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Abstract. The ensemble Kalman filter and its variants have shown to be robust for data assimilation in high dimensional

geophysical models, with localization, using ensembles of extremely small size relative to the model dimension. A reduced rank

representation of the estimated covariance, however, leaves a large dimensional complementary subspace unfiltered. Utilizing

the dynamical properties of the filtration for the backward Lyapunov vectors, this paper explores a previously unexplained

mechanism, describing the intrinsic role of covariance inflation in ensemble-based Kalman filters. Our derivation of the forecast5

error evolution describes the dynamic upwelling of the unfiltered error from outside of the span of the anomalies into the filtered

subspace. Analytical results for linear systems explicitly describe the mechanism for the upwelling, and the associated recursive

Riccati equation for the forecast error, while nonlinear approximations are explored numerically.

1 Introduction

It is well understood that in chaotic physical systems, dynamical instability is among the leading drivers of forecast uncertainty10

(Toth and Kalnay, 1997; Trevisan and Palatella, 2011a; Vannitsem, 2017). Recent mathematical and numerical results have,

furthermore, established a rigorous framework for understanding the relationship between dynamical instability, in terms of

the non-negative Lyapunov exponents, and the asymptotic properties of the uncertainty in ensemble-based data assimilation

techniques: in perfect models, with weakly-nonlinear error growth, the anomalies of ensemble Kalman filters project strongly

on the span of the unstable-neutral backward Lyapunov vectors (Carrassi et al., 2009; Ng et al., 2011; González-Tokman and15

Hunt, 2013; Bocquet and Carrassi, 2017), and that the divergence of the ensemble Kalman filter depends significantly upon

whether error in this space is sufficiently observed and corrected.

Inspired by the Assimilation in the Unstable Subspace (AUS) methodology of Anna Trevisan and her collaborators (Tre-

visan and Uboldi, 2004; Carrassi et al., 2007, 2008; Trevisan et al., 2010; Trevisan and Palatella, 2011b; Palatella et al., 2013;

Palatella and Trevisan, 2015), recent mathematical results have rigorously validated the underlying hypothesis of AUS: for20

perfect, linear models, the uncertainty of the Kalman filter asymptotically collapses to the span of the backward Lyapunov vec-

tors with non-negative exponents (Gurumoorthy et al., 2017). Furthermore, if a reduced rank filter has an estimated covariance

initialized only in these modes, and the unstable-neutral subspace is uniformly, completely observed, the reduced rank filter be-

comes asymptotically equivalent to the optimal Kalman filter (Bocquet et al., 2017). This phenomenon has, furthermore, been
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generalized as a criterion for the exponential stability of continuous time filters, in perfect models, in terms of the detectability

of the unstable-neutral subspace (Frank and Zhuk, 2017).

The above mathematical results demonstrate how the stable dynamics in perfect models dissipate forecast errors, in se-

quential filters, such that a reduced rank representation of the error covariance matrix, in the unstable-neutral subspace alone,

suffices to control error growth. This behavior, similarly understood in the smoothing problem (Pires et al., 1996; Trevisan5

et al., 2010), is now also mathematically verified for the linear Kalman smoother, and its nonlinear ensemble formulation

is shown numerically to exhibit the same behavior, in a weakly-nonlinear regime for error dynamics (Bocquet and Carrassi,

2017).

The work of Grudzien et al. (2017) extends the mathematical framework for AUS, so far established for perfect models, to

the presence of additive model errors with additional qualifications. This work introduces novel bounds on the Kalman filter’s10

asymptotic forecast uncertainty, and a necessary criterion for filter stability, as an inverse relationship between the model’s

dynamical instabilities and the precision of observations. Particularly, in the absence of corrections to forecast errors in the

stable modes, this work demonstrates that the model dynamics alone are once again sufficient to uniformly bound the errors

in the span of the stable backward Lyapunov vectors. However, the uniform bound may be impractically large due to the

excitation of model errors by the transient instabilities in stable directions. While uncertainty is asymptotically dissipated by15

