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We thank Reviewer 3 for their careful reviews and good suggestions. We incorporated most of the
Reviewers’ comments into our revised manuscript. A detailed, point-by-point response is provided
below. We repeat the Reviewers’ comments in italic and our responses appear in standard font.
We also provide a latex-diff that can be used to track all changes from our original submission to
this revised version. The line numbers below (and in the reviews) refer to the original submission.

Response to Reviewer 3

Major comments

Bayesian inference can in principle be used to estimate, and quantify the uncertainty in, model
parameters. The paper uses a MCMC sampler to perform this task to quantify the uncertainty in
five parameters and complete a stochastic model for the earth’s geomagnetic field. In particular, a
recent approach is used in which certain ‘features’ are selected from the data, and a data model for
the features is then constructed. The paper is well written and interesting, but I have several concerns
that should be addressed. My largest concern has been raised already by the former reviewer: that
the decision to reduce the time-data to three points, but to only reduce the spectral data to hundreds
of points, has introduced unknown flaws to the inference algorithm. The authors partially address
this issue by tuning the variance of the three time-data points, but this has artificially created a
narrow posterior in several parameters. I do not think there is sufficient information to trust e.g.
the estimate for the parameter a, which changes by two standard deviations when *not* narrowing
the variance. This issue with the inference scheme is critical because the key contributions of the
paper are all to the understanding of advantages and limitations of the chosen dipole model. But if
the inference scheme is flawed, so is the inference, and we don’t learn anything about the model...

I think one of several strategies should be adopted by the authors. Either the feature DA should be
adjusted to remove the need for ad hoc tuning, or the tuning should be better justified, or the tuned
results should come later in the paper. I have elaborated on these options in great detail (sorry)
below.

1) adjustment: somehow the issue caused by low-dimensional, high variance time data should
be resolved without resorting to ad hoc methods. As already suggested by a prior reviewer, the
spectral data could be reduced to dimension 3-10, commensurate with the time-data. The reviewer
suggests a parametrization of the spectral features. I think something along these lines should be
tried. The paper already lays the foundation for one simple approach. Equations (24) and (25)
describe the spectral ‘feature observation operator’ in three components corresponding to f < 0.05,
0.05 < f < 0.5, and 0.9 < f < 9.9. The high dimension comes from evaluating these components at
many points, but really one has already made an assumption that the spectral data is split into three
features. Perhaps one could replace the high-dimensional spectral data with these three features. The
first feature would be (e.g.) the average distance from ylf to hlf (θ) for f < 0.05; the second feature
is the same thing but for 0.05 < f < 0.5, and the third feature is again the mean innovation, but in
the high-frequency regime. This choice reduces the spectral data to the same dimension as the time
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data, and the appropriate covariance matrix can be calculated from the values already used in the
paper.

2) If the tuning cannot be removed, then it needs to be discussed in detail. Obviously this was the
goal of the authors, and I acknowledge the very relevant and interesting observations made from
comparing the different observation configurations in Section 6. However, I think an analysis of the
*direct* consequences of the variance tuning is missing - though much of the legwork has been done.
-In which parameters is it likely that the posterior is too narrow? -What is the difference between
configuration (e) and the (not shown) configuration that, like (e), only assimilates the time data,
but that uses the correct variances for the data? -Is it certain that there no issue with degeneracy in
the MCMC scheme due to the tight likelihood around the time data? (I note that MCMC Hammer
is affine invariant, and therefore the answer to this question is likely in the affirmative; but I
would like to see something on this in the paper.) Once this analysis has been done, the claims
of the abstract and introduction must be re-evaluated in terms of this analysis, in particular ”Our
approach thus results in a reliable stochastic model for selected aspects of the long term behavior
of the geomagnetic dipole field whose limitations and errors are well understood”. At the present
moment I would not say the limitations and errors are well understood; not by me, at least.

3) If the tuning cannot be removed or justified better, then please present configurations (d) and (e)
first. Then configuration (a) can be framed as a (partially successful!) attempt to obtain consistent
parameters from two inconsistent data sources, and this can all be achieved with minimal changes
to the existing discussion. If the authors do not feel like my requests (1) or (2) are achievable, I
think this is a very valid rearrangement of the manuscript. The chief issue with configuration (a) is
that it is presented first, gets its own section, and is treated - in terms of manuscript structure - as
the prominent method, with other methods present for discussion. If instead configuration (a) came
later as a comparison, rather than as the figurehead scheme, then I have much weaker objections
to the variance reduction.

We thank the Reviewer for the suggestions. We decided to follow suggestion (2) – an expanded
explanation of the consequences and limitations of our approach. We would also like to remind the
Reviewer that a large part of Section 6 is devoted to this issue.

The reasons for following suggestion (2) are as follows. Option (1), i.e., reducing the number of
spectral data to the order of the number of time data, is also ad-hoc and also requires tuning.
There is no clear path as to how to reduce the number of spectral data points as is evident by two
reviewers suggesting two different strategies. In view of these limitations, “tuning” the observation
error covariances seems in fact cleaner than fiddling with the data because reducing the observation
error covariance amounts to only one parameter (observation error covariance) being tuned and the
consequences of this tuning are predictable (too sharp of a posterior). It is difficult to anticipate
in what way a reduction of the spectral data would modify the shape of the posterior distribution.

Option (3), i.e., presenting results that do not show an overall good match with the data, is a
matter of presentation. We prefer to show “the best” results (we could obtain with our approach)
first and then discuss limitations.

My second major contention is that the authors do not seem to mention investigating the validity
of the Gaussian assumption for the features’ likelihood(s). This assumption, while necessary for the
approach taken, should be mentioned and (even if only briefly) investigated or justified with suitable
references.

A Gaussian assumption for observation errors is widely used, but we agree with the Reviewer that
there are other options. We added a few sentences in the revision to clarify our assumptions and
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mention that other error models are also possible.

Minor comments

p1 abstract: “Another important aspect of our overall approach is that it can reveal inconsistencies
between model and data...” You have identified inconsistencies; please strengthen the statement
accordingly. Thank you, we revised the abstract accordingly.

p.3 line 7: were→where

Thank you, we fixed this typo.

p.3 line 15, “For example, a point-wise mismatch of model and data is difficult to enforce when
two different data sets report two different values for the same quantity”: I am not convinced of the
statement as written. If I have a 1d state x and two observations y1, y2 of the same state variable
(here just x), then (assuming obs errors are independent) the observation operator is H = [1; 1] and
the covariance matrix is R = [σ1 0; 0σ1]. That is, there is no issue with multiple observations of
the same quantity, in principle. I think the issue here is the unknown amount of observation error,
or bias, means that the two observation sets are very inconsistent, and that this bias is impossible
to model (?).

The Reviewer is correct: the situation is more complicated than our one-sentence-description sug-
gests. We decided not to bring up delicate details in the introduction and removed the statement
about observing the same quantity in various ways because this is not essential to the points we
want to make.

p3, line 25: either have ‘likelihood’ or ‘likelihoods’ for both

Thank you, we fixed this typo.

p9, last line: “This will lead to an improved fit, along with an improved understanding of model
uncertainties.” just repeats the previous sentence

Thank you, we removed this sentence.

p13, Section 4.2. The Feature-based likelihoods introduction repeats much from the introduction/motivation
sections. Consider removing the first paragraph, and/or perhaps the last few sentences from p.13

Using features is one of our main points and we decided to repeat this point so that the reader is
reminded of our overall approach.

p15 “...but alternative strategies are straightforward to implement within our overall feature-based
Bayesian estimation approach.” This phrase will need updating one way or another. I recommend
removing it no matter what happens to the rest of the paper. I got angry reading this because if a
better strategy would have been straightforward to implement - why not do it??

We apologize for upsetting the Reviewer. The anger was likely caused by the Reviewer reading
quickly: we do not claim that “better” strategies are easy to implement, we suggest that alternative
strategies are easy to implement. Nonetheless, we removed our statement.

p23: “The configurations we consider are summarized in Table 4 and the corresponding parameter
estimates are reported in Table 5.” On my copy of the manuscript, the references are off by one (ie
the configurations are summarised in table 5 and estimates reported in table 6).

Thank you, we fixed this issue.
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p.29, code and data availability: If allowed by the journal, please clarify for the reader which
repository/directory contains the appropriate code, or a starting example (e.g. suggesting the file to
run to simulate the results for Figure 6), or upload a readme file to the repo. These are nice results
and I think only a little work will make them more accessible.

We include the directory where the code can be found.
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Abstract. We consider a stochastic differential equation model for Earth’s axial magnetic dipole field. Our goal is to estimate

the model’s parameters using diverse and independent data sources that had previously been treated separately, so that the

model is a valid representation of an expanded paleomagnetic record on kyr to Myr time scales. We formulate the estimation

problem within the Bayesian framework and define a feature-based posterior distribution that describes probabilities of model

parameters given a set of features, derived from the data. Numerically, we use Markov chain Monte Carlo (MCMC) to obtain5

a sample-based representation of the posterior distribution. The Bayesian problem formulation and its MCMC solution allow

us to study the model’s limitations and remaining posterior uncertainties. Our approach thus results in a reliable stochastic

model for
:::::::
Another

::::::::
important

:::::
aspect

:::
of

:::
our

::::::
overall

:::::::
approach

::
is
::::
that

:
it
::::::
reveals

:::::::::::::
inconsistencies

:::::::
between

:::::
model

::::
and

::::
data,

::
or

::::::
within

::
the

:::::::
various

::::
data

::::
sets.

:::::::::
Identifying

:::::
these

:::::::::::
shortcomings

::
is

::
a

:::
first

::::
and

::::::::
necessary

::::
step

:::::::
towards

:::::::
building

::::
more

:::::::::::
sophisticated

:::::::
models

::
or

:::::::
towards

::::::::
resolving

::::::::::::
inconsistencies

::::::
within

:::
the

:::::
data.

:::
The

:::::::::
stochastic

:::::
model

:::
we

::::::
derive

:::::::::
represents selected aspects of the long10

term behavior of the geomagnetic dipole field whose
::::
with limitations and errors are well understood

:::
that

:::
are

::::
well

::::::
defined. We

believe that such a model is useful
:::::::
(besides

::
its

::::::::::
limitations) for hypothesis testing and give a few examples of how the model can

be used in this context. Another important aspect of our overall approach is that it can reveal inconsistencies between model

and data, or within the various data sets. Identifying these shortcomings is a first and necessary step towards building more

sophisticated models or towards resolving inconsistencies within the data.15

1 Introduction

Earth possesses a time-varying magnetic field which is generated by the turbulent flow of liquid metal alloy in the core. The

field can be approximated as a dipole with north and south magnetic poles slightly misaligned with the geographic poles. The

dipole field changes over a wide range of timescales, from years to millions of years and these changes are documented by

several different sources of data, see, e.g., ?. Satellite observations reveal changes of the dipole field over years to decades (?),20

while changes on time scales of thousands of years are described by paleomagnetic data, including observations of the dipole

field derived from archeological artifacts, young volcanics, and lacustrine sediments (?). Variations on even longer time scales

of millions of years are recorded by marine sediments (??) and by magnetic anomalies in the oceanic crust (???). On such long
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time scales, we can observe the intriguing feature of Earth’s axial magnetic dipole field to reverse its polarity (magnetic north

pole becomes the magnetic south pole and vice versa).25

Understanding Earth’s dipole field, at any time scale, is difficult because the underlying magnetohydrodynamic problem is

highly nonlinear. For example, many numerical simulations are far from Earth-like due to severe computational constraints and

more tractable mean-field models require questionable parameterizations. An alternative approach is to use “low-dimensional

models” which aim at providing a simplified but meaningful representation of some aspects of Earth’s geo-dynamo. Several

such models have been proposed over the past years. The model of ?, for example, describes the Earth’s dipole over millions30

of years by a set of three ordinary differential equations, one for the dipole, one for the non-dipole field and one for velocity

variations at the core. A stochastic model for Earth’s dipole over millions of years was proposed by ?. Other models have been

derived by ??.

Following ???, we consider a stochastic differential equation (SDE) model for Earth’s axial dipole. The basic idea is to

model Earth’s dipole field analogous to the motion of a particle in a double well potential. Time variations of the dipole field35

and dipole reversals then occur as follows. The state of the SDE is within one of the two wells of the double well potential

and is pushed round by noise. The pushes and pulls by the noise process lead to variations of the dipole field around a typical

value. Occasionally, however, the noise builds up to push the state over the potential well, which causes a change of its sign.

A transition from one well to the other represents a reversal of Earth’s dipole. The state of the SDE then remains, for a while,

within the opposite well and the noise leads to time variations of the dipole field around the negative of the typical value. Then,40

the reverse of this process may occur.

A basic version of this model, which we call the “B13 model” for short, was discussed by ?. The drift and diffusion coeffi-

cients that define the B13 model are derived from the PADM2M data (?) which describe variations in the strengths of Earth’s

axial magnetic dipole field over the past 2 Myr. The PADM2M data are derived from marine sediments which means that the

data are smoothed by sedimentation processes, see, e.g., ?. The B13 model, however, does not account directly for the effects45

of sedimentation. ? try to mimic the effects of sedimentation by sending the solution of the SDE through a low-pass filter. With

this extension, the B13 model is more suitable to be compared to the data record of Earth’s dipole field on a Myr time-scale.

A basic assumption of an SDE model is that the noise process within the SDE is uncorrelated in time. This assumption

is reasonable when describing the dipole field on the Myr time scale but is not valid on a shorter time scale of thousands of

years. ? derived an extension of the B13 model to extend it to time scales of thousands of years, by adding a time-correlated50

noise process. An extension of B13 to represent changes in reversal rates over the past 150 Myrs is considered by ?. Its use for

predicting the probability of an imminent reversal of Earth’s dipole is described by ? and by ?. The B13 model is also discussed

by ???.

The B13 model and its extensions are constructed with several data sets in mind that document Earth’s axial dipole field

over the kyr and Myr time scales. The data, however, are not considered simultaneously: the B13 model is based on one data55

source (paleomagnetic data on the Myr time scale) and some of its modifications are based on other data sources (the shorter

record over the past 10 kyrs). Our goal is to construct a comprehensive model for Earth’s axial dipole field by calibrating the

B13 model to several independent data sources simultaneously, including
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(i) observations of the strength of the dipole over the past 2 Myrs as documented by the PADM2M and Sint-2000 data sets

(??);60

(ii) observations of the dipole over the past 10 kyr as documented by CALS10k.2 (?);

(iii) reversals and reversal rates derived from magnetic anomalies in the oceanic crust (?).

The approach ultimately leads to a family of SDE models, valid over Myr and kyr time scales, whose parameters are informed

by a comprehensive paleomagnetic record composed of the above three sources of data. The results we obtain here are thus

markedly different from previous work were
:::::
where

:
data at different time scales are considered separately. We also use our65

framework to assess the effects of the various data sources on parameter estimates and to discover inconsistencies between

model and data.

At the core of our model calibration is the Bayesian paradigm in which uncertainties in data are converted into uncertainties

in model parameters. The basic idea is to merge prior information about the model and its parameters, represented by a

prior distribution, with new information from data, represented by a likelihood, see, e.g., ??. Priors are often assumed to70

be “uninformative”, i.e., only conservative bounds for all parameters are known, and likelihoods describe point-wise model-

data mismatch. Such likelihoods, however, are difficult to use when a variety of diverse data sources are to be combined. For

example, a point-wise mismatch of model and data is difficult to enforce when two different data sets report two different values

for the same quantity (see, e.g., Figure ??). Assumed error models in the data can control the effects each data set has on the

parameter estimates. Since error models describe what “we do not know”, good error models are notoriously difficult to come75

by. In this context, we discover that the “shortness of the paleomagnetic record,” i.e., the limited amount of data available, is the

main source of uncertainty. For example, PADM2M or Sint-2000 provide a time series of 2,000 consecutive “data points” (2

Myr sampled once per kyr). Errors in power spectral densities, computed from such a short time series, dominate the expected

errors in these data. Similarly, errors in the reversal rate statistics are likely dominated by the fact that only a small number of

reversals, e.g., those that occurred over the past 30 Myr, are useful for computing reversal rates. Reliable error models should80

thus reflect errors due to the shortness of the paleomagnetic record, rather than building error models on assumed errors in the

data.

To address these issues we substitute likelihoods based on point-wise mismatch of model and data by a “feature-based”

likelihood, as discussed by ??. A feature-based likelihood is
:::::::::::
Feature-based

:::::::::
likelihoods

:::
are based on error in “features” extracted

from model outputs and data rather than the usual point-wise error. The feature-based approach enables unifying contributions85

from several independent data sources in a well-defined sense even if the various data may not be entirely self-consistent and

further allows us to construct error models that reflect uncertainties induced by the shortness of the paleomagnetic record. In

addition, we perform a suite of numerical experiments to check, in hind-sight, our a priori assumptions about the error models.

2 Description of the data

Variations in the virtual axial dipole moment (VADM) over the past 2 Myr can be derived from stacks of marine sediment.Two90

different compilations are considered in this study: Sint-2000, (?) and PAMD2M (?) . Both of these data sets are sampled every
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Figure 1. Data used in this paper. (a) Sint-2000 (orange) and PADM2M (red): VADM as a function of time over the past 2 Myr. (b)

CALS10k.2: VADM as a function of time over the past 10 kyr. (c) Power spectral densities of the data in (a) and (b), computed by the

multi-taper spectral estimation technique of ?. Orange: Sint-2000. Red: PADM2M. Purple: CALS10k.2

1 kyr and, thus, provide a time series of 2,000 consecutive VADM values. The PADM2M and Sint-2000 data sets are shown in

the upper left panel of Figure ??. The CALS10k.2 data set, plotted in the lower left panel of Figure ??, describes variations of

VADM over the past 10 kyr (?). The time dependence of CALS10k2 is represented using B-splines, so that the model can be

sampled at arbitrary time intervals. We sample CALS10k.2 at an interval of one year, although the resolution of CALS10k.295

is nominally 100 years (?).
::::
Note

::::
that

::
we

:::::
refer

::
to

:::::::::
PADM2M,

:::::::::
Sint-2000

:::
and

::::::::::
CALS10k.2

:::
as

:::::
“data”

:::::::
because

:::
we

::::
treat

:::::
these

::::
field

::::::::::::
reconstructions

::
as

:::::
such.

:

Below we use features derived from power spectral densities (PSD) of the Sint-2000, PADM2M and CALS10k.2 data. The

PSDs are computed by the multi-taper spectral estimation technique of ?. A restricted range of frequencies are retained in the

estimation to account for data resolution and other complications (see below). We show the resulting PSDs of the three data100

sets in the right panel of Figure ??. During parameter estimation we further make use of the time average VADM and the

standard deviation of VADM over time of the Sint-2000 and PADM2M data sets, listed in Table 1.

Time avg. VADM Std. dev. of VADM

Data source (1022 Am2) (1022 Am2)

PADM2M 5.23 1.48

Sint-2000 5.81 1.84
Table 1. Time average VADM and VADM standard deviation of PADM2M and Sint-2000.
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Lastly, we make use of reversal rates of the Earth’s dipole computed from the geomagnetic polarity time scale (???). Using

the chronology of ?, we compute reversal rates for 5 Myr intervals from today up to 30 Myr ago. That is, we compute the

reversal rates for the intervals 0 Myr� 5 Myr,5 Myr� 10 Myr, . . . ,25 Myr� 30 Myr. This leads to the average reversal rate105

and standard deviation listed in Table 2. Increasing the interval to 10 Myr leads to the same mean but decreases the standard

Average reversal rate Std. dev.

Interval length (reversals/Myr) (reversals/Myr)

5 Myr 4.23 1.01

10 Myr 4.23 0.49
Table 2. Average reversal rate and standard deviation computed over the past 30 Myr using the chronology of ?.

deviation (see Table 2).

Note that the various data are not all consistent. For example, visual inspection of VADM (Figure ??), as well as comparison

of the time average and standard deviation (Table 1) indicate that the PADM2M and Sint-2000 data sets report different VADM.

These differences can be attributed, at least in part, to differences in the calibration of the marine sediment measurements and110

to differences in the way the measurements are stacked to recover the dipole component of the field. There are also notable

differences between the PSDs from CALS10k.2 and those from the lower resolution data sets (SINT-2000 and PADM2M)

at the overlapping frequencies. Dating uncertainties, smoothing due to sedimentary processes and the finite duration of the

records all contribute to these discrepancies. We do not attempt to identify the source of these discrepancies. Instead, we seek

to recover parameter values for a stochastic model by combining a feature-based approach with realistic estimates of the data115

uncertainty (see Section ??).

