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Abstract. The energy dissipation rate is an important characteristic of turbulence; however, its magnitude in observational

profiles can be misidentified owing to its erratic evolution. By analysing observed data from oceanic turbulence, we show that

the vertical sequences of depth-averaged energy dissipation rates have a scaling property, and propose a method to suitably

estimate the vertically averaged value by utilizing that property. For scaling in the observed profiles, we found that averaging

neighbouring points increases the expected value of its logarithm proportionally to the logarithm of the averaging interval.5

Furthermore, the population mean can be estimated for the logarithm of the vertically averaged energy dissipation rate from a

single observation profile, by scaling up and promoting the observed value at each depth to one that corresponds to the whole

profile. The estimate allows to distinguish whether an observational profile exhibits a momentarily high value by intermittency

or maintains high energy dissipation on average.

1 Introduction10

The clear importance of determining the energy dissipation rate to study ocean general circulation has been highlighted in many

studies (e.g. Munk and Wunsch, 1998; Gregg et al., 1973). However, the calculation of its average magnitude in observational

profiles can be easily misled by its erratic evolution. To determine the accurate state of turbulent energy, we need to clarify the

definition of energy dissipation rate. To this end, we first define statistics regarding the energy dissipation rate, which is a term

conveying different meanings including the local, depth-averaged, and ensemble-averaged rate, and hence should be properly15

established.

The local energy dissipation rate is defined as

ǫ(x,ω)≡ ν

2

∑

i,j=1,2,3

(
∂ui

∂xj
+

∂uj

∂xi

)2

, (1)

where u = (u1,u2,u3) is a velocity vector, ν is the kinematic viscosity, x = (x1,x2,x3) = (x,y,z) = ( #�x ,z) ∈ R3 is a spatial

coordinate, and ω represents a probabilistic event.20

By taking the expectation, the ensemble-averaged energy dissipation rate is given by

E [ǫ(x)] =

∞∫

0

ǫ(x)p(ǫ(x))dǫ(x), (2)
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where p(ǫ(x)) is the probability distribution function of ǫ(x).

If we assign a value to a vertical segment
[
z− r

2 , z + r
2

]
⊂ R in an observed profile at horizontal location #�x ∈ R2, the

corresponding depth-averaged energy dissipation rate is given by

ǫr(x,ω) =
1
r

∫

z′∈[z− r
2 ,z+ r

2 ]

ǫ( #�x ,z′,ω)dz′. (3)

Energy dissipation rates obtained from oceanic observation (e.g. Itoh et al., 2009, and references therein) should be the depth-5

averaged ones (3) over some vertical segment with length scale r, because only the information from the segment is available,

and points within the segment are indistinguishable.

Next, we discuss observational data averaging. In the study of ocean energetics, it is important to determine how turbulence

energy dissipates on a large spatial scale and climate time scale, which should be represented by the ‘average’ energy dissipa-

tion rate (e.g., Waterhouse et al., 2014). Although previous studies have employed either arithmetic averaging, which conserves10

energy, or geometric averaging, which seems effective for a log-normal population (e.g., Whalen et al., 2015), no clear rea-

soning exists about the appropriate method of averaging observed energy dissipation rates, which would help us acquire a

perspective on large-scale ocean mixing.

Geometric averaging of the vertically neighbouring values of ǫr in Eq. (3) gives

ǫ̃r( #�x j ,ω
′) =

(
K∏

k=1

ǫr( #�x j , zk,ωk)

)1/K

,15

= exp

(
1
K

K∑

k=1

lnǫr( #�x j , zk,ωk)

)
, (4)

where zk = r(k− 1
2 ) and ω′ = ω1 ∩ω2 ∩ ·· · ∩ωK . Note that suffix z on the left-hand side of Eq. (4) is dropped because it is

defined for the profile. Assuming that the data in

{lnǫr( #�x j , zk,ωk) | k = 1,2, · · · ,K} (5)

approximately obey a Gaussian distribution for each j, ǫ̃r( #�x j ,ω
′) will serve as an estimate of the first parameter for the20

distribution of the energy dissipation rate at scale r in a profile with length ℓ = Kr.