the stable dynamics, the reintroduction of uncertainty from model error significantly differentiates imperfect models. Newly

injected errors are subject to the growth rates of the local (in time) Lyapunov exponents, and stable Lyapunov exponents

of sufficiently high variance may experience transient periods of growth. Therefore, strategies for representing the forecast

error with a low rank ensemble must be adapted for imperfect models to account for a residual error in the span of the

stable, backward Lyapunov vectors which never vanishes and, moreover, may go through transient periods of growth. As a20

consequence, confining the error description within a reduced rank Kalman filter to only the unstable-neutral subspace does

not suffice when model error is present and suggests that one must include additional, asymptotically stable, modes.

In this work we show, furthermore, that such an increase of the ensemble span does not automatically render the filter

optimal: one may also need to account for the injection of error from unfiltered directions into the ensemble span. In particular,

when an ensemble-based Kalman gain is used to correct the forecast errors, the dynamics induce error propagation which25

transmits uncertainty from the uncorrected, complementary subspace into the ensemble span. In this study, the propagation

of error in the linear Kalman filter, written in a basis of backward Lyapunov vectors, will reveal the leading order evolution

of the unfiltered uncertainty. Although the evolution is derived for linear models, the mechanism for error propagation can

be considered a generic feature of ensemble Kalman filters. Under the condition that error evolution is weakly-nonlinear, the

ensemble span will align with the span of the leading backward Lyapunov vectors — therefore the error decomposition in the30

basis of backward Lyapunov vectors will be valid for the ensemble Kalman filter. Similar to how we view AUS as a theoretical

framework for understanding the properties of ensemble-based covariances in the presence of chaotic dynamics (and in the

absence of model error), this work is meant to be used as a theoretical explanation for the empirically observed properties of

ensemble-based covariances in the presence of chaotic dynamics and additive model errors.
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This paper is structured as follows: section 2.1 concerns essential results from the theory of Lyapunov vectors which are

used throughout; sections 2.2 and 2.3 describe the basic framework for the Kalman filter, and will motivate our subsequent

results; section 3 contains our main analytical result, the derivation of the exact forecast error under a reduced rank filter in a

basis of backward Lyapunov vectors; section 4 will use numerics to qualitatively explore the forecast error of the reduced rank

filter, and its approximation in nonlinear models. Implications of the results in this work are discussed in section 5, with an5

emphasis on future directions of research and their challenges. Final conclusions are drawn in section 6.

2 Preliminaries

We begin by introducing our notation and the problem formulation, with definitions in bold. There is inconsistent use of the

terminology for Lyapunov vectors in the literature, and so we choose to use the nomenclature of Kuptsov and Parlitz (2012)

for its generality and self-consistency.10

2.1 Lyapunov vectors

Throughout the entire text, the conventional notation k = 0,1,2, . . . is adopted to indicate that the quantity is defined at time tk.

Let zk−1 ∈ Rn be an arbitrary vector, the matrix propagator of the forward model from tk−1 to tk is given by Mk, such that

zk = Mkzk−1. We denote the operator taking the system state from an arbitrary time tl to tk as Mk:l , MkMk−1 . . .Ml+1,

with the symbol , used to signify that the expression is a definition. We denote Mk:k , In, where In is the identity matrix (of15

size n×n in this case). At all times we assume Mk to be non-singular and to be uniformly bounded in k.

Although much of the derivations that follow are done for linear dynamics, we are ultimately concerned with nonlinear

systems — therefore, we will assume that Oseledec’s theorem holds, even for linear model propagators. In general, this is

a non-trivial assumption, but one which can be considered generic for the tangent-linear model of a wide class of nonlinear

systems, due to the Multiplicative Ergodic Theorem (MET): with probability one, Oseledec’s theorem holds, the Lyapunov20

exponents are well defined and the values of the Lyapunov exponents are independent of the initial condition (Barreira and

Pesin, 2002, see their Theorems 2.1.1 and 2.1.2 for a full statement and proof). A more general version of the MET, and its

interpretation for several physical systems, is provided by Froyland et al. (2013) in their Theorem 1.1 and example 1.2.