We further note that the amount of data is rather limited: we have 2 Myrs of VADM sampled at 1/ kyr, 10 kyr of high

frequency VADM and use a 30 Myr record to compute reversal rates. The limited amount of data directly affects how the

accuracy of the data should be interpreted. As an example, the mean and standard deviation of the reversal rate, based on a

30 Myr record may not be accurate; errors in the PSDs of PADM2M, Sint-2000 or CALS10k.2 are dominated by the fact that120

these are computed from relatively short time series. We address these issues by using the feature-based approach that allows us

to build error models that reflect uncertainties due to the shortness of the paleomagnetic record. We further perform extensive

numerical tests that allow us to check, in hind-sight, the validity our assumptions about errors (see Section ??).

3 Description of the model

Our models for variations in the dipole moment on Myr and kyr time scales are based on a scalar stochastic differential equation125

(SDE)

dx = v(x)dt +

p
2D(x)dW, (1)
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where t is time and where x represents the VADM and polarity of the dipole, see, e.g., ????. A negative sign of x(t) corresponds

to the current polarity, a positive sign means reversed polarity. W is Brownian motion, a stochastic process with the following

properties: W (0) = 0, W (t)�W (t + �T ) ⇠N (0,�t), W (t) is almost surely continuous for all t � 0, see, e.g., ?. Here and130

below, N (µ,�

2
) denotes a Gaussian random variable with mean µ, standard deviation � and variance �

2. Throughout this

paper, we assume that the diffusion, D(x), is constant, i.e., D(x) = D. Modest variations in D have been reported on the basis

of geodynamo simulations (??). Representative variations in D, however, have a small influence on the statistical properties of

solutions of the SDE (??), see ?.

The function v is called the “drift” and is derived from a double-well potential, U

0
(x) = �v(x). Here, we consider drift135

coefficients of the form

v(x) = �

x

x̄

·

8
<

:
(x̄�x), if x � 0

(x + x̄), if x < 0

, (2)

where x̄ and � are parameters. The parameter x̄ defines where the drift coefficient vanishes and also corresponds to the time

average of the associated linear model

dx

l

= �� (x

l � x̄)dt +

p
DdW, (3)140

which is obtained by Taylor expanding v(x) at x̄. It is now clear that the parameter � defines a relaxation time.

Nominal values of the parameters x̄, � and D are listed in Table 3. With the nominal values, the model exhibits “dipole

x̄ D � T

s

a

(1022 Am2) (1044 A2m4 kyr�1) (kyr�1) (kyr) (kyr�1)

Nominal value: 5.23 0.3403 0.075 2.5 5

Lower bound: 0 0.0615 0.0205 1 5

Upper bound: 10 2.1 0.7 5 40
Table 3. Nominal parameter values and parameter bounds

reversals”, which are represented by a change of the sign of x. This is the “basic” B13 model.

For computations, we discretize the SDE using a 4th order Runge-Kutta (RK4) method for the drift and an Euler-Maruyama

method for the diffusion. This results in the discrete time B13 model145

x

k

= f(x

k�1,�t) +

p
2D�t w

k

, w

k

⇠N (0,1), iid (4)

where �t is the time step,
p

�t w

k

is the discretization of Brownian motion W in (??) and where f(x

k�1,�t) is the RK4 step.

Here, iid stands for “independent and identically distributed”, i.e., each random variable w

k

, for k > 0, has the same Gaussian

probability distribution, N (0,1), and w

i

and w

j

are independent for all i 6= j. We distinguish between variations in the Earth’s

dipole over kyr to Myr time scales and, for that reason, present modifications of the basic B13 model (??).150
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Figure 2. Simulations with nominal parameter values and data on the Myr and kyr scales. (a) VADM as a function of time on the Myr time

scale. The output of the Myr model, xMyr
j

, is shown in dark blue (often hidden). The smoothed output, xMyr,s
j

, is shown in light blue. The

signed Sint-2000 and PADM2M are shown in orange and red with signs (reversal timings) taken from ?. (b) VADM as a function of time on

the kyr time scale. The output of the kyr-model with uncorrelated noise is shown in turquoise. The output of the kyr-model with correlated

noise is shown in green. VADM of CALS10k.2 is shown in purple.

3.1 Models for the Myr amd kyr time scale

For simulations over Myr time scales we chose a time-step �t = 1 kyr, corresponding to the sampling time of the Sint-2000

and PADM2M data. On a Myr time scale, the primary source of paleomagnetic data in Sint-2000 and PADM2M are affected

by gradual acquisition of magnetization due to sedimentation processes, which amount to an averaging over a (short) time

interval, see, e.g., ?. We follow ? and include the smoothing effects of sedimentation in the model by convolving the solution155

of (??) by a Gaussian filter

g(t) =

s
6

⇡T

2
s

· exp

✓
�6t

2

T

2
s

◆
, (5)

where T

s

defines the duration of smoothing, i.e., the width of a time window over which we average. The nominal value for T

s

is given in Table 3. The result is a smoothed Myr model whose state is denoted by x

Myr,s. Simulations with the “Myr model”

and the nominal parameters of Table 3 are shown in Figure ??(a) where we plot the model output x

Myr
j

in dark blue and the160

smoothed model output, x

Myr,s
j

, in a lighter blue over a period of 2 Myr.

On a Myr scale, the assumption that the noise is uncorrelated in time is reasonable because one focuses on low frequencies

and large sample intervals of the dipole, as in Sint-2000 and PADM2M, whose sampling interval is 1/kyr. On a shorter time

scale, as in CALS10k.2, this assumption is not valid and a correlated noise is more appropriate (?). Computationally, this means

that we swap the uncorrelated, iid, noise in (??) for a noise that has a short but finite correlation time. This can be done by165
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“filtering” Brownian motion. The resulting discrete time model for the kyr time scale is

y

k

= (1� a�t)y

k�1 +

p
2a�tw

k

, w

k

⇠N (0,1), iid (6)

x

k

= f(x

k�1,�t) +

p
Da�ty

k

, (7)

where a is the model parameter that defines the correlation time T

c

= 1/a of the noise and �t = 1 yr. A 10 kyr simulation

of the kyr models with uncorrelated and correlated noise using the nominal parameters of Table 3, are shown in Figure ??(b)170

along with the CALS10k.2 data.

3.2 Approximate power spectral densities

Accurate computation of the power spectral density (PSD) from the time-domain solution of the B13 model requires extremely

long simulations. For example, the PSDs of two (independent) 1 billion year simulations with the Myr model are still surpris-

ingly different. In fact, errors that arise due to “short” simulations substantially outweigh errors due to linearization. Recall that175

the PSD of the linear model (??) is easily calculated to be

x̂

l

(f) =

2D

�

2
+ 4⇡

2
f

2
, (8)

where f is the frequency (in 1/kyr). Since the Fourier transform of the Gaussian filter is known analytically, the PSD of the

smoothed linear model is also easy to calculate:

x̂

l,s

(f) =

2D

�

2
+ 4⇡

2
f

2
· exp

✓
�4⇡

2
f

2
T

2
s

12

◆
. (9)180

Similarly, an analytic expression for the PSD of the kyr-model with correlated noise in equations (??)-(??) can be obtained by

taking the limit of continuous time (�t ! 0):

x̂

l,kyr

(f) =

2D

�

2
+ 4⇡

2
f

2
· a

2

a

2
+ 4⇡

2
f

2
. (10)

Here, the first term is as in (??) and the second term appears because of the correlated noise.

Figure ?? illustrates a comparison of the PSDs obtained from simulations of the nonlinear models and their linear approxi-185

mations. Specifically, the PSDs of the (smoothed) Myr scale nonlinear model, computed from a 50 Myr simulation, are shown

in comparison to the approximate PSDs in equations (??)-(??). Note that the PSD of the smoothed model output, x

Myr,s, taking

into account sedimentation processes, rolls-off quicker than the PSD of x

Myr
j

. For that reason, the PSD of the smoothed model

seems to fit the PSDs of the Sint-2000 and PADM2M data “better”, i.e., we observe a similarly quick roll-off at high frequen-

cies in model and data; see also ?. The PSD of the kyr model with correlated noise, computed from a 10 kyr simulation, is also190

shown in Figure ?? in comparison with the linear PSD in equation (??). The good agreement between the theoretical spectra of

the linear models and the spectra of the nonlinear models justifies the use of the linear approximation. We have further noted in

numerical experiments that the agreement between the nonlinear and linear spectra increases with increasing simulation time,

however a “perfect” match requires extremely long simulations of the nonlinear model (hundreds of billions of years). The

approximate PSDs, based on the linear models, will prove useful in the construction of likelihoods in Section ??.195
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(a) (b)

Figure 3. Power spectral densities of the model with nominal parameter values. (a) Myr-model: A PSD of a 50 Myr simulation with the Myr

model is shown as a solid dark blue line. The corresponding theoretical PSD of the linear model is shown as a dashed dark blue line. A PSD

of a 50 Myr simulation with the Myr model and high-frequency roll-off is shown as a solid light blue line. The corresponding theoretical

PSD of the linear model is shown as a dashed light blue line. The PDSs of Sint-2000 and PADM2M are shown in orange and red. (b) kyr

model: A PSD of a 10 kyr simulation of the kyr model with uncorrelated noise is shown as a solid pink line. The corresponding theoretical

spectrum of the linear model is shown as a dashed blue line. A PSD of a 10 kyr simulation of the kyr model with correlated noise is shown

as a solid green line. The corresponding theoretical spectrum is shown as a dashed green line. The PDSs of CALS10k.2 is shown in purple.

All PSDs are computed by the multi-taper spectral estimation technique of ?.

In addition to a good match of the PSDs of the nonlinear and linear models, we note that the PSDs of the model match, at

least to some extent, the PSDs of the data (Sint-2000, PADM2M and CALS10k.2). This means that our choice for the nominal

values is “reasonable” because this choice leads to a reasonable fit to the data. The goal of using a Bayesian approach to

parameter estimation, described in Section ??, is to improve this fit and to equip the (nominal) parameter values with an error

estimate, i.e., to define and compute a distribution over the model parameters. This will lead to an improved fit, along with an200

improved understanding of model uncertainties.

3.3 Approximate reversal rate, VADM time average and VADM standard deviation

The nonlinear SDE model (??) and its discretization (??) exhibit reversals, i.e., a change in the sign of x. Moreover, the overall

“power”, i.e., the area under the PSD curve, is given by the standard deviation of the absolute value of x(t) over time. Another

important quantity of interest is the time averaged value of the absolute value of x(t), which describes the average strength205
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of the dipole field. In principle, these quantities (reversal rate, time average and standard deviation) can be computed from

simulations of the Myr and kyr model in the time domain. Similarly to what we found in the context of PSD computations

and approximations, we find that estimates of the reversal rate, time average and standard deviation are subject to large errors

unless the simulation time is very long (hundreds of millions of years). Using the linear model and Kramers formula, however,

one can approximate the time average, reversal rate and standard deviation without simulating the nonlinear model (see below).210

Computing the approximate values is instantaneous (evaluation of simple formulas) and the approximations are comparable to

what we obtain from very long simulations with the nonlinear model. As is the case with the PSD approximations based on

linear models, the below approximations of the reversal rate, time average and standard deviation based will prove useful for

formulating likelihoods in Section ??.

Specifically, the parameter x̄ defines the time average of the linear model (??) and it also defines where the drift term (??)215

vanishes. These values coincide quite closely with the time average of the nonlinear model which suggests the approximation

E(x) ⇡ x̄ · 10

22 Am2
. (11)

The reversal rate can approximated by Kramers formula (??)

r ⇡ �

2⇡

· exp

✓
�� x̄

2

6D

◆
· 10

3 Myr�1
. (12)

The standard deviation is the square root of the area under the PSD. Using the linear model that incorporates the effects220

of smoothing (due to sedimentation), one can approximate the standard deviation by computing the integral of the PSD in

equation (??):

� ⇡
✓

D

�

exp

✓
(�T

s

)

2

12

◆
erfc

✓
�T

s

2

p
3

◆◆1/2

· 10

22 Am2
, (13)

where erfc(·) is the (Gauss) error function. Without incorporating the smoothing, the standard deviation based on the linear

model would be the integral of the PDS in (??), which is � ⇡
p

D/�. The exponential and error function terms in (??) can thus225

be interpreted as a correction factor that accounts for the effects of sedimentation. It is easy to check that this correction factor

is always smaller than one, i.e., the (approximate) standard deviation accounting for sedimentation effects is smaller than the

(approximate) standard deviation that does not account for these effects.

For the nominal parameter values in Table 3 we calculate a time average of x̄ = 5.23 · 10

22 Am2, a standard deviation of

� ⇡ 2.07 ·10

22 Am2 and a reversal rate r ⇡ 4.37 Myr�1. These should be compared to the corresponding values of PADM2M230

and Sint-2000 in Table 1 and to the reversal rate from the geomagnetic polarity time scale in Table 2. Similar to what we

observed of the model-data fit in terms of (approximate) PSDs, we find that the nominal parameter values lead to a “reasonable”

fit of the model’s reversal rate, time average and standard deviation. The Bayesian parameter estimation in Section ?? will

improve this fit and lead to a better understanding of model uncertainties.

3.4 Parameter bounds235

The Bayesian parameter estimation, described in Section ??, makes use of “prior” information about the model parameters.

We formulate prior information in terms of parameter bounds and construct uniform prior distributions with these bounds. The
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parameter bounds we use are quite wide, i.e., the upper bounds are probably too large and the lower bound are probably too

small, but this is not critical for our purposes as we explain in more detail in Section ??.

The parameter � is defined by the inverse of the dipole decay time (?). An upper bound on the dipole decay time ⌧dec is given240

by the slowest decay mode ⌧dec  R

2
/(⇡

2
⌘), where R is the radius of the Earth and ⌘ = 0.8m2

/s is the magnetic diffusivity.

Thus, ⌧dec  48.6 kyr, which means that � � 0.0205 kyr�1. This is a fairly strict lower bound because the dipole may relax on

timescales shorter than the slowest decay mode and a recent theoretical calculation (?) suggests that the magnetic diffusivity

may be slightly larger than 0.8m2
/s. Both of these changes would cause the lower bound for � to increase. To obtain an upper

bound for �, we note that if � is large, the magnetic decay is short, which means that it becomes increasingly difficult for245

convection in the core to maintain the magnetic field. The ratio of dipole decay time ⌧dec to advection time ⌧adv = L/V , where

L = 2259 km is the width of the fluid shell and V = 0.5 mm/s, needs to be 10:1 or (much) larger. This leads to the upper bound

�  0.7 kyr�1.

Bounds for the parameter D can be found by considering the linear Myr time scale model in equation (??), which suggests

that the variance of the dipole moment is var(x) = D/�, see also ?. Thus, we may require that D ⇠ var(x)�. The average of the250

variance of Sint-2000 (var(x) = 3.37 · 10

44 A2m4) and PADM2M (var(x) = 2.19 · 10

44 A2m4) is var(x) ⇡ 2.78 · 10

44 A2m4.

We use the rounded up value var(x) ⇡ 3 · 10

44 A2m4 and, together with the lower and upper bounds on �, this leads to the

lower and upper bounds 0.062 · 10

44A2m4kyr�1  D  2.1 · 10

44A2m4kyr�1.

The smoothing time, T

s

, due to sedimentation and the correlation parameter for the noise, a, define the roll-off frequency

of the power spectra for the Myr and kyr models, respectively. We assume that T

s

is within the interval [1,5] kyr, and that the255

correlation time a

�1 is within [0.025,0.2] kyr (i.e. a within [5, 40] kyr�1). These choices enforce that T

s

controls roll-off at

lower frequencies (Myr model) and a controls the roll-off at higher frequencies (kyr model). Bounds for the parameter x̄ are

not easy to come by and we assume wide bounds, x̄ 2 [0,10] · 10

22 Am2. Here, x̄ = 0 is the lowest lower bound we can think

of since the average value of the field is always normalized to be positive. The value of the upper bound of x̄  10 is chosen

to be excessively large – the average field strength over the last 2 Myr is x̄ ⇡ 5. Lower and upper bounds for all five model260

parameters are summarized in Table 3.

4 Formulation of the Bayesian parameter estimation problem and numerical solution

The family of models, describing kyr and Myr time-scales and accounting for sedimentation processes and correlations in the

noise process, has five unknown parameters, x̄,D,�,T

s

,a. We summarize the unknown parameters in a “parameter vector”

✓ = (x̄,D,�,T

s

,a)

T . Our goal is to estimate the parameter vector ✓ using a Bayesian approach, i.e., to sharpen prior knowl-265

edge about the parameters by using the data described in Section ??. This is done by expressing prior information about the

parameters in a prior probability distribution p0(✓), and by defining a likelihood p

l

(y|✓), y being shorthand notation for the

data of Section ??. The prior distribution describes information we have about the parameters independently of the data. The

likelihood describes the probability of the data given the parameters ✓ and, therefore, connects model output and data. The
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prior and likelihood define the posterior distribution270

p(✓|y) / p0(✓)pl(y|✓). (14)

The posterior distribution combines the prior information with the information we extract from the data. In particular, we can

estimate parameters based on the posterior distribution. For example, we can compute the posterior mean and posterior standard

deviation for the various parameters and we can also compute correlations between the parameters. The posterior distribution

contains all information we have about the model parameters, given prior knowledge and information extracted from the data.275

Thus, the SDE model with random parameters, whose distribution is the posterior distribution, represents a comprehensive

model of the Earth’s dipole in view of the data we use.

On the other hand, the posterior distribution depends on several assumptions: since we define the prior and likelihood, we

also implicitly define the posterior distribution. In particular, formulations of the likelihood require that one be able to describe

anticipated errors in the data as well as anticipated model error. Such error models are difficult to come by in general, but even280

more so when the amount of data is limited. We address this issue by first formulating “reasonable” error models, followed

by a set of numerical tests that confirm (or disprove) our choices of error models (see Section ??). In our formulation of error

models, we focus on errors that arise due to the shortness of the paleomagnetic record because these errors dominate.

We solve the Bayesian parameter estimation problem numerically by using a Markov chain Monte Carlo (MCMC) method.

An MCMC method generates a (Markov) chain of parameter values whose stationary distribution is the posterior distribution.285

The chain is constructed by proposing a new parameter vector and then accepting or rejecting this proposal with a specified

probability that takes the posterior probability of the proposed parameter vector into account. A numerical solution via MCMC

thus requires that the likelihood be evaluated for every proposed parameter vector. Below we formulate a likelihood that

involves computing the PSDs of the Myr and kyr model, as well as reversal rates, time averages and standard deviations.

As explained in Section ??, obtaining these quantities from simulations with the nonlinear models requires extremely long290

simulations. Long simulations, however, require more substantial computations. This perhaps would not be an issue if we were

to compute the PDSs, reversal rate and other quantities once, but the MCMC approach we take requires repeated computing.

For example, we consider Markov chains of length 10

6, which requires 10

6 computations of PSDs, reversal rates etc. Moreover,

we will repeat these computations in a variety of settings to assess the validity of our error models (see Section ??). To keep

the computations feasible (fast), we thus decided to use the approximations of the PSDs, reversal rate, time average and295

standard deviation, based on the linear models (see Section ??), to define the likelihood. Evaluation of the likelihood is then

instantaneous because simulations with the nonlinear models are replaced by formulas that are simple to evaluate. Using

the approximation is further justified by the fact that the approximate PDSs, reversal rates, time averages and standard are

comparable to what we obtain from very long simulations with the nonlinear model.

4.1 Prior distribution300

The prior distribution describes knowledge about the model parameters we have before we consider the data. In Section ??,

we discussed lower and upper bounds for the model parameters and we use these bounds to construct the prior distribution.

12



This can be achieved by assuming a uniform prior over a five-dimensional hyper-cube whose corners are defined by the

parameter bounds in Table 1. Note that the bounds we derived in Section ?? are fairly wide. Wide bounds are preferable for our

purposes, because wide bounds implement minimal prior knowledge about the parameters. With such “uninformative priors”,305

the posterior distribution, which contains information from the data, reveals how well the parameter values are constrained by

data. More specifically, if the uniform prior distribution is morphed into a posterior distribution that describes a well-defined

“bump” of posterior probability mass in parameter space, then the model parameters are constrained by the data (to be within

the bump of posterior probability “mass”). If the posterior distribution is nearly equal to the prior distribution, then the data

have nearly no effect on the parameter estimates and, therefore, the data do not constrain the parameters.310

4.2 Feature-based likelihoods

In “data assimilation” or, more generally, in Bayesian estimation, information from a mathematical or numerical model is

merged with information from data (sometimes called “observations”) by combining a prior distribution with a likelihood to

define a posterior distribution. The likelihood describes the probability of the data given the numerical model and its parameters

and, therefore, connects the model and the data. Likelihoods are often based on a point-wise mismatch of the model outputs315

and the data.