In contrast, by arithmetically averaging the vertically neighbouring values of ǫr in Eq. (3), we could estimate the depth-

averaged energy dissipation rate for a longer vertical segment:

ǫℓ( #�x j ,ω
′) =

1
K

K∑

k=1

ǫr( #�x j , zk,ωk), (6)

where ℓ = Kr, zk = r(k− 1
2 ) and ω′ = ω1∩ω2∩·· ·∩ωK . Observing that the ωk’s represent distinct events because we cannot25

simultaneously consider all K observations at zk’s, ǫℓ( #�x j ,ω
′) corresponds to the depth-averaged energy dissipation rate of a

coarse-grained event, which contains K indistinguishable observations, instead of a single observational event.
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Assuming that lnǫℓ( #�x ) is populated according to a Gaussian distribution at a fixed horizontal location #�x , we can estimate

the population mean by averaging sample values lnǫℓ( #�x ,ωm), and the population mean is probably a key to the accurate

estimation of energy balance. Hence, rather than the statistics given in Eq. (4) or (6), we should focus on the population mean

for the logarithm of the vertical averages repeatedly sampled at each horizontal location. Specifically, assume that the data in

{lnǫℓ( #�x j ,ωm) |m = 1,2, · · · ,M} (7)5

approximately obey a Gaussian distribution N (µj ,σ
2
j ) for each j. The first parameter µj for the distribution of the energy

dissipation rate at scale ℓ is estimated to be

ǫ̃ℓ( #�x j ,ω
′′) =

(
M∏

m=1

ǫℓ( #�x j ,ωm)

)1/M

,

= exp

(
1
M

M∑

m=1

lnǫℓ( #�x j ,ωm)

)
, (8)

which can be derived from a series of M profile observations ω′′ = ω1∩ω2∩·· ·∩ωM . However, we do not have access to this10

estimate because it requires many repeated observations at a fixed horizontal location, each one offering a vertically averaged

instantaneous value ǫℓ( #�x j ,ωm).

We propose an alternative for Eq. (8) to estimate the first parameter for the distribution of the vertically averaged energy

dissipation rate for a profile by using a sequence of depth-averaged rates for shorter segments. To do so, we need to know the

statistical relation between the depth-averaged energy dissipation rates in scales ℓ and r, for ℓ≫ r. To bridge different scales,15

we unravel the scaling law that underlies the observational data.

In this regard, we use some hints from previous studies. Kolmogorov (1962) claims that the velocity correlation of homoge-

neous isotropic turbulence is expressed as a function of the volume-averaged energy dissipation rate. Given the intermittency

of turbulence, the logarithm of the depth-averaged energy dissipation rate obeys a Gaussian distribution, whose expected value

and variance depend linearly on the logarithm of the averaging scale. This claim suggests that the profiles of depth-averaged20

energy dissipation rates taken from any turbulence can have scale dependencies in general.

In this paper, we show that the observed data of depth-averaged energy dissipation rate have a scaling property and formalize

a method to estimate the first parameter for the distribution of the vertical average by using this property. The remaining of the

paper is organized as follows. In the next section, we analyse the scaling property and propose a calculation method for the

average. Then, we present calculation results by using real observational data. In the discussion, we describe the interpretation25

and importance of these results, and close the paper with conclusions on the importance of the proposed method and perspective

for applications.

2 Proposed method

In this section, we describe the turbulence observation data employed in this study, formalize the scaling dependence encoded

in the data, and detail a method for calculating the vertical average accounting for the scaling relation.30
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2.1 Observational data

The turbulence observational data were retrieved from the Pacific ocean (Fig. 1) (Goto et al., 2018) and comprise approximately

400 profiles, each of which typically extends over 2000 to 6000 m-depth below the sea surface, with observational points every

5 to 10 m.

These positive-valued data have the following characteristics:5

1. For sequential data in ordered set

{ǫr( #�x j , zk) | k = 1,2, · · · ,K} ,

each profile exhibits a very erratic evolution that impedes the recognition of a continuous curve along the depth direction

(Fig. 2(a)).

2. After taking the logarithm of the values, the sequences seem more continuous (Fig. 2(b)). If we treat individually all the

available data in nonordered set

{lnǫr( #�x j , zk) | j = 1,2, · · · ,J ;k = 1,2, · · · ,K} ,

the distribution of the logarithmic values approximately resembles a Gaussian distribution (Fig. 4), as pointed out by

Gregg et al. (1973). We use this log-normality only in the approximate sense.

