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Abstract.

Data assimilation is considered as a problem in Bayesian estimation, viz. determine the probability

distribution for the state of the observed system, conditioned by the available data. In the linear and addi-

tive Gaussian case, a Monte-Carlo sample of the Bayesian probability distribution (which is Gaussian and

known explicitly) can be obtained by a simple procedure : perturb the data according to the probability5

distribution of their own errors, and perform an assimilation on the perturbed data. The performance of

that approach, called here Ensemble Variational Assimilation (EnsVAR) also known as Ensemble of Data

Assimilations or (EDA) , is studied in this two-part paper on the non-linear low-dimensional Lorenz-96

chaotic system, the assimilation being performed by the standard variational procedure. In this first part,

EnsVAR is implemented first, for reference, in a linear and Gaussian case, and then in a weakly non-linear10

case (assimilation over 5 days of the system). The performances of the algorithm, considered either as a

probabilistic or a deterministic estimator, are very similar in the two cases. Additional comparison shows

that the performance of EnsVAR is better, both in the assimilation and forecast phases, than that of stan-

dard algorithms for the ensemble Kalman Filter and Particle Filter (although at a higher cost). Globally

similar results are obtained with the Kuramoto-Sivashinsky equation.15

1



1 Introduction

The purpose of assimilation of observations is to reconstruct as accurately as possible the state of the

system under observation, using all the relevant available information. In geophysical fluid applications,

such as meteorology or oceanography, that relevant information essentially consists of the physical ob-

servations , and of the physical laws which govern the evolution of the atmosphere or the ocean. Those20

physical laws are in practice available in the form of a discretized numerical model. Assimilation is

therefore the process by which the observations are combined together with a numerical model of the

dynamics of the observed system in order to obtain an accurate description of the state of that system.

All the available information, observations as well as numerical model, is affected (and, as far as we can

tell, will always be affected) with some uncertainty, and one may wish to quantify the resulting uncertainty25

on the output of the assimilation process. If one chooses to quantify uncertainty in the form of probability

distributions (see, e.g., Jaynes (2004), or Tarantola (2005), for a discussion of the problems which underlie

that choice), assimilation can be stated as a problem in Bayesian estimation. Namely, determine the

probability distribution for the state of the observed system, conditioned by the available information.

That statement makes sense only under the condition that the available information is described from the30

start in the form of probability distributions. We will not discuss here the difficult problems associated

with that condition (see Tarantola (2005) for such a discussion), and will assume below that it is verified.

There is one situation in which the Bayesian probability distribution is readily obtained in analytical

form. That is when the link between the available information on the one hand, and the unknown system

state on the other, is linear, and affected by additive Gaussian error. The Bayesian probability distribution35

is then Gaussian, with explicitly known expectation and covariance matrix (see Section 2 below).

Now, the very large dimension of the numerical models used in meteorology and oceanography (that

dimension can lie in the range 106 to 109) forbids explicit description of probability distributions in the

corresponding state spaces. A widely used practical solution is to describe the uncertainty in the form of40

an ensemble of points in state space, the dispersion of the ensemble being meant to span the uncertainty.

Two main classes of algorithms for ensemble assimilation exist at present. The ensemble Kalman Filter

(EnKF), originally introduced by Evensen (1994) and further studied by many authors Evensen (2003)

and (Houtekamer and Mitchell, 1998, 2001), is a heuristic extension to large dimensions of the standard

Kalman Filter (KF) Kalman (1960). The latter exactly achieves Bayesian estimation in the linear and45

Gaussian case that has just been described. It explicitly determines the expectation and covariance matrix

of the (Gaussian) conditional probability distribution, and evolves those quantities in time, updating these
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with new observations as they become available. The EnKF, contrary to the standard KF, evolves an

ensemble of points in state space. One advantage is that it can be readily, if empirically, implemented on

nonlinear dynamics. On the other hand, it keeps the same linear Gaussian procedure as KF for updating50

the current uncertainty with new observations. EnKF exists in many variants and, even with ensemble

sizes of relatively small size (O(10-100)), produces results of high quality. It has now become, together

with variational assimilation, one of the two most powerful algorithms used for assimilation in large

dimension geophysical fluid applications.

Concerning the Bayesian properties of EnKF, Le Gland et al. (2011) have proven that, in the case of55

linear dynamics and in the limit of infinite ensemble size, EnKF achieves Bayesian estimation, in that it

determines the exact (Gaussian) conditional probability distribution. In the case of nonlinear dynamics,

EnKF has a limiting probability distribution, which is not in general the Bayesian conditional distribution.

Contrary to EnKF, which was from the start developed for geophysical applications (but has since

extended to other fields), Particle Filters (PF) have been developed totally independently of such appli-60

cations. They are based on general Bayesian principles, and are thus independent of any hypothesis of

linearity or Gaussianity (see (Doucet et al., 2000, 2001) and van Leeuwen (2017) for more details). Like

the EnKF, they evolve an ensemble of (usually weighted) points in state space, and update them with

new observations as these become available. They exist in numerous variants, many of which have been

mathematically proven to achieve Bayesianity in the limit of infinite ensemble size Crisan and Doucet65

(2002). On the other hand, no results exist to the authors’ knowledge, in the case of finite ensemble size.

They are actively studied in the context of geophysical applications as presented in (van Leeuwen, 2009,

2017), but have not at this stage been operationally implemented on large dimension meteorological or

oceanographical models.

There exist at least two other algorithms that can be utilised to build a sample of a given probability70

distribution. The first one is the acceptance-rejection algorithm described in Miller et al. (1999). The

other one is the Metropolis-Hastings algorithm Metropolis et al. (1953), which itself possesses a number

of variants Robert (2015). These algorithms can be very efficient in some circumstances, but it is not clear

at this stage whether they could be successfully implemented in large dimension geophysical applications.

75

Coming back to the linear and Gaussian case, not only, as said above, is the (Gaussian) conditional

probability distribution explicitly known, but a simple algorithm exists for determination of independent

realizations of that distribution. In succinct terms, perturb additively the data according to their own

error probability distribution, and perform the assimilation for the perturbed data. Repetition of this

procedure on successive sets of independently perturbed data produces a Monte-Carlo sample of the80
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Bayesian posterior distribution.

