
1

I. ADDITIONS

We have added a citation to our own problems package that was used in the creation of this paper. We have also
added rough results about the amount of Lyapunov exponents and fractal dimension of the QGSO model.

Some additional citations other than the ones asked for by the referees have been added in order to paint a more
complete picture of the current state of knowledge.

A sentence has been added thanking the referees for their input into the quality of the paper.
Oracles have been clarified a bit and the introduction has been expanded.
Some duplicate information has also been removed.

II. RESPONSE TO REFEREE 1

We thank the referee for the many technical suggestions.

A. Specific Comments

1. The manuscript requires some rearrangement. It is unclear as to why the introduc- tion began by
describing a model. This part is more suited for the Background section.

This makes sense. Done.

2. The motivation, objectives, and methods of the study should be clearly stated in the introduction. Some
of these are actually discussed in the Conclusions. Please make appropriate revisions.

The introduction has been fleshed out to include more of our motivations and aims.

3. Expand your literature review as to include other studies that have done applications of adaptive local-
ization in ensemble methods

This has been done, in conjunction to the recommendations of referee 2.

4. P5: the uncertainty in space is represented by pi(x|y, v), but according to equation (12), it should read
pi(x|y, v)

We are not sure what this comment is referring to.

5. P6: for equation (15), you may want to add that the chain rule was also used, in case you want to
reach out to students, as derivations might not be too trivial

This is reasonable, and has been done. An additional comment about symmetric semi-positive definite matrices
was also added.

6. P7: equation (18) takes the form of an EnVar-like cost function. Comment on the applicability of your
univariate or multivariate adaptive localization technique for hy- brid EnVar data assimilation systems
and also discuss limitations

An additional comment has been made discussing this.

7. P9, L3-10: Clarify if univariate localization functions were used and whether the extension of the
localiza- tion matrix was done in the present study. Would this help in making your methodology suitable
for testing with more complex geophysical models?

We have clarified that we did not use multiple localization functions in this paper, removing doubt that multivariate
localization was used. We are not sure how this point related to more complex geophysical models, however we have
clarified that point separately.

8. P10, L11-17: How do oracles compare to optimal parameter estimation as employed in control theory,
with many applications in variational data assimilation?
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A comment was added clarifying that oracles are a type of minimal variance estimator of a full space in a restricted
space.

9. P11, L22: Comment on the choice of 10 members for the ensemble and clarify if varying this number
can impact your results

A comment was added clarifying the choice of 10 ensemble members in Lorenz ’96. The question of varying the
amount of ensemble members has been explored in other literature, and is outside the scope of this paper.

10. There are some mathematical notation typos, please revise all equa- tions thoroughly, and make sure
to conform to the mathematical notation standards of NPG for all scalars, vectors, matrices, etc.

All mathematical notation was changed to conform with the NPG guidelines, which mainly meant changing vectors
to be boldface italics. The only Exception being the localization matrix ρ, as we could not find a way to have non-italic
greek letters in conventional latex. Some other notation has been clarified (like indexing into columns using MATLAB
syntax) in order to improve readability.

11. Given the results with a simple geophysical model, provide a brief overview on how this methodology
could be tested with a complex numerical weather prediction model (e.g. regional/convection allowing mod-
els)?

A sentence was added in the conclusion about the possibility of applying this approach to the WRF model.

12. Provide more quantitative estimates in the “Results” and in the “Conclusions” sections

Quantitative estimates were previously provided in the figures. The figure captions have not been changed, but
discussion about the results has also been provided where the figures are cited, with some additional quantitative
estimates.

B. Technical Corrections

All relevant typos have been addressed. Some comments in the typo section would have erroneously changed the
semantics of several key statements and have thus been ignored.

More detailed information was added to the places where the figures are referenced, though we feel full duplication
of the information would not be a good presentation of the information in the final publication.

III. RESPONSE TO REFEREE 2

We thank the referee for many detailed suggestions and interesting questions.

A. Specific comments

Several important references are missing from the Introduction, e.g. Menetrier et al, 2015, Flowerdew,
2015 considered optimal localization, Buehner et al., 2015 suggested scale-dependent localization.

These have been added.

I suggest rearranging the text so that everything related to multivariate localization is in section 3.2 (Exten-
sion to multivariate localization functions). I think describ- ing univariate case first, and then introducing
groups for different localization radii (currently P5, L7-13) when extending to multivariate localization
functions might improve the manuscript readability.

This is a good point. In order to make the transition smoother and emphasize the fact that the multivariate
approach is important, it has been moved into its own section in front of the Bayesian Approach section.

There seems to be a contradiction between 4.2 and 4.3. P11, L27-28 state that the problem is better
suited for multivariate localization, while P12, L11- 12 state that the canonical L96 model is ill suited for
multivariate adaptive localization.
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There is no contradiction between 4.2 and 4.3. Although it is a bit confusing, Lorenz ’96 was only tested with
univariate adaptive localization, and the prediction was that the problem is not suited for this. This has been clarified
in (the previous) 4.2.3 by adding the word ‘univariate’.

I would like to see more details on the L96 multivariate localization experi- ment setup (Figure 5). Were
the groups fixed throughout the experiment? How were they chosen? Did the groups use the same mean
and variance parameters at each assimilation cycle? If the groups were fixed, it would be interesting to see
how the estimated localization radii vary for different groups throughout the experiment.

This segues into the next point about the multivariate Lorenz ’96. Whereby in the normal Lorenz ’96 there is no
sensible way to create groupings (other than each variable being in its own group), We essentially create artificial
groups through the varying forcing. All this has been clarified in the text.

I see that in L96 experiments half of the domain is more sparsely observed than the other. Introduction
(P2, L34-35) states that optimal localization may depend on observation properties. In L96 experiments,
did you see evidence of the optimal localization radii being dependent on observation density?

An graph of the multi-group localization radii has been generated and discussed in the text, showcasing the differ-
ences between the radii of sparsely and fully observed groups.

Section 4.4.1, Figure 8. If instead of fixing the mean parameter to be the same as the constant suboptimal
radius at each assimilation cycle, the adaptive localization radius estimated at the previous DA cycle was
used to estimate the mean parameter, would the adaptive localization radius con- verge to the optimal one
after some DA cycling?

The idea of doing an online radius mean estimate has been explored, but unfortunately as the optimal radii between
steps are weakly correlated, and are not normally distributed, this often lead to suboptimal convergence of the radius
estimate, and often lead to filter divergence. This idea is outside the scope of this paper in our opinion.

B. Questions on Extensions

How does this method extend to the ensemble DA algorithms other than DEnKF?

A paragraph has been added discussing this in the ‘Solving the Optimization Problem’ section, as the answer is
closely tied with that problem.

For large DA applications like NWP, ensemble filters similar to DEnKF typically assimilate observations
sequentially, and use P fHT localization instead of Schur-product P f localization which becomes too
expensive. Would the method still be applicable in this case, and if so, how would it change?

This is already done in the paper! This has been clarified in the section discussing this approach.

Do you have a recommendation on how the groups for multivariate adaptive localization should be chosen?

A paragraph discussing this has been added to the multivariate Lorenz ’96 localization results.

C. Technical comments

What is subscript i in Equation 10?

The subscript i has been removed from equation (10). It was a typo holdover from a previous version of the manuscript.
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Abstract. Ever since its inception, the Ensemble Kalman Filter has elicited many heuristic methods that sought to correct

it. One such method is localization—the thought that ‘nearby’ variables should be highly correlated with ‘far away’ variable

:::::::
variables

:
not. Recognizing that correlation is a time-dependent property, adaptive localization is a natural extension to these

heuristics. We propose a Bayesian approach to adaptive Schur-product localization for the DEnKF, and extend it to support

multiple radii of influence. We test both the empirical validity of (multivariate) adaptive localization, and of our approach.5

We test a simple toy problem (Lorenz’96), extending it to a multivariate model, and a more realistic geophysical problem

(1.5 Layer Quasi-Geostrophic). We show that the multivariate approach has great promise on the toy problem, and that the

univariate approach leads to improved filter performance for the realistic geophysical problem.

1 Introduction

We consider a computational model that approximates the evolution of a physical dynamical system such as the atmosphere:10

xi+1 =Mi,i+1(xi) + ξi,i+1,

The (finite-dimensional) state of the model xi ∈ Rn at time ti approximates the (finite-dimensional projection of the) physical

true state xt
i ∈ Rn. The computational model is inexact, and we assume the model error to be additive and normally distributed,

ξi,i+1 ∼N (0,Qi).

The initial state of the model is also not precisely known, and to model this uncertainty we consider that it is a random15

variable drawn from a specific probability distribution:

x0 ∼N (xt
0,P

b
0).

