
On the localization in strongly coupled ensemble data assimilation
using a two-scale Lorenz model
Zheqi Shen1, Youmin Tang1,2, Xiaojing Li1, Yanqiu Gao1, and Junde Li1

1State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic
Administration, Hangzhou 310012, China
2Environmental Science and Engineering, University of Northern British Columbia, Prince George V2N 4Z9, Canada

Correspondence: Youmin Tang (ytang@unbc.ca)

Abstract. In the data assimilation of coupled models, the strongly coupled data assimilation (SCDA) is much more compli-

cated than the weakly coupled data assimilation (WCDA), since it involves the cross-domain error covariances which could

be very inaccurate when the ensemble size is small. In this study, the SCDA experiments are conducted using a two-scale

Lorenz ’96 model, which is a coupled system composed by two Lorenz ’96 models in two domains have different temporal

and spatial scales. A localization strategy is specially designed for the cross-domain error covariances when the ensemble ad-5

justment Kalman filter (EAKF) is used for the coupled data assimilation (CDA) experiments. The formulas for computing the

localization factors that can deal with multiple spatial scales and provide essential information are developed to improve the

quality of analyses. The result shows that the SCDA can provides much more accurate estimation of the states than the WCDA

when the localization for the cross-domain error covariances is used. Moreover, it is found that the advantage of the SCDA

over the WCDA for this model is attributed to the assimilation of small scale observations into the coupled system, whereas10

the contribution of the assimilation of the large-scale observations to the coupled system is not obvious. This current study

provides a possible strategy or idea for developing operational CDA using realistic coupled models.

Copyright statement.

1 Introduction

Data assimilation incorporates observations into numerical models to generate good estimates of the model states and accurate15

initial conditions for weather and climate predictions. However, sophisticated coupled models generally consist of several com-

ponents that interact with each other through specific coupling mechanisms. Different model components may have different

temporal and spatial scales, making CDA very difficult.

According to the degree of information exchanged, there are two levels of CDA, i.e., WCDA and SCDA. In WCDA, obser-

vations are incorporated into the same component without the exchange of information between components in the analysis20

step (Zhang et al., 2007). Thus, the coupling is completed by only dynamical models in the forecast stage. WCDA is an ex-

isting method that is increasingly being implemented in weather predictions and holds promise for improving sub-seasonal to
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seasonal prediction systems (Lahoz and Schneider, 2014). However, the observed information cannot directly transfer across

component boundaries in accordance with multiple dynamics and scales in WCDA, additional treatments such as additional

analysis iterations are often required in order to increase the strength of the coupling in the analysis stage (Smith et al., 2018;

Laloyaux et al., 2016).

SCDA provides a potential solution to the weaknesses of WCDA since it allows observations within one component of the5

system to directly affect the state estimates in other components. In SCDA, the coupling is done not only dynamically in the

forecast stages but also statistically in the analysis stages. However, the SCDA method is still in its early stage and needs to

be intensively studied further before its operational application. The WMO whitepaper (Penny et al., 2017) has identified the

challenges for CDA. It strongly indicated that information propagation across model components with different spatiotemporal

scales is extremely complicated, and must be improved.10

In this study, we attempt to make some efforts towards meeting this goal using a two-scale Lorenz’96 (tsL96 hereafter)

model (Lorenz, 1996). In the data assimilation community, the Lorenz ’96 model is a simple model that is frequently used as

a testbed for data assimilation methods (Anderson, 2003). This model represents an atmospheric variable at several equally

spaced points around a circle of constant latitude. The tsL96 model has been constructed by coupling two systems, each of

which, aside from the coupling, obeys a suitably scaled version of the Lorenz ’96 model. The model simulates the interaction15

between multiple temporal and spatial scales and is a perfect model to test and develop the SCDA methods (Luo and Hoteit,

2014).

Many studies have been conducted with SCDA using simple models. For example, Zhang et al. (2012) used a simple coupled

model consisting of a 3-variable Lorenz model and a slowly varying slab ocean to develop a SCDA scheme for enhanced

parameter correction. Han and Wu (2013) used an advanced version of this simple coupled model consisting of a Lorenz20

atmosphere and a pycnocline ocean model, which characterizes the interaction of media at different time scales in the climate

system, to study the impact of the accuracy of cross-domain error covariance on the quality of SCDA. The cross-domain

error covariance (also referred as coupling error covariance in literatures) measures the covarying strength of two variables

residing in different media that have different scales. It plays a critical role in SCDA with ensemble-based data assimilation

methods (such as the Ensemble Kalman filter). Han and Wu (2013) concluded that the improvement from direct observational25

adjustments from a different model domain strongly depends on the accuracy of the evaluated cross-domain error covariance.