The present work is devoted to the study of that algorithm, and of its properties as a Bayesian estimator,

in nonlinear and/or non-Gaussian cases. Systematic experiments are performed on two low-dimensional

chaotic toy models, namely the Lorenz (1996) model Lorenz (1996) and the Kuramoto-Sivashinsky equa-

tion (Kuramoto and Tsuzuki, 1975, 1976). Variational assimilation, which produces the Bayesian expec-85

tation in the linear and Gaussian case, and is routinely, and empirically, implemented in nonlinear situa-

tions in operational meteorology, is used for estimating the state vector for given (perturbed) data. The

algorithm is therefore called Ensemble Variational Assimilation, abbreviated to EnsVAR.

This algorithm is not new. There exist actually a rather large number of algorithms for assimilation

that are variational (at least partially) and build (at least at some stage) an ensemble of estimates of the90

state of the observed system. A review of those algorithms has been recently given by Bannister (2017).

Most of these algorithms are actually different from the one that is considered here. They have not been

defined with the explicit purpose of achieving Bayesian estimation, and are not usually evaluated in that

perspective.

EnsVAR as defined here, has been speciffically studied under various names and in various contexts,95

by several authors (Oliver et al. (1996), (Bardsley, 2012; Bardsley et al., 2014), Liu et al. (2017)). They

have shown that EnsVAR is not in general Bayesian in the nonlinear case, but can nevertheless lead to a

useful estimate. EnsVAR, is also used operationally at the European Centre for Medium-Range Weather

Forecasts (ECMWF) (Isaksen et al. (2010)) in the definition of the initial conditions of ensemble forecasts.

It is also used, both at ECMWF and at Météo-France (see respectively Bonavita et al. (2016) and Berre100

et al. (2015)), under the name Ensemble of Data Assimilations (EDA) , for defining the background error

covariance matrix of the Variational Assimilation system. And ECMWF, in its latest reanalysis project

ERA5 Hersbach and Dee (2016) uses a low resolution Ensemble of Data Assimilations system in order

to estimate the uncertainty on the analysis.

None of the above ensemble methods seems however to have been systematically and objectively105

evaluated as a probabilistic estimator. That is precisely the object of the present two papers.

The first of these is devoted to the exactly linear and weakly nonlinear cases, and the second to the

fully nonlinear case. In this first one, the next Section describes in detail the EnsVAR algorithm, as well

as the experimental set-up that is to be used in both parts of the work. The Section that follows then

describes the statistical tests to be used for objectively assessing EnsVAR as a probabilistic estimator.110

EnsVAR is implemented in Section 4, for reference, in an exactly linear and Gaussian case in which

theory says it achieves exact Bayesian estimation. It is implemented in Section 5 on the nonlinear Lorenz

system, over a relatively short assimilation window (5 days), over which the tangent linear approximation
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remains basically valid and the performance of the algorithm is shown not to be significantly altered.

Comparison is made in Section 6 with two standard algorithms for EnKF and PF. Experiments performed115

on the Kuramoto-Sivashinsky equation are summurasied in Section 7. Partial conclusions, valid for the

weakly nonlinear case, are drawn in Section 8.

The second Part is devoted to the fully nonlinear situation, in which EnsVAR is implemented over

assimilation windows for which the tangent linear approximation is no longer valid. Good performance

is nevertheless achieved through the technique of Quasi Static Variational Assimilation (QSVA), defined120

by Pires et al. (1996) and Järvinen et al. (1996). Comparison is made again with EnKF and PF.

The general conclusion of both Parts is that EnsVAR can produce good results which, in terms of

performance as a probabilisic estimator and of numerical accuracy, are at least as good as the results of

EnKF and PF.

In the sequel of the paper we denote by N (m,P ) the multivariate Gaussian probability distribution125

with expectation m and covariance matrix P (for a univariate Gaussian probability distribution, we will

use the similar notation N (m,r)). E will denote statistical expectation, and Var will denote variance.

2 The method of Ensemble Variational Assimilation

We assume the available data make up a vector z, belonging to data space D with dimension Nz , of the

form130

z = Γx+ ζ, (1)

In this expression, x is the unknown vector to be determined, belonging to state space S with dimension

Nx, while Γ is a known linear operator from S into D, called the data operator and represented by an

Nz ×Nx matrix. The Nz vector ζ is an ’error’, assumed to be a realization of the Gaussian probability

distribution N (0,Σ) (in case the expectation E(ζ) were non zero, but known, it would be necessary to135

first ’unbias’ the data vector z by subtracting that expectation). It should be stressed that all available

information about x is assumed to be included in the data vector z. For instance, if one, or even several,

Gaussian prior estimates N (xb,Pb) are available for x, they must be introduced as subsets of z, each

with Nx components, in the form

xb = x+ ζb, ζb ∼N (0,Pb).140

In those conditions the Bayesian probability distribution P (x|z) for x conditioned by z is the Gaussian
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distribution N (xa,Pa) with xa = (ΓTΣ−1Γ)−1ΓTΣ−1z

Pa = (ΓTΣ−1Γ)−1
(2)

At first glance, the above equations seem to require the invertibility of the Nz ×Nz matrix Σ and then,

of the Nx×Nx matrix ΓTΣ−1Γ. Without going into full details, the need for invertibility of Σ is only145

apparent, and invertibility of ΓTΣ−1Γ is equivalent to the condition that the data operator Γ is of rank

Nx. This in turn means that the data vector z contains information on every component of x. This

condition is known as the determinacy condition. It implies that Nz ≥Nx. We will call p=Nz−Nx the

degree of overdeterminacy of the system.

The conditional expectation xa can be determined by minimizing the following scalar objective func-150

tion defined on state space S

ξ ∈ S −→J (ξ) = 1

2
[Γξ− z]T Σ−1 [Γξ− z]. (3)

In addition, the covariance matrix Pa is equal to the inverse of the hessian of J

Pa =

[
∂2J
∂ξ2

]−1
. (4)

In the case the error ζ, while still being random with expectation 0 and covariance matrix Σ, is not155

Gaussian, the vector xa defined in Eq. (2) is not the conditional expectation of x for given z, but only

the least-variance linear estimate, or Best Linear Unbiased Estimate (BLUE), of x from z. Similarly, the

matrix Pa is no longer the conditional covariance matrix of x for given z, but the covariance matrix of

the estimation error associated with the BLUE, averaged over all realizations of the error ζ.

Minimization of (3) can also been performed, at least in favorable circumstances, with a nonlinear160

data operator Γ. This is what is done, heuristically but with undisputable usefulness, in meteorological

and oceanographical Variational Assimilation. The latter is routinely implemented in a number of major

meteorological centres, on nonlinear dynamical models with nonlinear observation operators. For more

on minimization of objective functions of form (3) with nonlinear Γ, see, e.g., Chavent (2010).