Consider also observations of the truth,

yi+1 =H(xt
i+1) +ηi+1,

that are corrupted by normal observation errors ηi+1 ∼N (0,Ri+1). We consider here the case with a linear observation20

operator,H := H.
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Data assimilation (Asch et al., 2016; Law et al., 2015; Evensen, 2009; Reich and Cotter, 2015) fuses information from the

model forecast states (1) and observations (3) in order to obtain an improved estimation of the truth at any given point in

time. Data assimilation approaches include the Ensemble Kalman Filters (EnKF) (Evensen, 1994, 2009; Constantinescu et al.,

2007b) that rely on Gaussian assumptions, particle filters for non-Gaussian distributions (Van Leeuwen et al., 2015; Attia et al.,

2017; Attia and Sandu, 2015), and variational approaches, rooted in control theory (Le Dimet and Talagrand, 1986; Sandu5

et al., 2005; Carmichael et al., 2008)

The EnKF is an important family of data assimilation techniques that propagate both the mean and covariance of the state

uncertainty (2) through the model (1) using a Monte-Carlo approach. While large dynamical systems of interest have a large

number of modes along which errors can grow, the number of ensemble members used to characterize uncertainty remains

relatively small due to computational costs. As a result, inaccurate correlation estimates obtained through Monte Carlo sam-10

pling can profoundly affect the filter results. Techniques such as covariance localization and inflation have been developed to

alleviate these problems (Petrie and Dance, 2010).

Localization techniques take advantage of the fundamental property of geophysical systems that correlations between vari-

ables decrease with spatial distance (Kalnay, 2003; Asch et al., 2016). This prior knowledge is used to scale ensemble-estimated

covariances between distant variable such as to reduce inaccurate, spurious correlations. The prototypical approach to local-15

ization is a Schur-product-based tapering of the covariance matrix (Bickel et al., 2008); theoretical results ensure that the

covariance matrices estimated using small ensembles sampled from a multivariate normal probability distribution, upon ta-

pering, approach quickly the true covariance matrix.
:
A
::::::

formal
::::::

theory
::
of

::::::::::
localization

:::::::::::::::::
(Flowerdew, 2015)

::
has

:::::
been

:::::::::
attempted,

::::::
though

:
a
::::
true

::::::::::
multivariate

::::::
theory

::
is

:::
still

:::
out

:::
of

:::
our

:::::
grasp.

:
Practical implementations of localization rely on restricting the in-

formation flow, either in state space or in observation space, to take place within a given “radius of influence” (Hunt et al.,20

2007). Some variants of EnKF like the Maximum Likelihood Ensemble Filter (MLEF) (Zupanski, 2005) reduce the need for

localization, while others use localization in order to efficiently parallelize in space the analysis cycles
::
in

:::::
space (Nino-Ruiz

et al., 2015).

The performance of the EnKF algorithms critically depends on the correct choice of localization radii (a.k.a, the decorre-

lation distances), since values that are too large fail to correct for spurious correlations, while values that are too small throw25

away important correlation information. However, the physical values of the spatial decorrelation scales are not known apri-

ori, and they change with the temporal and spatial location. At the very least the decorrelation scales depend on the current

atmospheric flow. In atmospheric chemistry systems, because of the drastic difference in reactivity, each chemical species

has its own individual localization radius (Constantinescu et al., 2007a).
:::::::::
Multi-scale

:::::::
schemes

::::::::::::::::::::::::::
(Buehner and Shlyaeva, 2015)

::
for

::::::::::
localization

:::
are

:::
an

:::::::::
immediate

::::::::
necessity. Clearly, the widely used approach of estimating decorrelation distances from his-30

torical ensembles of simulations, and then using a constant averaged value throughout the space and time domain, lead to a

suboptimal performance of Ensemble Kalman filters.

Adaptive localization schemes seek to estimate decorrelation distances from the data, such as to optimize the filter per-

formance according to some criteria. One approach to adaptive localization utilizes an ensemble of ensembles to detect and

mitigate spurious correlations (Anderson, 2007). Relying purely on model dynamics and foregoing reliance on spatial proper-35
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ties of the model, the method is very effective for small scale systems, but its applicability to large-scale geophysical problems

is unclear. There is, however, evidence that optimal localization depends more on ensemble size and observation properties than

on model dynamics (Kirchgessner et al., 2014), and that adaptive approaches whose correlation functions follow these dynam-

ics do not show a significant improvement over conventional static localization (Bishop and Hodyss, 2011). Methods such as

sampling error correction (Anderson, 2012) take advantage of these properties to build correction factors and apply them as an5

ordinary localization scheme. A different approach uses the inherent properties of correlation matrices to construct Smoothed

ENsemble COrrelations Raised to a Power (SENCORP) (Bishop and Hodyss, 2007) matrices, that in the limiting case remove

all spurious correlations. This method relies purely on the statistical properties of correlation matrices, and ignores the model

dynamics and the spatial and temporal dependencies it defines. A
::::
more

:::::::::::
theoretically

:::::
sound

::::::::
approach

::::::::::::::::::::
(Ménétrier et al., 2015)

:::::
would

:::
try

::
to

:::::
create

::
a
::::::::::
localization

::::::
matrix

::::
such

::::
that

:::
the

:::
end

:::::
result

::::::
would

:::::
better

:::::::::::
approximate

:::
the

:::::::::
asymptotic

:::::::::::::::
infinite-ensemble10

:::::::::
covariance

::::::
matrix.

::
A

:
recent approach considers machine learning algorithms to capture hidden properties in the propagation

model that affect the localization parameters (Moosavi et al., 2018).

This work develops a Bayesian framework to dynamically learn the parameters of the Schur-product based localization

from the ensemble of model states and the observations during the data assimilation in geophysical systems. Specifically, the

localization radii are considered random variables described by parametrized distributions, and are retrieved as part of the15

assimilation step together with the analysis states.
::::
One

::
of

:::
the

:::::::
primary

:::::
goals

::
of

::::
this

:::::
paper

::
is

::
to

:::::::
develop

:::::
ways

::
in

:::::
which

:::::
such

::
an

::::::::
approach

:::::
could

::
be

::::::::
extended

::
to
:::::
both

::::::::::
multivariate

:::
and

:::::::::::::
time-dependent

:::::::::
4D-esque

:::::
cases.

:::
We

:::::
prove

:::
the

::::::::::
approach’s

::::::::
empirical

::::::
validity

:::::::
through

:
a
::::
type

:::
of

:::::::
idealized

::::::::
variance

:::::::::::
minimization

::::
that

:::
has

::::::
access

::
to

:::
the

:::
true

:::::::
solution

:::::::
(which

::
we

::::
call

::
an

::::::::
Oracle).

:::
We

:::
then

:::::
show

::::
that

:::
the

::::::::
approach

:::::::
provides

:
a
:::::

more
:::::
stable

:::::
result

::::
with

::
a
:::::
much

:::::
larger

:::::
initial

::::::
radius

:::::
guess.

::::
The

::::::::::
exploration

::
of

:::
the

::::
idea

:
is
:::::
done

:::::::
through

:::
the

:::
use

::
of

::::::
several

::::
test

::::::::
problems

::::
such

::
as

::::
that

::
of

:::
the

:::::::::
Lorenz’96

:::::::
problem,

::
a
::::::::::
multivariate

::::::
variant

::::::
thereof

::::
that

:::
we20

::::::::
introduce

:::::::::
specifically

:::
for

:::
this

::::::
paper,

:::
and

:
a
:::::
more

:::::::
realistic

:::::::::::::::
Quasi-Geostrophic

::::::
model

::
to

::::::::
showcase

:::
the

::::::::::
applicability

::
of

:::
the

:::::::
method

::
to

:::::::
scenarios

:::::
more

::
in

::::
line

::::
with

:::::::::
operational

:::::
ones.

The paper is organized as follows. Sect. 2 reviews background material for Ensemble Kalman filtering and Schur-product

localization. Sect. 4 describes the proposed theoretical framework for localization and the resulting optimization problems for

maximum likelihood solutions. Numerical results with three test problems reported in Sect. 5 provide empirical validation of25

the proposed approach.

2 Background

:::
We

:::::::
consider

:
a
::::::::::::
computational

::::::
model

:::
that

:::::::::::
approximates

:::
the

::::::::
evolution

:::
of

:
a
:::::::
physical

:::::::::
dynamical

::::::
system

::::
such

::
as

:::
the

:::::::::::
atmosphere:

xi+1 =Mi,i+1(xi) + ξi,i+1,
:::::::::::::::::::::::

(1)

:::
The

::::::::::::::::
(finite-dimensional)

:::::
state

::
of

:::
the

:::::
model

:::::::
xi ∈ Rn

::
at
::::
time

::
ti::::::::::::

approximates
::
the

::::::::::::::::
(finite-dimensional

:::::::::
projection

::
of

::::
the)

:::::::
physical30

:::
true

:::::
state

:::::::
xt
i ∈ Rn.

::::
The

:::::::::::::
computational

:::::
model

:
(1)

::
is

:::::::
inexact,

:::
and

:::
we

:::::::
assume

:::
the

::::::
model

:::::
error

::
to

:::
be

:::::::
additive

::::
and

::::::::
normally

:::::::::
distributed,

::::::::::::::::
ξi,i+1 ∼N (0 ,Qi).