We wish to use to use a collection of paleomagnetic observations to calibrate and constrain all five model parameters. For

this purpose, we use the data sets Sint-2000, PADM2M and CALS10k.2, as well as information about the reversal rate based

on the geomagnetic polarity time scale (see Section ??). The various data sets are not consistent and, for example, Sint-2000

and PADM2M report different VADM values at the same time instant (see Figure ??). Likelihoods that are defined in terms320

of a point-wise mismatch of model and data balance the effects of each data set via (assumed) error covariances: the data set

with smaller error covariances has a stronger effect on the parameter estimates. Accurate error models, however, are hard to

come by. For this reason, we use an alternative approach called “feature-based data assimilation” (see ??). The idea is to extract

“features” from the data and to subsequently define likelihoods that are based on the mismatch of the features derived from the

data and the model. Below, we formulate features that account for discrepancies across the various data sources and derive error325

models for the features. The error models are built to reflect uncertainties that arise due to the shortness of the paleomagnetic

record. The resulting feature-based posterior distribution describes the probability of model parameters in view of the features.

Thus, model parameters with a large feature-based posterior probability lead to model features that are comparable to the

features derived from the data, within the assumed uncertainties due to the shortness of the paleomagnetic record.

Specifically, we define likelihoods based on features derived from PSDs of the Sint-2000, PADM2M and CALS10k.2 data330

sets, as well as the reversal rate, time average VADM and VADM standard deviation. The overall likelihood consists of three

factors:

(i) one factor corresponds to the contributions from the reversal rate, time average VADM and VADM standard deviation

data, which we summarize as “time domain data” from now on for brevity;

(ii) one factor describes the contributions from data at low frequencies of 10

�4 � 0.5 cycles per kyr (PADM2M and Sint-335

2000);
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(iii) one factor describes contribution of data at high frequencies of 0.9� 9.9 cycles/kyr (CALS10k.2)

In the Bayesian approach, and assuming that errors are independent, this means that the likelihood, p

l

(y|✓) in equation (??)

can be written as the product of three terms

p

l

(y|✓) / p

l,td(y|✓)p

l,lf(y|✓)pl,hf(y|✓), (15)340

where p

l,td(y|✓), p

l,lf(y|✓) and p

l,hf(y|✓) represent the contributions from the time domain data (reversal rate, time average

VADM and VADM standard deviation), the low frequencies and the high frequencies; recall that y is shorthand notation for all

the data we use. We now describe how each component of the overall likelihood is constructed.

4.2.1 Reversal rates, time average VADM and VADM standard deviation

We define the likelihood component of the time domain data based on the equations345

yrr = hrr(✓) + "rr, (16)

y

x̄

= h

x̄

(✓) + "

x̄

, (17)

y

�

= h

�

(✓) + "

�

, (18)

where yrr, y

x̄

y

�

are features derived from the time domain data, hrr(✓), h

x̄

(✓) and h

�

(✓) are functions that connect the

model parameters to the features, based on the approximations described in Section ??, and where
:
.
::
In

:::::::
addition,

:::
to

::::::::
assuming350

::::::::::
independent

::::::
errors,

::
we

::::::
further

:::::::
assume

:::
that

:::
all

:::::
errors

:::
are

:::::::::
Gaussian,

:::
i.e.,

:
"rr, "

x̄

and "

�

are independent Gaussian error models

with mean zero and variances �

2
rr, �

2
x̄

, and �

2
�

.
:
A
::::::::
Gaussian

::::::::::
assumption

::
of

:::::
errors

::
is

::::::
widely

::::
used.

:::::
Note

:::
that

:::::
errors

:::
are

::::::::::
notoriously

::::::
difficult

:::
to

:::::
model

::::::
which

::::
also

::::::
makes

::
it

:::::::
difficult

::
to

::::::::
motivate

:::
and

::::::
justify

::
a

::::::::
particular

::::::::
statistical

::::::::::
description.

::::
The

:::::
wide

:::
use

:::
of

:::::::
Gaussian

::::::
errors

:::
can

:::
be

::::::::
explained,

::
at
:::::

least
::
in

::::
part,

:::
by

::::::::
Gaussian

:::::
errors

:::::
being

::::::::::
numerically

::::
easy

:::
to

::::
deal

::::
with.

:::
We

::::
use

::::::::
Gaussian

:::::
errors

::
for

:::::
these

:::::::
reasons,

:::
but

:::
the

::::::
overall

::::::::
approach

:::
we

:::::::
describe

:::
can

::::
also

:::::::
extended

::
to
:::
be

::::
used

:::::
along

::::
with

::::
other

:::::::::::
assumptions

:::::
about355

:::::
errors

:
if
:::::
these

::::
were

:::::::::
available.

Taken all together, the likelihood term p

l,td(y|✓) in (??) is then given by the product of the three likelihoods defined by

equations (??), (??) and (??):

p

l,td(y|✓) / exp

 
�1

2

 ✓
yrr �hrr(✓)

�rr

◆2

+

✓
y

x̄

�h

x̄

(✓)

�

x̄

◆2

+

✓
y

�

�h

�

(✓)

�

�

◆2
!!

. (19)

The reversal rate feature is simply the average reversal rate we computed from the chronology of ? (see Section ??), i.e.,360

yrr = 4.23 reversals/Myr. The function hrr(✓) is based on the approximation using Kramers formula in equation (??):

hrr(✓) =

�

2⇡

exp

✓
�� x̄

2

6D

◆
· 10

3 reversals/Myr. (20)

The time average feature is the mean of the time averages of PADM2M and Sint-2000: y

x̄

= 5.56 · 10

22 Am2. The function

h

x̄

(✓) is based on the linear approximation discussed in Section ??, i.e., h

x̄

(✓) = x̄. The feature for the VADM standard
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deviation is the average of the VADM standard deviations of PADM2M and Sint-2000: y

�

= 1.66 · 10

22 Am2. The function365

h

�

(✓) uses the linear approximation of the standard deviation (??):

h

�

(✓) =

✓
D

�

exp

✓
(�T

s

)

2

12

◆
erfc

⇣
�T

s

/2/

p
(3)

⌘◆1/2

· 10

22 Am2 kyr2 (21)

Candidate values for these error variances are as follows. The error variance of the reversal rate, �

2
rr, can be based on the

standard deviations we computed from the ? chronology in Table 2. Thus, we might use the standard deviation of the 10-Myr

average and take �rr = 0.5. One can also use the model with nominal parameter values (see Table 3) to compute candidate370

values of the standard deviation �rr. We perform 1,000 independent 10 Myr simulations and, for each simulation, determine

the reversal rate. The standard deviation of the reversal rate based on these simulations is 0.69 reversal per Myr, which is

comparable to the 0.5 reversals per Myr we computed from the ? chronology, using an interval length of 10 Myr. Similarly,

the standard deviation of the reversal rate of 1,000 independent 5 Myr simulations is 0.97, which is also comparable to the

standard deviation of 1.01 reversals per Myr, suggested by the ? chronology, using an interval length of 5 Myr.375

A candidate for the standard deviation of the time average VADM is the difference of the time averages of Sint-2000

and PADM2M, which gives �

x̄

= 0.48 · 10

22 Am2. Similarly, one can define the standard deviation �

�

by the difference of

VADM standard deviations (over time) derived from Sint-2000 and PADM2M. This gives �

�

= 0.36 · 10

22 Am2. We can also

derive error covariances using the model with nominal parameters and perform 1,000 independent 2 Myr simulations. For

each simulation, we compute the time average and the VADM standard deviations, which then allows us to compute standard380

deviations of these quantities. Specifically, we found a value of 0.26 · 10

22 Am2 for the standard deviation of the time average

and 0.11 ·10

22 Am2 for standard deviation of the VADM standard deviation. These values are comparable to what we obtained

from the data, especially if we base the standard deviations on half of the difference of the PADM2M and Sint-2000 values,

i.e., assuming that the data sets are within two standard deviations (rather than within one, which we assumed above).

A difficulty with these
:::::::
candidate

:
error covariances is that we have few time domain observations compared with the large385

number of spectral data in the power spectra (see below). This vast difference in the number of time domain and spectral data

means that the spectral data can overwhelm the recovery of model parameters. To ensure that time domain observations also

contribute to the parameter estimates we lower the
:::
We

::::::
address

::::
this

::::
issue

:::
by

:::::::
loweing

::
the

:
error variances �rr, �x̄

and �

�

, derived

from the data by a factor of 100and set
:
:
:

�rr = 0.05 reversals/Myr, �

x̄

= 0.048 · 10

22 Am2
�

�

= 0.036 · 10

22 Am2
. (22)390

We discuss this choice and its consequences on parameter estimates and associated uncertainty
:::::::::
Decreasing

:::
the

:::::
error

::::::::
variances

::
of

:::
the

::::
time

:::::::
domain

::::
data,

::::::::
increases

:::
the

:::::::
relative

::::::::::
importance

::
of

:::
the

::::
time

:::::::
domain

::::
data

:::::::::
compared

::
to

:::
the

:::::::
spectral

::::
data

:::::
which

:::
in

:::
turn

:::::
leads

::
to

::
an

:::::::
overall

::::
good

::
fit

:::
of

:::
the

:::::
model

::
to

:::
all

::::
data.

::::
This

::::::
comes

::
at

:::
the

:::::::
expense

::
of

:::
not

::::::::::
necessarily

:::::::
realistic

:::::::
posterior

:::::
error

:::::::::
covariances

:::
for

:::::
some

::
or

:::
all

::
of

:::
the

::::::::::
parameters.

:::
We

:::::::
discuss

:::::
these

:::::
issues

:
in more detail in Section ??. An alternative approach

would be to reduce the
:::::::::
Alternatives

:::
to

::
the

::::::::
approach

:::
we

::::
take

::::
here

::::::::
(reducing

:::::
error

::::::::::
covariances)

::::::
include

::::::::
reducing

:::
the number of395

spectral data , e.g., by condensing the spectra into “a few” characteristics such as corner frequencies or slopes
::::::::
compared

::
to

:::
the

::::::
number

::
of

::::
time

:::::::
domain

::::
data, see also (?). The difficulty with such an approach, however, is that corner frequencies etc. are not
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easy to extract from the PDSs of the data . For these reasons, we pursue in this paper a “tuning” of the error variances to control

the impact of the time domain data on the parameter estimates , but alternative strategies are straightforward to implement

within our overall feature-based Bayesian estimation approach
:::::::
reducing

:::
the

:::::::
number

::
of

:::::::
spectral

::::
data

::
is

:::
not

::::
easy

::
to

:::
do

:::
and

::::
that400

::
the

::::::::::::
consequences

::::
such

::::
data

::::::::
reduction

::::
may

::::
have

:::
on

:::::::
posterior

::::::::
estimates

::
is

:::::::
difficult

::
to

::::::::
anticipate.

4.2.2 Low frequencies

The component p

l,lf(y|✓) of the feature-based likelihood (??) addresses the behavior of the dipole at low frequencies of 10

�4�
0.5 cycles per kyr and is based on the PSDs of the Sint-2000 and PADM2M data sets. We construct the likelihood using the

equation405

ylf = hlf(✓) + "lf, (23)

where ylf is a feature that represents the PSD of the Earth’s dipole field at low frequencies, hlf(✓) maps the model parameters

to the data ylf and where "lf represents the errors we expect.

We define ylf to be the mean of the PSDs of Sint-2000 and PADM2M. The function hlf(✓) maps the model parameters to

the feature ylf and is based on the PSD of the linear model (??). To account for the smoothing introduced by sedimentation410

processes we define hlf(✓) to be a function that computes the PSD of the Myr model by using the “un-smoothed” spectrum

of equation (??) for frequencies less than 0.05 cycles/kyr, and uses the “smoothed” spectrum of equation (??) for frequencies

between 0.05� 0.5 cycles/kyr:

hlf(✓) =

2D

�

2
+ 4⇡

2
f

2
·

8
<

:
1 if f  0.05

exp

�
�(4⇡

2
f

2
T

2
s

)/12

�
if 0.05 < f  0.5

(24)

Note that hlf(✓) does not depend on x̄ or a. This also means that the data regarding low frequencies are not useful for deter-415

mining these two parameters (see Section ??).

The uncertainty introduced by sampling the VADM once per kyr for only 2 Myrs is the dominant source of error in the

power spectral densities. For a Gaussian error model "lf with zero mean, this means that the error covariance should describe

uncertainties that are induced by the limited amount of data. We construct such a covariance as follows. We perform 10

4

simulations, each of 2 Myr, with the nonlinear Myr model (??) and its nominal parameters (see Table 1). We compute the PSD420

of each simulation and build the covariance matrix of the 10

4 PSDs. In the left panel of Figure ?? we illustrate the error model

by plotting the PSDs of PADM2M (red), Sint-2000 (orange), their mean, ylf, (dark blue), and 5 ·10

3 samples of "lf added to ylf

(grey). Since the PSDs of Sint-2000 and PADM2M are well within the cloud of PSDs we generated with the error model, this

choice for modeling the expected errors in low frequency PSDs seems reasonable to us.

For comparison, we also plot 10

3 samples of an error model that only accounts for the reported errors in Sint-2000. This425

is done by adding independent Gaussian noise, whose standard deviation is given by the Sint-2000 data set every kyr, to the

VADM of Sint-2000 and PADM2M. This results in 10

3 “perturbed” versions of Sint-2000 or PADM2M. For each one, we

compute the PSD and plot the result in the right panel of Figure ??. The resulting errors are smaller than the errors induced by
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Figure 4. Left: low frequency data and error model due to shortness of record. Orange: PSD of Sint-2000. Red: PSD of PADM2M. Blue:

mean of PSDs of Sint-2000 and PADM2M (ylf). Grey: 5 · 103 samples of the error model "lf added to ylf. Right: error model based on errors

in Sint-2000. Orange: 103 samples of the PSDs computed from “perturbed” Sint-2000 VADMs. Red: 103 samples of the PSDs computed

from “perturbed” PADM2M VADMs.

the shortness of the record. In fact, the reported error does not account for the difference in the Sint-2000 and PADM2M data

sets. This suggests that the reported error is too small.430

4.2.3 High frequencies

We now consider the high frequency behavior of the model and use the CALS10k.2 data. We focus on frequencies between

0.9� 9.9 cycles/kyr, where the upper limit is set by the resolution of the CALS10k.2 data. The lower limit is chosen to avoid

overlap between the PSDs of CALS10k.2 and Sint-2000/PADM2M. Our choice also acknowledges that the high-frequency

part of the PSD for Sint-2000/PADM2M may be less reliable that the PSD of CALS10k.2 for these frequencies. As above, we435

construct the likelihood p

l,hf(y|✓) from an equation similar to (??):

yhf = hhf(✓) + "hf, (25)

where yhf is the PSD of CALS10k.2 in the frequency range we consider, hhf(✓) is a function that maps model parameters to

the data and where "hf is the error model.

We base hhf(✓) on the PSD of the linear model (see equation (??)) and set440

hhf(✓) =

2D

�

2
+ 4⇡

2
f

2
· a

2

a

2
+ 4⇡

2
f

2
, (26)

where f is the frequency in the range we consider here. Recall that a

�1 defines the correlation time of the noise in the kyr

model.
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Figure 5. Data and error models for low and high frequencies. Orange: PSD of Sint-2000. Red: PSD of PADM2M. Blue: mean of PSDs of

Sint-2000 and PADM2M (ylf). Grey (low frequencies): 5·103 samples of the error model "lf added to ylf. Dashed purple: PSD of CALS10k.2.

Solid purple: PSD of CALS10k.2 at frequencies we consider (yhf). Grey (high frequencies): 5 · 103 samples of the error model "hf added to

yhf.

The error model "hf is Gaussian with mean zero and the covariance is designed to represent errors due to the shortness of the

record. This is done, as above, by using 10 kyr simulations of the nonlinear model (??)-(??) with nominal parameter values.445

We perform 5000 simulations and for each one compute the PSD over the frequency range we consider (0.9� 9.9 cycles/kyr).

The covariance matrix computed from these PSDs defines the error model "hf, which is illustrated along with the low frequency

error model and the data in Figure ??.

This concludes the construction of the likelihood and, together with the prior (see Section ??) we have now formulated the

Bayesian formulation of this problem in terms of the posterior distribution (??).450

4.3 Numerical solution by MCMC

We solve the Bayesian parameter estimation problem numerically by Markov Chain Monte Carlo (MCMC). This means that

we use a “MCMC sampler” that generates samples from the posterior distribution in the sense that averages computed over

the samples are equal to expected values computed over the posterior distribution in the limit of infinitely many samples. A

(Metropolis-Hastings) MCMC sampler works as follows: the sampler proposes a sample by drawing from a proposal distribu-455

tion and the sample is accepted with a probability to ensure that the stationary distribution of the Markov chain is the targeted

posterior distribution.

We use the affine invariant ensemble sampler, called MCMC Hammer, of ?, implemented in Matlab by ?. The MCMC

Hammer is a general purpose ensemble sampler that is particularly effective if there are strong correlations among the various
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parameters. The Matlab implementation of the method is easy to use, and requires that we provide the sampler with functions460

that evaluate the prior distribution and the likelihood, as described above.

In addition, the sampler requires that we define an initial ensemble of ten walkers (two per parameter). This is done as

follows. We draw the initial ensemble from a Gaussian whose mean is given by the nominal parameters in Table 3, and whose

covariance matrix is a diagonal matrix whose diagonal elements are 50% of the nominal values. The Gaussian is constrained by

the upper and lower bounds in Table 3. The precise choice of the initial ensemble, however, is not so important as the ensemble465

generated by the MCMC hammer quickly spreads out to search the parameter space.

We assess the numerical results by computing integrated auto correlation time (IACT) using the definitions and methods

described by ?. The IACT is a measure of how effective the sampler is. We generate an overall number of 10

6 samples, but

the number of “effective” samples is 10

6
/IACT. For all MCMC runs we perform (see Sections ?? and ??), the IACT of the

Markov chain is about 100. We discard the first 10 · IACT samples as “burn in”, further reducing the impact of the distribution470

of the initial ensemble. We also ran shorter chains with 10

5 samples and obtained similar results, indicating that the chains of

length 10

6 are well resolved.

Recall that all MCMC samplers yield the posterior distribution as their stationary distribution, but the specific choice of

MCMC sampler defines “how fast” one approaches the stationary distribution and how effective the sampling is (Burn-in time

and IACT). In view of the fact that likelihood evaluations are, by our design, computationally inexpensive, we may run (any)475

MCMC sampler to generate a long chain (10

6 samples). Thus, the precise choice of MCMC sampler is not so important for

our purposes. We found that the MCMC Hammer solves the problem with sufficient efficiency for our purposes.

The code we wrote is available on github: https://github.com/mattimorzfeld/. It can be used to generate 100,000 samples

in a few hours and 10

6 samples in less than a day. For this reason, we can run the code in several configurations and with

likelihoods that are missing some of the factors that comprise the overall feature-based likelihood (??). This allows us to study480

the impact of each individual data set has on the parameter estimates and it also allows us to assess the validity of some of our

modeling choices, in particular with respect to error variances which are notoriously difficult to come by (see Section ??).