Coming back to the linear and Gaussian case, consider the ’perturbed’ data vector z′ = z+ ζ′, where165

the perturbation ζ′ has the same probability distribution N (0,Σ) as the error ζ. It is easily seen that the

corresponding ’estimate’

xa′ = (ΓTΣ−1Γ)−1ΓTΣ−1z′ (5)

is distributed according to the Gaussian posterior distribution N (xa,Pa) (Eq. 2). This defines a simple

algorithm for obtaining a Monte-Carlo sample of that posterior distribution. Namely, perturb the data170
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vector z according to its own error probability distribution, compute the corresponding ’estimate’ (5),

and repeat the same process with independent perturbations on z.

That is the Ensemble Variational Assimilation, or EnsVAR, algorithm that is implemented below in

nonlinear and non-Gaussian situations, the analogue of the estimate xa′ being computed by minimization

of form (3) . In general, this procedure, as already mentioned in the introduction does not achieve a175

Bayesian estimation, but it is interesting to study the properties of the ensembles thus obtained.

Remark . In the case when, the data operator Γ being linear, the error ζ in Eq. (1) is not Gaussian, the

quantity xa′ defined by Eq. (5) has expectation xa (BLUE) and covariance matrix Pa (see Isaksen et al.,

2010). The probability distribution of the xa′ is in general not Bayesian, but it has the same expectation

and covariance matrix as the Bayesian distribution corresponding to a Gaussian ζ.180

All the experiments presented in this work are of the standard identical twin type, in which the ’ob-

servations’ to be assimilated are extracted from a prior ’reference’ integration of the assimilating model.

And all experiments presented in this first Part are of the strong constraint variational assimilation type,

in which the temporal sequence of states produced by the assimilation are constrained to satisfy exactly

the equations of the assimilating model.185

That model, which will emanate from either the Lorenz or the Kuramoto-Sivashinsky equation, will be

written as

xt+1 =M(xt) (6)

where xt is the model state at time t, belonging to model space M, with dimension N (in the strong

constraint case considered in this first part, the model spaceM will be identical with the state space S).190

For each model, a ’truth’, or ’reference’ run xr
t has first been produced. A typical (strong constraint)

experiment is as follows.

Choosing an assimilation window [t0, tT ] with length T (it is mainly the parameter T that will be

varied in the experiments), synthetic observations are produced at successive times (t0 < t1 < ... < tk <

... < tK = tT ), of the form195

yk = Hkxr
k + εk (7)

where Hk is a linear observation operator, and εk ∼N (0,Rk) is an ’observation error’. The εk‘s are

taken mutually independent.

The following process is then implemented Nens times (iens= 1, · · · ,Nens)

i/ Perturb the observations yk,k = 0, · · · ,K according to200

(yiens
k )′ = yk + δk (8)
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where δk ∼N (0,Rk) is an independent realization of the same probability distribution that has produced

εk. The notation ′ stresses, as in Eq. (5), the ”perturbed” character of (yiens
k )′

ii/ Assimilate the perturbed observations (yiens
k )′ by minimization of the following objective function

ξ0 ∈M−→J iens(ξ0) =
1

2

K∑
k=0

[Hkξk− (yiens
k )′]TR−1k [Hkξk− (yiens

k )′]. (9)205

where ξk is the value at time tk of the solution of the model (6) emanating from ξ0.

The objective function (9) is of type (3), the state space S being the model spaceM (N =Nx), and

the data vector z consisting of the concatenation of the K +1 perturbed data vectors (yiens
k )′.

The process i-ii, repeated Nens times, produces an ensemble of Nens model solutions over the assimi-

lation window [t0, tT ].210

In the perspective taken here, it is not the properties of those individual solutions that matter the most,

but the properties of the ensemble considered as a sample of a probability distribution.

The ensemble assimilation process, starting from Eq. (7), is then repeated over Nwin assimilation

windows of length T (taken sequentially along the true solution xr
t ).

In variational assimilation as it is usually implemented, the objective function to be minimized contains215

a so-called background term at the initial time t0 of the assimilation window. That term consists, together

with an associated error covariance matrix, of a climatological estimate of the model state vector, or of a

’prior’ estimate of that vector at time t0 coming from assimilation of previous observations. An estimate

of the state vector at t0 is explicitly present in (9), in the form of the perturbed observation (yiens
0 )′. But

that is not a background term in the usual sense of the expression. In particular, no ’cycling’ of any type220

is performed from one assimilation window to the next. The question of a possible cycling of ensemble

variational assimilation will be discussed in Part II.

The covariance matrix Rk in Eq. (9) is the same as the covariance matrix of the perturbations δk in Eq.

(8). The situation in which one used in the assimilation assumed statistics for the observation errors that

were different from the ‘real’ statistics has not been considered.225

We sum up the description of the experimental procedure and define precisely the vocabulary to be

used in the sequel. The output of one experiment consists of Nwin ensemble variational assimilations.

Each ensemble variational assimilation produces, through Nens minimizations of form (9), or individual

variational assimilations, an ensemble of Nens model solutions corresponding to one set of observations

yk(k = 0, · · · ,K) over one assimilation window. These model solutions will be simply called the ele-230

ments of the ensemble. The various experiments will differ through various parameters, and primarily the

length T of the assimilation windows.

The minimizations (9) are performed through an iterative Limited memory BFGS algorithm ( Nocedal
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and Wright (2006)), started from the observation y0 at time t0 (which, as said below, is taken here as

bearing on the entire state vector xr
0). Each step of the minimization algorithm requires the explicit235

knowledge of the local gradient of the objective function J iens with respect to ξ0. That gradient is

computed, as usual in variational assimilation, through the adjoint of the model (6). Unless specified

otherwise, the size of the assimilation ensembles will be Nens = 30, and the number Nwin of ensemble

variational assimilations for one experiment will be equal to 9000.

3 The Validation Procedure240

We recall the general result that, among all deterministic functions from data space into state space, the

conditional expectation z→ E(x|z) minimizes the variance of the estimation error on x.

What should ideally be done here for the validation of results is objectively assessing (if not on a

case-to-case basis, at least in a statistical sense) whether the ensembles produced by EnsVAR are samples

of the corresponding Bayesian probability distributions. In the present setting, where the probability245

distribution of the errors εk in (7) is known, and where a prior probability distribution is also known,

through the observation y0, for the state vector x0, one could in principle obtain a sample of the exact

Bayesian probability distribution by proceeding as follows. Through repeated independent realizations

of the process defined by Eqs (6) and (7), build a sample of the joint probability distribution for the

couple (x, z). That sample can then be read backwards for given z and, if large enough, will produce a250

useful sample estimate of the corresponding Bayesian probability distribution for x. That would actually

solve numerically the problem of Bayesian estimation. But it is clear that the sheer numerical cost of the

whole process, which requires explicit exploration of the joint space (x, z), makes this approach totally

impossible in any realistic situation.