:
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:::
The

:::::
initial

:::::
state

::
of

:::
the

::::::
model

::
is

::::
also

:::
not

::::::::
precisely

:::::::
known,

:::
and

::
to
::::::

model
::::
this

:::::::::
uncertainty

:::
we

::::::::
consider

::::
that

:
it
::

is
::

a
:::::::
random

::::::
variable

::::::
drawn

::::
from

::
a

::::::
specific

::::::::::
probability

::::::::::
distribution:

x0 ∼N (xt
0,P

b
0).

::::::::::::::
(2)

:::::::
Consider

::::
also

:::::::::::
observations

::
of

:::
the

::::
truth,

:

yi+1 =H(xt
i+1) +ηi+1,

::::::::::::::::::::
(3)5

:::
that

:::
are

:::::::::
corrupted

::
by

:::::::
normal

::::::::::
observation

:::::
errors

::::::::::::::::::
ηi+1 ∼N (0 ,Ri+1).

:::
We

::::::::
consider

::::
here

:::
the

::::
case

:::::
with

:
a
::::::

linear
::::::::::
observation

:::::::
operator,

::::::::
H := H.

Consider and ensemble of N states x ∈ Rn×N sampling the probability density that describes the uncertainty in the state

at a given time moment (the time subscripts are omitted for simplicity of notation). The ensemble mean, ensemble anomalies,

and ensemble covariance are , respectively:10

x̄=
1

N
x1N , X = x− x̄1ᵀ

N , P =
1

N − 1
XXᵀ, (4)

::::::::::
respectively.

:
Typically N is smaller than the number of positive Lyapunov exponents in our dynamical system, and much

smaller than the number of states (Bergemann and Reich, 2010). Consequently, the ensemble statistics (4) are marred by

considerable sampling errors. The elimination of sampling errors, manifested as spurious correlations in the covariance ma-

trix (Evensen, 2009), leads to the need for localization.15

2.1 Kalman analysis

The mean and the covariance are propagated first through the forecast step. Specifically, each ensemble member is advanced

to the current time using the model (1) to obtain the ensemble forecast xf (with mean x̄f
::
x̄f and covariance Pf) at the current

time. A covariance inflation step Xf ← αXf, α > 1, can be applied to prevent filter divergence (Anderson, 2001).

The mean and covariance are then propagated through the analysis step, which fuses information from the forecast mean20

and covariance and from observations (3), to provide an analysis ensemble xa (with mean x̄a and covariance Pa) at the same

time. Here we consider the deterministic EnKF (DEnKF) (Sakov and Oke, 2008),
:
which obtains the analysis as follows:

x̄a = x̄f +Kdd, (5a)

K = PfHᵀ
(
HPfHᵀ +R

)−1
, (5b)

dd= yy−H x̄f, (5c)25

Xa = Xf− 1

2
KHXf, (5d)

xa = x̄a11ᵀ
N +Xa, (5e)

where K is the Kalman gain matrix and d
:
d
:
the vector of innovations. DEnKF is chosen for simplicity of implementation and

ease of amending to support Schur product-based localization. However, the adaptive localization techniques discussed herein

are general—they do not depend on this choice and are equally applicable to any EnKF algorithm.30
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2.2 Schur product localization

Covariance localization involves the Schur (element-wise) product between a symmetric positive semi-definite matrix ρ and

the ensemble forecast covariance:

Pf← ρ ◦Pf, Pf
i,j ← ρi,jP

f
i,j . (6)

By the Schur product theorem (Schur, 1911), if ρ and Pf are positive semi-definite, then their Schur product is positive semi-5

definite. The matrix ρ is chosen such that it reduces the sampling errors and brings the ensemble covariance closer to the true

covariance matrix. We note that one can apply the localization in ways that mitigate the problem of storing full covariance

matrices (Houtekamer and Mitchell, 2001). Efficient implementation aspects are not discussed further as they do not impact

the adaptive localization approaches developed herein.

We seek to generate the entries of localization matrix ρ from a localization function ` : R≥0→ [0,1], used to represent the10

weights applied to each individual covariance:

ρ= [`(d(i, j)/r)]1≤i,j≤n. (7)

The function ` could be thought of as a regulator which brings the ensemble correlations in line with the physical correlations,

which are often compactly supported functions (Gneiting, 2002). The metric d quantifies the physical distance between model

variables, such that d(i, j) represents the spatial distance between the state-space variables xi and xj . The “radius of influence”15

parameter r represents the correlation spatial scale; the smaller r is the faster variables decorrelate with increasing distance.

If the spatial discretization is time-invariant, and ` and r are fixed, that the matrix ρ is also time invariant. The goal of the

adaptive localization approach is to learn the best value of r dynamically from the ensemble.

A common localization function used in production software is due to Gaspari and Cohn (Gaspari and Cohn, 1999; Gneiting,

2002; Petrie, 2008). Here we use the Gaussian function20

`(u) = exp
(
−u2/2

)
(8)

to illustrate the adaptive localization strategy. However, our approach is general and can be used with any suitable localization

function.

3 Bayesian Approach
::::::::
Extension

::
to

:::::::::::
multivariate

:::::::::::
localization

::::::::
functions

We denote the analysis step of the filter by :25

xa =A(xf,y,υ),

where υ are the localization and inflation parameters. In this paper we look solely at localization. We consider here
::
It

::
is

::::::::
intuitively

:::::
clear

:::
that

::::::::
different

:::::::
physical

::::::
effects

::::::::
propagate

::::::::
spatially

::
at

:::::::
different

:::::
rates,

::::::
leading

:::
to

:::::::
different

:::::::::
correlation

:::::::::
distances.

:::::::::::
Consequently,

::::::::
different state-space localization and

:::::::
variables

::::::
should

::
be

::::::::
analyzed

:::::
using

:::::::
different

::::
radii

::
of

:::::::::
influence.

::::
This

:::::
raises

5



::
the

:::::::::
additional

:::::::
question

:::
of

::::
how

::
to

:::::::
localize

:::
the

:::::::::
covariance

::
of

::::
two

::::::::
variables

:::::
when

::::
each

::
of

:::::
them

::
is

:::::::::::
characterized

:::
by

:
a
::::::::
different

:::::
radius

::
of

::::::::
influence.

::::
One

::::::::
approach

:::::::::::::::
(Roh et al., 2015)

:
is

::
to

:::
use

:
a
::::::::::
multivariate

:::::::::
compactly

::::::::
supported

:::::::
function

:::::::::::::::::::::::::::
(Askey, 1973; Porcu et al., 2013)

::
to

:::::::
calculate

::::
the

::::::::
modified

::::
error

:::::::::
statistics.

:::
We

::::::::
however

::::
wish

:::
to

::::
take

:::::::::
advantage

::
of

:::::::
already

:::::::::
developed

:::::::::
univariate

:::::::::
compactly

::::::::
supported

::::::::
functions.

:

:::
We define the mapping operator r : Nn→ Ng that assigns each state-space component to a group. All state variables assigned5

to the same group are analyzed using the same localization radius. Assuming a fixed mapping, the localization parameters

are the radii values for each group υ ∈ Rg . These values can be tuned independently during the adaptive algorithm. The

corresponding prolongation operator p : Rg→ Rn assigns one of the g radii values to each of the n state-space components:

ri+1 = p(υi+1). (9)

For univariate localization g = 1 and p(υ) = υ1n::::::
Setting

:::::
g = 1

:::
and

:::::::::::
p(υ) = υ1n,

:::::::
recovers

:::
the

:::::::::
univariate

:::::::::
localization

:::::::::
approach.10

:::::
Petrie

::::::::::::
(Petrie, 2008)

::::::
showed

:::
that

::::
true

::::::::::
square-root

:::::
filters

::::
such

:::
as

:::
the

:::::::
LETKF

:::::::::::::::
(Hunt et al., 2007)

:::
are

:::
not

::::::::
amenable

::
to
::::::

Schur

:::::::::::
product-based

:::::::::::
localization,

:::::::
therefore

::::
they

:::::
need

::
to

:::
rely

:::
on

::::::::::
sequentially

::::::::::
assimilating

:::::
every

::::::::::
observation

:::::
space

:::::::
variable.

:::::
Here

:::
we

::::
wish

::
to

:::::::
combine

::::
both

:::
the

:::::::::
ease-of-use

::
of
::::::
Schur

:::::::::::
product-based

::::::::::
localization

:::
and

:::
the

:::::
utility

:::
of

::::::::::
multivariate

:::::::::
localization

::::::::::
techniques.