The SCDA can be more effective than WCDA only if the ensemble size is large enough to evaluate the cross-domain error

covariance correctly. That would be a very large number with respect to the model dimensions. However, their model uses only

six model variables and does not simulate the spatial locations, which prohibits the use of localization method to improve the

accuracy of an evaluated error covariance.30

Luo and Hoteit (2014) have developed an ensemble Kalman filter with a divided state-space strategy for CDA using the tsL96

model system, which consists of two subsystems each controlled by a Lorenz ’96 model with coupling terms. They conducted

data assimilation experiments with respect to each subsystem, involving quantities from the subsystem itself and correlated

quantities from other coupled subsystems. Using the ensemble transform Kalman filter (Bishop et al., 2001), the cross-domain

error covariance is used to generate the off-diagonal blocks of the Kalman gain for cross updates. They compared the WCDA35
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and SCDA frameworks, and made similar conclusions to Han and Wu (2013). However, they only considered the different time

scales while ignoring the different spatial scales in their tsL96 model settings, and they used the same localization strategy for

both in-domain and cross-domain error covariance, which is a lack of generality.

In this work, we conduct the SCDA experiment using the tsL96 model with different temporal and spatial scales. The

ensemble adjustment Kalman filter (EAKF) proposed by Anderson (2003) is used to assimilate the observations of both scales.5

In order to localized the cross-domain error covariance, we introduce new formulas to compute the localization factors which

are used when assimilating the quantities from other coupled subsystems. The new localization strategy can better evaluate the

cross-domain error covariance with limited ensemble size, that makes SCDA provide more accurate analyses than WCDA.

The paper is organized as follows. In section 2, the experiment settings are introduced with details of the tsL96 model and the

design of twin experiments. The EAKF method is also presented in section 2, while the details of corresponding localization10

strategy are discussed in section 3. Section 4 investigates the performance of the CDA experiments, showing the importance of

localization in SCDA, and further promoting the SCDA method with flexible localization options for cross updates. Section 5

concludes the work and discusses some potential future studies.

2 Experiment Settings

2.1 Two-scale Lorenz’96 model15

The two-scale Lorenz ’96 model was originally introduced to simulate mid-latitude weather and to study the influence of

multiple spatiotemporal scales on the predictability of atmospheric flows (Lorenz, 1996; Fatkullin and Vanden-Eijnden, 2004).

It consists of K slow-varying variables {Xk}Kk=1 coupled to J ∗K fast-varying variables {Zj,k}(J,K)
(j,k)=(1,1) whose evolutions

are governed by

dXk

dt
=Xk−1(Xk+1−Xk−2)−Xk +F − hc

b

J∑

j=1

Zj,k, (1)20

dZj,k

dt
= cbZj+1,k(Zj−1,k −Zj+2,k)− cZj,k +

hc

b
Xk, (2)

where both Xk and the Zj,k are assumed to be periodic, i.e., Xk+K =Xk and Zj,k+K = Zj,k,Zj+J,k = Zj,k+1. The tsL96

model is an extension of the original Lorenz’96 model proposed by Lorenz (1996), which represents an atmospheric variable

at K equally spaced points around a circle with a constant latitude. The tsL96 model has been constructed by coupling two

subsystems, each of which, aside from the coupling, obeys a suitably scaled version of the Lorenz ’96 model. The variables25

Xk and Zj,k represent some atmospheric quantities discretized respectively into K and K ∗J sectors along the latitude circle.

Figure 1 shows an example in which K = 8 and J = 20. It can be seen that the Xk variables have a large spatial scale while

the Zj,k variables have a small spatial scale. In addition, Zj,k for j = 1,2, . . . ,J are in the sub-domain of the domain that

correspond to Xk. For convenience, we call Eq. (1) the large-scale model (L-model) with model variable X and call Eq. (2)

the small-scale model (S-model) with model variable Z. The L-model and S-model variables are driven by quadratic nonlinear30
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interaction modeling advection, constant forcing, linear damping, and coupling between both models in the corresponding

sectors. The constant parameters b, c and h represent the spatial and temporal scale ratios and coupling coefficient, respectively.

In this study, we set K = 36 and J = 10, so that each Xk represents the average value of an atmospheric quantity over

ten degrees of longitude, whereas each Zj,k represents the quantity of one degree of longitude. We also set c= b= 10 as in

Lorenz (1996), implying that the S-model variables Zj,k tend to fluctuate ten times as rapidly as the L-model variables Xk,5

while their typical amplitudes are 1/10 the size of the typical Xk amplitudes. We let the coupling coefficient h equal 1.0. We

advance the model in time steps of 0.005 time units (TUs), which is equal to 36 minutes in reality. The constant forcing term

is set to F = 10 to make both models vary chaotically. The integration starts from random initial values and runs 144000 steps

( 10 years) to allow fluctuations in the system to develop sufficiently. We use the integration results as the initial conditions

for the data assimilation experiment. Figures 2a and 2c show the time series of the first variable of the L-model and S-model,10

respectively, while Figures 2b and 2d show a snapshot of all L-model and S-model variables at the 1000th model step. It can

be clearly seen that these two models have different temporal and spatial scales.