5 Results

We run the MCMC sampler to generate 10

6 samples, approximately distributed according to the posterior distribution. We

illustrate the posterior distribution by a corner plot in Figure ??. The corner plot shows all 1- and 2-dimensional histograms485

of the posterior samples. We observe that the four 1-dimensional histograms are well-defined “bumps” whose width is consid-

erably smaller than the assumed parameter bounds (see Table 3) which define the “uninformative”, uniform prior. Thus, the

posterior probability, which synthesizes the information from the data via the definition of the features, is concentrated over

a smaller subset of parameters than the prior probability. In this way, the Bayesian parameter estimation has sharpened the

knowledge about the parameters by incorporating the data.490
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x̄

Figure 6. 1- and 2-dimensional histograms of the posterior distribution.

x̄ D � T

s

a � Rev. rate

in 1022 Am2 in 1044 A2m4 kyr�1 in kyr�1 in kyr in kyr�1 in 1022 Am2 in reversals/Myr

5.23 (0.043) 0.34 (0.0072) 0.10 (0.0033) 1.75 (0.050) 8.56 (1.93) 1.77 (0.024) 4.06 (0.049)

Table 4. Posterior mean and standard deviation (in brackets) of the model parameters and corresponding estimates of reversal rate and VADM

standard deviation

The 2-dimensional histograms indicate correlations among the parameters ✓ = (x̄,D,�,T

s

,a)

T , with strong correlations

between x̄, D and �. These correlations can also be described by the correlation coefficients

x̄ D � T

s

a

x̄ 1.00 0.78 0.20 0.02 �0.03

D 0.78 1.00 0.64 0.02 �0.03

� 0.20 0.64 1.00 �0.01 �0.02

T

s

0.02 0.02 �0.01 1.00 0.00

a �0.03 �0.03 �0.02 0.00 1.00

(27)

The strong correlation between x̄ and D and �, is due to the contribution of the reversal rate to the overall likelihood (see

Equation (??)) and the dependence of the spectral data on D and � (see Equations (??) and (??)). From the samples, we can495

also compute means and standard deviations of all five parameters and we show these values in Table 4.
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The table also shows the reversal rate and VADM standard deviation that we compute from 2,000 samples of the posterior

distribution followed by evaluation of Equations (??) and (??) for each sample. We note that the reversal rate (4.06 rever-

sals/Myr) is lower than the reversal rate we used in the likelihood (4.23 reversals/Myr). Since the posterior standard deviation

is 0.049 reversals/Myr, the reversal rate data are about four standard deviations away from the mean we compute. Similarly,500

the posterior VADM standard deviation (mean value of 1.77 · 10

22 Am2) is also far, as measured by the posterior standard

deviation, from the value we use as data (1.6610

22 Am2). These large deviations indicate an inconsistency between the VADM

standard deviation and the reversal rate. A higher reversal rate could be achieved with a higher VADM standard deviation. The

reason is that the reversal rate in Equation (??) can be re-written as

r ⇡ �

2⇡

· exp

✓
� x̄

2

6�

2

◆
· 10

3 Myr�1
, (28)505

using � ⇡
p

D/�, i.e., neglecting the correction factor due to sedimentation, which has only a minor effect. Using a time

average of x̄ = 5.23·10

22 Am2, a reversal rate r = 4.2 reversals / Myr, setting � = 0.1kyr�1 (posterior mean value), and solving

for the VADM standard deviation results in � ⇡ 1.86 · 10

22 Am2, which is not compatible with the SINT-2000 and PADM2M

data sets (where � ⇡ 1.66·10

22 Am2). One possible source of discrepancy is that the low-frequency data sets underestimate the

standard deviation and also the time average. For example, ? report a time average VADM of 7.64 · 10

22 Am2 and a standard510

deviation � = 2.72 · 10

22 Am2 for paleointensity measurements from the past 0.55 Myr. These measurements are unable to

provide any constraint on the temporal evolution of the VADM (in contrast to the SINT-2000 and PADM2M models). Instead,

these measurements represent a sampling of the steady-state probability distribution for the dipole moment. The results thus

suggest that a larger mean and standard deviation are permitted by paleointensity observations. Using the larger values for

the time average and VADM standard deviation, but keeping � = 0.1kyr�1 (posterior mean value), leads to a reversal rate of515

r ⇡ 4.27 reversals per Myr, which is compatible with the reversal rates based on the past 30 Myr in Table 2. It is, however, also

possible that the model for the reversal rate has shortcomings. Identifying these shortcomings is a first step in making model

improvements and the Bayesian parameter estimation framework we describe is a mathematically and computationally sound

tool for discovering such inconsistencies.

The model fit to the spectral data is illustrated in the left panel of Figure ??. Here, we plot 100 PSDs, computed from 2 Myr520

and 10 kyr model runs, and where each model run uses a parameter set drawn at random from the posterior distribution. For

comparison, the figure also shows the PADM2M, Sint-2000 and CALS10k.2 data as well as 5 · 10

3 realizations of the low-

and high-frequency error models. We note that the overall uncertainty is reduced by the Bayesian parameter estimation. The

reduction in uncertainty is apparent from the expected errors generating a “wider” cloud of PSDs (in grey) than the posterior

estimates (in blue and turquoise). We further note that the PSDs of the models, with parameters drawn from the posterior525

distribution, fall largely within the expected errors (illustrated in grey). In particular the high-frequency PSDs (the CALS10k.2

range) are well within the errors we imposed by the likelihoods. The low frequencies of Sint-2000/PADM2M are also within

the expected errors and so are the high-frequencies beyond the second roll-off due to the sedimentation effects. At intermediate

frequencies, some of the PDSs of the model are outside of the expected errors. This indicates a model inconsistency because it
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Figure 7. Parameter estimation results. Left: PSDs of data and model. Orange: PSD of Sint-2000. Red: PSD of PADM2M. Dashed purple:

PSD of CALS10k.2. Solid purple: PSD of CALS10k.2 at frequencies we consider (yhf). Grey (low frequencies): 5 · 103 samples of the error

model "lf added to ylf. Grey (high frequencies): 5 ·103 samples of the error model "hf added to yhf. Dark blue: PSDs of 100 posterior samples

of Myr model (with smoothing). Turquoise: PSDs of 100 posterior samples of kyr model with uncorrelated noise. Right, top: Sint-2000

(orange), PADM2M (red) and a realization of the Myr model with smoothing and with posterior mean parameters (blue). Right, bottom:

CALS10k.2 (purple) and a realization of the kyr model with correlated noise and with posterior mean parameters kyr model (turquoise).

is difficult to account for the intermediate frequencies with model parameters that fit the other data (spectral and time domain)530

within the assumed error models. We investigate this issue further in Section ??.

The right panels of Figure ?? show a Myr model run (top) and kyr model run (bottom) using the posterior mean values for

the parameters. We note that the model with posterior mean parameter values exhibits qualitatively similar characteristics as

the Sint-2000, PADM2M and CALS10k.2 data. The figure thus illustrates that the feature-based Bayesian parameter estima-

tion, which is based solely on PSD, reversal rates, time average VADM and VADM standard deviation, translates into model535

parameters that also appear reasonable when a single simulation in the time domain is considered.

In summary, we conclude that the likelihoods we constructed and the assumptions about errors we made lead to a posterior

distribution that constrains the model parameters tightly (as compared to the uniform prior). The posterior distribution describes

a set of model parameters that yield model outputs that are comparable with the data in the feature-based sense. The estimates

of the uncertainty in the parameters, e.g., posterior standard deviations, however, should be used with the understanding that540

error variances are not easy to define. For the spectral data, we constructed error models that reflect uncertainty induced by

the shortness of the paleomagnetic record. For the time domain data (reversal rate, time average VADM and VADM standard

deviation) we used error variances that are smaller than intuitive error variances to account for the fact that the number of

spectral data points (hundreds) is much larger than the number of time domain data points (three data points). Moreover, the
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Configuration (a) (b) (c) (d) (e) (f)

PADM2M & Sint-2000 ⇥
CALS10k.2 ⇥ ⇥ ⇥
Rev. Rate, time avg., std. dev. ⇥ ⇥

�rr in reversals/Myr 0.05 0.05 0.5 N/A 0.05 N/A

�

x̄

in 1022 Am2 0.048 0.048 0.48 N/A 0.048 N/A

�

�

in 1022 Am2 0.036 0.036 0.36 N/A 0.036 N/A
Table 5. Configurations for several Bayesian problem formulations. A checkmark means that the data set is used; a cross means it is not used

in the overall likelihood construction. The standard deviations (�) define the Gaussian error models for the reversal rate, time average VADM

and VADM standard deviation.

reversal rate and VADM standard deviation data are far (as measured by posterior standard deviations) from the reversal rate545

and VADM standard deviation of the model with posterior parameters. As indicated above, this discrepancy could be due to

inconsistencies between spectral data and time domain data, which we will study in more detail in the next section.

6 Discussion

We study the effects the independent data sets have on the parameter estimates and also study the effects of different choices

for error variances for the time domain data (reversal rate, time average VADM and VADM standard deviation). We do so by550

running the MCMC code in several configurations. Each configuration corresponds to a posterior distribution and, therefore,

to a set of parameter estimates. The configurations we consider are summarized in Table 4 and the corresponding parameter

estimates are reported in Table 5. Configuration (a) is the default configuration described in the previous sections. We now

discuss the other configurations in relation to (a) and in relation to each other.

Configuration (b) differs from configuration (a) in that the CALS10k.2 data are not used, i.e., we do not include the high-555

frequency component, p

l,hf(y|✓) in the feature-based likelihood (??). Configurations (a) and (b) lead to nearly identical pos-

terior distributions and, hence, nearly identical parameter estimates with the exception of the parameter a, which controls the

correlation of the noise on the kyr time scale. The differences and similarities are apparent when we compare the corner plots

of the posterior distributions of configurations (a), shown in Figure ??, and of configuration (b), shown in Figure ??. The corner

plots are nearly identical except for the bottom row of plots which illustrates marginals of the posterior related to a. We note that560

the posterior distribution over a is nearly identical to its prior distribution. Thus, the parameter a is not constrained by the data

used in configuration (b), which is perhaps not surprising because a only appears in the Bayesian parameter estimation problem

via the high-frequency likelihood p

l,hf(y|✓). Moreover, since p

l,lf(y|✓) and p

l,td(y|✓) are independent of a, the marginal of the

posterior distribution of configuration (b) over the parameter a is independent of the data. More interestingly, however, we find

that all other model parameters are estimated to have nearly the same values, independently of whether CALS10k.2 being used565

during parameter estimation or not. This latter observation indicates that the model is self-consistent and consistent with the
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Configuration (a) (b) (c)

x̄ in 1022 Am2 5.23 (0.043) 5.23 (0.042) 3.56 (0.26)

D in 1044 A2m4 kyr�1 0.34 (0.0072) 0.34 (0.0072) 0.13 (0.014)

� in kyr�1 0.10 (0.0033) 0.10 (0.0033) 0.081 (0.0052)

T

s

in kyr 1.75 (0.050) 1.74 (0.050) 1.68 (0.14)

a in kyr�1 8.56 (1.93) 22.45 (10.01) 11.69 (3.91)

� in 1022 Am2 1.77 (0.024) 1.77 (0.023) 1.22 (0.060)

Rev. rate in reversals/Myr 4.06 (0.049) 4.06 (0.023) 3.34 (0.52)

Configuration (d) (e) (f)

x̄ in 1022 Am2 5.04 (2.91) 5.56 (0.048) 5.04 (2.88)

D in 1044 A2m4 kyr�1 0.094 (0.015) 0.44 (0.021) 0.093 (0.015)

� in kyr�1 0.078 (0.0063) 0.14 (0.014) 0.077 (0.0064)

T

s

in kyr 1.64 (0.19) 2.98 (1.15) 1.64 (0.19)

a in kyr�1 12.92 (4.79) 22.59 (10.08) 22.37 (10.13)

� in 1022 Am2 1.08 (0.074) 1.66 (0.036) 1.07 (0.075)

Rev. rate in reversals/Myr 2.89 (4.11) 4.23 (0.050) 2.83 (4.10)
Table 6. Posterior parameter estimates (mean and standard deviation, in brackets) and corresponding VADM standard deviation (�) and

reversal rates for five different set ups (see Table 5).

x̄

Figure 8. 1- and 2-dimensional histograms of the posterior distribution of configuration (b).
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Case (d)-> Spectral fit, without time domain data

Figure 9. PSDs of data and model with parameters drawn from the posterior distribution of configuration (c). Orange: PSD of Sint-2000.

Red: PSD of PADM2M. Dashed purple: PSD of CALS10k.2. Solid purple: PSD of CALS10k.2 at frequencies we consider (yhf). Grey (low

frequencies): 5 · 103 samples of the error model "lf added to ylf. Grey (high frequencies): 5 · 103 samples of the error model "hf added to yhf.

Dark blue: PSDs of 100 posterior samples of Myr model (with smoothing). Turquoise: PSDs of 100 posterior samples of kyr model with

uncorrelated noise.

data on the Myr and kyr time scales; in the context of our simple stochastic model the data from CALS10k.2 mostly constraints

the noise correlation parameter a.

Configuration (c) differs from configuration (a) in the error variances for the time domain data (reversal rate, time average

VADM and VADM standard deviation). With the larger values used in configuration (c), the spectral data are emphasized during570

the Bayesian estimation which also leads to an overall better fit of the spectra. This is illustrated in Figure ??, where we plot the

100 PSDs generated by 100 (independent) simulations with the model with parameters drawn from the posterior distribution

of configuration (c). For comparison, we also plot the PSDs of PADM2M, Sint-2000, CALS10k.2 and 5 · 10

3 realizations of

the high- and low-frequency error model. In contrast to configuration (a) (see Figure ??), we find that the PSDs of the model

of configuration (c) are all well within the expected errors. One the other hand, the reversal rate drops to about 3 reversals/Myr,575

and the time average VADM and VADM standard deviation also decrease significantly as compared to configuration (a). This

is caused by the posterior mean of D being decreased by more than 50%, while � and T

s

are comparable for configurations

(a)-(c). The fact that the improved fit of the PDSs comes at the cost of a poor fit of the reversal rate, time average and standard

deviation is another indication of an inconsistency between the reversal rate and the VADM data sets. As indicated above, one

of the strengths of the Bayesian parameter estimation framework we describe here is to be able to identify such inconsistencies.580

Once identified, one can try to fix the model. For example, we can envision a modification of the functional form of the drift

term in (??). A nearly linear dependence of the drift term on x near x = x̄ is supported by the VADM data sets, but the behavior

near x = 0 is largely unconstrained. Symmetry of the underlying governing equations suggests that the drift term should vanish

and the functional form adopted in (??) is just one way that a linear trend can be extrapolated to x = 0. Other functional forms

that lower the barrier between the potential wells would have the effect of increasing the reversal rate. This simple change to585
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the model could bring the reversal rate into better agreement with the time average and standard deviation of the VADM data

sets.

In configuration (d), the spectral data are used, but the time domain data are not used (which corresponds to infinite �rr, �

�

and �

x̄

). We note that the posterior means and variances of all parameters are comparable for configurations (c), where the

error variances of the time domain data are “large”, and (d), where the error variance of the time domain data are “infinite”.590

Thus, the impact of the time domain data is minimal if the error variances of the time domain data are large. The reason is that

the number of spectral data points is larger (hundreds) than the number of time domain data (three data points: reversal rate,

time average VADM and VADM standard deviation). When the error variances of the time domain data decrease, the impact

these data have on the parameter estimates increases. We further note that the parameter estimates of configurations (c) or (d)

are quite different from the parameter estimates of configuration (a) (see above). For an overall good fit of the model to the595

spectral and time domain data, the error variances for the time domain data must by small, as in configuration (a). Otherwise,

the reversal rates are too low. Small error variances, however, imply (relatively) large deviations between the time domain data

and the model predictions. Small error variances also comes at the cost of not necessarily realistic posterior variances.

Comparing configurations (d) and (e), we note that if only the spectral data are used, the reversal rates are unrealistically

small (nominally 1 reversal per Myr). Moreover, the parameter estimates based on the spectral data are quite different from the600

estimates we obtain when we use the time domain data (reversal rate, time average VADM and VADM standard deviation). This

is further evidence that either the model has some inconsistencies, or that the reversal rate and the VADM standard deviation

are not consistent. Specifically, our experiments suggest that a good match to spectral data requires a set of model parameters

that is quite different from the set of model parameters that lead to a good fit to the reversal rate, time average VADM and

VADM standard deviation. Experimenting with different functional forms for the drift term is one strategy for achieving better605

agreement between the reversal rate, the time average VADM and VADM standard deviation.

Comparing configurations (d) and (f), we can further study the effects that the CALS10k.2 data have on parameter estimates

(similarly to how we compared configurations (a) and (b) above). The results, shown in Table 6, indicate that the parameter

estimates based on configurations (d) and (f) are nearly identical, except in the parameter a that controls the time correlation of

the noise on the kyr time scale. This confirms what we already found by comparing configurations (a) and (b): the CALS10k.2610

data are mostly useful for constraining a. These results, along with configurations (a) and (b), suggest that the model is self

consistent with the independent data on the Myr scale (Sint-2000 and PADM2M) and on the kyr scale (CALS10k.2). Our

experiments, however, also suggest that the model has difficulties to reconcile the spectral and time domain data.

Finally, note that the data used in configuration (d) does not inform the parameter x̄, and configuration (f) does not inform x̄

or a. If the data do not inform the parameters, then the posterior distribution over these parameters is essentially equal to the615

prior distribution, which is uniform. This is illustrated in Figure ??, where we show the corner plot of the posterior distribution

of configuration (f). We can clearly identify the uniform prior in the marginals over the parameters x̄ and a. This means that

the Sint-2000 and PADM2M data only constrain the parameters D, � and T

s

.
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x̄

Figure 10. 1- and 2-dimensional histograms of the posterior distribution of configuration (f).

7 Examples of applications of the model

The Bayesian estimation technique we describe leads to a model with stochastic parameters whose distributions are informed620

by the paleomagnetic data. Moreover, we ran a large number of numerical experiments to understand the limitations of the

model, to discover inconsistencies between the model and the data and to check our assumptions about error modeling. This

process results in a well-understood and well-founded stochastic model for selected aspects of the long term behavior of the

geomagnetic dipole field. We believe that such a model can be useful for a variety of purposes, including testing hypotheses

about selected long-term aspects of the geomagnetic dipole.625

For example, it was noted by ? that the VADM (time averaged) amplitude during the past chron was slightly lower than during

the previous chron. Specifically, the time averaged VADM for �0.78 < t < 0 Myr is E(x) = 6.2 · 10

22 Am2 but for �2 < t <

�0.78 Myr the time average is E(x) = 4.8·10

22 Am2. A natural question is: is this increase in the time average significant or is

it due due to random variability? We investigate this question using the model whose parameters are the posterior mean values

of configuration (a) (the configuration that leads to an overall good fit to all data). Specifically, we perform 10,000 simulations630

of duration 0.78 Myr and 10,000 independent simulations of duration 1.22 Myr. For each simulation, we compute the time

average, which allows us to estimate the standard deviation of the difference in means (assuming no correlation between the

two time intervals). We found that this standard deviation is about 0.46 ·10

22 Am2, which is much smaller than the differences

in VADM time averages of 1.4 ·10

22 Am2. This suggests that the increase in time averaged VADM is likely not due to random

variability.635
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A similar approach can be applied to the question of changes in the reversal rate over geological time. The observed reversal

rate over the past 30 Myr is approximately 4.26 Myr�1. When the record is divided into 10-Myr intervals, the reversal rate

varies about the average, with a standard deviation of about 0.49 Myr�1 (see Table 2). These variations are within the expected

fluctuations for the stochastic model. Specifically, we can use an ensemble of 10

5 simulations, each of duration 10 Myr to

compute the average and standard deviation of the reversal rate The results, obtained by using nominal parameters and posterior640

mean parameters of configurations (a) (overall good fit to all data) and (e) (emphasis on reversal rate data) are shown in

Table 7. As already indicated in Section ??, the standard deviation from the geomagnetic polarity time scale is comparable to

Nominal parameter values Configuration (a) Configuration (e)

Average reversal rate (in Myr�1) 4.50 3.76 3.56

Standard deviation (in Myr�1) 0.68 0.63 0.59
Table 7. Average reversal rate and and standard deviation of an ensemble of 105 simulations of duration10 Myr, filtered to a resolution of 30

kyr. The simulations are done with nominal parameter values (Table 3), or the posterior mean values of configurations (a) and (e).

the standard deviation we compute via the model. The observed reversal rate for the 10-Myr interval between 30 and 40 Myr,

however, is approximately 2.0 Myr�1, which departs from the 0 – 30 Myr average by more than three standard deviations. This

suggests that the reversal rate between 30 and 40 Ma cannot be explained by natural variability in the model. Instead, it suggests645

that model parameters were different before 30 Ma, implying that there was a change in the operation of the geodynamo.

8 Summary and conclusions

We consider parameter estimation for a model of Earth’s axial magnetic dipole field. The idea is to estimate the model parame-

ters using data that describe Earth’s dipole field over kyr and Myr time scales. The resulting model, with calibrated parameters,

is thus a representation of Earth’s dipole field on these time scales. We formulated a Bayesian estimation problem in terms of650

“features” that we derived from the model and data. The data include two time series (Sint-2000 and PADM2M) that describe

the strengths of Earth’s dipole over the past 2 Myr, a shorter record (CALS10k.2) that describes dipole strength over the past 10

kyr, as well as reversal rates derived from the geomagnetic polarity time scale. The features are used to synthesize information

from these data sources (that had previously been treated separately).