We have evaluated instead the weaker property of reliability (also called calibration). Reliability of a255

probabilistic estimation system (i.e. a system that produces probabilities for the quantities to be estimated)

is statistical consistency between the predicted probabilities and the observed frequencies of occurrence.

Consider a probability distribution π (the words probability distribution must be taken here in the broadest

possible sense, meaning as well discrete probabilities for the occurrence of a binary or multi-outcome

event, as continuous distributions for a one- or multi-dimensional random variable), and denote π′(π) the260

distribution of the reality in the circumstances when π has been predicted. Reliability is the property that,

for any π, the distribution π′(π) is equal to π.

Reliability can be objectively evaluated, provided a large enough verification sample is available.

Bayesianity clearly implies reliability. For any data vector z, the true state vector x is distributed according
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to the conditional probability distribution P (x|z), so that a probabilistic estimation system which always265

produce P (x|z) is reliable. The converse is clearly not true. A system which, ignoring the observations,

always produces the climatological probability distribution for x, will be reliable. It will however not

be Bayesian (at least if, as one can reasonably hope, the available data bring more than climatological

information on the state of the system).

Another desirable property of a probabilistic estimation system, although not directly related to Bayesian-270

ity, is resolution (also called sharpness). It is the capacity of the system for a priori distinguishing

between different outcomes. For instance, a system which always predicts climatological probability

distribution is perfectly reliable, but has no resolution. Resolution, like reliability, can be objectively

evaluated if a large enough verification sample is available.

We will use several standard diagnostic tools for validation of our results. We first note that the error275

in the mean of the predicted ensembles is itself a measure of resolution. The smaller that error, the higher

the capacity of the system to a priori distinguish between different outcomes. Concerning reliability,

the classical rank histogram and the Reduced Centred Random Variable (RCRV) (the latter is described

in Appendix A) are (non equivalent) measures of the reliability of probabilistic prediction of a scalar

variable. The reliability diagram and the associated Brier score are relative to probabilistic prediction of280

a binary event. The Brier score decomposes into two parts, which measure respectively the reliability

and the resolution of the prediction. The definition used here for those components is given in Appendix

A (equations A4 and A5 respectively). Both scores are positive, and are negatively oriented, so that

perfect reliability and resolution are achieved when the corresponding scores take the value 0. For more

on these diagnostics and, more generally, on objective validation of probabilistic estimation systems, see,285

e.g., chapter 8 of the book by Wilks (2011), and the papers by Talagrand et al. (1997) and Candille and

Talagrand (2005).

4 Numerical results: the linear case

We present in this section results obtained in an exactly linear and Gaussian case, in which theory says

that EnsVAR must produce an exact Monte-Carlo Bayesian sample. These results are to be used as a290

benchmark for the evaluation of later results. The numerical model (6) is obtained by linearizing the non-

linear Lorenz model, which describes the space-time evolution of a scalar variable denoted x, about one

particular solution (the Lorenz model will be described and discussed in more detail in the next Section,

see Eq. 12 below). The model space dimension N is equal to 40. The length T of the assimilation

windows is 5 days, which covers Nt = 20 timesteps (the ”day” will be defined in the next section).295
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The complete state vector (Hk = I in Eq. 7) is observed every 0.5 day (K = 10). The data vector z

has therefore dimension (K +1)N = 440. The observation errors are Gaussian, spatially uncorrelated,

with constant standard deviation σ = 0.1(Rk = σ2I,∀k). However, because of the linearity, the absolute

amplitude of those errors must have no impact.

Since conditions for exact Bayesianity are verified, any deviation in the results from exact reliability300

can be due to only the finiteness Nens of the ensembles (except for the rank histogram, which takes

that finiteness into account), the finiteness Nwin of the validation sample or numerical effects (such as

resulting, for instance, from incomplete minimization or round-off errors).

Figure 1 shows the root-mean-square errors from the truth along the assimilation window, averaged at

each time over all grid points and all realizations. The upper (blue) curve shows the average error in the305

individual minimizing solutions of J iens (Eq. 9). The lower (red) curve shows the error in the mean of

the individual ensembles, while the green curve shows the error in the fields obtained in minimizations

performed with the raw unperturbed observations yk (Eq. 7).

All errors are smaller than the observation error (horizontal dash-dotted line). The estimation errors

are largest at both ends of the assimilation window, and smallest at some intermediate time. As known,310

and already discussed by various authors (Pires et al., 1996, Trevisan et al., 2010) , this is due to the

fact that the error along the stable components of the flow decreases over the assimilation window, while

the error along the unstable components increases. The ratio between the values on the blue and green

curves, averaged over the whole assimilation window, is equal to 1.414. This is close to
√
2 as can be

expected from the linearity of the process and the perturbation procedure defined by Equations (7-8)315

(actually, it can be noted that the value
√
2 is itself, independently of any linearity, a test for reliability,

since the standard deviation of the difference between two independent realizations of a random variable

must be equal to
√
2 times the standard deviation of the variable itself). The green curve corresponds to

the expectation of (what must be) the Bayesian probability distribution, while the red curve corresponds

to a sample expectation, computed over Nens elements. The latter expectation is therefore not, as can be320

seen on the figure, as accurate an estimate of the truth. The relative difference must be about
1

2Nens
≈

0.017. This is the value obtained here.

For a reliable system, the Reduced Centred Random Variable (RCRV), which we denote s, must have

expectation 0 and variance 1 (see Appendix A). The sample values, computed over all grid points, times

and assimilation windows (which amounts to a set of size Nx · (Nt +1) ·Nwin = 7.56.106), are E(s) =325

0.0035 and Var(s) = 1.00.