2.2 Twin experiment setup

To evaluate the performance of CDA, a twin experiment is designed as follows. First, the model is integrated for 16000 model

steps (or 400 days) using a step size of 0.005 TUs, starting from the initial conditions given in the previous section. Reference15

solutions are considered as true states for comparison.

The observations are generated by adding random noise to the true states. Figure 2a and 2b show that the S-model tends to

fluctuate ten times as rapidly as the L-model, while figure 2c and 2d show that the amplitude of L-model variables is about

ten times as much as the amplitude of S-model variables. Accordingly, the observational frequencies and the amplitudes of

the errors are designed to be different for both models. The long term standard deviations (LT-STDs) of the variables of each20

model are also shown in figure 2c and 2d, respectively. The observational errors of each variable in each model are simulated

by Gaussian random noise with STDs proportional to the LT-STDs. We assume that the STDs of the L(S)-observation errors are

30% of LT-STDs of L(S)-model. For the S-model, observations take place every 5 steps (3 hours). One of every two variables

is observed. Specifically, we can only observe Zj,k if j is an odd number. For the L-model, observations take place every 40

steps (1 day) for all the variables. Since each observation is assumed to be independent, the observational error covariance25

matrix R is a diagonal matrix.

Similar to Luo and Hoteit (2014), the initial ensemble is generated by perturbing the initial conditions with random Gaussian

noise of variance 1. The time series with data assimilation is evaluated against the true states at all steps (include both forecasts

and analyses) for each model separately.

2.3 Ensemble adjustment Kalman filter30

In this study, we employ the sequential version of the EAKF (Anderson, 2003) to perform the CDA experiment. We assume

that the observational errors are independent here, which allows the EAKF to assimilate observations sequentially.
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For each single scalar observation, the EAKF first computes increments in the observation space using the ensemble mean

and variance and then computes increments for each state vector independently by regressing the observation space increments

onto the state vector space. The state increments are used to update the prior ensemble, in which the localization technique can

be employed to suppress the spurious long-distance correlations. We provide the details of localization in section 3 and show

the algorithm of EAKF as follows.5

If x denotes the state vector, yo denotes the single scalar observation with variance σ2
o , and h is the measurement operator;

the EAKF algorithm first applies the operator h to each ensemble sample of the state, producing the ensemble of prior estimates

for the observation, namely,

yp,n = h(xp,n),n= 1. . . ,N (3)

Here, subscript p indicates prior, and n is the index of the ensemble member. The sample mean ȳp and variance σ2
p of the prior10

estimate of the observation are computed.

Given the scalar observation value yo and the observational error variance σ2
o , the product of the prior and the likelihood

yields an updated estimate with variance

σ2
u = [(σ2

p)−1 + (σ2
o)−1]−1 (4)

and mean15

ȳu = σ2
u(
ȳp

σ2
p

+
yo

σ2
o

) (5)

The updated ensemble estimate for y is given by

yu,n = (
σu

σp
)(yp,n− ȳp) + ȳu, n= 1, . . . ,N (6)

which is computed by shifting the mean and linearly contracting the members to make the sample variance exactly σ2
u. The

ensemble of observation space increments is defined as ∆yn = yu,n− yp,n.20

The increments for each state vector entry are then computed independently by regressing the observation space increments

onto the state vector using the prior joint ensemble sample statistics so that

∆xm,n =
σxm,y

σ2
p

∆yn, n= 1, . . . ,N (7)

where ∆xm,n is the increment for ensemble member n of state vector entry m, while σxm,y is the prior sample covariance of

state vector entry xm and y. The term σxm,y/σ
2
p is the form that the Kalman gain takes in the EAKF. The full Kalman gain25

is not required to be computed and saved in memory, so the computational requirement for the EAKF is affordable for large,

complicated models.

The increment for each state vector is added to each ensemble member to update the prior ensemble. However, the localiza-

tion technique that uses a distance-dependent factor ρ can be used to suppress spurious long-distance correlations resulting from

5
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an insufficient ensemble size. Using localization means that xm,n is updated by adding ρ ∗∆xm,n. The details of determining

the localization factor ρ will be given in section 3.

The procedure is repeatedly applied for each scalar observation until all available observations within the data assimilation

window are assimilated. That completes the analysis stage of an assimilation cycle.

In EAKF, the observations of each model are assimilated into the model system sequentially and state vectors are serially5

updated by each entry xm,n, which means that the background error covariance matrix is not generated explicitly. Thus the

numerical instability due to large condition numbers would not occur even though the model variables are with very different

scales.