3. For the logarithmic sequence in ordered set

{lnǫr( #�x j , zk) | k = 1,2, · · · ,K} ,

after averaging each vertically neighbouring pair of values ǫr in a profile (Fig. 2(c)), the sequence shows larger values of

lnǫr′ than the original sequence on average:

Ez [lnǫr′ − lnǫr] > 0, r′ = 2r,

where Ez represents averaging in any vertical interval larger than r′ (Fig. 2(d)).10

4. If we repeat procedure 3, we obtain the sequences that have even larger values of lnǫr′ on average (Fig. 3).

The above shift is a direct consequence of the inequality of arithmetic and geometric means, i.e.

ǫ2r =
ǫ
(U)
r + ǫ

(L)
r

2

≥
(
ǫ(U)
r ǫ(L)

r

)1/2

= exp

(
lnǫ

(U)
r + lnǫ

(L)
r

2

)
,

for the upper, (U), and lower, (L), parts of ǫ2r. However, the shift amount can be a specific property of the analysed data.15

Furthermore, although the shifts lnǫ2r′ − lnǫr′ are fluctuating from point to point, it is suggested that the vertical average of

the shifts for a profile does not differ much between all the observed profiles.
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Figure 1. Horizontal locations of the observed profiles (red), and land-sea boundaries (green). The units of longitude and latitude are ◦E and

◦N, respectively.

2.2 Scaling analysis

The statistical phenomenon observed in Fig. 3 can be attributed to the scaling properties encoded in the data sequence from the

profiles. Here, we introduce a random variable α, which serves as the factor of proportionality, and postulate that averaging

neighbouring points increases its logarithmic value proportionally to the logarithm of the averaging interval:

ln
ǫr′( #�x ,z′)
ǫr( #�x ,z)

= α ln
r′

r
, (9)5

where the right-hand side is αn ln2 for r′ = 2nr. By taking the expectation, we obtain

E
[
ln

ǫr′( #�x ,z′)
ǫr( #�x ,z)

]
= E[α] ln

r′

r
. (10)

The target population here is all possible states of profiles at any horizontal points of observation. Thus, if we interpret E as

averaging Ex among all the available pairs of segments with length r and r′ taken from observed profiles at various horizontal
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Figure 2. Appearances of observed profiles.

locations, then Eq. (10) serves as an estimator for the factor:

α̂ = Ex

[
ln

ǫr′( #�x ,z′)
ǫr( #�x ,z)

]
/

(
ln

r′

r

)
. (11)

Note that the estimated value α̂ is accompanied by an estimation error, which will be discussed later in section 3.1.2.

If this assumption holds and factor α̂ is calculated from observational data, then we obtain an estimator for the vertically

averaged energy dissipation rate in a larger segment:5

ln ǫ̂r′( #�x ,z′) = lnǫr( #�x ,z) + α̂ ln
r′

r
, (12)

which corresponds to several lnǫr( #�x ,z)’s centred at z satisfying [z− r/2, z + r/2]⊂ [z′− r′/2, z′ + r′/2] , and thus there are

2n estimates per lnǫr′( #�x ,z′). Estimated values ǫ̂r′( #�x j , zk) and the arithmetic mean ǫr′( #�x j , zk) calculated from observational
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Figure 3. Evolution of averages Ez [lnǫr′ − lnǫr] as r′ increases. For simplicity of presentation, Bèzier curves are used for average Ez .

data satisfy

∏

j,k

ǫ̂r′( #�x j , zk) =
∏

j,k

ǫr′( #�x j , zk), (13)

where the geometric summation is taken for every pair of segments with lengths r and r′ taken from profiles at various

horizontal locations.

If the observational points in a profile are arranged with uneven spacing and their coordinates are approximated by a power5

function zk = akc + b, k = 0, 1, 2, · · · , the left-hand side of Eq. (9) should be corrected as c−1 ln(ǫr′/ǫr) for the right-hand

side to share the common form α̂n ln2. In detail, the scaling analysis based on Eq. (9) is performed as follows:

1. Suppose we have an observational sequence in ordered set

{ǫr( #�x j , zk) | k = 1,2, · · · ,Kj}

for each j.