15

::
To

::::
this

::::
end,

:::
we

::::::::
introduce

::
a

:::::::::::
commutative,

::::::::::
idempotent,

::::::
binary

:::::::::
operation,

::::::::::::::::::::
m : R≥0×R≥0→ R≥0,

::::
that

::::::::
computes

::
a
::::::
“mean

:::::::::
localization

:::::::
function

::::::
value”

::::
such

::
as

::
to
:::::::::
harmonize

:::
the

::::::
effects

::
of

::::::::
different

:::::
values

::
of

:::
the

::::::::::
localization

:::::
radii.

::::
More

:::::::::
explicitly,

:::::
given

::::::::
0≤ a≤ b,

:::
m

::::::
should

::::
have

:::
the

::::::::
properties

::::
that

:::::::::::
m(a,a) = a,

::::::::::
m(b,b) = b,

:::
and

::::::::::::::::
m(a,b) =m(b,a).

:::
We

::::
also

::::::
impose

:::
the

:::::::::
additional

:::::::
common

::::::
sense

:::::::
property

::::
that

:::::::::::::
a≤m(a,b)≤ b.

:::
We

:::::::
consider

::::
here

::::::
several

::::::
simple

:::::
mean

:::::::
functions

:::
m,

::
as

:::::::
follows:

:

mmin(λi,λj)
::::::::::

= min{λi,λj},
::::::::::::

(10a)20

mmax(λi,λj)
::::::::::

= max{λi,λj},
::::::::::::

(10b)

mmean(λi,λj)
:::::::::::

= (λi +λj)/2 ,
::::::::::::

(10c)

msqrt(λi,λj)
::::::::::

=
√
λiλj ,

::::::::
(10d)

mrms(λi,λj)
::::::::::

=
√
λ2
i +λ2

j

/√
2 ,

:::::::::::::::

(10e)

mharm(λi,λj)
::::::::::

=
2λiλj
λi +λj

.

:::::::::

(10f)25

::::::
Assume

::::
that

:::
the

::::::::
variables

:::
xi::::

and
::
xj:::::

have
:::
the

::::::::::
localization

::::
radii

:::
ri :::

and
:::
rj ,:::::::::::

respectively.
:::
We

::::::
extend

::::
the

::::::::
definition

:::
of

:::
the

:::::::::
localization

::::::
matrix

::
ρ

::
to

:::::::
account

::
for

::::::::
multiple

:::::::::
localization

:::::
radii

::::::::
associated

::::
with

::::::::
different

:::::::
variables

::
as
::::::::
follows:

ρ=
:::

[
m
(
`(d(i, j)/ri), `(d(j, i)/rj)

)]
::::::::::::::::::::::::::

1≤i,j≤n
::::::

(11)
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:::
The

::::::::::
localization

:::::::::
sub-matrix

::
of

::::::::::
state-space

:::::::
variables

:::
xi :::

and
:::
xj :`(0) ρi,j

ρj,i `(0)


:::::::::::

(12)

:
is
::
a

:::::::::
symmetric

:::::
matrix

:::
for

:::
any

:::::
mean

:::::::
function (10).

:::::
When

::̀:
is
::
a
::::::::
univariate

:::::::::
compactly

::::::::
supported

::::::::
function,

:::
our

::::::::
approach

::::::::
implicitly

::::::
defines

::
its

::::::::
m-based

::::::::::
multivariate

::::::::::
counterpart.

:::
One

:::
of

:::
the

::::::::
common

::::::::
criticisms

:::
of

:
a
:::::::
distance

::::::::::
assumption

:::
on

:::
the

::::::::::
correlation

::
of

::::::::::
geophysical

:::::::
systems

::
is
::::

that
::::
two

::::::::
variables5

::
in

::::
close

:::::::::
proximity

::
to
:::::

each
:::::
other

:::::
might

:::::
have

::::
very

:::::
weak

:::::::::::
correlations.

:::
For

::::::::
example,

:::
in

:
a
::::::
model

::::
that

:::::
takes

::::
into

:::::::
account

:::
the

::::::::::
temperature

:::
and

:::::::::::
concentration

::
of

:::::::::
stationary

::::
cars

:
at
::::
any

:::::
given

:::::::
location,

:::
the

::::
two

::::::
distinct

:::::
types

::
of

::::::::::
information

:::::
might

:::
not

::
at

::
all

:::
be

::::::::
correlated

::::
with

::::
each

:::::
other.

::::
The

:::::::
physical

::::::::
distance

:::::::
between

:::
the

::::
two,

::::::::
however,

::
is

::::
zero,

::::
and

:::
thus

::::
any

:::::
single

:::::::::
correlation

::::::::
function

:::
will

::::
take

:::
the

:::::
value

:::
one

::::
and

::
do

:::
not

:::::::
remove

:::
any

:::::::
spurious

:::::::::::
correlations.

::::
One

:::
can

:::::::
mitigate

::::
this

:::::::
problem

::
by

::::::::::
considering

:::::::::
univariate

:::::::::
localization

::::::::
functions

:::
for

::::
each

::::
pair

::
of

::::::::::
components

:::::::::
`i,j = `j,i,:::

and
:::::::::
extending

:::
the

::::::::::
localization

:::::
matrix

::
as

:::::::
follows:

:
10

ρ=
:::

[
m
(
`i,j(d(i, j)/ri), `j,i(d(j, i)/rj)

)]
:::::::::::::::::::::::::::::

1≤i,j≤n.
::::::

(13)

:::
We

:::
will

:::
not

:::::::
analyze

:::::::
multiple

::::::::::
localization

::::::::
functions

::
in

:::
the

:::::
paper.

:

4
::::::::
Bayesian

:::::::::
Approach

:::
We

:::::
denote

:::
the

:::::::
analysis

::::
step

::
of

:::
the

::::
filter

::::
by:

xa =A(xf,y,υ),
::::::::::::::

(14)15

:::::
where

::
υ

:::
are

:::
the

:::::::
variable

::::::::::
localization

:::
and

::::::::
inflation

::::::::::
parameters.

::
In

:::
this

::::::
paper,

:::
we

::::
look

:::::
solely

::
at
:::::::
varying

::::::::::
localization,

::::
and

::::
will

::::
keep

:::::::
inflation

::::::::
constant.

In the Bayesian framework, we consider the localization parameters to be random variables with an associated prior prob-

ability distribution. Specifically, we assume that each
::
of

:::
the radii υ(j) is independently distributed according to a univariate

gamma distribution υ(j) ∼ Γ(α(j),β(j)). The gamma probability density:20

fΓ(υ;α,β) =
βαυα−1e−βυ

Γ(α)
, υ,α,β > 0 (15)

has mean ῡ = α/β and variance Var(υ) = α/β2. We have chosen the gamma distribution as it is the maximum entropy prob-

ability distribution for a fixed mean (Singh et al., 1986), i.e., is the best distribution that one can choose without additional

information. It is supported on the interval (0,∞) and has exactly two free parameters (allowing to control both the mean and

variance).25

The assimilation algorithm computes a posterior (analysis) probability density over the state space considering the probabil-

ities of observations and parameters. We start with Bayes’ identity:

π(x,υ | y)∝ π(y | x,υ)π(x | υ)π(υ)

= π(y | x,υ)π(x | υ,y)π(υ)π(y). (16)
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Note that π(y)
::::
π(y) is a constant scaling factor. Here π(υ) represents the (prior) uncertainty in the parameters, π(x | y,υ)

:::::::::
π(x | y,υ)

:
represents the uncertainty in the state for a specific value of the parameters, and π(y | x,υ)

:::::::::
π(y | x,υ)

:
repre-

sents the likelihood of observations with respect to both state and parameters. Under Gaussian assumptions on the state and

observation errors equation (16) can be explicitly written out as:

π(x,υ | y)∝exp

(
−1

2

∥∥A(xf,y,υ)−xf
∥∥2

Pf
(υ)

−1

)
exp

(
−1

2

∥∥y−HA(xf,y,υ)
∥∥2

R−1

)5

fP(υ), (17)

with fP(υ) given by equation (15). Note that, once the analysis scheme (14) has been chosen, the analysis state becomes a

function of υ, and the conditional probability in (17) represents the posterior probability of υ.