We order the Lyapunov exponents

λ1 ≥ ·· · ≥ λn0
≥ 0> λn0+1 ≥ ·· · ≥ λn, (1)25

such that the unstable-neutral subspace is of dimension n0 and the model state dimension is n. Note that we do not assume that

the Lyapunov exponents are distinct.

Oseledec’s theorem decomposes the (tangent-linear) model space into a direct sum of time-varying, covariant Oseledec

spaces, referred to as an Oseledec splitting or decomposition. At times, we will refer to the covariant Oseledec spaces, as well

as to the covariant, and to the forward Lyapunov vectors. These discussions will provide a deeper interpretation of our results30

for those familiar with these technical points. However, these discussions are not crucial to the understanding of our results,
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and we therefore limit the use of formal definitions to the backward Lyapunov vectors. For a more formal discussion of the

Oseledec spaces, constructions for Lyapunov vectors and related results for the full rank Kalman filter, see Grudzien et al.

(2017); for a survey on the mathematical and numerical construction of Lyapunov vectors, see Kuptsov and Parlitz (2012); for

a discussion of general Oseledec splitting, and a comparison of methods for its computation, see Froyland et al. (2013).

The backward Lyapunov vectors can be defined by a choice of an orthonormal eigenbasis for the far-past operator, and/or5

by recursive QR factorizations of the (tangent-linear) model propagator (Kuptsov and Parlitz, 2012). Throughout the text, we

utilize the invariance of the backward Lyapunov vectors under the recursive QR algorithm.

Definition 1. Define the matrix Ek to be the orthogonal matrix whose i-th column is the i-th backward Lyapunov vector

(BLV) at time k, corresponding to the Lyapunov exponent λi.

Lemma 1. There is an n×n upper triangular matrix Uk, such that the (tangent-linear) model propagator satisfies10

Mk = EkUkE
T
k−1. (2)

Define the product of matrices,

Uk:l , Uk · · ·Ul, (3)

the i-th Lyapunov exponent is equal to the limit

λi = lim
l→−∞

1

k− l
log
(
|U iik:l|

)
, (4)15

where U iik:l is the i-th diagonal element of the matrix Uk:l. The local Lyapunov exponents are defined by log
(
|U iik |

)
.

Proof. Equation (2) follows from Eq. (31) of Kuptsov and Parlitz (2012) and is a consequence of the invariance of the BLVs

under the recursive QR decomposition (Grudzien et al., 2017). Computing Lyapunov exponents via recursive QR factorizations

as in Eq. (4) is the standard method, described by e.g., Shimada and Nagashima (1979) and Benettin et al. (1980).

The decomposition in Eq. (2) represents a change of basis of the model space into the upper triangular dynamics of the20

moving frame of BLVs, defining a basis for the backward Lyapunov filtration (Legras and Vautard, 1996). In particular, ET
k−1

takes the model state into the orthogonal projection coefficients in the basis of the BLVs at time k− 1. We will denote the

projection coefficients of an arbitrary vector zk into a basis of BLVs with a “hat”, i.e. ET
k zk , ẑk. Using the orthogonality of

the matrix Ek, the invariant dynamics in the BLVs is written

ẑk = Ukẑk−1 ⇔ zk = Mkzk−1. (5)25

The operator Uk thus describes the invariant, upper triangular dynamics, transferring the model state into its forward represen-

tation in the BLVs at time k.
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2.2 The Kalman filter

We seek to estimate the distribution of a Gaussian random vector xk ∈ Rn evolved via a linear Markov model with additive

white noise,

xk = Mkxk−1 +wk, (6)

and with observations yk ∈ Rd given in the form5

yk = Hkxk +vk. (7)

The forecast mean, xb
k, is propagated from the last posterior mean, xa

k−1 by the deterministic component of Eq. 6, i.e.,

xb
k = Mkx

a
k−1. (8)