Figure 2 shows other diagnostics of the statistical performance of the system, performed again over all

7.56.106 individual ensembles in the experiment. The top left panel is the rank histogram. The top right
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panel is the reliability diagram relative to the event {x > 1.14}, which occurs with frequency 0.32 (black

horizontal dashed-dotted line in the diagram). Both panels visually show high reliability (flatness for the330

histogram, closeness to the diagonal for the reliability diagram), although that reliability is obviously not

perfect. More accurate quantitative diagnostics are given by the lower panel, which shows, as functions

of the threshold τ , the two components (reliability and resolution, see equations A4 and A5 respectively)

of the Brier score for the events {x > τ} . The reliability component is about 10−3, the resolution com-

ponent is about 5.10−2. A further diagnostic has been made by comparison with an experiment in which335

the validating truth has been obtained, for each of the Nwin windows, from an additional independent

(Nens +1)st variational assimilation. That procedure is by construction perfectly reliable, and any dif-

ference with Figure 2 could result only from the fact that the validating truth is not defined by the same

process. The reliability (not shown) is very slightly improved in comparison with Figure 2 (this could be

possibly due to a lack of full convergence of the minimizations). The resolution is not modified.340

It is known that the minimum Jmin = J (xa) of the objective function (3) takes on average the value

E(Jmin) =
p

2
, (10)

where p=Nz−Nx has been defined as the degree of overdeterminacy of the minimization. This result is

true under the only condition that the operator Γ is linear, and that the error ζ in Eq. (1) has expectation 0345

and the covariance matrix Σ used in the objective function (3). It is independent of whether ζ is Gaussian

or not. But when ζ is Gaussian, the quantity 2Jmin follows a χ2-probability distribution of order p (for

that reason, condition (10) is often called the χ2-condition, although it is verified in circumstances where

2Jmin does not follow a χ2-distribution). As a consequence, the minimum Jmin has standard deviation

σ(Jmin) =
√
p/2. (11)350

In the present case, Nx = 40 and Nz = (K +1)Nx = 440, so that p/2 = 200 and
√
p/2≈ 14.14.

The histogram of the minima Jmin (corrected for a multiplicative factor 1/2 resulting from the ad-

ditional perturbations (8)) is shown in Figure 3. The corresponding empirical expectation and standard

deviation are 199.39 and 14.27 respectively, in agreement with Equations (10-11). It can be noted that,

as a consequence of the central limit theorem, the histogram in Figure 3 is in effect Gaussian. Indeed the355

value of negentropy, a measure of Gaussianity that will be defined in the next Section, is 0.0012.

For the theoretical conditions of exact Bayesianity considered here, reliability should be perfect, and

should not be degraded when the information content of the observations decreases (through increased
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observation error and/or degraded spatial and/or temporal resolution of the observations). Statistical360

resolution should, on the other hand, be degraded. Experiments have been performed to check this aspect

(the exact experimental procedure is described in the next Section). The numerical results (not shown)

are that both components of the Brier score are actually degraded, and can increase by one order of

magnitude. The reliability component always remains much smaller than the resolution component, and

the degradation of the latter is much more systematic. This is in good agreement with the fact that the365

degradation of reliability can be due to only numerical effects, such as less efficient minimizations.

The above results, obtained in the case of exact theoretical Bayesianity, are going to serve as reference

for the evaluation of EnsVAR in non-linear and non-Gaussian situations where Bayesianity does not

necessarily hold.

5 Numerical results: the nonlinear case370

The nonlinear Lorenz96 model ((Lorenz, 1996; Lorenz and Emanuel, 1998)) reads

dxj
dt

= (xj+1−xj−2)xj−1−xj +F, (12)

where j = 1, · · · ,N represent the spatial coordinate (“longitude”), with cyclic boundary conditions. As

in Lorenz (1996), we choose N = 40 and F = 8. For these values, the model is chaotic with 13 positive

Lyapunov exponents, the largest of which has value (2.5day)−1, where one day is equal to 0.44 time unit375

in Equation (12).

Except for the dynamical model, the experimental setup is fundamentally the same as in the linear case.

In particular, the model time step 0.25 day, the observation frequency 0.5 day, and the values Nens = 30

and Nwin = 9000 are the same. The observation error is uncorrelated in space and time, with constant

variance σ2 = 0.4 (Rk = σ2I,∀k). The associated standard deviation σ =0.63 is equal to 2% of the380

variability of the reference solution (it is because of the different range of variability that the value of σ

has been chosen different from the value in the linear case). We mention again that no cycling is present

between successive assimilation windows.

The results are shown on Figure 4. The top panels are relative to one particular assimilation window.

In the left panel, where the horizontal coordinate is the spatial position j, the black dashed curve is385

the reference truth at the initial time of the assimilation window, the blue circles are the corresponding

observations, and the full red curves (Nens = 30 of them) are the minimizing solutions at the same time.

The right panel, where the horizontal coordinate is time along the assimilation window, shows the truth

(dashed curve) and theNens minimizing solutions (full red curves) at three different points in space. Both
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panels show that the minimizations reconstruct the truth with a high degree of accuracy.390

The bottom panel, which shows error statistics accumulated over all assimilation windows, is in the

same format as figure 1 (note that, because of the different dynamics and observational error, the am-

plitude on the vertical axis is different from figure 1). The conclusions are qualitatively the same. The

estimation error, which is smaller than the observational error, is maximum at both ends of the assimila-

tion window, and minimum at some intermediate time. The ratio between the blue and red curves, equal395

on average to 1.41, is close to the value
√
2, which, as already said, is in itself an indication of reliability.

But a significant difference is that the green curve lies now above the red curve. One obtains a better

approximation of the truth by taking the average of the Nens minimizing solutions than by performing

an assimilation on the raw observations (7). This is an obvious nonlinear effect. One can note it is fully

consistent with the fact that the expectation of the a posteriori Bayesian probability distribution is the400

variance-minimizing estimate of the truth.

The expectation and variance of the RCRV are respectively E(s) = 0.012 and Var(s) = 1.047.

Figure 5, which is in the same format as Figure 2, shows similar diagnostics : rank histogram, reliability

diagram for the event {x < 1.0}, which occurs whith frequency 0.33, and the two components of the Brier

score for events of the form {x > τ}. The general conclusion is the same as in the linear case. High level405

of reliability is achieved. Actually, the reliability component of the Brier score (bottom panel) is now

decreased below 10−3. That ’improvement’, in the present situation where exact Bayesianity cannot

be expected, can only be due to better numerical conditioning than in the linear case. The resolution

component of the Brier score, on the other hand, is increased.