The negative log likelihood of the posterior probability (17) is:

J (υ) =− log

[
exp

(
−1

2

∥∥A(xf,y,υ)−xf
∥∥2

Pf
(υ)

−1

)
exp

(
−1

2

∥∥y−HA(xf,y,υ)
∥∥2

R−1

)
g∏
j=1

υ(j),α−1 exp
(
−β(j)υ(j)

)
= 1

2

∥∥A(xf,y,υ)−xf
∥∥2

Pf
(υ)

−1

+ 1
2

∥∥y−HA(xf,y,υ)
∥∥2

R−1

10

+

g∑
j=1

(
β(j)υ(j)−

(
α(j)− 1

)
log
(
υ(j)

))
. (18)

The
:::::::
Through

:::::
liberal

:::
use

:::
of

:::
the

::::
chain

::::
rule

:::
and

:::::::::
properties

::
of

:::::::::
symmetric

:::::::::::
semi-positive

:::::::
definite

::::::::
matrices,

:::
the gradient of the cost

function with respect to individual localization parameters reads:

∂J
∂υ(j)

= 1
2

∥∥∥Pf
(υ)

−1(A(xf,y,υ)−xf)∥∥∥2

∂Pf
(υ)

∂υ(j)

+
∂A(xf,y,υ)

∂υ(j)

ᵀ

Pf
(υ)

−1(A(xf,y,υ)−xf)
−
(
H
∂A(xf,y,υ)

∂υ(j)

)ᵀ

R−1
(
y−HA(xf,y,υ)

)
+β(j)− (α(j)− 1)

1

υ(j)
, (19)15

where we took advantage of the properties of symmetric matrices. Note that without the assumption that parameters are inde-

pendent the gradient would involve higher order tensors.
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4.1 Solving the optimization problem

Under the assumptions that the analysis function (14) is based on DEnKF (5), and
:::
(the

::::::::::::::
not-quite-correct

:::::::::::
assumption) that all

ensemble members are i.i.d., we obtain:∥∥A(xf,y,υ)−xf
i

∥∥2

Pf−1
(υ)

=

N∑
e=1

∥∥∥K(υ)z
(:,e)
∥∥∥2

Pf−1
(υ)

=

N∑
e=1

∥∥∥S−1
(υ)z

(:,e)
∥∥∥2

HPf
(υ)

Hᵀ

z = d1ᵀ
N − 1

2HXf, (20)5

∥∥y−HA(xf,y,υ)
∥∥2

R−1 =

N∑
e=1

∥∥∥g(:,e)
(υ)

∥∥∥2

R−1

g(υ) =
(
I−HK(υ)

)
d1ᵀ

N

−HXf

+ 1
2HK(υ)HXf,

K(υ) = Pf
(υ)H

ᵀS−1
(υ),

S(υ) = HPf
(υ)H

ᵀ +R. (21)

Combining (18), (20), and (21) leads to the cost function form:

J (υ) =

N∑
e=1

[
1
2

∥∥∥S−1
(υ)z

(:,e)
∥∥∥2

HPf
(υ)

Hᵀ
+ 1

2

∥∥∥g(:,e)
(υ)

∥∥∥2

R−1

]

+

g∑
j=1

(
β(j)υ(j)−

(
α(j)− 1

)
log
(
υ(j)

))
, (22)10

which only requires the computation of the background covariance matrix HPf
(υ)H

ᵀ in observation space, thereby reducing

the amount of computation and storage. The equivalent manipulations of the gradient lead to:

∂J
∂υ(j)

=

N∑
e=1

[
1
2

∥∥∥S−1
(υ)z

(e)
∥∥∥2

H
∂Pf

(υ)

∂υ(j)
Hᵀ

− zᵀH
∂Pf

(υ)

∂υ(j)
HᵀS−2

(υ)HPf
(υ)H

ᵀS−1
(υ)z

+ H
∂K(υ)

∂υ(j)

(
1
2HXf−d1ᵀ

N

)]
+β(j)− (α(j)− 1)

1

υ(j)
, (23)

∂K(υ)

∂υ(j)
=
∂Pf

(υ)

∂υ(j)
HᵀS−1

(υ)15

−Pf
(υ)H

ᵀH
∂Pf

(υ)

∂υ(j)
HᵀS−2

(υ), (24)
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where
∂Pf

(υ)

∂υ(j) =
∂ρ(υ)

∂υ(j) ◦Pf. Calculation of the gradient (23) requires computations only in observation space.

One will note that the form of our cost function (22) is similar to that of other hybrid approaches
:::::::::::::::
(Bannister, 2017) to

data assimilation such as 3DEnVar (Hamill and Snyder, 2000).
::
As

:
a
:::
lot

::
of

::::::
similar

:::::::::::
computation

::
is

:::::
done,

:::
this

:::::::::
technique

:::::
could

:::::::::
potentially

::
be

::::
used

::
as

::
a

:::::::::::
preprocessing

::::
step

::
in

:
a
::::::
larger

:::::
hybrid

::::
data

::::::::::
assimilation

:::::::
scheme.

:

4.2 Extension to multivariate localization functions5

It is intuitively clear that different physical effects propagate spatially at different rates, leading to different correlation distances.

Consequently, different state-space variables should be analyzed using different radii of influence. This raises the additional

question of how to localize the covariance of two variables when each of them is characterized by a different radius of influence.

One approach (Roh et al., 2015) is to use a multivariate compactly supported function (Askey, 1973; Porcu et al., 2013) to

calculate the modified error statistics. We howeverwish to take advantage of already developed univariate compactly supported10

functions.

Petrie (Petrie, 2008) showed that true square-root filters such as the LETKF (Hunt et al., 2007) are not amenable to Schur

product-based localization, therefore they need to rely on sequentially assimilating every observation space variable. Here we

wish to combine both the ease-of-use of Schur product-based localization and the utility of multivariate localization techniques.

15

To this end, we introduce a commutative, idempotent, binary operation, m : R≥0×R≥0→ R≥0, that computes a “mean

localization function value” such as to harmonize the effects of different values of the localization radii. More explicitly,

given 0≤ a≤ b
:::
The

::::::
choice

::
of

:::::
using

:::
the

::::::
DEnKF

::
is
::
a

::
bit

::::::::
arbitrary.

:::::
From

:::
the

::::::
above,

:::::::
however, m should have the properties that

m(a,a) = a
:
it

::
is

::::::
evident

::::
that

:
a
:::::::
method

:::
that

:::::::::
decouples

:::
the

:::::::
anomaly

:::::::
updates

::::
from

:::
the

:::::
mean

:::::::
updates

:::::
would

:::::
most

:::::
likely

::
be

:::::
more

:::::::::::
advantageous.

::
A
::::::::
perturbed

::::::::::
observation

:::::
EnKF

:::::
does

:::
not

::::
have

:::
this

:::::::
property, m(b,b) = b, and m(a,b) =m(b,a). We also impose20

the additional common sense propertythat a≤m(a,b)≤ b
::::
thus

:::::
would

:::::
incur

::::::::::
significantly

:::::
more

:::::::::::
computational

:::::
effort

::
to

::::::::
optimize

::
the

::::
cost

:::::::
function. We consider here several simple mean functions m, as follows:

mmin(λi,λj) = min{λi,λj},

mmax(λi,λj) = max{λi,λj},

mmean(λi,λj) = (λi +λj)/2 ,25

msqrt(λi,λj) =
√
λiλj ,

mrms(λi,λj) =
√
λ2
i +λ2

j

/√
2 ,

mharm(λi,λj) =
2λiλj
λi+λj

.

Assume that the variables xi ::::::::
Extending

:::
this

::::
idea

::
to

::::
true

:
a
:::::::::
square-root

:::::
filter,

:::
like

:::
the

::::::
ETKF,

:::::
would

::::::
require

:::::::::
significant

::::::::
algebraic

:::::::::::
manipulation,

:
and xj have the localization radii ri and rj , respectively. We extend the definition of the localization matrix ρ to30

10



account for multiple localization radii associated with different variables as follows:

ρ=
[
m
(
`(d(i, j)/ri), `(d(j, i)/rj)

)]
1≤i,j≤n

The localization sub-matrix of state-space variables xi and xj :`(0) ρi,j

ρj,i `(0)


is a symmetric matrix for any mean function . When ` is a univariate compactly supported function, our approach implicitly5

defines its m-based multivariate counterpart.

One of the common criticisms of a distance assumption on the correlation of geophysical systems is that two variables

in close proximity to each other might have very weak correlations. For example, in a model that takes into account the

temperature and concentration of stationary cars at any given location, the two distinct types of information might not at all be

correlated with each other. The physical distance between the two, however, is zero, and thus any single correlation function10

will take the value one and do not remove any spurious correlations. One can mitigate this problem by considering univariate

localization functions for each pair of components `i,j = `j,i, and extending the localization matrix as follows:

ρ=
[
m
(
`i,j(d(i, j)/ri), `j,i(d(j, i)/rj)

)]
1≤i,j≤n.

We will not analyze further this extension in the
::::::::
heuristics

:::::
which

:::
are

::::::
outside

:::
the

:::::
scope

::
of

::::
this paper.

4.2 Adaptive localization via a time-distributed cost function15

We now seek to extend the 3D-Var-like cost function (18) to a time-dependent 4D-Var-like version. As the ensemble is essen-

tially a reduced order model, we do not expect the accuracy of the forecast to hold over the long term as we might in traditional

4D-Var. We thereby propose a limited extension of the cost-function to include a small number K of additional future times.