The model variables and observation vectors are related via the linear observation operator Hk : Rn 7→ Rd. Model and obser-

vation noise, wk and vk, are assumed mutually independent, unbiased, Gaussian white sequences such that10

E[vkvT
l ] = δk,lRk and E[wkw

T
l ] = δk,lQk, (9)

where E is the expectation, Rk ∈ Rd×d is the observation error covariance matrix at time tk, and Qk ∈ Rn×n stands for the

model error covariance matrix. The error covariance matrix Rk can be assumed invertible without losing generality. To avoid

pathologies, we assume that the model and the observation error covariance matrices are uniformly bounded. For 1≤ t < s≤ n,

and given a matrix A ∈ Rn×n, we define At:s ∈ Rn×(s−t+1) to be the matrix composed (inclusively) of columns s through t15

of A.

Definition 2. The forecast error is defined as the difference of the mean state estimated by the filter and the unknown random

state, i.e.,

εk , xb
k −xk. (10)

The innovation is the measured difference between the forecast in the observation space and the observation,20

δk , yk −Hkxk = Hkεk −vk. (11)

We define the exact forecast error covariance at time k to be

Bk , E
[
εkε

T
k

]
. (12)

On the other hand, suppose some filter, yet to be identified, is used to estimate the forecast mean and error covariance — the

estimated forecast error covariance will be denoted Pk, defined according to the chosen estimation algorithm.25
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Suppose that Kk ∈ Rn×d is some estimator which takes the forecast state to the analysis state. In the case of the theoretical

Kalman filter, where the exact forecast error covariances are computed Pk ≡Bk, the gain Kk will be defined

Kk , PkH
T
k

(
HkPkH

T
k +Rk

)−1
= BkH

T
k

(
HkBkH

T
k +Rk

)−1
. (13)

In this text, we will vary the choice of the analysis update operator Kk, but the functional form of the recursion for the analysis5

update of the mean will be unchanged and defined as

xa
k , xb

k +Kk

(
yk −Hkx

b
k

)
= xb

k −KkHkεk +Kkvk. (14)

Therefore, for any estimator, the forecast mean can be derived recursively from Eq. (8) and Eq. (14) as

xb
k+1 , Mk+1

(
xb
k −KkHkεk +Kkvk

)
(15)10

where Kk is some choice for the gain. The recursion on the forecast error can be derived equal to

εk+1 , Mk+1 [(In−KkHk)εk +Kkvk]−wk+1, (16)

though εk,vk and wk+1 are assumed to be unknown.

2.3 Rank deficiency in the Kalman filter

In a linear model, with known Gaussian observation and model error distributions, the estimated error covariances of the KF are15

exact: the posterior error distribution for the state is Gaussian, and the KF completely describes the Bayesian posterior through

its recursive equations for the estimated mean and covariance. However, it is often the case that the recursion for the posterior

error distribution is approximated with a reduced rank surrogate in which the estimated covariance, Pk, and resulting exact

error covariance, Bk, may not be equal (Chandrasekar et al., 2008). This mis-match can lead to systematic underestimation of

the forecast error and filter divergence.20

Nonetheless, it is possible in an ideal setting to analytically describe the error statistics of a reduced rank Kalman filter — to

illustrate this, assume we have a linear model with known Gaussian error distributions. Suppose we apply the analysis update

in a reduced rank set of BLVs, as has been done in EKF-AUS (Trevisan and Palatella, 2011b). Suppose, furthermore, the exact

error covariance, Bk, is known. Then the gain

Kk ,E1:n0

k

(
E1:n0

k

)T
BkE

1:n0

k

(
E1:n0

k

)T
HT
k×25 [

HkE
1:n0

k

(
E1:n0

k

)T
BkE

1:n0

k

(
E1:n0

k

)T
HT
k +Rk

]−1
(17)

yields the exact Kalman estimator with respect to a subset of the anomaly variables, defined by the span of the leading n0 BLVs.