2. By averaging vertically neighbouring 2n points, we obtain ordered set

{ǫr′( #�x j , zk′) | k′ = 1, 2, · · · , [Kj/2n]} ,

where r′ = 2nr and

ǫr′( #�x j , zk′) = 2−n
2nk′∑

k=2n(k′−1)+1

ǫr( #�x j , zk).

As a typical observational segment is r ≃ 5 m, with profile length 5000 m, n is not larger than 10 ; ln(5000/5)/ ln2.
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Figure 4. Distribution of logarithm of observational data (bar chart), and the best-fitting Gaussian distribution (red).

3. With respect to all possible triplets (j,k,k′) for fixed n, we calculate the average of

c−1
j [lnǫr′( #�x j , zk′)− lnǫr( #�x j , zk)] ,

where cj is the correction for the uneven observational spacing, and denote the average as Yn.

4. Plot (n ln2,Yn) , n = 0, 1, 2, · · · , 10 and find the best-fitting slope. Considering measurement error, the fitting is

performed as a curve (see Appendix A).
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2.3 Rescaled average

Suppose S( #�x ) represents the observation of a profile at coordinate #�x , i.e. the set of all pairs of segments with length ℓ and

r in a profile of length ℓ = Kr. Assuming statistical homogeneity of α in Eq. (9) and applying it to the events in S( #�x ), the

conditional expectation is

Ex

[
ln

ǫℓ

ǫr

∣∣∣∣S( #�x )
]

= α̂ ln
ℓ

r
= α̂ lnK. (14)5

This implies an estimator for the first parameter for the distribution of vertical average ǫℓ( #�x ):

ǫ̂ℓ( #�x )≡ exp(Ex [lnǫℓ|S( #�x )])

= exp

(
1
K

K∑

k=1

ln ǫ̂ℓ( #�x ,ωk)

)

=

(
K∏

k=1

(
Kα̂ǫr( #�x ,zk,ωk)

))1/K

, (15)

where we used ln ǫ̂ℓ( #�x ,z′) = lnǫr( #�x ,z) + α̂ lnK for the third equality. Here, ‘the first parameter’ is for the log-normal dis-10

tribution of the states that can occur during the profile observation. Note that in general, estimate ǫ̂ℓ( #�x ) is neither equal to

geometric mean ǫ̃r( #�x ) in Eq. (4) nor to arithmetic mean ǫℓ( #�x ) in Eq. (6). Instead, it is similar to ǫ̃ℓ( #�x ) in Eq. (8) except that

every lnǫℓ( #�x ,ωm) is substituted by the estimated ln ǫ̂ℓ( #�x ,ωk), which resemble K repeated observations (see Fig. 5). Hereafter,

the estimate given by Eq. (15) is called the rescaled average.

We cannot necessarily assume statistical homogeneity of α along the horizontal or vertical direction. With this in mind, we15

also consider the conditional expectations using three different α̂ values:

Ex

[
ln

ǫℓ

ǫr

∣∣∣∣Si( #�x )
]

= α̂i ln
ℓ

r
, (16)

where i denotes either three horizontal regions, as those divided by dashed lines in Fig. 1, or two vertical regions above and

below 200 m depth. Consequently, α̂i is derived from the scaling analysis using the data from region i, and thus we have other

approximation formulae for ǫℓ( #�x ):20

ǫ̂ℓ( #�x )≡ exp(Ex [lnǫℓ|Si( #�x )])

=

(
K∏

k=1

(
Kα̂iǫr( #�x ,zk,ωk)

))1/K

, (17)

according to the region that #�x belongs to.
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Figure 5. Concept of rescaled average. A single observation (green square) is rescaled to the profile length (purple rectangle) and treated as

an ensemble member.

3 Results

3.1 Scaling analysis

3.1.1 Estimated value

By using the observational data, we conducted the scaling analysis according to the procedure described at the end of sec-

tion 2.2. The values of Ex [ln(ǫr′/ǫr)] are plotted against ln(r′/r) as black dots in Fig. 6, where a scaling relation with expo-5

nent α̂ = 0.467 valid from r = 5 m to r = 5000 m can be observed.

