𝑁𝑁𝑘𝑘(𝑝𝑝)| .                                                                 (7) 143 

Given a lower local reachability density of p and a higher local reachability density of p’s k-nearest 144 

neighbors, LOFk (p) becomes higher. LOFk (p) or simply LOF is approximately 1 for an object deep 145 

within a cluster, and LOF becomes larger around the edge of the cluster due to sparse objects on the 146 

far side from the cluster. To summarize, the LOF method focuses on the local densities of objects, 147 
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and outliers are detected by comparing the local densities. For instance, when k = 3 in Fig. 3a, the 148 

local densities of the objects p and o1, 2, 3, 4, 5 have all similar values because the k-distance(p) is similar 149 

to the k-distances(o1, 2, 3, 4, 5). Therefore, they are not identified as outliers. In contrast, in Fig. 3b the 150 

object p has a smaller local density than the other objects o1, 2, 3, 4, 5 because k-distance(p) > k-151 

distances(o1, 2, 3, 4, 5). Therefore, the object p has a larger LOF and is identified as an outlier. An object 152 

with LOF much larger than 1 may be categorized as an outlier, but it is not clear how to determine 153 

the threshold for outliers because the threshold also depends on the dataset. The threshold of LOF is 154 

chosen to be 8.0 in this study, and Section 4 shows the results with different values of the threshold 155 

and discusses why we choose this value. k is a control parameter for the LOF method and depends on 156 

the dataset, as shown by (Breunig et al. 2000). Breunig et al. (2000), who suggested that choosing k 157 

from 10 to 20 work well for most of the datasets. If we choose k too small, some objects deeply inside 158 

a cluster have a large LOF, and the LOF method does not work. In fact, using the dataset of KM16, 159 

k = 10 showed this problem, while k = 20 did not. Therefore, we chose k = 20 in this study. Similar 160 

to the SD method, the LOF method is applied to a one-dimensional dataset consisted of 10240 161 

ensemble members. 162 

The statistics of the KL divergence, SD and LOF methods with 10240 samples are evaluated 163 

numerically with 1 million trials of 10240 random draws from the standard normal distribution by 164 

the Box-Muller’s method (Box and Muller 1958). The results show that the expected value of KL 165 

divergence DKL is 0.0025, and its standard deviation is 0.00048. As for outlier detections, 5767 and 166 

16088 trials have at least one outlier for SD and LOF methods, respectively. Namely, the probabilities 167 
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to detect at least one outlier at a grid point are 0.58 % for the SD method and 1.6 % for the LOF 168 

method. Here, the threshold for the SD method is ±5σ. For the LOF method, we choose k = 20 and, 169 

as discussed below in Section 4, the threshold isvalue LOF = 8.0 and k = 20. 170 

 171 

3 Experimental settings 172 

We use the 10240-member global atmospheric analysis data from an idealized LETKF experiment of 173 

KM16. That is, the experiment was performed with the SPEEDY-LETKF system (Miyoshi 2005) 174 

consisting of the SPEEDY model (Molteni 2003) and the LETKF (Hunt et al. 2007; Miyoshi and 175 

Yamane 2007). The SPEEDY model is an intermediate AGCM based on the primitive equations at 176 

T30/L7 resolution, which corresponds horizontally to 96 × 48 grid points and vertically to seven 177 

levels, and has simplified forms of physical parametrization schemes including large-scale 178 

condensation, cumulus convection (Tiedtke 1993), clouds, short- and long-wave radiation, surface 179 

fluxes, and vertical diffusion. Due to the very low computational cost, the SPEEDY model has been 180 

used in many studies on data assimilation (e.g., Miyoshi 2005; Greybush et al. 2011; Miyoshi 2011; 181 

Amezcua et al. 2012; Miyoshi and Kondo 2013; Kondo et al. 2013; MKI14; KM16). 182 

The LETKF applies the ETKF (Bishop et al. 2001) algorithm to the local ensemble Kalman filter 183 

(LEKF; Ott et al. 2004). The LETKF can assimilate observations at every grid point independently, 184 

which is particularly advantageous in high-performance computation. In fact, Miyoshi and Yamane 185 

(2007) showed that the parallelization ratio reached 99.99% on the Japanese Earth Simulator 186 
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supercomputer, and KM16 performed 10240-member SPEEDY-LETKF experiments within 5 187 

minutes for one execution of LETKF, not including the forecast part on 4608 nodes of the Japanese 188 

K supercomputer. The LETKF is computed as follows. Let 𝐗𝐗 (𝛿𝛿𝐗𝐗) denote an n × m matrix, whose 189 

columns are composed of m ensemble members (deviations from the mean of the ensemble) with the 190 

system dimension n. The superscripts a and f denote the analysis and forecast, respectively. The 191 

analysis ensemble 𝐗𝐗𝑎𝑎 is written as: 192 

𝐗𝐗𝑎𝑎 = 𝐱𝐱�𝑓𝑓𝟏𝟏 + 𝛿𝛿𝐗𝐗𝑓𝑓 �𝐏𝐏�𝑎𝑎(𝐇𝐇𝛿𝛿𝐗𝐗𝑓𝑓)T𝐑𝐑−1(𝒚𝒚𝑜𝑜 − 𝐇𝐇𝐱𝐱�𝑓𝑓)𝟏𝟏 + √𝑚𝑚 − 1�𝐏𝐏�𝑎𝑎�
1 2⁄