3 The localization strategy for CDA

3.1 Localization in EAKF10

In ensemble-based data assimilation schemes, the ensemble size is often small due to limited computational resources. An

insufficient ensemble size can result in spurious correlations between distant locations in the background covariance matrix

and, thus, in the Kalman gain. Unless they are suppressed, these spurious correlations will cause observations at one location

to affect the analysis of other locations of an arbitrary large distance away, in an essentially random manner. This needs to be

remedied by the localization method.15

Localization is introduced to eliminate the background error covariance associated with remote observations. There are

two localization approaches that are frequently used in ensemble data assimilation (Farchi and Bocquet, 2018). In the first

approach, independent analyses are performed for each grid point by using only the observations sites that influence this

point. This approach is known as domain localization. The second approach is used when an analysis is performed for each

observation site. When assimilating an observation of a site, only grid points within a certain distance are updated while distant20

grid points remain unchanged. This approach is also referred as observation localization.

The EAKF uses observation localization, in which a continuous function whose values are inversely proportional to the

distances from observation sites is employed to generate the multiplication factor for the state increments. This Gaspri-Cohn

function (Gaspari and Cohn, 1999) is the most widely used function to cut off long-distance correlations, i.e.,

ρ= Ω(d,c) =





− 1
4 (d

c )5 + 1
2 (d

c )4 + 5
8 (d

c )3− 5
3 (d

c )2 + 1, 0≤ d≤ 2c;
1
12 (d

c )5− 1
2 (d

c )4 + 5
8 (d

c )3 + 5
3 (d

c )2− 5(d
c )− 2

3 (d
c )−1, c≤ d≤ 2c;

0, d≥ 2c

(8)25

where d represents the distance between the observation site corresponding to yo and model grid corresponding to the entry

xm. The parameter c relates to the decorrelation length. In actuality, the localization factor ρ equals zero when d is larger

than 2c, whereas ρ= 1 for d= 0. In addition, the factor decreases monotonically with the distance d. Using the localization

approach, the EAKF updates the prior state estimates by

xm,n = x(p)
m,n + ρ ∗∆xm,n,n= 1, . . . ,N (9)30
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in which x(p)
m,n indicates the m-th entry of the prior ensemble member.

In this work, the EAKF method is performed on the tsL96 model. Typically, we can use |k1− k2| to represent the distance

between Xk1 and Xk2 in the L-model. Due to the periodicity of Xk, if |k1−k2|>K/2, it should be replaced by K−|k1−k2|.
Similarly, we can also define the distance between Zj1,k and Zj2,k as |j1−j2| in the S-model, while making use of the periodic

conditions Zj,k+K = Zj,k and Zj+J,k = Zj,k+1. However, both models have different spatial resolutions, as Figure 1 shows;5

thus, the unit distance definitions are different for both models. For example, the distance value of 10 implies 100 degrees of

longitude in the L-model, but 10 degrees of longitude in the S-model. As a consequence, the localization parameters and the

corresponding localization factor for both models should be different.

Keep in mind that we are using the observations [YX ;YZ ] to update the model variables [X;Z], in which YX and YZ are

observations of the L-model and S-model respectively (call L-observation and S-observation hereafter). As eq. (7) indicates,

the correlation covariance between model grids and observation sites are required to compute the increment amount. When

multiple models are involved, the correlation covariance of [YX ;YZ ] and [X;Z] can be represented by the block matrix below

Σ =


Σxx Σzx

Σxz Σzz


 .

Σxx and Σzz are covariance matrices for the model grids and observation sites within the same L-model and S-model, respec-

tively. Whereas Σzx and Σxz are covariance matrices for model grids and observation sites in different models.10

Combining eq. (7) and eq. (9), it is easy to find that the localization factor is applied on the covariance matrix Σ by taking

Shur product. Accordingly, The localization factors can be written in a same matrix form P , which is also divided into four

blocks.

P =


Pxx Pzx

Pxz Pzz


 .

Among these blocks, Pxx is a matrix of the localization factors for L-model, which is a K ∗K diagonal-constant matrix with

each value of localization factor ρxx in each diagonal. Pzz is a matrix of the localization factors for S-model, which is a

(KJ) ∗ (KJ
2 ) diagonal-constant matrix when only half of the S-variables are observed. The off-diagonal blocks Pxz and Pzx

are respectively constituted with the localization factors ρxz and ρzx for cross-domain error covariances. And they should

have (KJ) ∗K and K ∗ (KJ
2 ) elements respectively. Particularly, ρxz is used to localize the S-observation when updating L-15

variables, and ρzx is used to localize the L-observation when updating S-variables. In sections 3.2 and 3.3, we are determining

the ρxx and ρzz by the sensitive experiments, and computing ρxz and ρzx by some newly developed formulas.

3.2 In-domain localization

There has been several recent studies on optimal localization parameters, which can minimize the data assimilation errors due to

spurious long-distant correlation. For example, Menetrier et al. (2015) found the optimality criteria for linear and Schur filtering20

of covariance, which works well with the domain localization. Kirchgessner et al. (2014) studied the criteria for an optimal

localization radius in Ensemble Kalman filters, and applied in the Lorenz’96 model. However, the two-scale Lorenz’96 model
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has some different properties which relate to the coupling, and the problem related to optimal localization could beyond the

scope of this work. To simplify the discussion, we use the twin-experiment with constant ensemble size and different choices

of localization parameter to determine the parameter c in eq. (8), which minimizes the root-mean-squared-errors averaged over

the whole data assimilation period (call MRMSE hereafter).