The comparison among data above and below 200 m shows that the scaling appears to be statistically homogeneous along

the depth direction (top graph of Fig. 6). On the other hand, the comparison among data from the three horizontal areas does

10

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2018-48
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 10 December 2018
c© Author(s) 2018. CC BY 4.0 License.



not necessarily show that the scaling is homogeneous along the horizontal direction (bottom graph of Fig. 6). The estimated

scaling exponents are α̂1 = 0.375 for the area with y ≥ 45 ◦N, α̂2 = 0.462 for y < 45 ◦N and x < 150 ◦E, and α̂3 = 0.530 for

y < 45 ◦N and x≥ 150 ◦E, where x is the longitude and y is the latitude.

These results confirm the claim that averaging neighbouring points increases the expected value of its logarithm by a rate,

α̂ > 0 or α̂i > 0, proportional to the logarithm of the averaging interval. Moreover, we determined the values of the scaling5

exponent through the statistical analysis of the observational data.

3.1.2 Estimation error

For simplicity, here we only consider the case with a single α̂. The scaling relation (11) provides a mean estimate for α from

the data as

α̂ = Ex [A] , (18)10

A≡ ln
(

ǫr′( #�x ,zk′ ,ωk′)
ǫr( #�x ,zk,ωk)

)
/ ln

r′

r
. (19)

We can also calculate the variance of the estimated α from the data as

σ2
α = Ex

[
A2
]
−Ex [A]2

= E #�x

[
Ez

[
A2
]
−Ez [A]2

]
+ E #�x

[
Ez [A]2

]
−E #�x [Ez [A]]2

≡ σ2
intra + σ2

inter, (20)15

where σ2
intra is the average of variances within a profile, and σ2

inter is the variance of profile-averages. Figure 7 shows that σintra

and σinter are approximately 0.44 and 0.20, respectively, when r′≫ r.

3.2 Rescaled average

3.2.1 Estimated value

The vertical average of the energy dissipation rate for the upper ℓ = 2000 m at each horizontal location was calculated according20

to Eq. (15) or (17). The value of ℓ was selected such that the length of the calculated segments agrees with that of a typical

observed profile. We excluded the profiles with less than 50 data points in the upper 2000 m.

In Fig. 8, the simple arithmetic average from Eq. (6) is compared with the rescaled estimates using a single α value (top

graph) and three α values (bottom graph). In most points, the rescaled estimate shows larger values than the arithmetic average,

which still exhibits very large values intermittently, unlike the rescaled estimate. There seems to be no significant difference25

between the distributions in the top and bottom graphs of Fig. 8. These results suggest that we can suitably estimate the order

of the values even using a single α value.
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3.2.2 Estimation error

Here, we only consider the case with a single α for simplicity, and fix a horizontal location #�x . We assume that lnǫℓ( #�x ) is

populated according to an almost Gaussian distribution with unknown mean µ and variance σ2, which are to be estimated.

Using the arithmetic averaging strategy, we obtain a single sample lnǫℓ = ln
(
K−1

∑K
k=1 ǫr( #�x ,zk)

)
with variance σ2

lnǫℓ
=

σ2, and the likelihood of population mean µ is proportional to exp
(
(µ− lnǫℓ)2/(2σ2

lnǫℓ
)
)
. Note that, basically, we cannot5

obtain any information about the estimation error.

By contrast, using the rescaled averaging strategy, we retrieve K samples yk = lnǫr( #�x ,zk), k = 1,2, · · · ,K from an al-

most Gaussian population with variance σ2
lnǫr

, and rescale them into y′k = lnǫr( #�x ,zk) + α( #�x ,zk) lnK at the cost of addi-

tional uncertainties of α for intra-profile and inter-profile. Hence, the likelihood of the population mean µ is proportional to
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exp
(
(µ− ln ǫ̂ℓ)2/(2σ2

ln ǫ̂ℓ
)
)
, where

ln ǫ̂ℓ = K−1
K∑

k=1

y′k

= K−1
K∑

k=1

lnǫr( #�x ,zk) + α̂ lnK, (21)

σ2
ln ǫ̂ℓ

≃K−1σ2
lnǫr

+ K−1(σintra lnK)2 + (σinter lnK)2. (22)

Inserting typical values in the observed data for K ≫ 1, we obtain5

σ2
ln ǫ̂ℓ

≃ 2.62/K + (0.44lnK)2/K + (0.20lnK)2, (23)

where σ2
lnǫr

= 2.62 is the average of intra-profile variance of lnǫr calculated from observational data, and σintra and σinter are

from sect 3.1.2. In particular, for K = 2000 m/5 m = 400, we have σln ǫ̂ℓ
= 1.2, which is 0.52 in common logarithm.