� (8) 

[cf. Eqs. (6) and (7) of Miyoshi and Yamane 2007]. Here, 𝐱𝐱�𝑓𝑓, 𝒚𝒚𝑜𝑜, 𝐇𝐇, and R denote the background 193 

ensemble mean, observations, linear observation operator, and observation error covariance matrix, 194 

respectively. 𝟏𝟏 is an m-dimensional row vector with all elements being 1. The m × m analysis error 195 

covariance matrix 𝐏𝐏�𝑎𝑎 in the ensemble space is given as 196 

𝐏𝐏�𝑎𝑎 = [(𝑚𝑚− 1)𝐈𝐈/𝜌𝜌 + (𝐇𝐇𝛿𝛿𝐗𝐗𝑓𝑓)T𝐑𝐑−1(𝐇𝐇𝛿𝛿𝐗𝐗𝑓𝑓)]−1 = 𝐔𝐔𝐃𝐃−1𝐔𝐔T (9) 

[cf. Eqs. (3) and (9) of Miyoshi and Yamane 2007]. Here, 𝜌𝜌 denotes the covariance inflation factor. 197 

As 𝐏𝐏�𝑎𝑎 is real symmetric, U is composed of the orthonormal eigenvectors, such that 𝐔𝐔𝐔𝐔T = 𝐈𝐈. The 198 

diagonal matrix D is composed of the non-negative eigenvalues. 199 

KM16 performed a perfect-model twin experiment for 60 days from 0000 UTC 1 January in the 200 

second year of the nature run, which was initiated at 0000 UTC 1 January from the standard 201 

atmosphere at rest (zero wind). The first year of the nature run was discarded as spin-up. To resolve 202 

detailed PDF structures, the ensemble size was fixed to 10240. No localization was applied, yielding 203 

the best analysis accuracy as shown by KM16 who compared five 10240-member experiments with 204 
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different choices of localization: step functions with 2000-km, 4000-km and 7303-km localization 205 

radii, a Gaussian function with a 7303-km localization radius, and no localization. The observations 206 

for horizontal wind components (U, V), temperature (T), specific humidity (Q), and surface pressure 207 

(Ps) were simulated by adding observational errors to the nature run every 6 h at radiosonde-like 208 

locations (cf. Fig. 8, crosses) for all seven vertical levels, but the observations of specific humidity 209 

were simulated from the bottom to the fourth model level (about 500 hPa). The observational errors 210 

were generated from independent Gaussian random numbers, and the observational error standard 211 

deviations were fixed at 1.0 m s−1, 1.0 K, 0.1 g kg−1, and 1.0 hPa for U/V, T, Q, and Ps, respectively. 212 

The non-Gaussian measures, skewness 𝛽𝛽1
1 2⁄ , kurtosis 𝛽𝛽2, and KL divergence DKL, are calculated 213 

at each grid point for each variable. Outliers are diagnosed similarly at each grid point for each 214 

variable with the SD method and LOF method. 215 

 216 

4 Results 217 

Figure 4 shows the spatial distributions of the analysis absolute error, ensemble spread, background 218 

skewness 𝛽𝛽1
1 2⁄ , kurtosis 𝛽𝛽2, and KL divergence DKL for temperature at the fourth model level (~500 219 

hPa) at 0600 UTC 22 February. When the analysis absolute error is large, the background non-220 

Gaussian measures also tend to be large, especially in the tropics. The peaks for skewness 𝛽𝛽1
1 2⁄ , 221 

kurtosis 𝛽𝛽2, and KL divergence DKL correspondtend to each othercoincide. Although grid point A 222 

(16.7°S, 90.0°E) has a large KL divergence DKL with large analysis absolute error, at grid point B 223 
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(35.2563°N, 146.253°E) with a large KL divergence DKL the analysis absolute error is small (< 0.08 224 

K). This result shows that the large analysis error is not always associated with the strong non-225 

Gaussianity at a specific time. The PDFs at grid points A and B are shown in Fig. 2a, b, respectively. 226 

The histogram at the grid point A is clearly a multimodal PDF with KL divergence DKL > 0.01, and 227 

the right mode captures the truth (yellow star). At grid point B, although the PDF seems to be closer 228 

to Gaussian, skewness 𝛽𝛽1
1 2⁄  and kurtosis 𝛽𝛽2 are much larger than those at grid point A. In fact, the 229 

PDF does not fit to the Gaussian function calculated by the ensemble mean and standard deviation. 230 

Zooming in on the left side of Fig. 2b shows a small cluster composed of 76 members detached from 231 

the main cluster; 74 members of the small cluster exceed −5σ and are categorized as outliers in the 232 

SD method. This small cluster causes the standard deviation to become large and results in the 233 

Gaussian function having a longer tail than the histogram. The small cluster should not be divided 234 

intoconsidered as consisting of outliers because the small clusterit may have some physical 235 

significance. Scatter diagrams of LOF versus distance from ensemble mean for all ensemble members 236 

at grid points A and B are shown in Fig. 5a, b, respectively. At grid point A, LOF is not so large even 237 

at the edge of the cluster (< 4), and the bimodal multimodal PDF does not influence LOF. In addition, 238 

all members are within ±3σ. Therefore, there are no clear outliers at grid point A. At grid point B, 239 

although most of the small cluster exceeds −5σ, the maximum LOF in the small cluster is still smaller 240 

than 3. This indicates that all members of the small cluster should not be outliers in the LOF method. 241 