We may use Eq. (16) to derive the analytical recursion for the forecast error covariance, Bk+1, under the reduced rank gain in
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Eq. (17). The rank deficiency (or reduced rank) is defined by the restriction of the Kalman estimator to a low dimensional

subspace. Note that, although the estimator is restricted to the span of E1:n0

k , the observation operator is still applied to the full

state vector, and thus the analysis does not equal the restriction of the Bayesian update to the leading n0 BLVs. We recover the

restricted Bayesian update using the estimator in Eq. (17) precisely when HkE
n0+1:n
k ≡ 0d×(n−n0).

The significance of deriving an analytical recursion for the forecast error under the reduced rank estimator in Eq. (17) is5

as follows. The analysis operator in Eq. (17) is characteristic of the typical gain for the ensemble Kalman filter (EnKF) in

large, geophysical models: the ensemble-based gain applies its update with respect to the subspace defined by the span of the

ensemble of anomalies, which is usually of reduced rank and aligns with the span of the leading BLVs (Ng et al., 2011; Bocquet

and Carrassi, 2017). The standard EnKF can, therefore, be considered a Monte Carlo estimate of the error statistics resulting

from a rank deficient Kalman estimator as in Eq. (17). This is the motivation of section 3, where we will define a reduced rank10

gain which operates within the span of an arbitrary number of the leading BLVs and derive the resulting exact forecast error

covariance.

3 Filtering in the backward Lyapunov basis vectors

Consider the forecast error recursion for the linear KF in Eq. (16). As we are motivated by ensemble covariances, suppose Kk

is defined as a reduced rank gain which corrects only the leading r BLVs, with r < n. The subspace defined by the span of15

the anomalies defines a subspace of "filtered variables" where we perform our analysis. The "unfiltered subspace" is uniquely

defined (up to the inner product) as the orthogonal complement to the filtered space, i.e., the subspace in which the reduced

rank Kalman estimator makes no correction.

Definition 3. We denote the filtered subspace by the column span of the vectors Ef
k , E1:r

k and the unfiltered subspace

Eu
k , Er+1:n

k for all k. The projection coefficients of a vector z ∈ Rn into the filtered and unfiltered subspace will be denoted20

ẑ f ,
(
Ef
k

)T
z and ẑ u , (Eu

k)
T

z, respectively.

We thus decompose the forecast error into its orthogonal projections in the filtered and unfiltered subspaces as

εk , Ef
kε̂

f
k +Eu

kε̂
u
k . (18)

For r = n, define Ef
k , Ek and Eu

k , 0n such that ε̂ f
k is the full error written in an orthogonal change of basis — this case will

only be referred to for comparison.25

For i, j ∈ {f,u}, we write the sub-covariances in the basis defined by Ek as

B̂ij
k , E

[
ε̂ ik

(
ε̂ jk

)T]
. (19)

such that the exact forecast error covariance is given

Bk ≡Ek

B̂ff
k B̂fu

k

B̂uf
k B̂uu

k

ET
k , (20)
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where B̂ff
k and B̂uu

k are symmetric matrices, and B̂fu
k =

(
B̂uf
k

)T
. We similarly express Uk as a block matrix,

Uk ,

 Uff
k Ufu

k

0(n−r)×r Uuu
k

 . (21)

For an arbitrary rank filtered subspace, the reduced rank gain Kk correcting the span of Ef
k is defined by

Kk ,Ef
kK̂k,

K̂k ,Bff
k

(
Ef
k

)T
HT
k

[
HkE

f
kB

ff
k

(
Ef
k

)T
HT
k +Rk

]−1
, (22)5

where K̂k represents the projection coefficients of the reduced rank gain into the filtered variables.

For every k ≥ 1, we decompose the model error covariance into the basis of filtered and unfiltered BLVs as

Qk , Ek

Q̂ff
k Q̂fu

k

Q̂uf
k Q̂uu

k

ET
k (23)

where Q̂ff
k and Q̂uu

k are symmetric matrices, and Q̂fu
k =

(
Q̂uf
k

)T
.