Assuming that we are currently at the i-th time moment, the extended cost function reads:

Ji(υ) =

N∑
e=1

[
1
2

∥∥∥S−1
(υ),iz

(:,e)
i

∥∥∥2

HPf
(υ),i

Hᵀ

+ 1
2

∥∥∥g(:,e)
(υ),i

∥∥∥2

R−1
i

+

K∑
k=1

1
2

∥∥∥yi+k −Hx
f,(:,e)
(υ),i+k

∥∥∥2

R−1
i+k

]
20

+

g∑
j=1

(
β

(j)
i υ(j)−

(
α

(j)
i − 1

)
log
(
υ(j)

))
. (25)

One will notice that in the 4D part of the cost function the future forecasts are now dependent on υ as they are obtained by

running the model from xa
i,(υ). Similar to all other

::::
some 4D ensemble approaches, this requires only the computation of the

11



:::::::
gradient

:::::::::::
computations

:::
can

::
be

::::::::::::
approximated

::
by

:::
the

:
tangent linear model in order to derive the gradient; an adjoint model is not

::::
with

:::
the

::::::
adjoint

:::
not

:::::
being required. In fact all that is required is matrix vector products which can be approximated with finite

differences (Tranquilli et al., 2017).

::::::
Various

:::::::
4D-type

::::::::::::
approximation

::::::::
strategies

:::
are

::::
also

:::::::::
applicable

::
to

:::
this

::::
cost

:::::::
function

::::::::
extension,

::::::
though

:::
are

:::::::
outside

::
of

:::
the

:::::
scope

::
of

:::
this

:::::
paper.

:
5

4.3 Algorithm

In practice, instead of dealing with the Gamma distribution parameters of α and β, we use the parameters ῡ and Var(υ), such

that α= ῡ2

Var(υ) and β = ῡ
Var(υ) . For the sake of simplicity we assume that all υ are identically distributed, but this is not required

for the algorithm to function. The initial guess for our minimization procedure is the vector of means. After minimizing the

cost function, the radii for different components will be different. These radii, along with the corresponding localization and10

m functions, are used to build the localization matrix ρ
:
ρ. An outline is presented in Algorithm 1.

Algorithm 1 DEnKF Adaptive Localization Algorithm

Require: [ῡ(j)]j , [Var(υ(j))]j

1: α(j)← ῡ(j),2

Var(υ(j))

2: β(j)← ῡ(j)

Var(υ(j))

3: υ∗0← [ῡ(j)]j

4: υ∗← argminυJ (υ) {Eq (22)}

5: r∗← p(υ∗) {Eq (9)}

6: ρ← [m(li, lj)]1≤i,j≤n{Eq (13)}

7: with

8: li← `(d(i, j)/r(i),∗) {Possibly Eq (8)}

9: lj ← `(d(i, j)/r(j),∗)

10: return ρ

5 Numerical Experiments and Results

In order to validate our methodology we carry out twin experiments under the assumption of identical perfect dynamical

systems for both the truth and the model. The analysis accuracy is measured by the spatio-temporally averaged root mean

square error:15

RMSE =

√√√√ 1

n ·nt

nt∑
i=1

n∑
j=1

(
[xt
i]j − [x̄a

i]j

)2

√√√√ 1

n ·nt

nt∑
i=1

n∑
j=1

(
[xt
i]j − [x̄a

i]j

)2

::::::::::::::::::::::::::

, (26)

where nt is the number of data assimilation cycles (the number of analysis steps).
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For each of the models we repeat the experiments with different values of the inflation constant α and report the best

(minimal RMSE) results.

:::
All

:::::
initial

:::::
value

:::::::
problems

:::::
used

::
as

::::
were

::::::::::::
independently

:::::::::::
implemented

5.1 Oracles

We will make use of oracles to empirically evaluate the performance of the multivariate approach to Schur product localization.5

An oracle is an idealized procedure that produces close to optimal results by making use of all the available information, some

of which is unknown to the data assimilation system. In our case the oracle minimizes cost functions involving the true model

state. Specifically, in an ideal filtering scenario one seeks to minimize the error of the analysis with respect to the truth, i.e.,

the cost function J (xa) = RMSE(xa−xt)
:::::::::::::::::::::
J (xa) = RMSE(xa−xt). Our oracle will pick the best parameters, in this case the

radii, that minimize the ideal cost function J (υ) = RMSE(x̄a
(υ)−xt).

::::::::::::::::::::::
J (υ) = RMSE(x̄a

(υ)−x
t).

:::::
This

:::
can

:::
be

::::::
viewed

::
as

::
a10

::::
ideal

:::::::
variance

:::::::::::
minimization

::
of

:::
the

:::::
state

::::
space

:::
in

::::::::
parameter

:::::
space.

:

5.2 Lorenz’96

The 40 variable Lorenz model (Lorenz, 1996; Lorenz and Emanuel, 1998) is the first standard test employed. This problem is

widely used in the testing of data assimilation algorithms.

5.2.1 Model Setup15

The Lorenz’96 model equations:

dxi
dt

= (xi+1−xi−2)xi−1−xi +F, i= 1, . . .n, (27)

are obtained through a coarse discretization of a forced Burger’s equation with Newtonian damping (Reich and Cotter, 2015).

We impose x0 = xn, x−1 = xn−1, and xn+1 = x1, where n= 40. We take the canonical value for the external forcing factor,

F = 8. Using known techniques for dynamical systems (Parker and Chua, 2012) one can calculate that this particular system20

has 13 positive Lyapunov exponents (Strogatz, 2014) and one zero exponent, with a fractal dimension of approximately 27.1.

The initial conditions used for experiments are obtained by starting with

[xx0]
i
=

8 i 6= 20

8.008 i= 20
, (28)

and integrating (27) forward for one time unit in order to reach the attractor.

The physical distance between xi and xj is the shortest cyclic distance between any two state variables:25

d(i, j) = min{|i− j|, |n+ i− j|, |n+ j− i|}, (29)

where the distance between two neighbors is one.

13



For numerical experiments
:::
the

::::::::
numerical

:::::::::::
experiments,

:
we consider a perfect model and noisy observations. We take a six

hours assimilation window (corresponding to ∆tobs = 0.05 model time units), and calculate the RMSE on the assimilation

cycle interval [100,1100] in the case of oracle testing, or [5000,55000] in the case of adaptive localization testing. Lorenz ’96

is an ergodic system (Fatkullin and Vanden-Eijnden, 2004) and therefore its behavior in time for most initial conditions is the

same as the behavior of all its possible phase spaces on any orbit around a strange attractor at any point in time, meaning that a5

long enough time averaged run should be the same as a collection of shorter space averaged runs. We use 10 ensemble members

::::
(just

:::::
under

::
the

:::::::
number

::
of

:::::::
positive

::::::::
Lyapunov

:::::::::
exponents), and observe the thirty model variables (2,4, . . . ,18,20,21, . . . ,39,40),

with an observation error variance of one for each observed state.

5.2.2 Oracle Results

Figure 1 shows a visualization of multivariate oracle runs for the Lorenz’96 test problem using best constant radius, univariate10

oracle, and multivariate oracle utilizing the m-functions from (10). As one can see, the univariate oracle performs no better

than a constant radius, while several of the multivariate approaches provide much better results. This indicates that the problem

is better suited for multivariate localization. The worst m-function results are given by mmin. The other functions perform

similarly, and in further experiments we will only consider mmean as a representative and easy to implement option. We note

that for Lorenz-96 with DEnKF and our experimental setup, no 3D univariate adaptive localization scheme beats the best15

constant localization radius.

We also test both the validity of arbitrarily grouping the radii and the validity of using a time-distributed cost function ((25)).

Figure 2 presents results for arbitrary radii groupings and for a limited run 4D approach. There is significant benefit in using

more radii groupings, but marginal benefit from the 4D approach.

5.2.3 Adaptive Localization Results20

Adaptive localization results for Lorenz’96 are shown in figure 3.
:::
The

:::::::
optimal

:::::::
constant

::::::::::
localization

::::::
radius

:::
was

::::::
found

:::
and

::
a

:::::
search

::
of

:::::::
possible

:::::
input

:::::
mean

::::
and

:::::::
variance

:::::
values

::::
was

:::::::::
performed

::::::
around

::
it

:::
for

:::
the

:::::::
adaptive

:::::
case. As accurately predicted by

the oracle results, an
:
a
:::::::::
univariate adaptive approach for this model cannot do better than the best univariate radius (figure 1)

:
,

::
as

::
no

::::::::
meaning

::::::::
reduction

::
in

::::
error

::::
was

:::::::
detected.

5.3 Multivariate Lorenz’9625

The canonical Lorenz’96 model is ill suited for multivariate adaptive localization as each variable in the problem behaves

identically too all the others. This means that for any univariate localization scheme a constant radius is close to optimal.

5.3.1 Model Setup

We modify the problem in such a way that the average behavior remains very similar to that of the original model, but that

instantaneous behavior requires different localization radii. In order to accomplish this we use the time-dependent forcing30
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function that is different for each variable:[
FF (t)

]
i
= 8 + 4cos

(
ω
(
t+

(i− 1) mod q

q

))
, (30)

where ω = 2π (in the context of Lorenz’96 the equivalent period is 5 days), i is the variable index, and q is an integer factor of

n. Here we set set q = 4.
:::
The

::::::::
different

::::::
forcing

::::::
values

:::
will

:::::
create

::::::::::
differences

:::::::
between

:::
the

::::::::
dynamics

::
of

::::::::
different

::::::::
variables.