Hereafter, we choose to use the LOF method. As an outlier case, we pick up the grid point C 242 

(35.2563°N, 112.5°W) in Fig. 4. The PDF at the grid point C fits the Gaussian function well, and the 243 
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non-Gaussian measures are quite small (Fig. 2c). A member on the left edge of the scatter diagram in 244 

Fig. 5c has the largest LOF > 8.0, but the member is within ±3σ. As mentioned in Section 2, the 245 

threshold of LOF for outliers depends on the dataset. Figure 6 shows the number of outliers for 246 

thresholds of 5.0, 8.0, and 11.0 at 0600 UTC 22 February. There are too many outliers with threshold 247 

= 5.0, but in contrast, the number of outliers decreases markedly with threshold = 8.0 or 11.0. Based 248 

on thethese results, and as already mentioned in Section 2, we adopt LOF = 8.0 as a threshold for 249 

outliers. 250 

Figure 7 shows the spatial distributions of the time-mean analysis RMSE, ensemble spread, the 251 

background absolute skewness 𝛽𝛽1
1 2⁄ , absolute kurtosis 𝛽𝛽2, and KL divergence DKL. As mentioned in 252 

KM16, the time-mean ensemble spread corresponds well to the RMSE, which is larger in the tropics. 253 

The pattern correlation between the RMSE and ensemble spread is 0.97. Moreover, the distributions 254 

of non-Gaussian measures are similar to each other and also correspond well to the RMSE and 255 

ensemble spread. The RMSE and non-Gaussian measures differ in that the non-Gaussianity is large 256 

in storm tracks, such as the North Pacific Ocean and the North Atlantic Ocean. This may be because 257 

the LETKF inhibits growing errors well in storm tracks regardless of the strong non-Gaussianity. To 258 

investigate the non-Gaussianity in more detail, Figs. 8 and 9 show the frequencies forof non-Gaussian 259 

PDF with high KL divergence DKL > 0.01 and identifying at least one outlier with high LOF > 8.0 260 

on a 10240-member ensemble, respectively. The frequency of non-Gaussian PDF is defined as the 261 

ratio of non-Gaussianity appearance at every grid point during the 36-day period from 0000 UTC 25 262 

January to 1800 UTC 1 March. The spatial distribution of frequency of high KL divergence DKLnon-263 
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Gaussianity for temperature is similar to that of the time mean RMSE and DKL (Figs. 7 a, e, and 8 b), 264 

and the pattern correlation between the spatial distribution of mean RMSE and DKL is 0.68. TheWe 265 

find high frequency of non-Gaussianity is very strongGaussian PDF in the tropics and storm track 266 

regions for temperature, specific humidity, and surface pressure., although non-Gaussian PDF seldom 267 

appears in the densely observed regions. In the tropics, the frequency reaches 80up to 90%, and 268 

especially the frequency in South America isthe frequency reaches the highest value over 95%, i.e., 269 

the non-Gaussian PDF appears for 34 days out of 36 days. In contrast, the non-Gaussian PDF for 270 

zonal wind hardly appears (Fig. 8 a), and the intensity of the non-Gaussianity, as evaluated by other 271 

measures, is also weak (not shown). On the other hand, the outliers appear almost randomly and do 272 

not clearly depend on the region for any of the variables (Fig. 9), and most outliers disappear within 273 

only one or a few analysis steps. Moreover, there are no correlations between the frequency of outliers 274 

and analysis RMSE. 275 

To investigate how the non-Gaussian PDF is generated, we plot the forecast and analysis update 276 

processes at 1.8569°N, 168.7°E for 256 members chosen randomly from 10240 members from the 277 

analysis at 0000 UTC 9 February (157th analysis cycle) to the forecast at 0000 UTC 10 February 278 

(161st analysis cycle, Fig. 10a). That is, Fig. 10a shows the lifecycle of the non-Gaussian PDF. As the 279 

vertical axis, we introduce the convective instability dθe, which is defined as a difference between 280 

equivalent potential temperature θe at the fourth model level (~500 hPa) and θe at the second model 281 

level (~850 hPa). Negative (Positive) dθe indicates a convectively unstable (stable) atmosphere. The 282 

non-Gaussian PDF appears in the background at the 159th cycle (1200 UTC 9 February), and the 283 
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model forecast increases the KL divergence DKL for dθe up to 0.154 with a bimodal PDF of clusters 284 

A and generates obvious non-Gaussianity. The membersB. We find many lines crossing in the forecast 285 

step from the analyses at the 158th cycle to the background at the 159th cycle. Namely, many of the 286 

upper side cluster A at the 159th cycle come from the lower side analyses in the previous 158th cycle, 287 

generally become stablereducing the instability (increasing values of dθe) in the forecast step, and 288 

their instability is mitigated in the model. In contrast, most other members show enhanced 289 

instabilityvice versa for the lower side cluster B. In the background temperature at the fourth model 290 

level, the KL divergence DKL also increases from 0.003 to 0.299 for 6 h (Figs. 10b, c). Finally, the 291 

non-Gaussian PDF almost disappears at the 161st cycle (0000 UTC 10 February). Figure 11 shows a 292 

scatter diagram of 0600 UTC versus 1200 UTC 9 February for background temperature in the fourth 293 

model level for each member at 1.8569°N, 168°.7° E, and also shows histograms corresponding to 294 

the scatter diagrams. The PDF at 0600 UTC is almost Gaussian. However, at 1200 UTC, the bimodal 295 

structure with KL divergence DKL = 0.299 appears. The dot colors show 𝑑𝑑𝜃𝜃𝑒𝑒′  evaluated from 0600 296 