Figure 6 is relative to experiments in which the informative content of the observations, i.e. their410

temporal density, spatial density, and accuracy (top, middle and bottom panels respectively), has been

varied. Each panel shows the two components of the Brier score, in the same format as in the bottom

panels of Figures 2 and 5 (but with more curves corresponding to different informative contents). The

reliability component (red curves) always remains significantly smaller than the resolution component

(blue curves). With the exception of the reliability component in the top panel, both components are415

systematically degraded when the information content of the observations decreases. This is certainly

to be expected for the resolution component, but not necessarily for the reliability component. The

degradation of the latter is significantly larger than in the linear case (not shown), where we concluded that

it could be due only to degradation of numerical conditioning. The degradation of reliability in the lower

two panels may therefore be due here to non-linearity. One noteworthy feature is that the degradation420

of the resolution scores, for the same total decrease of the number of observations, is much larger for

decrease of spatial density than for decrease of temporal density (middle and top panels respectively).
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Less information is therefore lost in degrading the temporal than the spatial density of observations.

Figure 7 shows the distribution of (half) the minima of the objective function (it contains the same

information as Figure 3, in a different format). Most values are concentrated around the ’linear’ value 200,425

but a small number of values are present in the range 600-1000. Excluding these outliers, the expectation

and standard deviation of the minima are 199.62 and 14.13 respectively. These values are actually in

better agreement with the theoretical ’χ2’ values (200 and 14.14) than the ones obtained above in the

theoretically exact bayesian case (199.39 and 14.27). This again suggests better numerical conditioning

for the nonlinear situation.430

In view of previous results, in particular results obtained by Pires et al. (1996), a likely explanation

for the presence of the larger minima in Figure 7 is the following. Owing to the nonlinearity of Eq.

(12), and more precisely to the ’folding’ which occurs in state space as a consequence of the chaotic

character of the motion, the uncertainty on the initial state is distributed along a folded subset in state

space. It occasionally happens that the minimum of the objective function falls in a secondary fold,435

which corresponds to a larger value of the objective function. This aspect will be further discussed in

the second Part of the paper. In any case, the presence of larger minima of the objective function is an

obvious sign of nonlinearity.

Nonlinearity is also obvious in Figure 8, which shows, for one particular minimization, a cross-section

of the objective function between the starting point of the minimization and the minimum of the objective440

function (black curve), and a parabola going through the starting point and having the same minimum

(red curve). The two curves are distinctly different, while they would be identical in a linear case.

We have evaluated the Gaussian character of univariate marginals of the ensembles produced by the

assimilation by computing their negentropy. The negentropy of a probability distribution is the Kullback-

Leibler divergence of that distribution with respect to the Gaussian distribution with the same expectation445

and variance (see Appendix B). The negentropy is positive and is equal to 0 for exact Gaussianity. The

mean negentropy of the ensembles is here ≈ 10−3, indicating closeness to Gaussianity (for a reference,

the negentropy of the Laplace distribution is 0.072). Although nonlinearity is present in the whole process,

EnsVAR produces ensembles that are close to Gaussianity.

Experiments have been performed in which the observational error, instead of being Gaussian, has been450

taken to follow a Laplace distribution (with still the same variance σ2 = 0.4). No significant difference

has been observed in the results in comparison with the Gaussian case. This suggests that the Gaussian

character of the observational error is not critical for the conclusions obtained above.
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6 Comparison with the ensemble Kalman Filter and the Particle Filter

We present in this Section a comparison with results obtained with the ensemble Kalman Filter (EnKF)455

and the Particle Filter (PF). As used here, those filters are sequential in time. Fair comparison is there-

fore possible only at the end of the assimilation window. Figure 9 shows the diagnostics obtained from

EnsVAR at the end of the window (the top left panel, identical with the top right panel of Figure 4, is

included for easy comparison with the figures that will follow). Comparison with Figure 5 shows that the

reliability (as measured by the rank histogram, the reliability diagram and the reliability component of460

the Brier score) is significantly degraded. It has been verified (not shown) that this degradation is mostly

due, not to a really degraded performance at the end of the window, but to the use of a smaller validation

sample (by a factor of Nt +1 = 21, which leads to a sample with size 3.6.105).

Figure 10, which is in the same format as Figure 9, shows the same diagnostics for the EnKF. The

algorithm used is the one described by Evensen (2003). It is stochastic in the sense that observations465

have been perturbed randomly, for updating the background ensembles, according to the probability

distribution of the observation errors. Spatial localization of the background error covariance matrix has

been implemented by Schur-multiplying the sample covariance matrix by a squared exponential kernel

with lengthscale 12.0 (the positive definiteness of the periodic kernel has been ensured by removing its

negative Fourier components). And multiplicative inflation with factor r = 1.001, has been applied, as in470

Anderson and Anderson (1999), on the ensemble after each analysis.

Comparison with Figure 9 shows that the individual ensembles, after a ’warm up’ period, tend to remain

more dispersed than in EnsVAR (top left panel). Reliability, as measured by the reliability diagram and

the Brier score, is similar to what it is in Figure 9. But it is significantly degraded as evaluated by the rank

histogram. The ensembles, although they have larger absolute dispersion than in EnsVAR, tend to ’miss’475

reality more often.

Following comments from referees, we have made a few experiments not using localisation in the

EnKF. The RMSE and the RCRV are significantly degraded, while the rank histogram and the resolution

component of the Brier score are improved. The reliability component of the Brier score remained the

same. All this is true for both assimilation and forecast. These results, not included in the paper, would480

deserve further studies which are postponed for a future work.

Figure 11 (again in the same format as Figure 9) shows the same diagnostics for a Particle Filter. The

algorithm used here is the Sampling Importance Particle Filter presented in Arulampalam et al. (2002).

Comparison with Figure 10 shows first that the individual ensembles are still more dispersed than in

EnKF (top left panel). It also shows a slight degradation of the reliability component of the Brier score485
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method

DA procedure
Assimilation Forecasting

EnsVAR 0.22 1.49

EnKF 0.24 1.67

PF 0.76 2.63

Table 1: RMS errors at the end of 5 days of assimilation (left column) and of 5 days of forecast (right

column) for the three algorithms

(and, incidentally, a significant degradation of the resolution component), but no visible difference on the

reliability diagram. Concerning the rank histogram, PF produces unequally weighted particles, and the

standard histogram could not be used. A histogram has been built instead on the quantiles defined by the

weights of the particles. This shows, as for EnKF, a significant tendency to ’miss the truth’ .

The left column of Table 1 shows the mean root-mean square error in the means of the ensembles as490

obtained from the three algorithms. The performance of EnsVAR and EnKF (0.22 and 0.24) is comparable

by that measure, while the performance of PF is significantly worse (0.76).