Comparing the estimation errors σln ǫ̂ℓ
and σlnǫℓ

, although the rescaled average is not necessarily more accurate than the

arithmetic average, the former has explicitly defined uncertainty that remains relatively unchanged from profile to profile,10

which is an advantage as an estimate for the first parameter.

3.2.3 Horizontal distribution

Figures 9 and 11 show the horizontal distribution of the vertically averaged energy dissipation rate by using a single and three

α̂ values, respectively. A cross section along 47 ◦N is shown in Fig. 10. The distributions of the areas with large ǫℓ value are

different in many regions between the rescaled and arithmetic averages, despite some similarities. High peaks are sometimes15

isolated for the arithmetic average, whereas they tend to form clusters for the rescaled average (see Fig.10), which has at most

the order of 3× 10−8 to 1× 10−7 W · kg−1 (see Figs. 9 and 11), suggesting that the rescaled average captures more robust

features from the distribution of energy dissipation.

These results indicate that the calculated values from rescaled averaging can be used to correctly interpret the horizontal

distribution of energy dissipation.20

4 Discussion

1. Previous studies have not clarified the relation between small-scale observation of turbulence in several meters with

data substantially intermittent and the large-scale features of energy dissipation, which should be more persistent. In this

paper, we propose a method to relate them quantitatively by elucidating the scaling relations underlying the observational

data and thereby estimating the vertical average through rescaled averaging.25
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2. The volume-averaged energy dissipation rate can be considered as the value when the local energy dissipation rate, a

Schwartz distribution, is evaluated against a test function φ:

ǫ(φλ
z0

) =
∫

ǫ(z)
1
λ

φ

(
z− z0

λ

)
dz, (24)

where the integration is a formal notation. For example, expected value E
[
ln ǫ2nr(z0)

ǫr(z0)

]
can be regarded as the comparison

between the estimation of local energy dissipation rate ǫ(z0 + z) and its rescaled version ǫ(z0 + 2nz) in segment z ∈5

[−r/2, r/2], where we use indicator function φ(z) = r−1
1[−r/2,r/2](z) as test function. In terms of the local energy

dissipation rate, the scaling law in Eq. (9) means

E


ln

1
r

∫ r/2

−r/2
2−αnǫ(z0 + 2nz)dz

1
r

∫ r/2

−r/2
ǫ(z0 + z)dz


= 0, (25)

because

ǫr(z0) =
1
r

r/2∫

−r/2

ǫ(z0 + z)dz,10

ǫ2nr(z0) =
1
r

r/2∫

−r/2

ǫ(z0 + 2nz)dz. (26)

3. In principle, the scaling property represents the self-similarity underlying the local energy dissipation rate defined along

the depth axis.

From Eq. (10), E
[
ln 2−αnǫ2nr(zk)

ǫr(zk)

]
= 0, which implies that the sequence of 2−αnǫ2nr(zk) is similar to that of ǫr(zk) in

the logarithmic scale. We can illustrate the self-similarity inherent to the profile data by scaling them appropriately to15

obtain similar sequences ζ2nr in Fig. 12. Specifically, if we use a test function defined with the aid of indicator function

φ〈z1〉(z) = r−1
1[z1−r/2,z1+r/2](z), (27)

and rescale it to

φ2n

z0
(z) = 2−nφ〈z1〉

(
z− z0

2n

)
, (28)

the evaluation of ǫ against this test function is given by20

∫
ǫ(z′)2−nφ〈z1〉

(
z′− z0

2n

)
dz′

=
1
r

r/2∫

−r/2

ǫ(z0 + 2n(z′ + z1))dz′

= ǫ2nr (z0 + 2nz1) , (29)
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which has scale 2αn. We can thus define statistically invariant sequence

ζ2nr(z0 + z)≡ 2−αnǫ2nr (z0 + 2nz) (30)

around z0 for each n = 0, 1, · · · .

5 Conclusions

1. In this paper, we show that the logarithmic sequences of observed depth-averaged energy dissipation rate exhibit a5

scaling dependence, and formalize the estimation of the population mean for the logarithm of the vertically averaged

rate by using this dependence.