UTC to 1200 UTC 9 February, namely, 𝑑𝑑𝜃𝜃𝑒𝑒′ = (𝑑𝑑𝜃𝜃𝑒𝑒 1200 𝑈𝑈𝑈𝑈𝑈𝑈 − 𝑑𝑑𝜃𝜃𝑒𝑒 0600 𝑈𝑈𝑈𝑈𝑈𝑈) − (𝑑𝑑�̅�𝜃𝑒𝑒 1200 𝑈𝑈𝑈𝑈𝑈𝑈 −297 

𝑑𝑑�̅�𝜃𝑒𝑒 0600 𝑈𝑈𝑈𝑈𝑈𝑈), where �̅�𝜃𝑒𝑒 indicates the equivalent potential temperature calculated from the ensemble 298 

mean. That is, a red (blue) dot shows more stability (instability) than the ensemble mean. The red and 299 

blue dots are clearly divided into the right and left side modes, respectively. Most members with 300 

mitigated (enhanced) instability move to the right (left) side mode. The members with larger (smaller) 301 

temperature values at 1200 UTC correspond to larger (smaller) values of stability as shown by the 302 

warmer (colder) color. In addition, both right and left modes correspond to the opposite side modes 303 
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in the specific humidity, respectively (not shown). That is, the members with higher (lower) 304 

temperature have lower (higher) humidity than the ensemble mean. The instability is driven by 305 

precipitation. Figure 12 is similar to Fig. 11, but for precipitation. The 10240 members are clearly 306 

divided into three clusters at 1200 UTC by the instability. The three clusters indicate the number of 307 

times cumulus parameterization is triggered. Most members in the right (left) cluster are red (blue) 308 

and show mitigation (enhancement) of the instability. Figure 13 is also similar to Fig. 11, but for zonal 309 

wind at the fourth model level. As shown in Fig.In agreement with what has been seen on Fig. 8a, the 310 

non-Gaussianity of zonal wind is weak, and the bimodal structure appearing in temperature and 311 

humidity seldom affects the PDF of zonal wind. We found no relationship between the atmospheric 312 

instability and zonal wind. Therefore, the genesis of non-Gaussian PDF in the tropics is deeply related 313 

to precipitation process, which is driven by convective instability through cumulus parameterization 314 

in the SPEEDY model. As a result, the precipitation process mitigates the instability, with rising 315 

temperature and decreasing humidity. Similar results are generally obtained at other grid points with 316 

non-Gaussian PDF. 317 

In the extratropics, non-Gaussian PDF is generated differently. To investigate the genesis of non-318 

Gaussian PDF in the extratropics, we focus on a case around an extratropical cyclone over the Atlantic 319 

Ocean. A non-Gaussian PDF appears at 0600 UTC 15 February at 42.6787°N, 48.758°W, and the KL 320 

divergence DKL of background temperature increases from 0.003 to 0.460 (Fig. 14, crosses). Figure 321 

15 is similar to Fig. 11, but for background specific humidity at the second model level (~850 hPa) 322 

versus precipitation at 42.6787°N, 48.758°W at 0006 UTC 15 February. Trimodal PDFs appear in 323 
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both specific humidity and precipitation. The three modes of specific humidity are clearly separated 324 

by the color, i.e., instability 𝑑𝑑𝜃𝜃𝑒𝑒′ . Namely, modes with larger humidity has colder colors (smaller 𝑑𝑑𝜃𝜃𝑒𝑒′  325 

corresponding to more instability). However, the three modes of precipitation show no clear 326 

dependence on 𝑑𝑑𝜃𝜃𝑒𝑒′ . Therefore, the trimodal PDF of specific humidity would not be driven by the 327 

cumulus parameterization. Next, the relationship between background specific humidity and 328 

meridional wind at the second model level (~850 hPa) is shown in Fig. 16. The members in the left 329 

mode have lower specific humidity with relatively stronger northerly wind. If we look at the fourth 330 

model level (~500 hPa) for these members with lower humidity, they have relatively weaker northerly 331 

wind and warm temperature (not shown). Namely, instabilities are mitigated by the northerly 332 

advection of dry air at the lower troposphere and by warm temperature at the mid troposphere. In this 333 

case study, the non-Gaussianity genesis in the extratropics is associated with the advections. This is 334 

only an example, and the non-Gaussianity genesis in the extratropics is generally more complicated 335 

and would be affected by not only vertical stratification but also larger-scale atmospheric phenomena 336 

such as extratropical cyclones and advections. Here, we do not go into details for different cases of 337 

non-Gaussianity genesis, but instead, this is further discussed in Section 5. 338 

The non-Gaussian measures are sensitive to the ensemble size due to sampling errors. Figure 17 339 

shows the spatial distributions of the skewness 𝛽𝛽1
1 2⁄  , kurtosis 𝛽𝛽2 , and KL divergence DKL for 340 

temperature at the fourth model level (~500 hPa) at 0600 UTC 22 February with 80, 320, and 1280 341 

subsamples from 10240 members, respectively. Skewness 𝛽𝛽1
1 2⁄ , kurtosis 𝛽𝛽2, and KL divergence DKL 342 

with 80 members contain high levels of contaminating errors originating from sampling errors, and 343 
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the non-Gaussian measures are difficult to distinguish from the contaminating errors. With increasing 344 

the ensemble size up to 1280, the sampling errors become smaller by gradation. With 1280 members, 345 

the sampling errors are essentially removed, and the distributions are comparable to those with 10240 346 

members (see Fig. 4). Therefore, a sample size of about 1000 members is necessary to represent non-347 