Figures 12 to 14 are relative to ensemble forecasts performed, for each of the three assimilation algo-

rithms, from the ensembles obtained at the end of the 5-day assimilations. They are in the same format as

Figure 9, and show diagnostics at the end of 5-day forecasts. One can first observe that the dispersion of495

individual forecasts (top left panels) increases, as can be expected, with the forecast range, but much less

with the EnsVAR than with EnKF and PF. Reliability, as measured by the Brier score, is slightly degraded

in all three algorithms with respect to the case of the assimilations. It is slightly worse for EnKF than

for EnsVAR, and significantly worse for PF. Resolution is on the other hand significantly degraded in

all three algorithms. This is associated with the dispersion of ensembles, and corresponds to what could500

be expected. Concerning the rank histograms, the histogram of EnsVAR, although still noisy, shows no

systematic sign of over- or underdispersion of the ensembles. The EnKF and PF histograms both present,

as before, what appears to be a significant underdispersion.

Finally, the right column of Table 1 shows that RMS errors, which are of course now larger, still rank

comparatively in the same order as before, i.e. EnsVAR < EnKF < PF.505
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7 The Kuramoto-Sivashinsky equation

Similar experiments have been performed with the Kuramoto-Sivashinsky (K-S) equation. It is a one-

dimensional spatially periodic evolution equation, with an advective nonlinearity, a fourth-order dissipa-

tion term and a second-order anti-dissipative term. It reads

∂u

∂t
+
∂4u

∂x4
+
∂2u

∂x2
+u

∂u

∂x
= 0, x ∈ [0,L]

∂iu

∂xi
(x+L,t) =

∂iu

∂xi
(x,t) for i= 0,1, · · · ,4, ∀t > 0

u(x,0) = u0(x)

(13)510

where the spatial period L is a bifurcation parameter for the system. The K-S equation models pattern

formations in different physical contexts and is a paradigm of low-dimensional behavior in solutions to

partial differential equations. It arises as a model amplitude equation for inter-facial instabilities in many

physical contexts. It was originally derived by (Kuramoto and Tsuzuki, 1975, 1976) to model small

thermal diffusive instabilities in laminar flame fronts in two space dimensions. The equation (13), has515

been used here with the value L= 32π and has been discretized to 64 Fourier modes. In accordance with

the calculations of Manneville (1985), we observe chaotic motion with 27 positive Lyapunov exponents,

the largest one being λmax ≈ 0.13.

With L= 32π and the initial condition

u(x,0) = cos(
x

16
)
(
1+ sin(

x

16
)
)

(14)520

The system (13) is known to be stiff. The stiffness is due to rapid exponential decay of some modes (the

dissipative part), and to rapid oscillations of other modes (the dispersive part).

Figure 15, where the two panels are in the same format as Figure 1, shows the errors in the EnsVAR

assimilations, in both a linearized (top panel) and a fully nonlinear case (bottom panel) cases. The length

of the assimilation window, marked as 1 on the figure, is equal to
1

λmax
≈ 7.7 in units of Equation (13),525

i.e. a typical predictability time of the system. The shapes of the curves show that the K-S equation has

globally more stability and less instability than the Lorenz equation. The figure shows similar perfor-

mance for the linear and nonlinear situation. Other results (not shown) are also qualitatively very similar

to those obtained with the Lorenz equation: high reliability of the ensembles produced by EnsVAR, and

slightly superior performance over EnKF and PF.530
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8 Summary and conclusions

Ensemble Variational Assimilation (EnsVAR) has been implemented on two small dimension non-linear

chaotic toy models, as well as on linearized versions of those models.

One specific goal of the paper was to stress what is in the authors’ mind a critical aspect, namely to

systematically evaluate ensembles produced by ensemble assimilation as probabilistic estimators. This535

requires to consider these ensembles as defining probability distributions (instead of evaluating them

principally, for instance, by the error in their mean).

In view of the impossibility of objectively validating the Bayesianity of ensembles, the weaker property

of reliability has been evaluated instead. In the linear and Gaussian case, where theory says that EnsVAR

is exactly Bayesian, the reliability of the ensembles produced by EnsVAR is high, but not numerically540

perfect, showing the effect of sampling errors and, probably, of numerical conditioning.

In the nonlinear case, EnsVAR, implemented on temporal windows on the order of magnitude of the

predictability time of the systems, shows as good (and in some cases slightly better) performance as in

the exactly linear case. Comparison with the ensemble Kalman Filter (EnKF) and the Particle Filter (PF)

shows EnsVAR is globally as good a statistical estimator as those two other algorithms.545

On the other hand, EnsVar, at it has been implemented here, is numerically more costly than either

EnKF or PF. And the specific algorithms used for the latter two methods may not be the most efficient.

But it is worthwhile to evaluate EnsVAR in the more demanding conditions of stronger nonlinearity. That

is the object of the second part of this work.
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Appendix A

Methods for Ensemble Evaluation

This Appendix describes in some detail two of the scores that are used for evaluation of results in the

paper, namely the Reduced Centred Random Variable (RCRV) and the reliability-resolution decomposi-560

tion of the classical Brier score. Given a ‘predicted’ probability distribution for a scalar variable x and a

verifying observation ξ, the corresponding value of the Reduced Centred Random Variable is defined as

s≡ ξ−µ
σ

, (A1)

where µ and σ are respectively the mean and the standard deviation of the predicted distribution. For

a perfectly reliable prediction system, and over all realizations of the system, s , by the very definition565

of expectation and standard deviation, has expectation 0 and variance 1. This is true independently of

whether or not the predicted distribution is always the same. An expectation of s that is different from 0

means that the system is globally biased. If the expectation is equal to 0, a variance of s that is smaller

(resp. larger) than 1 is sign of global over- (resp. under-) dispersion of the predicted distribution. One can

note that, contrary to the rank histogram, which is invariant in any monotonous one-to-one transformation570

on the variable x , the RCRV is invariant only in a linear transformation. We recall the Brier score for a

binary event E is defined by

B= E
[
(p− p0)2

]
(A2)

where p is the probability predicted for the occurrence of E in a particular realization of the probabilistic

prediction process, p0 is the corresponding verifying observation (p0 = 1 or 0 depending on whether575

E has been observed to occur or not), and E denotes the mean taken over all realizations of the pro-

cess. Denoting by p′(p), for any probability p, the frequency with which E is observed to occur in the

circumstances when p has been predicted, B can be rewritten as

B= E
[
(p− p′)2

]
+E [p′(1− p′)] (A3)

The first term on the right-hand side, which measures the horizontal dispersion of the points on the580

reliability diagram about the diagonal, is a measure of reliability. The second term, which is a (negative)

measure of the vertical dispersion of the points, is a measure of resolution (the larger the dispersion, the
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higher the resolution, and the smaller the second term on the right-hand side). It is those two terms,

divided by the constant pc(1− pc), where pc = E(p0) is the overall observed frequency of occurrence of

E , that are taken in the present paper as measures of reliability and resolution585

Breli =
E
[
(p− p′)2

]
pc(1− pc)

(A4)

Breso =
E [p′(1− p′)]
pc(1− pc)

(A5)

Both measures are negatively oriented, and have 0 as optimal value. Breli is bounded above by 1/pc(1−
pc), while Breso is bounded by 1.590

Remark . There exist other definitions of the reliability and resolution components of the Brier score.