2. From the scaling property in the observed profiles, we found that averaging neighbouring points increases the expected

value of its logarithm by a rate proportional to the logarithm of the averaging interval. Furthermore, this property allows

us to estimate the population mean for the logarithm of the vertically averaged energy dissipation rate from ocean10

turbulence profile data.

3. By scaling up and promoting the observation value at each depth to one corresponding to the whole profile, information

from a virtual series of profile observations can be extrapolated from a single profile observation.

4. The estimate of the vertically averaged energy dissipation rate is accompanied by an explicitly defined estimation error

for the population mean, and serves as a measure for distinguishing momentarily large but intermittent values from15

persistently large energy dissipation on average. In addition, the estimated vertical average should correspond to the

energy dissipation rate used in ocean general circulation models, in which case the water column depth can be considered

for ℓ in Eq. (16).

5. The scaling exponent depends on the horizontal location, as the turbulence differs among places. Therefore, more obser-

vations are needed to establish a more accurate scaling relation. To estimate the spatial distribution of energy dissipation,20

data assimilation into an ocean general circulation model can be performed using the procedure proposed in this study.

Data availability. The ocean turbulence dataset is under preparation for public release by the Atmosphere and Ocean Research Institute,

University of Tokyo.
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Appendix A: Measurement error in scaling analysis

If observational data ǫobs,r contain measurement error ηr obeying N (0,Σ2), from logarithmic manipulation we obtain

E [lnǫobs,r] = lim
q→0+

E

[
ǫq

obs,r − ǫ−q
obs,r

2q

]

; E [lnǫr]−
1
2

E

[(
ηr

ǫr

)2
]

. (A1)

This has the following effect on scaling:5

E [lnǫobs,r′ − lnǫobs,r]

; E [lnǫr′ − lnǫr]−
1
2
Σ2 E

[
(ǫr)−2

]
[

E
[
(ηr′/ǫr′)2

]

E [(ηr/ǫr)2]
− 1

]

= α(lnr′− lnr) + Dr

[
1−

(
r′

r

)−1+h(−2)
]

, (A2)

where Dr ≡ 1
2Σ2 E

[
(ǫr)−2

]
and h(−2) is the scaling exponent for ǫ−2

r .

The data may contain errors at most in the order of Dr > 0. Hence, we use a curve of the form y = ax + b(1− e−cx) for10

fitting, and regard c as the slope for ln(ǫr′/ǫr).
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Figure 8. Scatter plot of depth-averaged energy dissipation rates for upper 2000 m comparing the expected value obtained from rescaled and

arithmetic averaging. The top and bottom graphs show the results using a single and three α̂ values, respectively.
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Figure 9. Horizontal distribution of vertically averaged energy dissipation rate using a single α̂ value and the rescaled averaging (orange)

and arithmetic averaging (blue). The top graph shows the whole evaluated area, and the bottom graph shows an enlarged view around Japan.

The units of longitude and latitude are ◦E and ◦N, respectively.
20

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2018-48
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 10 December 2018
c© Author(s) 2018. CC BY 4.0 License.



 0

 0.01

 0.02

 0.03

 0.04

 160  170  180  190  200  210  220  230

ε l
 [

1
0

-7
 W

 k
g

-1
]

longitude

rescaled
arithmetic

Figure 10. Horizontal distribution of vertically averaged energy dissipation rate using a single α̂ value and the rescaled averaging (orange)

and arithmetic averaging (blue). A cross section along 47 ◦N is shown. The unit of longitude is ◦E.
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Figure 11. Horizontal distribution of vertically averaged energy dissipation rate by using three α̂ values and the rescaled averaging (orange)

and arithmetic averaging (blue). The top graph shows the whole evaluated area, and the bottom graph shows an enlarged view around Japan.

The units of longitude and latitude are ◦E and ◦N, respectively.
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Figure 12. Statistical self-similarity in the profiles. Sequences
{
ζ2nr(z0 + z)≡ 2−αnǫ2nr (z0 + 2nz) | n = 0, 1, 2, 3

}
depict arithmetic

averages of 2n neighbouring values in the sequence of ǫr , shrinking along the z direction by 2−n = 0.5n, and then contracting the value by

factor 2−αn = 2−0.467n = 0.723n. The reference point for scaling transformation is z0 = 300 m.
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