Formulating the Bayesian estimation problem requires defining anticipated model error. We found that the main source of655

uncertainty is the shortness of the paleomagnetic record and constructed error models to incorporate this uncertainty. Numerical

solution of the feature-based estimation problem is done via conventional Markov chain Monte Carlo (an affine invariant

ensemble sampler). With suitable error models, our numerical results indicate that the paleomagnetic data constrain all model

parameters in the sense that the posterior probability mass is concentrated on a smaller subset of parameters than the prior

probability. Moreover, the posterior parameter values yield model outputs that fit the data in a precise, feature-based sense,660

which also translates into a good fit by other, more intuitive measures.
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A main advantage of our approach (Bayesian estimation with an MCMC solution) is that it allows us to understand the

limitations and remaining (posterior) uncertainties of the model. After parameter estimation, we thus have produced a reliable,

stochastic model for selected aspects of the long term behavior of the geomagnetic dipole field whose limitations and errors

are well-understood. We believe that such a model is useful for hypothesis testing and have given several examples of how the665

model can be used in this context. Another important aspect of our overall approach is that it can reveal inconsistencies between

model and data. For example, we ran a suite of numerical experiments to assess the internal consistency of the data and the

underlying model. We found that the model is self-consistent on the Myr and kyr time scales, but we discovered inconsistencies

that make it difficult to achieve a good fit to all data simultaneously. It is also possible that the data themselves are not entirely

self consistent in this regard. Our methodology does not resolve these questions, but once inconsistencies are identified, several670

strategies can be pursued to resolve them, e.g., improving the model or resolving consistency issues of the data themselves.

Our conceptual and numerical framework can also be used to reveal the impact that some of the individual data sets have on

parameter estimates and associated posterior uncertainties. In this paper, however, we focused on describing the mathematical

and numerical framework and only briefly mention some of the implications.
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Abstract. We consider a stochastic differential equation model for Earth’s axial magnetic dipole field. Our goal is to estimate

the model’s parameters using diverse and independent data sources that had previously been treated separately, so that the

model is a valid representation of an expanded paleomagnetic record on kyr to Myr time scales. We formulate the estimation

problem within the Bayesian framework and define a feature-based posterior distribution that describes probabilities of model

parameters given a set of features, derived from the data. Numerically, we use Markov chain Monte Carlo (MCMC) to obtain a5

sample-based representation of the posterior distribution. The Bayesian problem formulation and its MCMC solution allow us

to study the model’s limitations and remaining posterior uncertainties. Another important aspect of our overall approach is that

it reveals inconsistencies between model and data, or within the various data sets. Identifying these shortcomings is a first and

necessary step towards building more sophisticated models or towards resolving inconsistencies within the data. The stochastic

model we derive represents selected aspects of the long term behavior of the geomagnetic dipole field with limitations and10

errors that are well defined. We believe that such a model is useful (besides its limitations) for hypothesis testing and give a

few examples of how the model can be used in this context.

1 Introduction

Earth possesses a time-varying magnetic field which is generated by the turbulent flow of liquid metal alloy in the core. The

field can be approximated as a dipole with north and south magnetic poles slightly misaligned with the geographic poles. The15

dipole field changes over a wide range of timescales, from years to millions of years and these changes are documented by

several different sources of data, see, e.g., Hulot et al. (2010). Satellite observations reveal changes of the dipole field over

years to decades (Finlay et al., 2016), while changes on time scales of thousands of years are described by paleomagnetic

data, including observations of the dipole field derived from archeological artifacts, young volcanics, and lacustrine sediments

(Constable et al., 2016). Variations on even longer time scales of millions of years are recorded by marine sediments (Valet20

et al., 2005; Ziegler et al., 2011) and by magnetic anomalies in the oceanic crust (Ogg, 2012; Cande and Kent, 1995; Lowrie

and Kent, 2004). On such long time scales, we can observe the intriguing feature of Earth’s axial magnetic dipole field to

reverse its polarity (magnetic north pole becomes the magnetic south pole and vice versa).
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Understanding Earth’s dipole field, at any time scale, is difficult because the underlying magnetohydrodynamic problem is

highly nonlinear. For example, many numerical simulations are far from Earth-like due to severe computational constraints and

more tractable mean-field models require questionable parameterizations. An alternative approach is to use “low-dimensional

models” which aim at providing a simplified but meaningful representation of some aspects of Earth’s geo-dynamo. Several

such models have been proposed over the past years. The model of Gissinger (2012), for example, describes the Earth’s dipole5

over millions of years by a set of three ordinary differential equations, one for the dipole, one for the non-dipole field and one

for velocity variations at the core. A stochastic model for Earth’s dipole over millions of years was proposed by Pétrélis et al.

(2009). Other models have been derived by Rikitake (1958); Pétrélis and Fauve (2008).

Following Schmitt et al. (2001); Hoyng et al. (2001, 2002), we consider a stochastic differential equation (SDE) model for

Earth’s axial dipole. The basic idea is to model Earth’s dipole field analogous to the motion of a particle in a double well10

potential. Time variations of the dipole field and dipole reversals then occur as follows. The state of the SDE is within one

of the two wells of the double well potential and is pushed round by noise. The pushes and pulls by the noise process lead

to variations of the dipole field around a typical value. Occasionally, however, the noise builds up to push the state over the

potential well, which causes a change of its sign. A transition from one well to the other represents a reversal of Earth’s dipole.

The state of the SDE then remains, for a while, within the opposite well and the noise leads to time variations of the dipole15

field around the negative of the typical value. Then, the reverse of this process may occur.

A basic version of this model, which we call the “B13 model” for short, was discussed by Buffett et al. (2013). The drift

and diffusion coefficients that define the B13 model are derived from the PADM2M data (Ziegler et al., 2011) which describe

variations in the strengths of Earth’s axial magnetic dipole field over the past 2 Myr. The PADM2M data are derived from

marine sediments which means that the data are smoothed by sedimentation processes, see, e.g., Roberts and Winkhofer20

(2004). The B13 model, however, does not account directly for the effects of sedimentation. Buffett and Puranam (2017) try to

mimic the effects of sedimentation by sending the solution of the SDE through a low-pass filter. With this extension, the B13

model is more suitable to be compared to the data record of Earth’s dipole field on a Myr time-scale.

A basic assumption of an SDE model is that the noise process within the SDE is uncorrelated in time. This assumption

is reasonable when describing the dipole field on the Myr time scale but is not valid on a shorter time scale of thousands of25

years. Buffett and Matsui (2015) derived an extension of the B13 model to extend it to time scales of thousands of years, by

adding a time-correlated noise process. An extension of B13 to represent changes in reversal rates over the past 150 Myrs is

considered by Morzfeld et al. (2018). Its use for predicting the probability of an imminent reversal of Earth’s dipole is described

by Morzfeld et al. (2017) and by Buffett and Davis (2018). The B13 model is also discussed by Meduri and Wicht (2016);

Buffett et al. (2014); Buffett (2015).30

The B13 model and its extensions are constructed with several data sets in mind that document Earth’s axial dipole field

over the kyr and Myr time scales. The data, however, are not considered simultaneously: the B13 model is based on one data

source (paleomagnetic data on the Myr time scale) and some of its modifications are based on other data sources (the shorter

record over the past 10 kyrs). Our goal is to construct a comprehensive model for Earth’s axial dipole field by calibrating the

B13 model to several independent data sources simultaneously, including35
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(i) observations of the strength of the dipole over the past 2 Myrs as documented by the PADM2M and Sint-2000 data sets

(Ziegler et al., 2011; Valet et al., 2005);

(ii) observations of the dipole over the past 10 kyr as documented by CALS10k.2 (Constable et al., 2016);

(iii) reversals and reversal rates derived from magnetic anomalies in the oceanic crust (Ogg, 2012).

The approach ultimately leads to a family of SDE models, valid over Myr and kyr time scales, whose parameters are informed5

by a comprehensive paleomagnetic record composed of the above three sources of data. The results we obtain here are thus

markedly different from previous work where data at different time scales are considered separately. We also use our framework

to assess the effects of the various data sources on parameter estimates and to discover inconsistencies between model and data.

At the core of our model calibration is the Bayesian paradigm in which uncertainties in data are converted into uncertainties

in model parameters. The basic idea is to merge prior information about the model and its parameters, represented by a prior10

distribution, with new information from data, represented by a likelihood, see, e.g., Reich and Cotter (2015); Asch et al. (2017).

Priors are often assumed to be “uninformative”, i.e., only conservative bounds for all parameters are known, and likelihoods

describe point-wise model-data mismatch. Assumed error models in the data can control the effects each data set has on the

parameter estimates. Since error models describe what “we do not know”, good error models are notoriously difficult to come

by. In this context, we discover that the “shortness of the paleomagnetic record,” i.e., the limited amount of data available, is the15

main source of uncertainty. For example, PADM2M or Sint-2000 provide a time series of 2,000 consecutive “data points” (2

Myr sampled once per kyr). Errors in power spectral densities, computed from such a short time series, dominate the expected

errors in these data. Similarly, errors in the reversal rate statistics are likely dominated by the fact that only a small number of

reversals, e.g., those that occurred over the past 30 Myr, are useful for computing reversal rates. Reliable error models should

thus reflect errors due to the shortness of the paleomagnetic record, rather than building error models on assumed errors in the20

data.

To address these issues we substitute likelihoods based on point-wise mismatch of model and data by a “feature-based”

likelihood, as discussed by Maclean et al. (2017); Morzfeld et al. (2018). Feature-based likelihoods are based on error in

“features” extracted from model outputs and data rather than the usual point-wise error. The feature-based approach enables

unifying contributions from several independent data sources in a well-defined sense even if the various data may not be25

entirely self-consistent and further allows us to construct error models that reflect uncertainties induced by the shortness of the

paleomagnetic record. In addition, we perform a suite of numerical experiments to check, in hind-sight, our a priori assumptions

about the error models.

2 Description of the data

Variations in the virtual axial dipole moment (VADM) over the past 2 Myr can be derived from stacks of marine sediment.Two30

different compilations are considered in this study: Sint-2000, (Valet et al., 2005) and PAMD2M (Ziegler et al., 2011) Both of

these data sets are sampled every 1 kyr and, thus, provide a time series of 2,000 consecutive VADM values. The PADM2M

and Sint-2000 data sets are shown in the upper left panel of Figure 1. The CALS10k.2 data set, plotted in the lower left panel
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Figure 1. Data used in this paper. (a) Sint-2000 (orange) and PADM2M (red): VADM as a function of time over the past 2 Myr. (b)

CALS10k.2: VADM as a function of time over the past 10 kyr. (c) Power spectral densities of the data in (a) and (b), computed by the

multi-taper spectral estimation technique of Constable and Johnson (2005). Orange: Sint-2000. Red: PADM2M. Purple: CALS10k.2

of Figure 1, describes variations of VADM over the past 10 kyr (Constable et al., 2016). The time dependence of CALS10k2

is represented using B-splines, so that the model can be sampled at arbitrary time intervals. We sample CALS10k.2 at an

interval of one year, although the resolution of CALS10k.2 is nominally 100 years (Constable et al., 2016). Note that we refer

to PADM2M, Sint-2000 and CALS10k.2 as “data” because we treat these field reconstructions as such.

Below we use features derived from power spectral densities (PSD) of the Sint-2000, PADM2M and CALS10k.2 data. The5

PSDs are computed by the multi-taper spectral estimation technique of Constable and Johnson (2005). A restricted range of

frequencies are retained in the estimation to account for data resolution and other complications (see below). We show the

resulting PSDs of the three data sets in the right panel of Figure 1. During parameter estimation we further make use of the

time average VADM and the standard deviation of VADM over time of the Sint-2000 and PADM2M data sets, listed in Table 1.

Time avg. VADM Std. dev. of VADM

Data source (1022 Am2) (1022 Am2)

PADM2M 5.23 1.48

Sint-2000 5.81 1.84
Table 1. Time average VADM and VADM standard deviation of PADM2M and Sint-2000.

10
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Lastly, we make use of reversal rates of the Earth’s dipole computed from the geomagnetic polarity time scale (Cande

and Kent, 1995; Lowrie and Kent, 2004; Ogg, 2012). Using the chronology of Ogg (2012), we compute reversal rates for 5

Myr intervals from today up to 30 Myr ago. That is, we compute the reversal rates for the intervals 0 Myr� 5 Myr,5 Myr�
10 Myr, . . . ,25 Myr� 30 Myr. This leads to the average reversal rate and standard deviation listed in Table 2. Increasing the

Average reversal rate Std. dev.

Interval length (reversals/Myr) (reversals/Myr)

5 Myr 4.23 1.01

10 Myr 4.23 0.49
Table 2. Average reversal rate and standard deviation computed over the past 30 Myr using the chronology of Ogg (2012).

interval to 10 Myr leads to the same mean but decreases the standard deviation (see Table 2).5

Note that the various data are not all consistent. For example, visual inspection of VADM (Figure 1), as well as comparison

of the time average and standard deviation (Table 1) indicate that the PADM2M and Sint-2000 data sets report different VADM.

These differences can be attributed, at least in part, to differences in the calibration of the marine sediment measurements and

to differences in the way the measurements are stacked to recover the dipole component of the field. There are also notable

differences between the PSDs from CALS10k.2 and those from the lower resolution data sets (SINT-2000 and PADM2M)10

at the overlapping frequencies. Dating uncertainties, smoothing due to sedimentary processes and the finite duration of the

records all contribute to these discrepancies. We do not attempt to identify the source of these discrepancies. Instead, we seek

to recover parameter values for a stochastic model by combining a feature-based approach with realistic estimates of the data

uncertainty (see Section 4).

We further note that the amount of data is rather limited: we have 2 Myrs of VADM sampled at 1/ kyr, 10 kyr of high15

frequency VADM and use a 30 Myr record to compute reversal rates. The limited amount of data directly affects how the

accuracy of the data should be interpreted. As an example, the mean and standard deviation of the reversal rate, based on a

30 Myr record may not be accurate; errors in the PSDs of PADM2M, Sint-2000 or CALS10k.2 are dominated by the fact that

these are computed from relatively short time series. We address these issues by using the feature-based approach that allows us

to build error models that reflect uncertainties due to the shortness of the paleomagnetic record. We further perform extensive20

numerical tests that allow us to check, in hind-sight, the validity our assumptions about errors (see Section 6).

3 Description of the model

Our models for variations in the dipole moment on Myr and kyr time scales are based on a scalar stochastic differential equation

(SDE)

dx = v(x)dt +

p
2D(x)dW, (1)25
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where t is time and where x represents the VADM and polarity of the dipole, see, e.g., Schmitt et al. (2001); Hoyng et al. (2001,

2002); Buffett et al. (2013). A negative sign of x(t) corresponds to the current polarity, a positive sign means reversed polarity.

W is Brownian motion, a stochastic process with the following properties: W (0) = 0, W (t)�W (t+�T ) ⇠N (0,�t), W (t)

is almost surely continuous for all t � 0, see, e.g., Chorin and Hald (2013). Here and below, N (µ,�

2
) denotes a Gaussian

random variable with mean µ, standard deviation � and variance �

2. Throughout this paper, we assume that the diffusion,5

D(x), is constant, i.e., D(x) = D. Modest variations in D have been reported on the basis of geodynamo simulations (Buffett

and Matsui, 2015; Meduri and Wicht, 2016). Representative variations in D, however, have a small influence on the statistical

properties of solutions of the SDE (1), see Buffett and Matsui (2015).

The function v is called the “drift” and is derived from a double-well potential, U

0
(x) = �v(x). Here, we consider drift

coefficients of the form10

v(x) = �

x

x̄

·

8
<

:
(x̄�x), if x � 0

(x + x̄), if x < 0

, (2)

where x̄ and � are parameters. The parameter x̄ defines where the drift coefficient vanishes and also corresponds to the time

average of the associated linear model

dx

l

= �� (x

l � x̄)dt +

p
DdW, (3)

which is obtained by Taylor expanding v(x) at x̄. It is now clear that the parameter � defines a relaxation time.15

Nominal values of the parameters x̄, � and D are listed in Table 3. With the nominal values, the model exhibits “dipole

x̄ D � T

s

a

(1022 Am2) (1044 A2m4 kyr�1) (kyr�1) (kyr) (kyr�1)

Nominal value: 5.23 0.3403 0.075 2.5 5

Lower bound: 0 0.0615 0.0205 1 5

Upper bound: 10 2.1 0.7 5 40
Table 3. Nominal parameter values and parameter bounds

reversals”, which are represented by a change of the sign of x. This is the “basic” B13 model.

For computations, we discretize the SDE using a 4th order Runge-Kutta (RK4) method for the drift and an Euler-Maruyama

method for the diffusion. This results in the discrete time B13 model

x

k

= f(x

k�1,�t) +

p
2D�t w

k

, w

k

⇠N (0,1), iid (4)20

where �t is the time step,
p

�t w

k

is the discretization of Brownian motion W in (1) and where f(x

k�1,�t) is the RK4 step.

Here, iid stands for “independent and identically distributed”, i.e., each random variable w

k

, for k > 0, has the same Gaussian

probability distribution, N (0,1), and w

i

and w

j

are independent for all i 6= j. We distinguish between variations in the Earth’s

dipole over kyr to Myr time scales and, for that reason, present modifications of the basic B13 model (4).
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Figure 2. Simulations with nominal parameter values and data on the Myr and kyr scales. (a) VADM as a function of time on the Myr time

scale. The output of the Myr model, xMyr
j

, is shown in dark blue (often hidden). The smoothed output, xMyr,s
j

, is shown in light blue. The

signed Sint-2000 and PADM2M are shown in orange and red with signs (reversal timings) taken from Cande and Kent (1995). (b) VADM

as a function of time on the kyr time scale. The output of the kyr-model with uncorrelated noise is shown in turquoise. The output of the

kyr-model with correlated noise is shown in green. VADM of CALS10k.2 is shown in purple.

3.1 Models for the Myr amd kyr time scale

For simulations over Myr time scales we chose a time-step �t = 1 kyr, corresponding to the sampling time of the Sint-2000

and PADM2M data. On a Myr time scale, the primary source of paleomagnetic data in Sint-2000 and PADM2M are affected

by gradual acquisition of magnetization due to sedimentation processes, which amount to an averaging over a (short) time

interval, see, e.g., Roberts and Winkhofer (2004). We follow Buffett and Puranam (2017) and include the smoothing effects of5

sedimentation in the model by convolving the solution of (4) by a Gaussian filter

g(t) =

s
6

⇡T

2
s

· exp

✓
�6t

2

T

2
s

◆
, (5)

where T

s

defines the duration of smoothing, i.e., the width of a time window over which we average. The nominal value for T

s

is given in Table 3. The result is a smoothed Myr model whose state is denoted by x

Myr,s. Simulations with the “Myr model”

and the nominal parameters of Table 3 are shown in Figure 2(a) where we plot the model output x

Myr
j

in dark blue and the10

smoothed model output, x

Myr,s
j

, in a lighter blue over a period of 2 Myr.

On a Myr scale, the assumption that the noise is uncorrelated in time is reasonable because one focuses on low frequencies

and large sample intervals of the dipole, as in Sint-2000 and PADM2M, whose sampling interval is 1/kyr. On a shorter time

scale, as in CALS10k.2, this assumption is not valid and a correlated noise is more appropriate (Buffett and Matsui, 2015).

Computationally, this means that we swap the uncorrelated, iid, noise in (4) for a noise that has a short but finite correlation15

7



time. This can be done by “filtering” Brownian motion. The resulting discrete time model for the kyr time scale is

y

k

= (1� a�t)y

k�1 +

p
2a�tw

k

, w

k

⇠N (0,1), iid (6)

x

k

= f(x

k�1,�t) +

p
Da�ty

k

, (7)

where a is the model parameter that defines the correlation time T

c

= 1/a of the noise and �t = 1 yr. A 10 kyr simulation of

the kyr models with uncorrelated and correlated noise using the nominal parameters of Table 3, are shown in Figure 2(b) along5

with the CALS10k.2 data.

3.2 Approximate power spectral densities

Accurate computation of the power spectral density (PSD) from the time-domain solution of the B13 model requires extremely

long simulations. For example, the PSDs of two (independent) 1 billion year simulations with the Myr model are still surpris-

ingly different. In fact, errors that arise due to “short” simulations substantially outweigh errors due to linearization. Recall that10

the PSD of the linear model (3) is easily calculated to be

x̂

l

(f) =

2D

�

2
+ 4⇡

2
f

2
, (8)

where f is the frequency (in 1/kyr). Since the Fourier transform of the Gaussian filter is known analytically, the PSD of the

smoothed linear model is also easy to calculate:

x̂

l,s

(f) =

2D

�

2
+ 4⇡

2
f

2
· exp

✓
�4⇡

2
f

2
T

2
s

12

◆
. (9)15

Similarly, an analytic expression for the PSD of the kyr-model with correlated noise in equations (6)-(7) can be obtained by

taking the limit of continuous time (�t ! 0):

x̂

l,kyr

(f) =

2D

�

2
+ 4⇡

2
f

2
· a

2

a

2
+ 4⇡

2
f

2
. (10)

Here, the first term is as in (8) and the second term appears because of the correlated noise.