Gaussian PDF. The outliers also depend on the sample size. Figure 18 shows LOF with 80, 320, 1280, 348 

and 5120 subsamples from 10240 members for temperature at the fourth model level at the grid point 349 

B (35.2563°N, 146.253°E), as in Fig. 5b. With 80 members, there are no outliers as the LOF of each 350 

member is much smaller than the outlier threshold of 8.0. When the ensemble size is 320, four 351 

members with high LOF > 8.0 are identified as outliers. With the ensemble sizes of 1280 and 5120, 352 

13 and 41 members construct a small cluster, respectively, but they are not outliers with the threshold 353 

of LOF = 8.0. With increasing the ensemble size up to 10240, the LOFs of the small cluster and main 354 

cluster show almost the same value (Fig. 5b). 355 

We saw a good agreement between the RMSE and ensemble spread (Figs. 7a, b), but it is useful 356 

to further evaluate the 10240-member ensemble using ranked probability scores. The rank histogram 357 

(Hamill and Collucci 1997, Talagrand and Vautard 1997et al. 1999, Anderson 1996, Hamill 2001) 358 

evaluates the reliability of ensemble statistically. Figure 19 shows almost flat rank histograms at all 359 

grid points and the grid points with non-Gaussian PDF. The truth is known in this study and used as 360 

a verifying analysis. The flat rank histograms correspond to healthy background ensemble 361 

distributions. The continuous ranked probability score (CRPS, Hersbach 2000) is another method to 362 

evaluate ensemble distributions, decomposed into reliability, resolution and uncertainty as 363 
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 CRPS = Reli – Resol + U. (10) 

Here, the reliability Reli becomes zero under the perfectly reliable system. The resolution Resol 364 

indicates the degree to which the ensemble distinguishes situations with different frequencies of 365 

occurrence, and is associated with the accuracy or sharpness. The uncertainty U measures the 366 

climatological variability. The reliability, resolution and uncertainty are given on the prescribed area 367 

as 368 

 
Reli = ��̅�𝑔𝑖𝑖(�̅�𝑜𝑖𝑖 − 𝑝𝑝𝑖𝑖)2

𝑁𝑁

𝑖𝑖=0

, 

𝑝𝑝𝑖𝑖 =
𝑖𝑖
𝑁𝑁

, 

(11) 

 
𝑈𝑈 − Resol = ��̅�𝑔𝑖𝑖�̅�𝑜𝑖𝑖(1 − �̅�𝑜𝑖𝑖)

𝑁𝑁

𝑖𝑖=0

, 
(12) 

 𝑈𝑈 = � 𝑤𝑤𝑘𝑘
𝑘𝑘,𝑙𝑙<𝑘𝑘

𝑤𝑤𝑙𝑙|𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑙𝑙|, (13) 

[cf. Eqs 36, 37 and 19 in Hersbach 2000, respectively]. Here, �̅�𝑔𝑖𝑖 is the area-weighted average width 369 

of the bin i between consecutive ensemble members xi and xi+1, and �̅�𝑜𝑖𝑖 is the area-weighted average 370 

frequency that the verifying analysis is less than (𝑥𝑥𝑖𝑖+1 + 𝑥𝑥𝑖𝑖)/2. N denotes an ensemble size. In this 371 

study, yk and yl indicate the anomalies between the background ensemble mean and monthly 372 

climatology computed from a 30-year nature run at the grid points k and l, respectively. The weights 373 

wk,, wl are proportional to the cosine of latitude. Table 1 shows that the reliability is closer to zero and 374 

that the resolution is much higher at all grid points than at the grid points with non-Gaussian PDF. 375 

Therefore, the non-Gaussian PDF has a negative impact on updating the state variables for the LETKF. 376 
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The smaller uncertainty at the grid points with non-Gaussian PDF reflects generally smaller variations 377 

in the tropics where the non-Gaussian PDFs frequently appear. Similar results are obtained for the 378 

other variables. 379 

 380 

5 Summary and discussions 381 

Kalman filters provide the minimum variance estimator, which coincides with the maximum 382 

likelihood estimator underif the PDFs are Gaussian assumption. This study investigated the non-383 

Gaussian PDF and its behavior using the SPEEDY-LETKF system with 10240 members. Non-384 

Gaussian PDFs appear frequently in the areas where the RMSE and ensemble spread are larger. 385 

Moreover, an ensemble size of about 1000 is necessary to representidentify the possible non-Gaussian 386 

PDFGaussianity of PDFs, which is more vulnerablemay be difficult to detect in the presence of 387 

sampling error. 388 

The non-Gaussian PDF appears frequently in the tropics and the storm track regions over the 389 

Pacific and Atlantic Oceans, particularly for temperature and specific humidity, but not for winds. 390 