To determine the in-domain localization parameter for the observation of each model, we use single model data assimilation5

experiments. To be specific, we use the L-model data assimilation experiment to determine the optimal c value for ρxx and use

the S-model data assimilation experiment to determine the optimal c value for ρzz . The single model data assimilation experi-

ment is conducted by using the reference solutions of the other model as external terms and assimilating only the observations

of the same model.

First, we perform the L-model data assimilation while using the true values of {Zj,k}Jj=1 in the external forcing. Only the10

L-observations are assimilated to update the L-variables, and the RMSE of all Xk against their true states are computed at

every model step. The MRMSE is calculated to measure the performance of EAKF with different localization parameters. In

this experiment, different localization parameters are tested in a range of {1,2,4,8,16,32}, and with different ensemble size

of N = 20,40,80,160 and 320. The assimilation duration is 16000 model steps, and observations are available every 40 model

steps, as mentioned in section 2.2. It is also noteworthy that the EAKF uses an inflation method, which increases the ensemble15

spread by multiplying it by a positive number slightly larger than one. For simplicity, we use the inflation method with a fixed

factor α, which is tuned by sensitivity experiments and valued at 1.01 eventually.

Figure 3a shows the MRMSE of the L-model assimilation using different localization parameters with different ensemble

sizes. Localization is mainly used to suppress spurious long-distance correlations, which will introduce large analysis errors

and are very likely to occur when the ensemble size is small. The optimal value of the localization parameter is dependent on20

the ensemble size. It should be neither too large nor too small so that it can update as many variables as possible while not

introducing spurious correlations. In Figure 3a, it can be seen that the localization parameter value of 32 corresponds to the

smallest MRMSE among these choices of localization parameters. It is consistent with the result in Kirchgessner et al. (2014)

for the 40-dimensional Lorenz ’96 model. Since the L-model has only 36 variables, the case with c= 32 is very similar to the

no localization scenario. We would not consider the value of c beyond 32 because it will gain very little error reduction. In25

order to simplify the discussion, we will use the parameter c= 32 for all ensemble sizes to perform the EAKF method for the

following CDA experiment.

Secondly, we perform the S-model data assimilation while using the true values of the Xk as an external forcing in the

integration. The S-observations are available every 5 model steps, and only half of the Z variables are observed. The MRMSE

of allZ variables against true states are calculated and compared in Figure 3b. In Figure 3b, it seems that the optimal localization30

parameter is 8 for N ≥ 40. Considering that there are 360 variables in the S-model, c=8 essentially restricts the influence of

S-observations in a very limited range.

In Figure 3b, the optimal localization parameters for S-model data assimilation prefer the values smaller than 8 even though a

large ensemble size (such asN = 320) is used. This is an interesting result that seems inconsistent with our previous knowledge

about localization. As we know, localization can be regarded as a remedy for the insufficient ensemble size in ensemble-based35
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methods. Theoretically, as the ensemble size increases, larger localization parameters can be used to allow each observation to

update more model variables without introducing spurious correlations. To explain Figure 3b, we examine the properties of the

coupling in tsL96 model. Lorenz (1996) revealed some typical behaviors of this model; namely, there are seven active areas

for the large-scale Xk, generally 30 or 40 degrees wide, which fluctuate strongly in width and intensity. This can be seen in

Figure 4, which reproduces the same results in Lorenz (1996), showing the variation and interaction of X and Z variables over5

a whole day (40 model steps). It shows that the convective activity (which relates to the small-scale variables Zj,k) is patently

strongest in these active areas and rapidly dies out as it leaves an active area. It indicates that one small scale observation can

theoretically influence up to 30 or 40 degrees of longitude in length and cannot influence the small-scale variables of other

active areas. Coincidentally, c= 8 corresponds to 15 degrees of longitude in length from both sides. Thus, the optimal choice

of c= 8 for the S-model is due to the interaction between multiple scales in the tsL96 model system, and we can use c= 810

for the S-model for ensemble sizes larger than 20. However, when N = 20,c= 4 is chosen due to the requirement to suppress

spurious correlations.

As a result, the localization parameter for computing ρxx is c= 32, while the localization parameter for computing ρzz is

c= 8 or c= 4 (particularly for N = 20).

3.3 Cross-domain localization15

The in-domain localization can be used to update the L-variables and S-variables separately in a WCDA framework, in that

case, all ρxz = ρzx = 0. To perform the SCDA experiment, the cross-domain localization that addresses the cross update

between two models of different spatial scales must be developed.