Figure 3 illustrates a comparison of the PSDs obtained from simulations of the nonlinear models and their linear approxima-20

tions. Specifically, the PSDs of the (smoothed) Myr scale nonlinear model, computed from a 50 Myr simulation, are shown in

comparison to the approximate PSDs in equations (8)-(9). Note that the PSD of the smoothed model output, x

Myr,s, taking into

account sedimentation processes, rolls-off quicker than the PSD of x

Myr
j

. For that reason, the PSD of the smoothed model seems

to fit the PSDs of the Sint-2000 and PADM2M data “better”, i.e., we observe a similarly quick roll-off at high frequencies in

model and data; see also Buffett and Puranam (2017). The PSD of the kyr model with correlated noise, computed from a 1025

kyr simulation, is also shown in Figure 3 in comparison with the linear PSD in equation (10). The good agreement between the

theoretical spectra of the linear models and the spectra of the nonlinear models justifies the use of the linear approximation.

We have further noted in numerical experiments that the agreement between the nonlinear and linear spectra increases with

increasing simulation time, however a “perfect” match requires extremely long simulations of the nonlinear model (hundreds

8



(a) (b)

Figure 3. Power spectral densities of the model with nominal parameter values. (a) Myr-model: A PSD of a 50 Myr simulation with the Myr

model is shown as a solid dark blue line. The corresponding theoretical PSD of the linear model is shown as a dashed dark blue line. A PSD

of a 50 Myr simulation with the Myr model and high-frequency roll-off is shown as a solid light blue line. The corresponding theoretical

PSD of the linear model is shown as a dashed light blue line. The PDSs of Sint-2000 and PADM2M are shown in orange and red. (b) kyr

model: A PSD of a 10 kyr simulation of the kyr model with uncorrelated noise is shown as a solid pink line. The corresponding theoretical

spectrum of the linear model is shown as a dashed blue line. A PSD of a 10 kyr simulation of the kyr model with correlated noise is shown

as a solid green line. The corresponding theoretical spectrum is shown as a dashed green line. The PDSs of CALS10k.2 is shown in purple.

All PSDs are computed by the multi-taper spectral estimation technique of Constable and Johnson (2005).

of billions of years). The approximate PSDs, based on the linear models, will prove useful in the construction of likelihoods in

Section 4.2.

In addition to a good match of the PSDs of the nonlinear and linear models, we note that the PSDs of the model match, at

least to some extent, the PSDs of the data (Sint-2000, PADM2M and CALS10k.2). This means that our choice for the nominal

values is “reasonable” because this choice leads to a reasonable fit to the data. The goal of using a Bayesian approach to5

parameter estimation, described in Section 4, is to improve this fit and to equip the (nominal) parameter values with an error

estimate, i.e., to define and compute a distribution over the model parameters.

3.3 Approximate reversal rate, VADM time average and VADM standard deviation

The nonlinear SDE model (1) and its discretization (4) exhibit reversals, i.e., a change in the sign of x. Moreover, the overall

“power”, i.e., the area under the PSD curve, is given by the standard deviation of the absolute value of x(t) over time. Another10

9



important quantity of interest is the time averaged value of the absolute value of x(t), which describes the average strength

of the dipole field. In principle, these quantities (reversal rate, time average and standard deviation) can be computed from

simulations of the Myr and kyr model in the time domain. Similarly to what we found in the context of PSD computations

and approximations, we find that estimates of the reversal rate, time average and standard deviation are subject to large errors

unless the simulation time is very long (hundreds of millions of years). Using the linear model and Kramers formula, however,5

one can approximate the time average, reversal rate and standard deviation without simulating the nonlinear model (see below).

Computing the approximate values is instantaneous (evaluation of simple formulas) and the approximations are comparable to

what we obtain from very long simulations with the nonlinear model. As is the case with the PSD approximations based on

linear models, the below approximations of the reversal rate, time average and standard deviation based will prove useful for

formulating likelihoods in Section 4.2.10

Specifically, the parameter x̄ defines the time average of the linear model (3) and it also defines where the drift term (2)

vanishes. These values coincide quite closely with the time average of the nonlinear model which suggests the approximation

E(x) ⇡ x̄ · 10

22 Am2
. (11)

The reversal rate can approximated by Kramers formula (Buffett and Puranam, 2017; Risken, 1996)

r ⇡ �

2⇡

· exp

✓
�� x̄

2

6D

◆
· 10

3 Myr�1
. (12)15

The standard deviation is the square root of the area under the PSD. Using the linear model that incorporates the effects

of smoothing (due to sedimentation), one can approximate the standard deviation by computing the integral of the PSD in

equation (9):

� ⇡
✓

D

�

exp

✓
(�T

s

)

2

12

◆
erfc

✓
�T

s

2

p
3

◆◆1/2

· 10

22 Am2
, (13)

where erfc(·) is the (Gauss) error function. Without incorporating the smoothing, the standard deviation based on the linear20

model would be the integral of the PDS in (8), which is � ⇡
p

D/�. The exponential and error function terms in (13) can thus

be interpreted as a correction factor that accounts for the effects of sedimentation. It is easy to check that this correction factor

is always smaller than one, i.e., the (approximate) standard deviation accounting for sedimentation effects is smaller than the

(approximate) standard deviation that does not account for these effects.

For the nominal parameter values in Table 3 we calculate a time average of x̄ = 5.23 · 10

22 Am2, a standard deviation of25

� ⇡ 2.07 ·10

22 Am2 and a reversal rate r ⇡ 4.37 Myr�1. These should be compared to the corresponding values of PADM2M

and Sint-2000 in Table 1 and to the reversal rate from the geomagnetic polarity time scale in Table 2. Similar to what we

observed of the model-data fit in terms of (approximate) PSDs, we find that the nominal parameter values lead to a “reasonable”

fit of the model’s reversal rate, time average and standard deviation. The Bayesian parameter estimation in Section 4 will

improve this fit and lead to a better understanding of model uncertainties.30

10



3.4 Parameter bounds

The Bayesian parameter estimation, described in Section 4, makes use of “prior” information about the model parameters. We

formulate prior information in terms of parameter bounds and construct uniform prior distributions with these bounds. The

parameter bounds we use are quite wide, i.e., the upper bounds are probably too large and the lower bound are probably too

small, but this is not critical for our purposes as we explain in more detail in Section 4.5

The parameter � is defined by the inverse of the dipole decay time (Buffett et al., 2013). An upper bound on the dipole

decay time ⌧dec is given by the slowest decay mode ⌧dec  R

2
/(⇡

2
⌘), where R is the radius of the Earth and ⌘ = 0.8m2

/s is

the magnetic diffusivity. Thus, ⌧dec  48.6 kyr, which means that � � 0.0205 kyr�1. This is a fairly strict lower bound because

the dipole may relax on timescales shorter than the slowest decay mode and a recent theoretical calculation (Pourovskii et al.,

2017) suggests that the magnetic diffusivity may be slightly larger than 0.8m2
/s. Both of these changes would cause the lower10

bound for � to increase. To obtain an upper bound for �, we note that if � is large, the magnetic decay is short, which means

that it becomes increasingly difficult for convection in the core to maintain the magnetic field. The ratio of dipole decay time

⌧dec to advection time ⌧adv = L/V , where L = 2259 km is the width of the fluid shell and V = 0.5 mm/s, needs to be 10:1 or

(much) larger. This leads to the upper bound �  0.7 kyr�1.

Bounds for the parameter D can be found by considering the linear Myr time scale model in equation (3), which suggests15

that the variance of the dipole moment is var(x) = D/�, see also Buffett et al. (2013). Thus, we may require that D ⇠ var(x)�.

The average of the variance of Sint-2000 (var(x) = 3.37 · 10

44 A2m4) and PADM2M (var(x) = 2.19 · 10

44 A2m4) is var(x) ⇡
2.78 · 10

44 A2m4. We use the rounded up value var(x) ⇡ 3 · 10

44 A2m4 and, together with the lower and upper bounds on �,

this leads to the lower and upper bounds 0.062 · 10

44A2m4kyr�1  D  2.1 · 10

44A2m4kyr�1.

The smoothing time, T

s

, due to sedimentation and the correlation parameter for the noise, a, define the roll-off frequency20

of the power spectra for the Myr and kyr models, respectively. We assume that T

s

is within the interval [1,5] kyr, and that the

correlation time a

�1 is within [0.025,0.2] kyr (i.e. a within [5, 40] kyr�1). These choices enforce that T

s

controls roll-off at

lower frequencies (Myr model) and a controls the roll-off at higher frequencies (kyr model). Bounds for the parameter x̄ are

not easy to come by and we assume wide bounds, x̄ 2 [0,10] · 10

22 Am2. Here, x̄ = 0 is the lowest lower bound we can think

of since the average value of the field is always normalized to be positive. The value of the upper bound of x̄  10 is chosen25

to be excessively large – the average field strength over the last 2 Myr is x̄ ⇡ 5. Lower and upper bounds for all five model

parameters are summarized in Table 3.

4 Formulation of the Bayesian parameter estimation problem and numerical solution

The family of models, describing kyr and Myr time-scales and accounting for sedimentation processes and correlations in

the noise process, has five unknown parameters, x̄,D,�,T

s

,a. We summarize the unknown parameters in a “parameter vector”30

✓ = (x̄,D,�,T

s

,a)

T . Our goal is to estimate the parameter vector ✓ using a Bayesian approach, i.e., to sharpen prior knowledge

about the parameters by using the data described in Section 2. This is done by expressing prior information about the parameters

in a prior probability distribution p0(✓), and by defining a likelihood p

l

(y|✓), y being shorthand notation for the data of

11



Section 2. The prior distribution describes information we have about the parameters independently of the data. The likelihood

describes the probability of the data given the parameters ✓ and, therefore, connects model output and data. The prior and

likelihood define the posterior distribution

p(✓|y) / p0(✓)pl(y|✓). (14)

The posterior distribution combines the prior information with the information we extract from the data. In particular, we can5

estimate parameters based on the posterior distribution. For example, we can compute the posterior mean and posterior standard

deviation for the various parameters and we can also compute correlations between the parameters. The posterior distribution

contains all information we have about the model parameters, given prior knowledge and information extracted from the data.

Thus, the SDE model with random parameters, whose distribution is the posterior distribution, represents a comprehensive

model of the Earth’s dipole in view of the data we use.10

On the other hand, the posterior distribution depends on several assumptions: since we define the prior and likelihood, we

also implicitly define the posterior distribution. In particular, formulations of the likelihood require that one be able to describe

anticipated errors in the data as well as anticipated model error. Such error models are difficult to come by in general, but even

more so when the amount of data is limited. We address this issue by first formulating “reasonable” error models, followed

by a set of numerical tests that confirm (or disprove) our choices of error models (see Section 6). In our formulation of error15

models, we focus on errors that arise due to the shortness of the paleomagnetic record because these errors dominate.

We solve the Bayesian parameter estimation problem numerically by using a Markov chain Monte Carlo (MCMC) method.

An MCMC method generates a (Markov) chain of parameter values whose stationary distribution is the posterior distribution.

The chain is constructed by proposing a new parameter vector and then accepting or rejecting this proposal with a specified

probability that takes the posterior probability of the proposed parameter vector into account. A numerical solution via MCMC20

thus requires that the likelihood be evaluated for every proposed parameter vector. Below we formulate a likelihood that

involves computing the PSDs of the Myr and kyr model, as well as reversal rates, time averages and standard deviations.

As explained in Section 3, obtaining these quantities from simulations with the nonlinear models requires extremely long

simulations. Long simulations, however, require more substantial computations. This perhaps would not be an issue if we were

to compute the PDSs, reversal rate and other quantities once, but the MCMC approach we take requires repeated computing.25

For example, we consider Markov chains of length 10

6, which requires 10

6 computations of PSDs, reversal rates etc. Moreover,

we will repeat these computations in a variety of settings to assess the validity of our error models (see Section 6). To keep the

computations feasible (fast), we thus decided to use the approximations of the PSDs, reversal rate, time average and standard

deviation, based on the linear models (see Section 3), to define the likelihood. Evaluation of the likelihood is then instantaneous

because simulations with the nonlinear models are replaced by formulas that are simple to evaluate. Using the approximation30

is further justified by the fact that the approximate PDSs, reversal rates, time averages and standard are comparable to what we

obtain from very long simulations with the nonlinear model.
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4.1 Prior distribution

The prior distribution describes knowledge about the model parameters we have before we consider the data. In Section 3.4,

we discussed lower and upper bounds for the model parameters and we use these bounds to construct the prior distribution.

This can be achieved by assuming a uniform prior over a five-dimensional hyper-cube whose corners are defined by the

parameter bounds in Table 1. Note that the bounds we derived in Section 3.4 are fairly wide. Wide bounds are preferable for our5

purposes, because wide bounds implement minimal prior knowledge about the parameters. With such “uninformative priors”,

the posterior distribution, which contains information from the data, reveals how well the parameter values are constrained by

data. More specifically, if the uniform prior distribution is morphed into a posterior distribution that describes a well-defined

“bump” of posterior probability mass in parameter space, then the model parameters are constrained by the data (to be within

the bump of posterior probability “mass”). If the posterior distribution is nearly equal to the prior distribution, then the data10

have nearly no effect on the parameter estimates and, therefore, the data do not constrain the parameters.

4.2 Feature-based likelihoods

We wish to use to use a collection of paleomagnetic observations to calibrate and constrain all five model parameters. For this

purpose, we use the data sets Sint-2000, PADM2M and CALS10k.2, as well as information about the reversal rate based on

the geomagnetic polarity time scale (see Section 2). The various data sets are not consistent and, for example, Sint-2000 and15

PADM2M report different VADM values at the same time instant (see Figure 1). Likelihoods that are defined in terms of a point-

wise mismatch of model and data balance the effects of each data set via (assumed) error covariances: the data set with smaller

error covariances has a stronger effect on the parameter estimates. Accurate error models, however, are hard to come by. For

this reason, we use an alternative approach called “feature-based data assimilation” (see Morzfeld et al. (2018); Maclean et al.

(2017)). The idea is to extract “features” from the data and to subsequently define likelihoods that are based on the mismatch20

of the features derived from the data and the model. Below, we formulate features that account for discrepancies across the

various data sources and derive error models for the features. The error models are built to reflect uncertainties that arise due to

the shortness of the paleomagnetic record. The resulting feature-based posterior distribution describes the probability of model

parameters in view of the features. Thus, model parameters with a large feature-based posterior probability lead to model

features that are comparable to the features derived from the data, within the assumed uncertainties due to the shortness of the25

paleomagnetic record.

Specifically, we define likelihoods based on features derived from PSDs of the Sint-2000, PADM2M and CALS10k.2 data

sets, as well as the reversal rate, time average VADM and VADM standard deviation. The overall likelihood consists of three

factors:

(i) one factor corresponds to the contributions from the reversal rate, time average VADM and VADM standard deviation30

data, which we summarize as “time domain data” from now on for brevity;

(ii) one factor describes the contributions from data at low frequencies of 10

�4 � 0.5 cycles per kyr (PADM2M and Sint-

2000);
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(iii) one factor describes contribution of data at high frequencies of 0.9� 9.9 cycles/kyr (CALS10k.2)

In the Bayesian approach, and assuming that errors are independent, this means that the likelihood, p

l

(y|✓) in equation (14)

can be written as the product of three terms

p

l

(y|✓) / p

l,td(y|✓)p

l,lf(y|✓)pl,hf(y|✓), (15)

where p

l,td(y|✓), p

l,lf(y|✓) and p

l,hf(y|✓) represent the contributions from the time domain data (reversal rate, time average5

VADM and VADM standard deviation), the low frequencies and the high frequencies; recall that y is shorthand notation for all

the data we use. We now describe how each component of the overall likelihood is constructed.

4.2.1 Reversal rates, time average VADM and VADM standard deviation

We define the likelihood component of the time domain data based on the equations

yrr = hrr(✓) + "rr, (16)10

y

x̄

= h

x̄

(✓) + "

x̄

, (17)

y

�

= h

�

(✓) + "

�

, (18)

where yrr, y

x̄

y

�

are features derived from the time domain data, hrr(✓), h

x̄

(✓) and h

�

(✓) are functions that connect the model

parameters to the features, based on the approximations described in Section 3.3. In addition, to assuming independent errors,

we further assume that all errors are Gaussian, i.e., "rr, "

x̄

and "

�

are independent Gaussian error models with mean zero and15

variances �

2
rr, �

2
x̄

, and �

2
�

. A Gaussian assumption of errors is widely used. Note that errors are notoriously difficult to model

which also makes it difficult to motivate and justify a particular statistical description. The wide use of Gaussian errors can be

explained, at least in part, by Gaussian errors being numerically easy to deal with. We use Gaussian errors for these reasons,

but the overall approach we describe can also extended to be used along with other assumptions about errors if these were

available.20

Taken all together, the likelihood term p

l,td(y|✓) in (15) is then given by the product of the three likelihoods defined by

equations (16), (17) and (18):

p

l,td(y|✓) / exp

 
�1

2

 ✓
yrr �hrr(✓)

�rr

◆2

+

✓
y

x̄

�h

x̄

(✓)

�

x̄

◆2

+

✓
y

�

�h

�

(✓)

�

�

◆2
!!

. (19)

The reversal rate feature is simply the average reversal rate we computed from the chronology of Ogg (2012) (see Section 2),

i.e., yrr = 4.23 reversals/Myr. The function hrr(✓) is based on the approximation using Kramers formula in equation (20):25

hrr(✓) =

�

2⇡

exp

✓
�� x̄

2

6D

◆
· 10

3 reversals/Myr. (20)

The time average feature is the mean of the time averages of PADM2M and Sint-2000: y

x̄

= 5.56 · 10

22 Am2. The function

h

x̄

(✓) is based on the linear approximation discussed in Section 3.3, i.e., h

x̄

(✓) = x̄. The feature for the VADM standard
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deviation is the average of the VADM standard deviations of PADM2M and Sint-2000: y

�

= 1.66 · 10

22 Am2. The function

h

�

(✓) uses the linear approximation of the standard deviation (13):

h

�

(✓) =

✓
D

�

exp

✓
(�T

s

)

2

12

◆
erfc

⇣
�T

s

/2/

p
(3)

⌘◆1/2

· 10

22 Am2 kyr2 (21)

Candidate values for these error variances are as follows. The error variance of the reversal rate, �

2
rr, can be based on the

standard deviations we computed from the Ogg (2012) chronology in Table 2. Thus, we might use the standard deviation of5

the 10-Myr average and take �rr = 0.5. One can also use the model with nominal parameter values (see Table 3) to compute

candidate values of the standard deviation �rr. We perform 1,000 independent 10 Myr simulations and, for each simulation,

determine the reversal rate. The standard deviation of the reversal rate based on these simulations is 0.69 reversal per Myr,

which is comparable to the 0.5 reversals per Myr we computed from the Ogg (2012) chronology, using an interval length of

10 Myr. Similarly, the standard deviation of the reversal rate of 1,000 independent 5 Myr simulations is 0.97, which is also10

comparable to the standard deviation of 1.01 reversals per Myr, suggested by the Ogg (2012) chronology, using an interval

length of 5 Myr.

A candidate for the standard deviation of the time average VADM is the difference of the time averages of Sint-2000

and PADM2M, which gives �

x̄

= 0.48 · 10

22 Am2. Similarly, one can define the standard deviation �

�

by the difference of

VADM standard deviations (over time) derived from Sint-2000 and PADM2M. This gives �

�

= 0.36 · 10

22 Am2. We can also15

derive error covariances using the model with nominal parameters and perform 1,000 independent 2 Myr simulations. For

each simulation, we compute the time average and the VADM standard deviations, which then allows us to compute standard

deviations of these quantities. Specifically, we found a value of 0.26 · 10

22 Am2 for the standard deviation of the time average

and 0.11 ·10

22 Am2 for standard deviation of the VADM standard deviation. These values are comparable to what we obtained

from the data, especially if we base the standard deviations on half of the difference of the PADM2M and Sint-2000 values,20

i.e., assuming that the data sets are within two standard deviations (rather than within one, which we assumed above).