In particular, concerning resolution, the ‘uncertainty’ term pc(1− pc) (which depends on the particular

event E under consideration) is often subtracted from the start from the raw score (A2). This leads to

slightly different scores.

As said in the main text, more on the above diagnostics and, more generally, on objective validation of595

probabilistic estimation systems, can be found in, e.g., chapter 8 of the book by Wilks (2011), or in the

papers by Talagrand et al. (1997) and Candille and Talagrand (2005).

Appendix B

Negentropy

The negentropy of a probability distribution with density f(y) is the Kullback-Leibler divergence, or rel-600

ative entropy, of that distribution with respect to the Gaussian distribution with the same expectation and

variance. Denoting by fG(y) the density of that Gaussian distribution, the negentropy can be expressed as

N(f) =

∫
f(y) ln[

f(y)

fG(y)
]dy (B1)

The negentropy is always positive, and is equal to 0 if and only if the density f(y) is Gaussian. As

examples, a Laplace distribution has negentropy 0.072, while the empirical negentropy of a 30-element605

random Gaussian sample is ≈ 10−6 . In the case of small skewness s and normalized kurtosis k, the

negentropy can be approximated by

N(f)≈ 1

12
s2 +

1

48
k2 (B2)

It is this formula that has been used in the present paper.
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Fig. 1: Root-mean square errors from the truth as functions of time along the assimilation window (linear

and Gaussian case). Blue curve : error in individual minimizations. Red curve : error in the means of the

ensembles. Green curve : error in the assimilations performed with the unperturbed observations yk (Eq.

7). Dashed horizontal curve : standard deviation of the observation error. Each point on the blue curve

corresponds to an average over a sample of Nx ·Nwin ·Nens = 1.08.107 elements, each point on the red

and green curves to an average over a sample of Nx ·Nwin = 3.6.105 elements.
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Fig. 2: Diagnostics of statistical performance (linear and Gaussian case). Top left: rank histogram for

the model variable x. Top right : reliability diagramme for the event E = {x > 1.14} (black horizontal

dot-dashed line : frequency of occurrence of the event). Bottom : variation with threshold τ of the

reliability and resolution components of the Brier score for the events E = {x > τ} (red and blue curves

respectively, note the logarithmic scale on the vertical). The diagnostics have been computed over all

gridpoints, timesteps and realizations, making up a sample of size 7.56.106.
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Fig. 3: Histogram of (half) the minima of the objective function (9), along with the corresponding mean

(vertical black line) and standard deviation (horizontal blue line) (linear and Gaussian case).
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Fig. 4: Diagnostics relative to the non-linear and Gaussian case, with assimilation over 5 days. Top

panels are relative to one particular assimilation window. Left (horizontal coordinate : spatial position j)

: reference truth at the initial time of the assimilation window (black dashed curve), observations (blue

circles), minimizing solutions (full red curves). Right (horizontal coordinate : time along the assimilation

window): truth (dashed curve) and minimizing solutions (full red curves) at three points in space. Bottom

panel : overall diagnostics of estimation errors (same format as in figure 1).

28



0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

bins

fr
e

q
u

e
n

c
y

rank histogram 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

predicted probability
o

b
s
e

rv
e

d
 r

e
la

ti
v
e

 f
re

q
u

e
n

c
y

reliability diagram

−6 −4 −2 0 2 4 6 8
10

−5

10
−4

10
−3

10
−2

10
−1

threshold

L
o

g
(B

ri
e

r 
s
c
o

re
s
)

Brier scores

 

 

resolution

reliability

Fig. 5: Same as Figure 2, for the non-linear case (for the event E = {x < 1.} , which occurs with fre-

quency 0.33, as concerns the reliability diagramme on the top right panel).
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Fig. 6: Impact of the informative content of observations on the two components of the Brier score (non-

linear case). The format of each panel is the same as the format of the bottom panels of Figures 2 and

5 (red and blue curves : reliability and resolution components respectively). Top panel : impact of the

temporal density of the observations. Observations are performed every gridpoint, with error variance

σ2 = 0.4, and every time step (full curves) every second, and fourth timestep (dashed, and dash-dotted

curves respectively). Middle panel : impact of the spatial density of the observations. Observations are

performed every timestep, with error σ2 = 0.4, and at every gridpoint (full curves), and every second and

fourth gridpoint (dashed and dash-dotted curves respectively). Bottom panel : impact of the variance σ2

of the observation error. Observations are performed every second timestep and at every gridpoint with

observation error std σ =
√
0.4,2

√
0.4,and 4

√
0.4 (full, dashed and dash-dotted curves respectively.
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Fig. 7: Values of (half) the minima of the objective function for all realizations (non-linear case). (hori-

zontal coordinate : realization number ; vertical coordinate : value of the minima)
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starting point and having the same minimum (red curve).
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Fig. 9: Top left panel : Identical with the top right panel of Figure 4, repeated for comparison with figures

that follow. The other panels show the same diagnostics as in Figure 5, but performed at the final time

of the assimilation windows. Top right : rank histogram. Bottom left: reliability diagram for the event

E = {x > 1.33}, which occurs with frequency 0.42. Bottom right : components of the Brier score for the

events E = {x > τ} (same format as in the bottom panels of Figures 2 and 5.
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Fig. 10: Same as Figure 9, for the ensemble Kalman Filter.
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Fig. 11: Same as Figure 9, for the Particle Filter.
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Fig. 12: Same as Figure 9, but at the end of 5-day forecasts. On the top-left panel the horizontal axis

spans both the assimilation and the forecast intervals.
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Fig. 13: Same as figure 12, but for EnKF.
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Fig. 14: Same as Figure 12, but for PF.
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Fig. 15: Same as Figure 1, for variational ensemble assimilations performed on the Kuramoto-Sivashinsky

equation, i.e. root-mean-square error from the truth along the assimilation window, averaged at each time

over all grid points and all realizations, for both the linear and non-linear cases (top and bottom panels

respectively).
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