Because both models have different spatial resolutions, it is very difficult to compute the distance between a S-model grid

point and a L-model observation site, and vice versa. Thus, we cannot directly use the localization factors ρxx to localize L-20

observation when updating S-variables; nor can we use ρzz to localize S-observation when updating L-variables. New formulas

are required to compute the ρxz and ρxz when the cross update is enabled.

In the tsL96 model, which is governed by Eq. (1) and Eq. (2), the interactions between the two models are implemented

by the coupling terms, i.e., the last terms of the right hand sides of Eq. (1) and (2). As seen in the L-model equation, the

S-variables affect the L-variables by their average over a unit distance of the L-model. Here, the amount of a unit distance of25

the L-model is 10 degrees in longitude, which is equivalent to 10 unit distance of the S-model, as discussed above. Thus, the

impact of the whole S-model on a specified L-variable (e.g., Xk−1) can be measured by the average over 10 corresponding

S-variables (e.g., {Zj,k−1}10j=1), as indicated by the large downward arrow in the schematic diagram in Figure 5a. Assume that

an observation of Zj,k is assimilated into the S-model, ρzz can be computed for each Z-variable to localize the observation.

When this observation is also used to update Xk−1, ρzx need to be computed from ρzz to localize the corresponding entries in30

the cross-domain error covariance. Considering that Xk−1 is directly connected to {Zj,k−1}10j=1, a straightforward method to

compute ρzx for Xk−1 is to average the ρzz for {Zj,k−1}10j=1 over a distance unit of the L-model. It is equal to say that ρzx for
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Xk can take the value of 1/J
∑J

j=1 ρzz , in which all ρzz for {Zj,k}Jj=1 are included. In matrix notations, we can write

Pzx =
1
J

ones(1,J)⊗ IK ∗Pzz, (10)

where ones(1,J) is a row vector, Ik is the identity matrix with rank K, and ⊗ represent the tensor product. Using Eq. (10), we

compute the average of Pzz entries over each k-th sector, and compress the spatial dimensions from (KJ)∗(KJ
2 ) toK ∗(KJ

2 ).

On the other hand, in the S-model equation (2), the forcing item from one-unit distance of the L-model can drive all these5

S-variables spanned in the unit distance. That implies the Zj,k variables with the same k are driven solely by Xk, and each L-

variable can have equal effects on these Zj,k variables, as indicated in Figure 5b. When an observation of Xk is used to update

the S-model, the Zj,k variable with the same k can use the same ρxz , because they are indistinguishable in the observation’s

scale. A rational choice of ρxz for Zj,k could be the same ρxx for Xk, since they are connected closely by the coupling

mechanism. In matrix notations,we can write10

Pxz = Pxx⊗ ones(J,1), (11)

where ones(J,1) denotes a column vector. In Eq. (11), we use the tensor product to extend the spatial dimensions, making each

L-variable has equal effect on the corresponding S-variables in the same sector.

4 CDA experiments

In this section, we perform the CDA experiments using the twin experiment setup and EAKF method with localization tech-15

niques described in the proceeding sections. The WCDA involves only the localization factors ρxx and ρzz , which are deter-

mined by individual model data assimilation experiments as discussed in section 3.2. The localization factors ρxz and ρzx that

are derived by the method presented in section 3.3 are additionally used for cross updates in the SCDA.

The CDA experiment results are shown in Figure 6. Since both models are with different scales, the RMSE scaled by the

climatology mean would better evaluate the performance of CDA methods on each model, which denotes

1
K

K∑

k=1

(
Xassim

k −X true
k

Xclim
k

)2

and
1

K ∗ J
J∑

j=1

K∑

k=1

(
Zassim

j,k −Z true
j,k

Zclim
j,k

)2

for L-model and S-model respectively. The mean of the scaled RMSE over the assimilation period (called MS-RMSE) is

computed against the ensemble size in Figure 6a and 6b. It can be seen that the SCDA produces much more accurate analyses20

than WCDA in both models. In particular, as the ensemble size increases, the advantage of SCDA becomes substantial.

In addition, we also used a metric called the ’coefficient of efficiency’ (CE) from Nash and Sutcliffe (1970) to measure the

performance of SCDA and WCDA for the entire coupled system. The CE is defined below (Tardif et al., 2015)

CE = 1−
∑T

t=1(xtrue
t −xa

t )2
∑T

t=1(xtrue
t − (xtrue)2)
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where xa
t could be either the L-model variable Xk or the S-model variable Zj,k, and T = 16000 is the data assimilation

duration. It is obvious that perfect analyses have CE = 1, and a smaller CE value implies fewer climatology information is

contained. The mean value of CE is shown in Figure 6c, which confirms that SCDA analyses contain more information than

those of WCDA.