For each individual variable the forcing value cycles between 4 and 12, with an average value of 8, just like in the canonical5

Lorenz’96 formulation. If taken to be a constant, the forcing factor of 4 will make the equation lightly chaotic with only

one positive Lyapunov exponent, whilst a constant value of 12 will make the dynamics to have about 15 positive Lyapunov

exponents. Our modified system still has the same average behavior with 13 positive Lyapunov exponents. The mean doubling

times of the two problems are also extremely similar at around 0.36. This is the ideal desired behavior. Figure 4 shows a

comparison of numerically computed covariance matrices for this modified problem. This showcases that an adaptive approach10

to the instantaneous covariance is required.

Data assimilation will be carried out over the interval [500,5500]. The rest of the problem setup is identical to that of the

canonical Lorenz’96.

5.3.2 Adaptive Localization Results

Figure 5 shows results with the Multivariate Lorenz’96 model, with g = 4
::::::::
g = q = 4 radii groups, and the 4D parameter set15

to K = 1.
::
As

::::::
before,

:::
the

::::::
results

:::
for

:::
the

:::::::
constant

::::::
radius

::::
were

:::::
their

::::::
optimal

:::
for

:::::
each

:::::
given

:::::::
inflation

:::::
value,

:::::
while

:::
the

::::::::
adaptive

:::::
results

:::::
were

:::::::
obtained

:::::::
through

:
a
::::::
search

::
of

:::::::
possible

::::::
means

:::
and

::::::::
variances

::::::
around

::::
that

:::::
value.

::::
The

:::::::
maximal

:::::::::::
improvement

::
is
:::::
error

:
is
::::
only

:::::
about

::::
8%,

:::::::
however

::::
this

::
is

::::::
leagues

:::::
more

::::
than

:::
that

:::
of

:::
the

::::::::
univariate

::::::
Lorenz

::::
’96.

::
In

:::
the

::::::::
canonical

:::::::
Lorenz

:::
’96

::::
there

::
is
:::
no

:::::::::
meaningful

::::::
choice

::
of

::::::::
grouping

::::
other

::::
than

::::::::
arbitrary,

:::
but

::
in

:::
this

:::::
case,

:::
the

::::::
groups

::::
were

::::::
chosen

::::
such

::::
that

::
all

::::::
related

::::::::
variables

::::
have

::
the

:::::
same

::::::
forcing

:::::
from

:::::::
equation

:
(30)

:
.
::::
The

:::::
results

:::::
show

::
a

::::::::
significant

::::::::::::
improvement

::::
over

:::
the

::::::::
univariate

:::::
case,

::::::::
especially

:::
for

::::
low20

:::::::
inflation

::::::
values. We note that the filter spin-uptakes significantly longer for the adaptive localization case than for the constant

univariate case. Consequently, the assimilation cycles are chosen in the time interval [500,5500] units. An idea to mitigate

this might be to run the filter with a constant radius for a few assimilation cycles before switching to the adaptive localization

strategy, such as to allow the filter to quickly catch up with the shadow attractor trajectory.

:::::
Figure

::
6
:::::::::::
demonstrates

::
a

::::::::
sampling

::
of

:::
the

::::
radii

::::::::
obtained

:::::::
through

:::
the

:::::::
adaptive

:::
4D

::::::::::
multivariate

:::::::
method.

::::
For

:::
the

::::::::::
post-spinup25

::::
case,

:::
the

::::::
means

::::::::
(5.8449,

::::::
5.8669,

:::::::
5.8441,

:::::::
5.8602)

:::
of

:::
the

::::
radii

:::
for

:::::
each

::::::::
grouping

:::
are

:::::
fairly

:::::::
similar,

:::::::
however

:::
the

:::::::::
variances

:::::::
(0.0300,

::::::
0.0731,

:::::::
0.0295,

::::::
0.0821)

:::::
differ

::::::
wildly.

:::
The

:::::::::
groupings

:::
will

::::
less

:::::::::::
observations,

:::::
group

:
1
:::
and

::
3,

::::
have

:::::
much

::::
more

:::::::::::
conservative

::::::::
variances,

:::::
while

::::::
groups

:
3
::::
and

::
4,

:::::
which

:::
are

::::::::
observed

::::
fully,

:::::
have

:::::
much

::::::
greater

::::::::
variances.

:

::::
This

::::
gives

:::
us

::::::
insight

::::
into

::
a
::::::::
potential

::::
way

::
of

::::::::
choosing

::::::::::
multivariate

::::::::::
localization

:::::::
groups.

::::::
Based

:::
on

:::::
some

:::::::
measure

:::
of

:::
the

::::::::::
observability

:::
of

:::
any

:::::
given

:::::::::
state-space

:::::::
variable,

::::::::
similarly

:::::::::::
‘observable’

:::::::::
state-space

:::::::
variables

::::::
should

::::
have

:::::::
similar

::::
radii.

:
30

Tightly coupled models like the multivariate Lorenz’96 have rapidly diverging solutions, and constraining them requires

more information about the underlying dynamics. Incorporating future observations and adding degrees of freedom to the cost
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function increase the performance of our analysis. In the limiting case of one radius per variable and general information from

the future one approaches a variant of 4DenVar, which is in principle superior to any pure filtering method.

5.4 Quasi-geostrophic model
:::::::
(QGSO)

The 1.5 layer quasi-geostrophic model of Sakov and Oke (Sakov and Oke, 2008), obtained by non-dimensionalizing potential

vorticity, is given by the equations:5

qt =−ψx− εJ(ψ,q)−A43ψ+ 2π sin(2πy),

4ψ−Fψ = q, J(ψ,q)≡ ψxqy −ψyqx. (31)

The variable ψ can be thought of as the stream function, and the spatial domain is the square (x,y) ∈ [0,1]
2. The constants are

F = 1600, ε= 10−5, and A= 2× 10−11. We use homogeneous Dirichlet boundary conditions.

A second order central finite difference spatial discretization of the Laplacian operator4 is performed over the interior of a10

129×129 grid, leading to a model dimension n= 1272 = 16,129. The time discretization is the canonical fourth-order explicit

Runge-Kutta method with a timestep of 1 time units. The Helmholtz equation on the right-hand side of (31) is solved by an

offline pivoted sparse Cholesky decomposition. J is calculated via the canonical Arakawa approximation (Arakawa, 1966;

Ferguson, 2008). The43 operator is implemented by repeated application of our discrete Laplacian.

The time between consecutive observations is 5 time units, and the model is run for 3300 such cycles. The first 300 cycles,15

corresponding to the filter spin-up, are discarded, therefore the assimilation interval is [300,3300] time units. Observations are

performed with a standard 300 component observation operator, as shown in Figure 7. An observation error variance of 4 is

taken for each component. The physical distance between two component is defined as:

d(i, j) =

√
(ix− jx)

2
+ (iy − jy)

2
, (32)

with (ix, iy) and (jx, jy) are the spatial grid coordinates of the state space variables i and j, respectively.20

The
:::
Our

:::::
rough

:::::::
estimate

:::
of

:::
the number of positive Lyapunov exponents of this model is currently unknown,

:::::
1,451,

::::
with

::
a

:::::
fractal

:::::::::
dimension

:::::::
estimate

:::
of

::::::
6573.4,

:
thus we will take a conservative 25 ensemble members whose initial states are derived

from a random sampling of a long run of the model. A typical model state along with the observation points is given in Figure 7.

This model has been tested extensively with both the DEnKF and with various localization techniques (Sakov and Bertino,25

2011; Bergemann and Reich, 2010; Moosavi et al., 2018).

5.4.1 Adaptive Localization Results

The adaptive localization results for the Quasi-geostrophic problem are shown in Figure 8.
:::
As

:::::
before

::
a

:::::::
constant

:::
best

:::::::::
univariate

:::::::::
localization

::::::
radius

:::
was

:::::::::
calculated

:::
for

::::
each

:::::::
inflation

::::::
value,

:::
and

::::
was

::::
used

::
as

::
a

::::
seed

:::
for

::::::
varying

:::
the

::::::
results

::
in

:::
the

:::::::
adaptive

:::::
case.

::
An

::::::::::::
improvement

::
of

::::::
RMSE

::
of

::
up

::
to
:::::
about

::::
33%

::::
can

::
be

::::
seen

:::
for

::::::
certain

:::::::
inflation

::::::
values.

:
30
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One can readily see that for certain values of the inflation factor the adaptive localization procedure results in significant

reductions in analysis error, while for other values no significant benefits are observed.

The empirical utility of the adaptive localization technique is further analyzed in Figure 9 which compares the error results of

a suboptimal constant radius with that of an adaptive run with the mean parameter set to the same values as the constant ones.