With the SPEEDY model, the genesis of non-Gaussian PDF in the tropics is mainly associated with 391 

the convective instability. These results suggest that the non-Gaussian PDFGaussianity be mainly 392 

drivencaused by precipitation processes such asthose associated with cumulus 393 

parameterizationconvection, but much less by dynamic processes. Generally, the atmosphere in the 394 

tropics tends to become unstable, and the convective instability is mitigated by vertical convection 395 
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with precipitation. In the SPEEDY model, a simplified mass-flux scheme developed by Tiedtke 396 

(1993) is applied. Convection occurs when either the specific or relative humidity exceeds a 397 

prescribed threshold (Molteni 2003). The members that hit the threshold have precipitation, and this 398 

process mitigates their own convective instability resulting in a temperature rise and humidity 399 

decrease. In contrast, the members with no or little precipitation enhance or cannot mitigate their own 400 

convective instability. Therefore, convective instability is a key to non-Gaussianity genesis in the 401 

tropics in the SPEEDY model. 402 

In the extratropics, the non-Gaussian PDFGaussianity is generally weak and seldom appears 403 

except in the storm track regions, where the genesis of non-Gaussian PDF is also associated with 404 

instabilities, but with different processes from the tropics. This study focused on a case near the 405 

extratropical cyclone in the North Atlantic, and the results showed that the instability was associated 406 

with the horizontal advections. The members with theirreduced instabilities mitigated had lower 407 

humidity at the lower troposphere and higher temperature at the mid troposphere by meridional 408 

advections. In contrast, the members with higher humidity at the lower troposphere and lower 409 

temperature at the mid troposphere enhanced their instability. Moreover, the precipitation process 410 

through the cumulus parameterization did not explain the non-Gaussian PDF. Precipitation associated 411 

with extratropical cyclones is usually caused by synoptic-scale baroclinic instabilities and does not 412 

mitigate the local instability completely. 413 

As mentioned in Section 4, to generalize the process of non-Gaussianity genesis in the extratropics 414 

is not simple. The non-Gaussianity genesis is generally associated with instability from various 415 
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processes such as the convection, advection and larger-scale atmospheric phenomena, so that it is 416 

very difficult to find general mechanisms of the non-Gaussianity genesis in the extratropics even for 417 

the simple SPEEDY model. Furthermore, if we use more realistic models with complex physics 418 

schemes, the process of non-Gaussianity genesis would be much more diverse and complicated. This 419 

is partly why we did not go into details to investigate different cases of non-Gaussianity genesis with 420 

the SPEEDY model. 421 

Although the frequency of non-Gaussian PDF seems to depend primarily on the density of 422 

observations, it also seems to reflect the contrast between the continents and oceans (see Fig. 8). To 423 

investigate the sensitivity to the spatial density of observations, we performed an additional 424 

experiment in which 333 radiosonde stations were added over the tropical oceans, the North Pacific 425 

Ocean and the North Atlantic Ocean using 10240 ensemble members. The results showed that the 426 

frequency and intensity of non-Gaussianity were almost unchanged (not shown). How does non-427 

Gaussianity depend on the spatial and temporal densities of observations? This remains to be a subject 428 

of future research. 429 

The non-Gaussianity is less frequent in the wind components not only in the time scale of 1 month 430 

but also for the snapshot, although the dynamic process of the atmosphere is a nonlinear system. 431 

Moreover, the non-Gaussian PDFs of temperature and specific humidity seldom affect the PDFs of 432 

the wind components. We hypothesize that the model complexity may be a reason for this. The 433 

SPEEDY model could not resolve some local interactions between wind components and other 434 

variables due to its coarse resolution and simplified processes. With more realistic models, physical 435 
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processes are much more complex, and the local interactions can also be represented. Indeed, we 436 

obtained widely distributed non-Gaussianity with a 10240-member NICAM-LETKF system with 437 

112-km horizontal resolution assimilating real observations from the National Centers for 438 

Environmental Prediction (NCEP) known as PREPBUFR from 0000 UTC 1 November to 0000 UTC 439 

8 November (Miyoshi et al. 2015). Figure 20 shows the spatial distributions of background KL 440 

divergence of zonal wind and temperature at the second model level (~850 hPa) for SPEEDY at 0000 441 

UTC 1 March and one of three horizontalzonal wind components and temperature at the fiftheighth 442 

model level (~850 hPa) for the NICAM at 0000 UTC 8 November 2011. Here, the horizontal wind 443 

components are decomposed into three components by an orthogonal basis fixed to the earth (Satoh 444 

et al. 2008). With NICAM, the non-Gaussianity appears globally not only in the temperature field but 445 

also in the zonal wind component although we should account for the model errors of NICAM. This 446 

result implies that the NICAM has various sources of non-Gaussianity such as smaller scale physical 447 

and dynamical processes with various interactions among different model variables, and suggests the 448 

limitation of this study using the SPEEDY model. In the realistic situation, we would have an 449 

abundancepresumably have more frequent occurrence of non-Gaussianity. 450 

The outliers appear almost randomly regardless of locations, levels, and variables, and the lifetime 451 

is about a few analysis steps. When the outliers appear, the number of outliers is basically one per 452 

grid point, but sometimes the number is more than one. Anderson (2010) also reported similar results 453 

using a low-order dry atmospheric model. These results seem not to be consistent with Amezcua et 454 

al. (2012) who reported that just one outlier appeared with the ensemble square root filters in low-455 
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dimensional models and that the outlier did not rejoin the cluster easily. These properties of their 456 

outlier and our outliers in the SPEEDY model are somewhat different. In the low-dimensional models, 457 