With the above notation, and using Eq. (2), the evolution of the forecast error under the reduced rank gain is derived from10

Eq. (16) as

εk+1 =Mk+1

(
In−Ef

kK̂kHk

)
εk +Mk+1E

f
kK̂kvk −wk+1

=
(
Ek+1Uk+1E

T
k −Ek+1Uk+1In×rK̂kHk

)
εk +Ek+1Uk+1In×rK̂kvk −wk+1. (24)

Equation (24) describes the evolution of the forecast error with respect to the sub-optimal filter, and suggests, as in Eq.

(5), how we may write the error evolution into the upper triangular dynamics in the moving frame of BLVs. Computing the15

evolution of ε̂ f
k and ε̂ u

k under the forecast-analysis update cycle in Eq. (24), we will derive the exact recursion for B̂ff
k. This will

describe the exact forecast uncertainty in the filtered subspace under a gain which operates in the span of the leading r BLVs.

3.1 Evolution of unfiltered error

We begin by deriving the evolution of error in the unfiltered subspace, by verifying that it evolves according to the free

evolution. Notice first the following relation,20

(
Eu
k+1

)T
Ek+1Uk+1In×r = 0(n−r)×r, (25)

due to the fact that Ek+1 is an orthogonal matrix and, therefore, that the above product is equal to the lower left block of Uk+1,

which is upper triangular. With substitution of Eq. (18) into in Eq. (24) for εk, multiplying on the left by (Eu
k)

T to move into
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the unfiltered subspace, and by utilizing Eq. (25) to cancel the error in the filtered space, we find

ε̂ u
k+1 =

(
Eu
k+1

)T
Ek+1Uk+1E

T
k

(
Ef
kε̂

f
k +Eu

kε̂
u
k

)
−
(
Eu
k+1

)T
wk+1 (26)

=Uuu
k+1ε̂

u
k − ŵu

k+1. (27)

Equation (27) demonstrates that the evolution of the error in the unfiltered subspace follows exactly the free forecast evolution.5

The covariance of unfiltered error at time k can be computed from Eq. (27) as

B̂uu
k = Uuu

k:0B̂
uu
0 (Uuu

k:0)
T
+

k∑
l=1

Uuu
k:lQ̂

uu
l (Uuu

k:l)
T
. (28)

The initial uncertainty in the unfiltered subspace evolves as Uuu
k:0B̂

uu
0 (Uuu

k:0)
T and thus, when r > n0, vanishes exponentially.

This implies that asymptotic unfiltered error is independent of the initialization, similar to the results of Bocquet et al. (2017).

The remaining sum in Eq. (28) represents the contribution to the current forecast uncertainty from the model error at all times10

after initialization, propagated under the upper triangular evolution in the BLVs. Therefore, while the initial error is forgotten,

the asymptotic error in the reduced rank filter here explicitly depends on the dimension of the unfiltered subspace and the local

variability of the stable BLVs therein.

The error in the i-th BLV in Eq. (28) is given by the invariant evolution of perturbations, formerly studied by Grudzien et al.

(2017): when the filtered subspace dimension is of dimension r ≥ n0, we can recursively, and stably, compute the unfiltered15

uncertainty via

B̂uu
k+1 = Q̂uu

k+1 +Uuu
k+1B̂

uu
k

(
Uuu
k+1

)T
. (29)

When r < n0, we see explicitly that the filter will diverge as a consequence of leaving an unstable direction unfiltered.

3.2 Evolution of filtered error

We now consider the evolution of the projection of the forecast error into the filtered space, with respect to the reduced rank20

gain. From Eq. (24) we derive

ε̂ f
k+1 =

(
Ef
k+1

)T
Ek+1Uk+1E

T
k

(
Ef
kε̂

f
k +Eu

kε̂
u
k

)
−
(
Ef
k+1

)T
Ek+1Uk+1In×rK̂kHk

(
Ef
kε̂

f
k +Eu

kε̂
u
k

)
+
(
Ef
k+1

)T(
Ek+1Uk+1In×rK̂kvk −wk+1

)
. (30)