The adaptive results are—except in a few cases of filter divergence—always as good or better than their constant localization5

counterparts. ,
::::
with

:::
an

:::::::::::
improvement

::
in

::::
error

::
as

:::::
large

::
as

::::
33%

::::
with

:::
the

:::::
same

:::::
mean

:::::
radius

::
as

:::
the

:::::::
constant

::::::
radius,

:::
and

:::
as

:::::
much

::
as

::::
50%

::::
with

:::::::
different

:::::
radii.

:::::
Even

::
in

:::
the

::::
case

:::::
where

:::
the

::::::::
adaptive

::::
filter

::::::::
diverged,

:::
the

:::::::
constant

::::::::::
localization

::::
filter

::::::::
diverged

::
as

:::::
well.

This indicates that our localization scheme is significantly better than a corresponding sub-optimal constant scheme with the

same parameters, as is typically the case in real-world production codes. This opens up the possibility of adapting existing

systems that use a conservative suboptimal constant localization to an adaptive localization scheme.10

Figure 10 shows a sample of the radii obtained by the adaptive algorithm. The initial period of algorithm spin-up is clearly

visible. One notes that the adaptive scheme is can discern—on average—whether the observations or the model are to be trusted

more.

6 Conclusions

This paper proposes a novel Bayesian approach to adaptive Schur product-based localization. A multivariate approach is15

developed, where multiple radii corresponding to different types of variables are taken into account. The Bayesian approach

is solved by constructing 3D and 4D cost functions, and minimizing them to obtain the maximum aposteriori estimates of

the localization radii. We show that in the case of the DEnKF these cost functions and their gradients are computationally

inexpensive to evaluate, and can be relatively easily implemented within existing frameworks. We provide a new approach for

assessing the performance of adaptive localization approaches through the use of restricted cost function oracles.20

The adaptive localization approach is tested using the Lorenz’96 and the Quasi-Geostrophic models. Somewhat surprisingly,

the adaptivity produces better results for the larger Quasi-Geostrophic problem. This may be due to the ensemble analysis

anomaly independence assumption made in Sect. 4.1, an assumption that holds better for a large system with sparse observa-

tions than for a small tightly coupled system with dense observations. The performance of the adaptive approach on the small,

coupled Lorenz’96 system is increased by using multivariate and 4D extensions of the cost function.25

We believe that the algorithm presented herein have
::
has

:
a strong potential to improve existing geophysical data assimilation

systems that use ensemble based filters such as the DEnKF. In order to avoid filter divergence in the long term, these systems

often use a conservative localization radius and a liberal inflation factor. The QG model results indicate that, in such cases, our

adaptive method outperforms the approach based on a constant localization. The new adaptive methodology can replace the

existing approach with a relatively modest implementation effort.30

Future work to extend the methodology includes finding good approximations of the probability distribution of the local-

ization parameters, perhaps through a Machine Learning approach, and reducing the need of assumption that the ensemble

members are independent identically distributed random variables.
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::::::::
Applying

:::
this

:::::::::::
methodology

::
to

:
a
:::::
larger

:::::::::
operational

::::::
model,

::::
like

::
the

:::::::
Weather

::::::::
Research

:::
and

::::::::::
Forecasting

::::::
Model

::::::
(WRF)

::::::::::::::::::::
(Skamarock et al., 2008)

:::::
would

::::::
require

:::::::
minimal

:::::
effort

::::
and

:
is
::::::::::::::
computationally

:::::::
feasible

::
in

:::
the

::::
short

:::::
term,

:::
and

::
is

:
a
:::::::
possible

::::::
future

::::::::
direction.
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Figure 1. GENERALISED MEAN ORACLES FOR LORENZ’96. Comparison of the variousm-based multivariate localization techniques with

that of standard univariate localization. Results obtained using the Lorenz’96 model over the assimilation cycles [100,1100]. The particular

localization scheme used is an adaptive oracle search that minimizes the error of the Schur-product localized analysis with respect to the

truth. Each of the forty of variables is given an independent radius in the multivariate case. The schemes (10) that closely mirror an unbiased

mean, namely mmean, msqrt, mrms, and mharm, yield the best results, while the conservative scheme mmin performs no better than a univariate

approach.
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Figure 2. 4D ORACLE FOR LORENZ’96. Plot of the RMSE for a radius oracle. The y-axis represents the number of independent radii values

(groups of the model state components). The assimilation cycle interval is [100,1100], a fixed inflation value of α= 1.02 and the function

mmean are used. As can be seen, there is significant benefit in using more radii groupings, but marginal benefit from the 4D approach.
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Figure 3. LORENZ’96 ADAPTIVE LOCALIZATION RESULTS Comparison of the best univariate localization radius results with their cor-

responding adaptive localization counter parts. ῡ was varied by additive factors of one of −1,−0.5,+0,+0.5,+1 with respect to the best

univariate radius with Var(υ) chosen to be one of 1/8,1/4,1/2,1,2. As was predicted, no adaptive scheme that takes into account only

currently available information can do well for Lorenz’96.
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Figure 4. Comparison of ensemble covariance matrices for the multivariate Lorenz’96 equations for a single time-step (left) with that for

time-averaged run (right) for a large number of ensemble members. There is considerable difference between the size of non-diagonal entries

for different state variables over the course of a single step, but this difference disappears after averaging. This indicates that for this problem

the best constant univariate radius is the same as for the canonical Lorenz’96 model, but that instantaneous adaptive radii are different.
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Figure 5. MULTIVARIATE LORENZ’96 4D ADAPTIVE LOCALIZATION. A Gauss localization function is employed. The inflation is con-

stant, and we test values α from 1.02 to 1.1, represented on the x-axis. The localization radius is varied in increments of 0.5 over the range

[0.5,16] for the constant case. The minimal errors are shown in the graph, and the corresponding radii are used as mean inputs into our

adaptive algorithm. For the adaptive case we choose four arbitrary groupings of radii (g = 4) with the mean function mmean. The parameters

ῡ take one of three possible values, the optimal constant radius −1, +0, and +1. The parameters Var(υ) take one value from {1/4,1,4}.

The 4D variable is set to K = 1 to look at an additional observation in the future.
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Figure 6.
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:::
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::
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::::::
Figure
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::::
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α= 1.02,

:::::
ῡ = 6,
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fourth.

:::::
Groups

::::
two

:::
and

:::
four

::::::
contain

:::::::
variables

:::
that

::::
were

:::::::
observed

:::::
fully,

:::
and

:::::
groups

:::
one

:::
and

:::::
three

:::::
contain

:::::::
variables

::::
that

::::
were

:::::::
observed

::::::
partially.

::::
One

:::
will

::::
note

::
the

:::::::
tendency

::
of

:::
the

::::
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Figure 7. QUASI-GEOSTROPHIC MODEL. A typical model state of the 1.5 layer Quasi-Geostrophic model. The left panel shows the stream

function values, with the red dots representing the locations of the variables that are observed. The right panel shows the corresponding

vorticity.
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Figure 8. QUASI-GEOSTRPHIC MODEL ADAPTIVE LOCALIZATION. A Gauss localization function is used. The inflation factor is kept

constant, and we test α values from 1.02 to 1.16 (represented on the x-axis). The constant localization radius varies in increments of 5 over

the range [5,45]. Only the best results are plotted, and are used as the mean seeds for the adaptive algorithm. For the adaptive case we vary

the parameters ῡ to by taking one of three possible values, differing from the optimal constant radius by−5, 0, and +5. The adaptive Var(υ)

takes one of the values 1/2, 1, 2, and 4. As can be seen, for higher values of inflation, the adaptive localization approach performs stellarly.
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Figure 9. QUASI-GEOSTRPHIC MODEL ADAPTIVE LOCALIZATION RAW RMSE. A better representation of how well the adaptive local-

ization scheme works is by showing its consistency. The green line represents the same optimal constant localization radius as in Figure 8.

The red line represents the error for the radius -5 units below, and the blue line, if it had not experienced filter divergence would have repre-

sented +5. The correspondingly colored areas represent the ranges of error of the adaptive localization scheme obtained by fixing the mean,

ῡ, to be that of the constant scheme and ranging over the variance. As can be seen, the adaptive scheme generally outperformed the constant

scheme for almost all ranges of the variance and even managed to not suffer from filter divergence for some values of the variance in the

+5 case, thereby providing evidence for the fact that an overestimation of the variance coupled with a useful estimate of the mean, might

produce more useful results than the corresponding constant counterpart.
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Figure 10. QGSO SAMPLE RADII. For the configuration in Figure 8 with α= 1.08, ῡ = 25, and Var(υ) = 4. Each dot represents a radius,

with the line representing the mean. One will notice that during the spin-up time the algorithm is much more conservative with the radius of

influence signaling that there should be an over-reliance on the observations instead of the model prior. After the spin-up time however, the

algorithm tends to select radii greater than the mean, signifying a greater confidence in the observations.
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