a certain ensemble member tends to become an outlier at all grid points and all variables. In contrast, 458 

the outliers in the SPEEDY model appear at just some grid points but not all grid points and do not 459 

appear in all variables simultaneously. In addition, the negative influence of outliers on the analysis 460 

accuracy may be sufficiently small in high-dimensional models due to the randomness and short 461 

longevity of outliers. In fact, the results showed no clear correspondence between the outlier 462 

frequency and analysis accuracy. These are the results from the simple SPEEDY model. It remains to 463 

be a subject of future research how the outliers behave with a more realistic model and real 464 

observations. 465 

As measures of non-Gaussianity, skewness, kurtosis, and KL divergence for the non-Gaussianity, 466 

and the SD and LOF methods for outliers, are introduced and compared with each other. The KL 467 

divergence is a more suitable measure because it measures the direct difference between the 468 

ensemble-based histogram and the fitted Gaussian function. The LOF method is better than the SD 469 

method because it can detect the outliers depending on the density of objects. Although it is easy to 470 

detect the outliers using the SD method, misdetection of outliers is possible because this method 471 

categorizes a small cluster far from the main cluster into outliers. The small cluster may be generated 472 

through physical processes and have physical significance; this should not be treated as outliers. The 473 

measures of non-Gaussianity are evaluated in the univariate field in this study. An extension to 474 

multivariate fields with multivariate analysis is remainedremains as a subject of future research. 475 
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Non-Gaussian measures tend to be more sensitive to the sampling error due to the limited 476 

ensemble size (see Figs. 17, 18). When the ensemble size is small, it is difficult to determine whether 477 

a split member is a real outlier or a sample from a small cluster. Amezcua et al. (2012) discussed the 478 

outliers by skewness using the 20-member SPEEDY-LETKF and reported that the skewness is clearly 479 

large in the tropics and the Southern Hemisphere for the temperature and humidity fields. These 480 

results were not consistent with those of the present study because the outliers appear randomly. 481 

However, this inconsistency may have been due to the small ensemble size. The large skewness of 482 

Amezcua et al. (2012) could possibly indicate the non-Gaussianity rather than the outliers with a large 483 

ensemble size. Having a sufficient ensemble size, suggested to be about 1000 according to this study, 484 

would be essential when discussing about non-Gaussianity and outliers. 485 

 486 

Data availability 487 

All data and source code are archived in RIKEN Center for Computational Science and are available 488 

upon request from the corresponding authors under the license of the original providers. The original 489 

source code of the SPEEDY-LETKF is available at https://github.com/takemasa-miyoshi/letkf. 490 
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 580 

Figure 1: Ensemble-based histograms with 10240 ensemble members when the Kullback–Leibler 581 

(KL) divergence DKL = (a) 0.010, (b) 0.025, (c) 0.050, and (d) 0.100. Solid lines indicate fitted 582 

Gaussian functions. Skewness (skew) and kurtosis (kurt) are also shown in the figure. 583 

  584 
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 585 

Figure 2: Histograms of background temperature (K) at the fourth model level (~500 hPa) at (a) 586 

grid point A (16.7°S, 90.0°E), (b) grid point B (35.2563°N, 146.253°E), and (c) grid point C 587 

(35.2563°N, 112.5°W). The yellow star shows the truth. 588 

  589 
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 590 

Figure 3: Schematic diagrams of reach-distk (p, o) with k = 3 for (a) uniformly distributed data and 591 

(b) data with an asymmetrical distribution. 592 

  593 
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 594 

Figure 4: Spatial distributions of (a) analysis absolute error, (b) analysis ensemble spread, (c) 595 

background skewness, (d) background kurtosis, and (e) background KL divergence for temperature 596 

at the fourth model level (~500 hPa) at 0600 UTC 22 February. Contours indicate geopotential 597 

height of the ensemble mean at the 500 hPa level.  598 
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 599 

Figure 5: Scatter diagrams of the local outlier factor method (LOF) versus distance from the 600 

ensemble mean for all ensemble members for background temperature at the fourth model level 601 

(~500 hPa) at (a) grid point A (16.7°S, 90.0°E), (b) grid point B (35.2563°N, 146.253°E), and (c) 602 

grid point C (35.2563°N, 112.5°W). 603 
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 605 

Figure 6: Spatial distributions of the number of outliers for background temperature at the fourth 606 

model level (~500 hPa) at 0600 UTC 22 February for LOF thresholds of (a) 5.0, (b) 8.0, and (c) 607 

11.0.   608 
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 609 

Figure 7: Spatial distributions of the time-mean (a) analysis RMSE, (b) analysis ensemble spread, 610 

(c) background absolute skewness, (d) background absolute kurtosis, and (e) background KL 611 

divergence for temperature at the fourth model level (~500 hPa) from 0000 UTC 25 January to 612 

1800 UTC 1 March.  613 
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 614 

Figure 8: Spatial distributions of frequency of non-Gaussian PDF with high KL divergence DKL > 615 

0.01 for (a) zonal wind at the fourth model level, (b) temperature at the fourth model level, (c) 616 

specific humidity at the lowest model level, and (d) surface pressure. The frequency is defined as a 617 

ratio of high KL divergence DKL appearance from 0000 UTC 25 January to 1800 UTC 1 March. The 618 

crosses indicate the radiosonde-like locations. 619 

  620 
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 621 

Figure 9: Similar to Fig. 8, but showing the frequency of identifying at least one outlier with high 622 