A difficulty with these candidate error covariances is that we have few time domain observations compared with the large

number of spectral data in the power spectra (see below). This vast difference in the number of time domain and spectral data

means that the spectral data can overwhelm the recovery of model parameters. We address this issue by loweing the error

variances �rr, �

x̄

and �

�

by a factor of 100:25

�rr = 0.05 reversals/Myr, �

x̄

= 0.048 · 10

22 Am2
�

�

= 0.036 · 10

22 Am2
. (22)

Decreasing the error variances of the time domain data, increases the relative importance of the time domain data compared to

the spectral data which in turn leads to an overall good fit of the model to all data. This comes at the expense of not necessarily

realistic posterior error covariances for some or all of the parameters. We discuss these issues in more detail in Section 6.

Alternatives to the approach we take here (reducing error covariances) include reducing the number of spectral data compared30

to the number of time domain data, see also (Bärenzung et al., 2018). The difficulty with such an approach, however, is that

reducing the number of spectral data is not easy to do and that the consequences such data reduction may have on posterior

estimates is difficult to anticipate.
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4.2.2 Low frequencies

The component p

l,lf(y|✓) of the feature-based likelihood (15) addresses the behavior of the dipole at low frequencies of 10

�4�
0.5 cycles per kyr and is based on the PSDs of the Sint-2000 and PADM2M data sets. We construct the likelihood using the

equation

ylf = hlf(✓) + "lf, (23)5

where ylf is a feature that represents the PSD of the Earth’s dipole field at low frequencies, hlf(✓) maps the model parameters

to the data ylf and where "lf represents the errors we expect.

We define ylf to be the mean of the PSDs of Sint-2000 and PADM2M. The function hlf(✓) maps the model parameters to

the feature ylf and is based on the PSD of the linear model (3). To account for the smoothing introduced by sedimentation

processes we define hlf(✓) to be a function that computes the PSD of the Myr model by using the “un-smoothed” spectrum10

of equation (8) for frequencies less than 0.05 cycles/kyr, and uses the “smoothed” spectrum of equation (9) for frequencies

between 0.05� 0.5 cycles/kyr:

hlf(✓) =

2D

�

2
+ 4⇡

2
f

2
·

8
<

:
1 if f  0.05

exp

�
�(4⇡

2
f

2
T

2
s

)/12

�
if 0.05 < f  0.5

(24)

Note that hlf(✓) does not depend on x̄ or a. This also means that the data regarding low frequencies are not useful for deter-

mining these two parameters (see Section 6).15

The uncertainty introduced by sampling the VADM once per kyr for only 2 Myrs is the dominant source of error in the

power spectral densities. For a Gaussian error model "lf with zero mean, this means that the error covariance should describe

uncertainties that are induced by the limited amount of data. We construct such a covariance as follows. We perform 10

4

simulations, each of 2 Myr, with the nonlinear Myr model (4) and its nominal parameters (see Table 1). We compute the PSD

of each simulation and build the covariance matrix of the 10

4 PSDs. In the left panel of Figure 4 we illustrate the error model20

by plotting the PSDs of PADM2M (red), Sint-2000 (orange), their mean, ylf, (dark blue), and 5 ·10

3 samples of "lf added to ylf

(grey). Since the PSDs of Sint-2000 and PADM2M are well within the cloud of PSDs we generated with the error model, this

choice for modeling the expected errors in low frequency PSDs seems reasonable to us.

For comparison, we also plot 10

3 samples of an error model that only accounts for the reported errors in Sint-2000. This

is done by adding independent Gaussian noise, whose standard deviation is given by the Sint-2000 data set every kyr, to the25

VADM of Sint-2000 and PADM2M. This results in 10

3 “perturbed” versions of Sint-2000 or PADM2M. For each one, we

compute the PSD and plot the result in the right panel of Figure 4. The resulting errors are smaller than the errors induced by

the shortness of the record. In fact, the reported error does not account for the difference in the Sint-2000 and PADM2M data

sets. This suggests that the reported error is too small.
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Figure 4. Left: low frequency data and error model due to shortness of record. Orange: PSD of Sint-2000. Red: PSD of PADM2M. Blue:

mean of PSDs of Sint-2000 and PADM2M (ylf). Grey: 5 · 103 samples of the error model "lf added to ylf. Right: error model based on errors

in Sint-2000. Orange: 103 samples of the PSDs computed from “perturbed” Sint-2000 VADMs. Red: 103 samples of the PSDs computed

from “perturbed” PADM2M VADMs.

4.2.3 High frequencies

We now consider the high frequency behavior of the model and use the CALS10k.2 data. We focus on frequencies between

0.9� 9.9 cycles/kyr, where the upper limit is set by the resolution of the CALS10k.2 data. The lower limit is chosen to avoid

overlap between the PSDs of CALS10k.2 and Sint-2000/PADM2M. Our choice also acknowledges that the high-frequency

part of the PSD for Sint-2000/PADM2M may be less reliable that the PSD of CALS10k.2 for these frequencies. As above, we5

construct the likelihood p

l,hf(y|✓) from an equation similar to (23):

yhf = hhf(✓) + "hf, (25)

where yhf is the PSD of CALS10k.2 in the frequency range we consider, hhf(✓) is a function that maps model parameters to

the data and where "hf is the error model.

We base hhf(✓) on the PSD of the linear model (see equation (10)) and set10

hhf(✓) =

2D

�

2
+ 4⇡

2
f

2
· a

2

a

2
+ 4⇡

2
f

2
, (26)

where f is the frequency in the range we consider here. Recall that a

�1 defines the correlation time of the noise in the kyr

model.

The error model "hf is Gaussian with mean zero and the covariance is designed to represent errors due to the shortness of the

record. This is done, as above, by using 10 kyr simulations of the nonlinear model (6)-(7) with nominal parameter values. We15
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Figure 5. Data and error models for low and high frequencies. Orange: PSD of Sint-2000. Red: PSD of PADM2M. Blue: mean of PSDs of

Sint-2000 and PADM2M (ylf). Grey (low frequencies): 5·103 samples of the error model "lf added to ylf. Dashed purple: PSD of CALS10k.2.

Solid purple: PSD of CALS10k.2 at frequencies we consider (yhf). Grey (high frequencies): 5 · 103 samples of the error model "hf added to

yhf.

perform 5000 simulations and for each one compute the PSD over the frequency range we consider (0.9�9.9 cycles/kyr). The

covariance matrix computed from these PSDs defines the error model "hf, which is illustrated along with the low frequency

error model and the data in Figure 5.

This concludes the construction of the likelihood and, together with the prior (see Section 4.1) we have now formulated the

Bayesian formulation of this problem in terms of the posterior distribution (14).5

4.3 Numerical solution by MCMC

We solve the Bayesian parameter estimation problem numerically by Markov Chain Monte Carlo (MCMC). This means that

we use a “MCMC sampler” that generates samples from the posterior distribution in the sense that averages computed over

the samples are equal to expected values computed over the posterior distribution in the limit of infinitely many samples. A

(Metropolis-Hastings) MCMC sampler works as follows: the sampler proposes a sample by drawing from a proposal distribu-10

tion and the sample is accepted with a probability to ensure that the stationary distribution of the Markov chain is the targeted

posterior distribution.

We use the affine invariant ensemble sampler, called MCMC Hammer, of Goodman and Weare (2010), implemented in

Matlab by Grinsted (2018). The MCMC Hammer is a general purpose ensemble sampler that is particularly effective if there

are strong correlations among the various parameters. The Matlab implementation of the method is easy to use, and requires15

that we provide the sampler with functions that evaluate the prior distribution and the likelihood, as described above.
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In addition, the sampler requires that we define an initial ensemble of ten walkers (two per parameter). This is done as

follows. We draw the initial ensemble from a Gaussian whose mean is given by the nominal parameters in Table 3, and whose

covariance matrix is a diagonal matrix whose diagonal elements are 50% of the nominal values. The Gaussian is constrained by

the upper and lower bounds in Table 3. The precise choice of the initial ensemble, however, is not so important as the ensemble

generated by the MCMC hammer quickly spreads out to search the parameter space.5

We assess the numerical results by computing integrated auto correlation time (IACT) using the definitions and methods

described by Wolff (2004). The IACT is a measure of how effective the sampler is. We generate an overall number of 10

6

samples, but the number of “effective” samples is 10

6
/IACT. For all MCMC runs we perform (see Sections 5 and 6), the

IACT of the Markov chain is about 100. We discard the first 10 · IACT samples as “burn in”, further reducing the impact of the

distribution of the initial ensemble. We also ran shorter chains with 10

5 samples and obtained similar results, indicating that10

the chains of length 10

6 are well resolved.

Recall that all MCMC samplers yield the posterior distribution as their stationary distribution, but the specific choice of

MCMC sampler defines “how fast” one approaches the stationary distribution and how effective the sampling is (Burn-in time

and IACT). In view of the fact that likelihood evaluations are, by our design, computationally inexpensive, we may run (any)

MCMC sampler to generate a long chain (10

6 samples). Thus, the precise choice of MCMC sampler is not so important for15

our purposes. We found that the MCMC Hammer solves the problem with sufficient efficiency for our purposes.

The code we wrote is available on github: https://github.com/mattimorzfeld/. It can be used to generate 100,000 samples

in a few hours and 10

6 samples in less than a day. For this reason, we can run the code in several configurations and with

likelihoods that are missing some of the factors that comprise the overall feature-based likelihood (15). This allows us to study

the impact of each individual data set has on the parameter estimates and it also allows us to assess the validity of some of our20

modeling choices, in particular with respect to error variances which are notoriously difficult to come by (see Section 6).

5 Results

We run the MCMC sampler to generate 10

6 samples, approximately distributed according to the posterior distribution. We

illustrate the posterior distribution by a corner plot in Figure 6. The corner plot shows all 1- and 2-dimensional histograms of the

posterior samples. We observe that the four 1-dimensional histograms are well-defined “bumps” whose width is considerably25

smaller than the assumed parameter bounds (see Table 3) which define the “uninformative”, uniform prior. Thus, the posterior

probability, which synthesizes the information from the data via the definition of the features, is concentrated over a smaller

subset of parameters than the prior probability. In this way, the Bayesian parameter estimation has sharpened the knowledge

about the parameters by incorporating the data.
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x̄

Figure 6. 1- and 2-dimensional histograms of the posterior distribution.

x̄ D � T

s

a � Rev. rate

in 1022 Am2 in 1044 A2m4 kyr�1 in kyr�1 in kyr in kyr�1 in 1022 Am2 in reversals/Myr

5.23 (0.043) 0.34 (0.0072) 0.10 (0.0033) 1.75 (0.050) 8.56 (1.93) 1.77 (0.024) 4.06 (0.049)

Table 4. Posterior mean and standard deviation (in brackets) of the model parameters and corresponding estimates of reversal rate and VADM

standard deviation

The 2-dimensional histograms indicate correlations among the parameters ✓ = (x̄,D,�,T

s

,a)

T , with strong correlations

between x̄, D and �. These correlations can also be described by the correlation coefficients

x̄ D � T

s

a

x̄ 1.00 0.78 0.20 0.02 �0.03

D 0.78 1.00 0.64 0.02 �0.03

� 0.20 0.64 1.00 �0.01 �0.02

T

s

0.02 0.02 �0.01 1.00 0.00

a �0.03 �0.03 �0.02 0.00 1.00

(27)

The strong correlation between x̄ and D and �, is due to the contribution of the reversal rate to the overall likelihood (see

Equation (20)) and the dependence of the spectral data on D and � (see Equations (9) and (10)). From the samples, we can5

also compute means and standard deviations of all five parameters and we show these values in Table 4.
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The table also shows the reversal rate and VADM standard deviation that we compute from 2,000 samples of the posterior

distribution followed by evaluation of Equations (20) and (13) for each sample. We note that the reversal rate (4.06 rever-

sals/Myr) is lower than the reversal rate we used in the likelihood (4.23 reversals/Myr). Since the posterior standard deviation

is 0.049 reversals/Myr, the reversal rate data are about four standard deviations away from the mean we compute. Similarly,

the posterior VADM standard deviation (mean value of 1.77 · 10

22 Am2) is also far, as measured by the posterior standard5

deviation, from the value we use as data (1.6610

22 Am2). These large deviations indicate an inconsistency between the VADM

standard deviation and the reversal rate. A higher reversal rate could be achieved with a higher VADM standard deviation. The

reason is that the reversal rate in Equation (20) can be re-written as

r ⇡ �

2⇡

· exp

✓
� x̄

2

6�

2

◆
· 10

3 Myr�1
, (28)

using � ⇡
p

D/�, i.e., neglecting the correction factor due to sedimentation, which has only a minor effect. Using a time10

average of x̄ = 5.23 · 10

22 Am2, a reversal rate r = 4.2 reversals / Myr, setting � = 0.1kyr�1 (posterior mean value), and

solving for the VADM standard deviation results in � ⇡ 1.86 · 10

22 Am2, which is not compatible with the SINT-2000 and

PADM2M data sets (where � ⇡ 1.66 · 10

22 Am2). One possible source of discrepancy is that the low-frequency data sets

underestimate the standard deviation and also the time average. For example, Ziegler et al. (2008) report a time average VADM

of 7.64·10

22 Am2 and a standard deviation � = 2.72·10

22 Am2 for paleointensity measurements from the past 0.55 Myr. These15

measurements are unable to provide any constraint on the temporal evolution of the VADM (in contrast to the SINT-2000 and

PADM2M models). Instead, these measurements represent a sampling of the steady-state probability distribution for the dipole

moment. The results thus suggest that a larger mean and standard deviation are permitted by paleointensity observations. Using

the larger values for the time average and VADM standard deviation, but keeping � = 0.1kyr�1 (posterior mean value), leads

to a reversal rate of r ⇡ 4.27 reversals per Myr, which is compatible with the reversal rates based on the past 30 Myr in Table 2.20

It is, however, also possible that the model for the reversal rate has shortcomings. Identifying these shortcomings is a first

step in making model improvements and the Bayesian parameter estimation framework we describe is a mathematically and

computationally sound tool for discovering such inconsistencies.

The model fit to the spectral data is illustrated in the left panel of Figure 7. Here, we plot 100 PSDs, computed from 2 Myr

and 10 kyr model runs, and where each model run uses a parameter set drawn at random from the posterior distribution. For25

comparison, the figure also shows the PADM2M, Sint-2000 and CALS10k.2 data as well as 5 · 10

3 realizations of the low-

and high-frequency error models. We note that the overall uncertainty is reduced by the Bayesian parameter estimation. The

reduction in uncertainty is apparent from the expected errors generating a “wider” cloud of PSDs (in grey) than the posterior

estimates (in blue and turquoise). We further note that the PSDs of the models, with parameters drawn from the posterior

distribution, fall largely within the expected errors (illustrated in grey). In particular the high-frequency PSDs (the CALS10k.230

range) are well within the errors we imposed by the likelihoods. The low frequencies of Sint-2000/PADM2M are also within

the expected errors and so are the high-frequencies beyond the second roll-off due to the sedimentation effects. At intermediate

frequencies, some of the PDSs of the model are outside of the expected errors. This indicates a model inconsistency because it
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Figure 7. Parameter estimation results. Left: PSDs of data and model. Orange: PSD of Sint-2000. Red: PSD of PADM2M. Dashed purple:

PSD of CALS10k.2. Solid purple: PSD of CALS10k.2 at frequencies we consider (yhf). Grey (low frequencies): 5 · 103 samples of the error

model "lf added to ylf. Grey (high frequencies): 5 ·103 samples of the error model "hf added to yhf. Dark blue: PSDs of 100 posterior samples

of Myr model (with smoothing). Turquoise: PSDs of 100 posterior samples of kyr model with uncorrelated noise. Right, top: Sint-2000

(orange), PADM2M (red) and a realization of the Myr model with smoothing and with posterior mean parameters (blue). Right, bottom:

CALS10k.2 (purple) and a realization of the kyr model with correlated noise and with posterior mean parameters kyr model (turquoise).

is difficult to account for the intermediate frequencies with model parameters that fit the other data (spectral and time domain)

within the assumed error models. We investigate this issue further in Section 6.

The right panels of Figure 7 show a Myr model run (top) and kyr model run (bottom) using the posterior mean values for

the parameters. We note that the model with posterior mean parameter values exhibits qualitatively similar characteristics as

the Sint-2000, PADM2M and CALS10k.2 data. The figure thus illustrates that the feature-based Bayesian parameter estima-5

tion, which is based solely on PSD, reversal rates, time average VADM and VADM standard deviation, translates into model

parameters that also appear reasonable when a single simulation in the time domain is considered.

In summary, we conclude that the likelihoods we constructed and the assumptions about errors we made lead to a posterior

distribution that constrains the model parameters tightly (as compared to the uniform prior). The posterior distribution describes

a set of model parameters that yield model outputs that are comparable with the data in the feature-based sense. The estimates10

of the uncertainty in the parameters, e.g., posterior standard deviations, however, should be used with the understanding that

error variances are not easy to define. For the spectral data, we constructed error models that reflect uncertainty induced by

the shortness of the paleomagnetic record. For the time domain data (reversal rate, time average VADM and VADM standard

deviation) we used error variances that are smaller than intuitive error variances to account for the fact that the number of

spectral data points (hundreds) is much larger than the number of time domain data points (three data points). Moreover, the15
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Configuration (a) (b) (c) (d) (e) (f)

PADM2M & Sint-2000 ⇥
CALS10k.2 ⇥ ⇥ ⇥
Rev. Rate, time avg., std. dev. ⇥ ⇥

�rr in reversals/Myr 0.05 0.05 0.5 N/A 0.05 N/A

�

x̄

in 1022 Am2 0.048 0.048 0.48 N/A 0.048 N/A

�

�

in 1022 Am2 0.036 0.036 0.36 N/A 0.036 N/A
Table 5. Configurations for several Bayesian problem formulations. A checkmark means that the data set is used; a cross means it is not used

in the overall likelihood construction. The standard deviations (�) define the Gaussian error models for the reversal rate, time average VADM

and VADM standard deviation.

reversal rate and VADM standard deviation data are far (as measured by posterior standard deviations) from the reversal rate

and VADM standard deviation of the model with posterior parameters. As indicated above, this discrepancy could be due to

inconsistencies between spectral data and time domain data, which we will study in more detail in the next section.

6 Discussion

We study the effects the independent data sets have on the parameter estimates and also study the effects of different choices5

for error variances for the time domain data (reversal rate, time average VADM and VADM standard deviation). We do so by

running the MCMC code in several configurations. Each configuration corresponds to a posterior distribution and, therefore,

to a set of parameter estimates. The configurations we consider are summarized in Table 4 and the corresponding parameter

estimates are reported in Table 5. Configuration (a) is the default configuration described in the previous sections. We now

discuss the other configurations in relation to (a) and in relation to each other.10

Configuration (b) differs from configuration (a) in that the CALS10k.2 data are not used, i.e., we do not include the high-

frequency component, p

l,hf(y|✓) in the feature-based likelihood (15). Configurations (a) and (b) lead to nearly identical pos-

terior distributions and, hence, nearly identical parameter estimates with the exception of the parameter a, which controls the

correlation of the noise on the kyr time scale. The differences and similarities are apparent when we compare the corner plots of

the posterior distributions of configurations (a), shown in Figure 6, and of configuration (b), shown in Figure 8. The corner plots15

are nearly identical except for the bottom row of plots which illustrates marginals of the posterior related to a. We note that

the posterior distribution over a is nearly identical to its prior distribution. Thus, the parameter a is not constrained by the data

used in configuration (b), which is perhaps not surprising because a only appears in the Bayesian parameter estimation problem

via the high-frequency likelihood p

l,hf(y|✓). Moreover, since p

l,lf(y|✓) and p

l,td(y|✓) are independent of a, the marginal of the

posterior distribution of configuration (b) over the parameter a is independent of the data. More interestingly, however, we find20

that all other model parameters are estimated to have nearly the same values, independently of whether CALS10k.2 being used

during parameter estimation or not. This latter observation indicates that the model is self-consistent and consistent with the
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Configuration (a) (b) (c)

x̄ in 1022 Am2 5.23 (0.043) 5.23 (0.042) 3.56 (0.26)

D in 1044 A2m4 kyr�1 0.34 (0.0072) 0.34 (0.0072) 0.13 (0.014)

� in kyr�1 0.10 (0.0033) 0.10 (0.0033) 0.081 (0.0052)

T

s

in kyr 1.75 (0.050) 1.74 (0.050) 1.68 (0.14)

a in kyr�1 8.56 (1.93) 22.45 (10.01) 11.69 (3.91)

� in 1022 Am2 1.77 (0.024) 1.77 (0.023) 1.22 (0.060)

Rev. rate in reversals/Myr 4.06 (0.049) 4.06 (0.023) 3.34 (0.52)

Configuration (d) (e) (f)

x̄ in 1022 Am2 5.04 (2.91) 5.56 (0.048) 5.04 (2.88)

D in 1044 A2m4 kyr�1 0.094 (0.015) 0.44 (0.021) 0.093 (0.015)

� in kyr�1 0.078 (0.0063) 0.14 (0.014) 0.077 (0.0064)

T

s

in kyr 1.64 (0.19) 2.98 (1.15) 1.64 (0.19)

a in kyr�1 12.92 (4.79) 22.59 (10.08) 22.37 (10.13)

� in 1022 Am2 1.08 (0.074) 1.66 (0.036) 1.07 (0.075)

Rev. rate in reversals/Myr 2.89 (4.11) 4.23 (0.050) 2.83 (4.10)
Table 6. Posterior parameter estimates (mean and standard deviation, in brackets) and corresponding VADM standard deviation (�) and

reversal rates for five different set ups (see Table 5).

x̄

Figure 8. 1- and 2-dimensional histograms of the posterior distribution of configuration (b).
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Case (d)-> Spectral fit, without time domain data

Figure 9. PSDs of data and model with parameters drawn from the posterior distribution of configuration (c). Orange: PSD of Sint-2000.