For a further examination, in Figure 7 we show the data assimilation errors for L-variables and S-variables for WCDA and5

SCDA, respectively. The ensemble size is N = 80, with which SCDA can provide much more accurate estimates than WCDA,

as indicated in Figure 6. It is clearly observable that SCDA has much smaller analysis errors than WCDA almost in every

stage. Considering that the only difference between WCDA and SCDA algorithms is the cross-update from a different scale,

the L-model must benefit from directly assimilating the S-observations very much. On the other hand, it is shown that the

analysis errors for S-model are highly correlated to the state pattern, i.e., the errors are large when the variation of S-model is10

large, and vice versa. But there is no significant difference between the analysis errors of SCDA and WCDA for the S-model.

It is possible that the smaller MS-RMSE with SCDA in figure 7b is due to the coupling from more accurate L-model variables.

To clarify this, we use different CDA frameworks for different observations in the following experiment. We consider

four possible scenarios that differ from one another depending on the CDA levels (weakly or strongly) that are used for the

observations, as listed in Table 1. Scheme 1 and scheme 4 are essentially equivalent to the WCDA and SCDA used in the15

proceeding sections, respectively. Scheme 2 represents the situation in which only L-observations can update both L-model

and S-model, whereas scheme 3 corresponds to the case in which only S-observations can update the variables of both models.

Figure 8 compares the performances of these schemes. Again, we present the MS-RMSEs and mean CE as functions of

ensemble size. In Figure 8a - c, we use the former settings of observation errors, i.e., the STD of the L(S)observation errors is

30% of the mean L(S)-model LT-STD. In Experiment 2, whose results are shown in Figure 9d – f, the STD of the S-observation20

errors is doubled, i.e., the STD of the random S-observation errors is 60% of the LT-STD while that of the L-observation remains

30%.

One interesting feature in Figure 8a-c is that the MS-RMSE and mean CE of CDA scheme 2 are very close to those of the

WCDA. Meanwhile, the MS-RMSE and mean CE of CDA scheme 3 are almost identical to those of the SCDA. In Experiment

2, we have increased the uncertainty of the S-observations. Figure 8d-f show that even though S-observations are relatively25

much poorer than L-observations, this feature can also be found.

It evidently indicates that L-observations are not able to effectively update the S-variables directly, so assimilating the L-

observations in the framework of SCDA barely improves the accuracies of the analyses. Even worse, when the ensemble size

is small, strongly-coupled assimilated L-observations could introduce noise to the S-variables, making the S-model analyses

worse than that of WCDA. That can be seen from Fig 8b when N = 20. As a result, we can conclude that the reduction of30

errors using SCDA is mainly due to the strongly CDA of the S-model observations. This result is easy to understand since

the L-model observations do not contain the high-frequency information that corresponds to the S-model variables. Thus, a

more logical and computational-economic CDA framework for the tsL96 model is CDA scheme 3, i.e., assimilating L-model

observations with WCDA while assimilating S-model observations with SCDA. A more realistic application which assimilates

the atmospheric observations into the ocean using SCDA method in Sluka et al. (2016) also supports this finding.35
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As previously mentioned, the performance of SCDA highly depends on the estimate accuracy of the cross-domain error

covariance using ensemble members. If the cross-domain error covariance is accurately estimated, the observations of the

other model component can provide essential information and improve the quality of analysis, as shown in Figures 6 and 7.

Otherwise, the observations would mainly act as a source of noise and degrade the analyses. Only when a proper localization

strategy is applied, the spurious long-distance correlations could be suppressed, leading to an accurate estimation of the cou-5

pling error covariance with an affordable ensemble size. To show the importance of the localization strategy in the coupling

error covariance, we compare the performance of SCDA scheme 3 with the case of ’no cross localization’, in which we keep

the same localization strategy for the in-domain update but no localization for cross-domain update (i.e., one S-observation can

update all L-variables equally, or Pxz = 0, Pzx = ones(K, KJ
2 )). It is equivalent to the case that all ρxz = 0 and ρzx = 1.

The MS-RMSE and mean CE are computed and compared in Figure 9. As shown in this figure, when the ensemble size10

is smaller than 320, the no cross localization method performs so poorly that it cannot provide any useful information. This

indicates that the no cross localization method fails completely when the ensemble size is small. In this situation, the cross-

domain error covariance is dominated by noise; thus, poor observation increments are produced. However, when N ≤ 320, the

ensemble size is large enough to estimate the coupling error covariance correctly, such that the no cross localization method

can be comparable to SCDA scheme 3.15

5 Conclusions

The interaction between multiple spatial and temporal scales usually makes the CDA very challenging. In recent years, research

on CDA methods has become a very hot topic and has attracted broad attention. While the WCDA is currently a main algorithm

used in the operational CDA system, the SCDA is becoming intensively studied due to its inherent advantage over the WCDA.

A crucial issue in the SCDA is the construction of cross-domain error covariance, which is used in the cross update between20

different model components. The considerable studies have shown that the accuracy of the coupling error covariance is the key

factor to improve the SCDA quality. For an ensemble-based assimilation algorithm, the estimate accuracy of the covariance is

largely determined by the localization scheme that can well alleviate the impact of spurious observations inherent to limited

ensemble size.