LOF > 8.0 as outliers on a 10240-member ensemble. 623 

  624 
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 625 

Figure 10: Lifecycle of non-Gaussianity at 1.8569°N, 168.7°E. (a) Trajectories of 256 randomly 626 

chosen members from 10240 members for dθe (see text for definition) from analysis at the 157th 627 

analysis cycle (0000 UTC 9 February) to forecast the 161st analysis cycle (0000 UTC 10 February). 628 

The colors show the order of dθe for every analysis. DKL shows KL divergence for dθe, and the 629 

superscripts a and f indicate analysis and forecast, respectively. (b, c) Spatial distributions of KL 630 
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divergence for background temperature at the fourth model level (~500 hPa) at the 158th analysis 631 

cycle (0600 UTC 9 February) and the 159th analysis cycle (1200 UTC 9 February), respectively. 632 

The cross shows the location of the point considered in panel a.  633 
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 634 

Figure 11: Scatter diagram of 0600 UTC versus 1200 UTC 9 February for the background 635 

temperature at the fourth model level (~500 hPa) at 1.8569°N, 168.7°E. The colors show 𝑑𝑑𝜃𝜃𝑒𝑒′ =636 

(𝑑𝑑𝜃𝜃𝑒𝑒 1200 𝑈𝑈𝑈𝑈𝑈𝑈 − 𝑑𝑑𝜃𝜃𝑒𝑒 0600 𝑈𝑈𝑈𝑈𝑈𝑈) − (𝑑𝑑�̅�𝜃𝑒𝑒 1200 𝑈𝑈𝑈𝑈𝑈𝑈 − 𝑑𝑑�̅�𝜃𝑒𝑒 0600 𝑈𝑈𝑈𝑈𝑈𝑈). The histograms on the right side 637 

and upper side show the background temperature at the same grid point. 638 

  639 
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 640 

Figure 12: Similar to Fig. 11, but for 0600 UTC versus 1200 UTC 9 February for background 641 

precipitation. 642 

  643 



 45 

 644 

Figure 13: Similar to Fig. 11, but for 0600 UTC versus 1200 UTC 9 February for background zonal 645 

wind at the fourth model level (~500 hPa). 646 

  647 
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 648 

Figure 14: Spatial distributions of the KL divergence for background temperature at the fourth 649 

model level (~500 hPa) (a) at 0000 UTC 15 February and (b) at 0600 UTC 15 February. Contours 650 

show geopotential height of the ensemble mean at the 500 hPa level. 651 

  652 
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 653 

Figure 15: Scatter diagram of background specific humidity at the second model level (~850 hPa) 654 

versus background precipitation at 42.6787°N, 48.758°W (311.253°E) at 0600 UTC 15 February. 655 

The colors show 𝑑𝑑𝜃𝜃𝑒𝑒′ = (𝑑𝑑𝜃𝜃𝑒𝑒 0600 𝑈𝑈𝑈𝑈𝑈𝑈 − 𝑑𝑑𝜃𝜃𝑒𝑒 0000 𝑈𝑈𝑈𝑈𝑈𝑈) − (𝑑𝑑�̅�𝜃𝑒𝑒 0600 𝑈𝑈𝑈𝑈𝑈𝑈 − 𝑑𝑑�̅�𝜃𝑒𝑒 0000 𝑈𝑈𝑈𝑈𝑈𝑈). The 656 

histograms on the right side and on top show background precipitation and temperature at the same 657 

grid point, respectively. 658 

  659 
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 660 

Figure 16: Similar to Fig. 14, but for background specific humidity versus meridional wind 661 

background at the second level (~850 hPa). 662 

  663 
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 664 

Figure 17: Spatial distributions of (a-c) skewness, (d-f) kurtosis, and (g-i) KL divergence for 665 

temperature at the fourth model level (~500 hPa) at 0600 UTC 22 February. The left, center, and 666 

right columns show 80, 320, and 1280 subsamples from 10240 members, respectively. 667 

  668 
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 669 

Figure 18: Similar to Fig. 5b, but for the ensemble sizes (a) 80, (b) 320, (c) 1280, and (d) 5120. 670 

  671 
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 672 

Figure 19: Rank histograms verified against truth for background specific humidity at the lowest 673 

model level (~925 hPa) at (a) all grid points and (b) the grid points with non-Gaussian PDF from 674 

0000 UTC 25 January to 1800 UTC 1 March. 675 
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 677 

Figure 20: Spatial distributions of background KL divergence for SPEEDY model and NICAM. 678 

Upper panels show (a) zonal wind and (b) temperature at the second model level (~850 hPa) for the 679 

SPEEDY model at 0000 UTC 1 March. Bottom panels show (c) one of three horizontalzonal wind 680 

components and (d) temperature at the fiftheighth model level (~850 hPa) for NICAM at 0000 UTC 681 

8 November 2011. 682 
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Table. 1: CRPS and its three components (reliability, resolution and uncertainty) for background 684 

specific humidity at the lowest model level (~925 hPa) from 0000 UTC 25 January to 1800 UTC 1 685 

March. 686 

 CRPS 
[g kg-1] 

Reli 
[g kg-1] 

Resol 
[g kg-1] 

U 
[g kg-1] 

All grid points 0.0214 0.0000101 0.525 0.547 

Grid points with 
non-Gaussian PDF 

0.0475 0.0000244 0.030 0.077 
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