Red: PSD of PADM2M. Dashed purple: PSD of CALS10k.2. Solid purple: PSD of CALS10k.2 at frequencies we consider (yhf). Grey (low

frequencies): 5 · 103 samples of the error model "lf added to ylf. Grey (high frequencies): 5 · 103 samples of the error model "hf added to yhf.

Dark blue: PSDs of 100 posterior samples of Myr model (with smoothing). Turquoise: PSDs of 100 posterior samples of kyr model with

uncorrelated noise.

data on the Myr and kyr time scales; in the context of our simple stochastic model the data from CALS10k.2 mostly constraints

the noise correlation parameter a.

Configuration (c) differs from configuration (a) in the error variances for the time domain data (reversal rate, time average

VADM and VADM standard deviation). With the larger values used in configuration (c), the spectral data are emphasized during

the Bayesian estimation which also leads to an overall better fit of the spectra. This is illustrated in Figure 9, where we plot the5

100 PSDs generated by 100 (independent) simulations with the model with parameters drawn from the posterior distribution

of configuration (c). For comparison, we also plot the PSDs of PADM2M, Sint-2000, CALS10k.2 and 5 · 10

3 realizations of

the high- and low-frequency error model. In contrast to configuration (a) (see Figure 7), we find that the PSDs of the model of

configuration (c) are all well within the expected errors. One the other hand, the reversal rate drops to about 3 reversals/Myr,

and the time average VADM and VADM standard deviation also decrease significantly as compared to configuration (a). This10

is caused by the posterior mean of D being decreased by more than 50%, while � and T

s

are comparable for configurations

(a)-(c). The fact that the improved fit of the PDSs comes at the cost of a poor fit of the reversal rate, time average and standard

deviation is another indication of an inconsistency between the reversal rate and the VADM data sets. As indicated above, one

of the strengths of the Bayesian parameter estimation framework we describe here is to be able to identify such inconsistencies.

Once identified, one can try to fix the model. For example, we can envision a modification of the functional form of the drift15

term in (2). A nearly linear dependence of the drift term on x near x = x̄ is supported by the VADM data sets, but the behavior

near x = 0 is largely unconstrained. Symmetry of the underlying governing equations suggests that the drift term should vanish

and the functional form adopted in (2) is just one way that a linear trend can be extrapolated to x = 0. Other functional forms

that lower the barrier between the potential wells would have the effect of increasing the reversal rate. This simple change to
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the model could bring the reversal rate into better agreement with the time average and standard deviation of the VADM data

sets.

In configuration (d), the spectral data are used, but the time domain data are not used (which corresponds to infinite �rr, �

�

and �

x̄

). We note that the posterior means and variances of all parameters are comparable for configurations (c), where the

error variances of the time domain data are “large”, and (d), where the error variance of the time domain data are “infinite”.5

Thus, the impact of the time domain data is minimal if the error variances of the time domain data are large. The reason is that

the number of spectral data points is larger (hundreds) than the number of time domain data (three data points: reversal rate,

time average VADM and VADM standard deviation). When the error variances of the time domain data decrease, the impact

these data have on the parameter estimates increases. We further note that the parameter estimates of configurations (c) or (d)

are quite different from the parameter estimates of configuration (a) (see above). For an overall good fit of the model to the10

spectral and time domain data, the error variances for the time domain data must by small, as in configuration (a). Otherwise,

the reversal rates are too low. Small error variances, however, imply (relatively) large deviations between the time domain data

and the model predictions. Small error variances also comes at the cost of not necessarily realistic posterior variances.

Comparing configurations (d) and (e), we note that if only the spectral data are used, the reversal rates are unrealistically

small (nominally 1 reversal per Myr). Moreover, the parameter estimates based on the spectral data are quite different from the15

estimates we obtain when we use the time domain data (reversal rate, time average VADM and VADM standard deviation). This

is further evidence that either the model has some inconsistencies, or that the reversal rate and the VADM standard deviation

are not consistent. Specifically, our experiments suggest that a good match to spectral data requires a set of model parameters

that is quite different from the set of model parameters that lead to a good fit to the reversal rate, time average VADM and

VADM standard deviation. Experimenting with different functional forms for the drift term is one strategy for achieving better20

agreement between the reversal rate, the time average VADM and VADM standard deviation.

Comparing configurations (d) and (f), we can further study the effects that the CALS10k.2 data have on parameter estimates

(similarly to how we compared configurations (a) and (b) above). The results, shown in Table 6, indicate that the parameter

estimates based on configurations (d) and (f) are nearly identical, except in the parameter a that controls the time correlation of

the noise on the kyr time scale. This confirms what we already found by comparing configurations (a) and (b): the CALS10k.225

data are mostly useful for constraining a. These results, along with configurations (a) and (b), suggest that the model is self

consistent with the independent data on the Myr scale (Sint-2000 and PADM2M) and on the kyr scale (CALS10k.2). Our

experiments, however, also suggest that the model has difficulties to reconcile the spectral and time domain data.

Finally, note that the data used in configuration (d) does not inform the parameter x̄, and configuration (f) does not inform x̄

or a. If the data do not inform the parameters, then the posterior distribution over these parameters is essentially equal to the30

prior distribution, which is uniform. This is illustrated in Figure 10, where we show the corner plot of the posterior distribution

of configuration (f). We can clearly identify the uniform prior in the marginals over the parameters x̄ and a. This means that

the Sint-2000 and PADM2M data only constrain the parameters D, � and T

s

.
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x̄

Figure 10. 1- and 2-dimensional histograms of the posterior distribution of configuration (f).

7 Examples of applications of the model

The Bayesian estimation technique we describe leads to a model with stochastic parameters whose distributions are informed

by the paleomagnetic data. Moreover, we ran a large number of numerical experiments to understand the limitations of the

model, to discover inconsistencies between the model and the data and to check our assumptions about error modeling. This

process results in a well-understood and well-founded stochastic model for selected aspects of the long term behavior of the5

geomagnetic dipole field. We believe that such a model can be useful for a variety of purposes, including testing hypotheses

about selected long-term aspects of the geomagnetic dipole.

For example, it was noted by Ziegler et al. (2011) that the VADM (time averaged) amplitude during the past chron was

slightly lower than during the previous chron. Specifically, the time averaged VADM for �0.78 < t < 0 Myr is E(x) = 6.2 ·
10

22 Am2 but for �2 < t < �0.78 Myr the time average is E(x) = 4.8 · 10

22 Am2. A natural question is: is this increase10

in the time average significant or is it due due to random variability? We investigate this question using the model whose

parameters are the posterior mean values of configuration (a) (the configuration that leads to an overall good fit to all data).

Specifically, we perform 10,000 simulations of duration 0.78 Myr and 10,000 independent simulations of duration 1.22 Myr.

For each simulation, we compute the time average, which allows us to estimate the standard deviation of the difference in means

(assuming no correlation between the two time intervals). We found that this standard deviation is about 0.46·10

22 Am2, which15

is much smaller than the differences in VADM time averages of 1.4·10

22 Am2. This suggests that the increase in time averaged

VADM is likely not due to random variability.
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A similar approach can be applied to the question of changes in the reversal rate over geological time. The observed reversal

rate over the past 30 Myr is approximately 4.26 Myr�1. When the record is divided into 10-Myr intervals, the reversal rate

varies about the average, with a standard deviation of about 0.49 Myr�1 (see Table 2). These variations are within the expected

fluctuations for the stochastic model. Specifically, we can use an ensemble of 10

5 simulations, each of duration 10 Myr to

compute the average and standard deviation of the reversal rate The results, obtained by using nominal parameters and posterior5

mean parameters of configurations (a) (overall good fit to all data) and (e) (emphasis on reversal rate data) are shown in Table 7.

As already indicated in Section 4.2.1, the standard deviation from the geomagnetic polarity time scale is comparable to the

Nominal parameter values Configuration (a) Configuration (e)

Average reversal rate (in Myr�1) 4.50 3.76 3.56

Standard deviation (in Myr�1) 0.68 0.63 0.59
Table 7. Average reversal rate and and standard deviation of an ensemble of 105 simulations of duration10 Myr, filtered to a resolution of 30

kyr. The simulations are done with nominal parameter values (Table 3), or the posterior mean values of configurations (a) and (e).

standard deviation we compute via the model. The observed reversal rate for the 10-Myr interval between 30 and 40 Myr,

however, is approximately 2.0 Myr�1, which departs from the 0 – 30 Myr average by more than three standard deviations. This

suggests that the reversal rate between 30 and 40 Ma cannot be explained by natural variability in the model. Instead, it suggests10

that model parameters were different before 30 Ma, implying that there was a change in the operation of the geodynamo.

8 Summary and conclusions

We consider parameter estimation for a model of Earth’s axial magnetic dipole field. The idea is to estimate the model parame-

ters using data that describe Earth’s dipole field over kyr and Myr time scales. The resulting model, with calibrated parameters,

is thus a representation of Earth’s dipole field on these time scales. We formulated a Bayesian estimation problem in terms of15

“features” that we derived from the model and data. The data include two time series (Sint-2000 and PADM2M) that describe

the strengths of Earth’s dipole over the past 2 Myr, a shorter record (CALS10k.2) that describes dipole strength over the past 10

kyr, as well as reversal rates derived from the geomagnetic polarity time scale. The features are used to synthesize information

from these data sources (that had previously been treated separately).

Formulating the Bayesian estimation problem requires defining anticipated model error. We found that the main source of20

uncertainty is the shortness of the paleomagnetic record and constructed error models to incorporate this uncertainty. Numerical

solution of the feature-based estimation problem is done via conventional Markov chain Monte Carlo (an affine invariant

ensemble sampler). With suitable error models, our numerical results indicate that the paleomagnetic data constrain all model

parameters in the sense that the posterior probability mass is concentrated on a smaller subset of parameters than the prior

probability. Moreover, the posterior parameter values yield model outputs that fit the data in a precise, feature-based sense,25

which also translates into a good fit by other, more intuitive measures.
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A main advantage of our approach (Bayesian estimation with an MCMC solution) is that it allows us to understand the

limitations and remaining (posterior) uncertainties of the model. After parameter estimation, we thus have produced a reliable,

stochastic model for selected aspects of the long term behavior of the geomagnetic dipole field whose limitations and errors

are well-understood. We believe that such a model is useful for hypothesis testing and have given several examples of how the

model can be used in this context. Another important aspect of our overall approach is that it can reveal inconsistencies between5

model and data. For example, we ran a suite of numerical experiments to assess the internal consistency of the data and the

underlying model. We found that the model is self-consistent on the Myr and kyr time scales, but we discovered inconsistencies

that make it difficult to achieve a good fit to all data simultaneously. It is also possible that the data themselves are not entirely

self consistent in this regard. Our methodology does not resolve these questions, but once inconsistencies are identified, several

strategies can be pursued to resolve them, e.g., improving the model or resolving consistency issues of the data themselves.10

Our conceptual and numerical framework can also be used to reveal the impact that some of the individual data sets have on

parameter estimates and associated posterior uncertainties. In this paper, however, we focused on describing the mathematical

and numerical framework and only briefly mention some of the implications.
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Competing interests. No competing interests are present.15

Acknowledgements. We thank Dr. Johannes Wicht of Max Planck Institute for Solar System Research, and an anonymous reviewer for

careful comments that helped improving our paper. We also thank Dr. Andrew Tangborn of NASA GSFC for interesting discussion and

useful comments. MM gratefully acknowledges support by the National Science Foundation under grant DMS-1619630 and by the Alfred

P. Sloan Foundation. B.B. acknowledges support from grant EAR-164464 from the National Science Foundation.

29

https://github.com/mattimorzfeld


References

Asch, M., Bocquet, M., and Nodet, M.: Data assimilation: methods, algorithms and applications, SIAM, 2017.

Bärenzung, J., Holschneider, M., Wicht, J., Sanchez, S., and Lesur, V.: Modeling and Predicting the Short-Term Evolution of the Geomagnetic

Field, Journal of Geophysical Research: Solid Earth, 123, 4539–4560, https://doi.org/10.1029/2017JB015115, 2018.

Buffett, B.: Dipole fluctuations and the duration of geomagnetic polarity transitions, Geophysical Research Letters, 42, 7444–7451, 2015.5

Buffett, B. and Davis, W.: A Probabilistic Assessment of the Next Geomagnetic Reversal, Geophysical Research Letters, 45, 1845–1850,

https://doi.org/10.1002/2018GL077061, 2018.

Buffett, B. and Matsui, H.: A power spectrum for the geomagnetic dipole moment, Earth and Planetary Science Letters, 411, 20–26, 2015.

Buffett, B. and Puranam, A.: Constructing stochastic models for dipole fluctuations from paleomagnetic observations, Physics of the Earth

and Planetary Interiors, 272, 68 – 77, 2017.10

Buffett, B., Ziegler, L., and Constable, C.: A stochastic model for paleomagnetic field variations, Geophysical Journal International, 195,

86–97, 2013.

Buffett, B. A., King, E. M., and Matsui, H.: A physical interpretation of stochastic models for fluctuations in the Earth’s dipole field,

Geophysical Journal International, 198, 597–608, 2014.

Cande, S. and Kent, D.: Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic, Journal of Geophys-15

ical Research: Solid Earth, 100, 6093–6095, 1995.

Chorin, A. and Hald, O.: Stochastic tools in mathematics and science, Springer, third edn., 2013.

Constable, C. and Johnson, C.: A paleomagnetic power spectrum, Physics of Earth and Planetary Interiors, 153, 61–73, 2005.

Constable, C., Korte, M., and Panovska, S.: Persistent high paleosecular variation activity in southern hemisphere for at least 10000 years,

Earth and Planetary Science Letters, 453, 78 – 86, 2016.20

Finlay, C., Olsen, N., Kotsiaros, S., Gillet, N., and Lars, T.: Recent geomagnetic secular variation from Swarm and ground observatories as

estimated in the CHAOS-6 geomagnetic field model, Earth Planets and Space, 68, 1–18, 2016.

Gissinger, C.: A new deterministic model for chaotic reversals, The European physical Journal B, 85, 137, 2012.

Goodman, J. and Weare, J.: Ensemble samplers with affine invariance, Comm. App. Math. Com. Sc., 5, 65–80, 2010.

Grinsted, A.: GWMCMC, https://github.com/grinsted/, 2018.25

Hoyng, P., Ossendrijver, M., and Schmitt, D.: The geodynamo as a bistable oscillator, Geophysical and Astrophysical Fluid Dynamics, 94,

263–314, 2001.

Hoyng, P., Schmitt, D., and Ossendrijver, M.: A theoretical analysis of the observed variability of the geomagnetic dipole field, Physics of

Earth and Planetary Interiors, 130, 143–157, 2002.

Hulot, G., Finlay, C. C., Constable, C. G., Olsen, N., and Mandea, M.: The magnetic field of planet Earth, Space Science Reviews, 152,30

159–222, 2010.

Lowrie, W. and Kent, D.: Geomagnetic polarity time scale and reversal frequency regimes, Timescales of the paleomagnetic field, 145,

117–129, 2004.

Maclean, J., Santitissadeekorn, N., and Jones, C. K.: A coherent structure approach for parameter estimation in Lagrangian Data Assimilation,

Physica D: Nonlinear Phenomena, 360, 36 – 45, https://doi.org/https://doi.org/10.1016/j.physd.2017.08.007, http://www.sciencedirect.35

com/science/article/pii/S0167278916304572, 2017.

30

https://doi.org/10.1029/2017JB015115
https://doi.org/10.1002/2018GL077061
https://doi.org/https://doi.org/10.1016/j.physd.2017.08.007
http://www.sciencedirect.com/science/article/pii/S0167278916304572
http://www.sciencedirect.com/science/article/pii/S0167278916304572
http://www.sciencedirect.com/science/article/pii/S0167278916304572


Meduri, D. and Wicht, J.: A simple stochastic model for dipole moment fluctuations in numerical dynamo simulations, Frontiers in Earth

Science, 4, 2016.

Morzfeld, M., Fournier, A., and Hulot, G.: Coarse predictions of dipole reversals by low-dimensional modeling and data assimilation, Physics

of the Earth and Planetary Interiors, 262, 8 – 27, https://doi.org/https://doi.org/10.1016/j.pepi.2016.10.007, http://www.sciencedirect.com/

science/article/pii/S0031920116301431, 2017.5

Morzfeld, M., Adams, J., Lunderman, S., and Orozco, R.: Feature-based data assimilation in geophysics, Nonlinear Processes in Geophysics,

25, 355–374, 2018.

Ogg, J.: Geomagnetic polarity time scale, in: The geological time scale 2012, edited by Gradstein, F., Ogg, J., Schmitz, M., and Ogg, G.,

chap. 5, pp. 85–1130, Elsevier Science, Boston, 2012.

Pétrélis, F. and Fauve, S.: Chaotic dynamics of the magnetic field generated by dynamo action in a turbulent flow, Journal of Physics:10

Condensed Matter, 20, 494 203, 2008.

Pétrélis, F., Fauve, S., Dormy, E., and Valet, J.-P.: Simple mechanism for reversals of Earth’s magnetic field, Physical Review Letters, 102,

144 503, 2009.

Pourovskii, L., Mravlje, J., Georges, A., Simak, S., and Abrikosov, I.: Electron-electron scattering and thermal conductivity of epsilon-iron

at Earth’s core conditions, New Journal of Physics, 19, 073 022, 2017.15

Reich, S. and Cotter, C.: Probabilistic Forecasting and Bayesian Data Assimilation, Cambridge University Press, 2015.

Rikitake, T.: Oscillations of a system of disk dynamos, Mathematical Proceedings of the Cambridge Philosophical Society, 54, 89–105, 1958.

Risken, H.: The Fokker-Planck equation: Methods of solution and applications, Springer, 1996.

Roberts, A. and Winkhofer, M.: Why are geomagnetic excursions not always recorded in sediments? Constraints from post-depositional

remanent magnetization lock-in modeling, Earth and Planetary Science Letters, 227, 345–359, 2004.20

Schmitt, D., Ossendrijver, M., and Hoyng, P.: Magnetic field reversals and secular variation in a bistable geodynamo model, Physics of Earth

and Planetary Interiors, 125, 119–124, 2001.

Valet, J.-P., Meynadier, L., and Guyodo, Y.: Geomagnetic field strength and reversal rate over the past 2 million years, Nature, 435, 802–805,

2005.

Wolff, U.: Monte Carlo errors with less errors, Comput. Phys. Commun., 156, 143–153, 2004.25

Ziegler, L., Constable, C., and Johnson, C.: Testing the robustness and limitations of 0-1 Ma absolute paleointensity data, Physics of Earth

and Planetary Interiors, 170, 34–45, 2008.

Ziegler, L. B., Constable, C. G., Johnson, C. L., and Tauxe, L.: PADM2M: a penalized maximum likelihood model of the 0-2 Ma paleomag-

netic axial dipole model, Geophysical Journal International, 184, 1069–1089, 2011.

31

https://doi.org/https://doi.org/10.1016/j.pepi.2016.10.007
http://www.sciencedirect.com/science/article/pii/S0031920116301431
http://www.sciencedirect.com/science/article/pii/S0031920116301431
http://www.sciencedirect.com/science/article/pii/S0031920116301431

	npg-2018-42-author_response-version2 (1).pdf (p.1-4)
	npg-2018-42-manuscript-version4 (1).pdf (p.5-64)