The challenge of constructing a localization scheme for the cross-domain error covariance in the SCDA is the presence25

different spatial and temporal scales in the model components. There has been little research about how the large-scale obser-

vation impact on small-scale model states and vice versa. In this study, we use the two-scale Lorenz ’96 model, which acts as

a test bed, to study these important issues.

The first issue is that the two subsystems in the tsL96 model have different scales, such that the localization factors, which

are used to suppress spurious long-distance correlations due to small ensemble sizes, should be different. In this work, we per-30

formed various sensitivity assimilation experiments for each subsystem to determine their individual localization parameters.

The parameters that result in the smallest MRMSE are used to construct the localization factors for the update within the same

subsystem.
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The second issue is that the cross-update localization factor, which is exclusively for SCDA, is technically studied. A local-

ization strategy was developed to compute the localization factors for cross updates between the large-scale and small-scale

subsystems. The factors were formulated according to the coupling terms in the model equations and have much smaller anal-

ysis errors than WCDA with very small ensembles. Specifically, the localization factor for using a small-scale observation to

update a large-scale variable is to use an averaged localization factors of small-scale model itself over the distance equivalently5

to a unit distance of large-scale model; whereas the localization factors for using a large-scale observation to a update small-

scale variable is simply taken from the localization factor of large-scale model itself. With this localization strategy, we have

shown that SCDA can provide much more accurate analyses than WCDA.

In addition, we compared four scenarios that differentiated from each other depending on the CDA levels (weakly or

strongly) that were used for the observations. It was found that the advantage of SCDA over WCDA is mainly attributed10

to the strong assimilation of small scale observations, while the benefit from the strong assimilation of large scale observations

is not obvious.

The localization techniques used in this work depend on the model equations to some extent, and the comparison results are

derived based on the twin experiments with a simple coupled model. Realistic coupled models and observations are far more

complicated; therefore, the localization schemes of SCDA for these coupled models are still challenging. However, the Lorenz15

model has been used as a classic test bed to develop and propose new methods and algorithms in the field of data assimilation.

The current study provides a possible strategy or idea for this challenge and guidance on a possible way to proceed. A further

study is still required using realistic models, which we will pursue in the next step of our study.
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Figure 1. The physical meaning of the two-scale Lorenz ’96 model, where the variables X (circles) and Z (dots) represent some atmospheric

quantities discretized respectively into K and K∗J sectors along the latitude circle. In this example, the values K = 8 and J = 20 are picked

for a better illustration.

Table 1. Four CDA schemes based on using different levels of CDA for different observations, and one ’no cross localization’ scenario for

comparison.

Level of CDA for L-obs. Level of CDA for S-obs. Localization matrix for cross update

CDA scheme 1 Weak Weak Pxz = 0, Pzx = 0

CDA scheme 2 Strong Weak Pxz = Pxx⊗ ones(J,1), Pzx = 0

CDA scheme 3 Weak Strong Pxz = 0, Pzx = 1
J

ones(1,J)⊗ IK ∗Pzz

CDA scheme 4 Strong Strong Pxz = Pxx⊗ ones(J,1), Pzx = 1
J

ones(1,J)⊗ IK ∗Pzz

’no cross localization’ Weak Strong Pxz = 0, Pxz = ones(K, KJ
2

)

Scheme 1 is equvalent to WCDA while scheme 4 is equvalent to SCDA mentioned in this paper.
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Figure 2. The time series for the variables X1 (a) and Z1,1 (b) for the last 1000 model steps, and the state vectors X (c) and Z (d) at the

16000th model step. The black dashed line indicates the climatological variability of each model
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Figure 3. The average RMSE over 16000 model steps against localization parameters with different ensemble sizes in L-model data assimi-

lation (a) and S-model data assimilation (b).
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Figure 4. The evolution of L-model (blue) and S-model (red) variables over 24 hours (40 model steps).
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Figure 5. The schematic diagram for determining the localization factors for using S-observations to update L-variables (a) and using L-

observations to update S-variables (b). 20
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Figure 6. The MS-RMSE of L-model (a) and S-model (b) and the mean CE of the coupled system (c) against different ensemble sizes with

WCDA and SCDA.
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Figure 7. The analysis errors of L-model using SCDA (a) and WCDA (b), and the true states of L-model (c). The analysis errors of S-model

using SCDA (d) and WCDA (e), and the true states of S-model (f)
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Figure 8. The MS-RMSE of L-model (a, d) and S-model (b, e) and the mean CE of the coupled system (c, f) against different ensemble sizes

when the different CDA schemes in Table 1 are used. Experiment 1 and experiment 2 use different S-observation errors.
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Figure 9. The MS-RMSE of L-model (a) and S-model (b) and the mean CE of the coupled system (c) against different ensemble sizes using

no cross localization method and SCDA scheme 3. To display large MS-RMSE values, logarithmic coordinate is used beyond 0.1 and 1 in

(a) and (b) respectively.
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