Similar to Eq. (25), we see that the terms(
Ef
k+1

)T
Ek+1Uk+1E

T
kEf

k = Uff
k+1, (31)25 (

Ef
k+1

)T
Ek+1Uk+1E

T
kEu

k = Ufu
k+1, (32)
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using the orthogonality of the BLVs. Therefore, substitution into Eq. (24) yields

ε̂ f
k+1 =

(
Uff
k+1−Uff

k+1K̂kHkE
f
k

)
ε̂ f
k (33a)

+Uff
k+1K̂kvk − ŵf

k+1 (33b)

+
(
Ufu
k+1−Uff

k+1K̂kHkE
u
k

)
ε̂ u
k . (33c)

The terms (33a) and (33b) correspond to the standard recursion on the KF forecast error. If the filtered subspace is the entire5

state space
(
i.e., Ef

k , Ek

)
the term (33c) is identically zero, and the terms (33a) and (33b) are equivalent to a change of basis

for the forecast error recursion in Eq. (16), written in the invariant dynamics for the moving frame of the BLVs.

For r < n, the remaining term (33c) is our primary object of interest. Term (33c) is fundamentally different from the rela-

tionship described by terms (33a) and (33b), which represents the usual stabilizing effect of the forecast-analysis cycle. Instead,

term (33c) describes two different processes: (i) Ufu
k+1 represents the purely dynamical upwelling of the unfiltered error into10

the filtered variables; (ii) Uff
k+1K̂kHkE

u
k is the correction in the filtered subspace, due to the sensitivity of these variables to

observations in the unfiltered subspace, forward propagated to time tk+1. When Kk yields the restricted Bayesian update, i.e.,

for HkE
u
k ≡ 0d×(n−r), term (33c) represents dynamical upwelling alone. Generically Ufu

k+1−Uff
k+1K̂kHkE

u
k 6= 0r×(n−r)

and ε̂ u
k is Gaussian distributed with covariance given by Eq. (28), and thus is almost surely non-zero. This demonstrates that

the forecast error in the filtered subspace depends on the unfiltered error via the forward evolution, whereas the unfiltered error15

does not depend on the error in the filtered space.

This implies that the direct application of EKF-AUS from perfect dynamics (Trevisan and Palatella, 2011b) to a linear

system with model error systematically underestimates the uncertainty in the span of the leading r BLVs. Specifically, EKF-

AUS neglects the injection of the errors from the trailing vectors, ε̂ u
k , into the forecast of the leading vectors ε̂ f

k+1, represented

in Eq. (33c). Even when the uncertainty in the stable BLVs is bounded uniformly (Grudzien et al., 2017), error in the trailing20

BLVs moves up the Lyapunov filtration, and may cause filter divergence. In perfect, linear models, where uncertainty in the

stable BLVs vanishes exponentially, the injection of error from the stable BLVs into the unstable subspace results in temporary

mis-estimation though does not pose an issue to the asymptotic stability (Bocquet et al., 2017). However, with model error, the

term (33c) demonstrates that reduced rank Kalman filters must be augmented to correct a persistent underestimation.

It is important to note that the error in the unfiltered subspace moves upward through the backward Lyapunov filtration25

precisely because the unfiltered subspace is defined by the span of the trailing BLVs, governed by the invariant upper triangular

dynamics. The span of the trailing BLVs is not equal to the direct sum of the trailing Oseledec spaces, which are themselves

covariant with the dynamics. This choice for the unfiltered subspace comes naturally, however, as the filtered subspace (the

image space of Kk) is given by the span of the leading BLVs, and is equivalent to the span of the leading covariant Lyapunov

vectors (Kuptsov and Parlitz, 2012, see their Eq. (43)).30

In principle, data assimilation could be designed to prevent dynamical upwelling of unfiltered error by defining the unfiltered

space to be the direct sum of the trailing, stable Oseledec spaces. In this case, unfiltered error would be covariant with the

dynamics and leave the filtered error unaffected, while the filtered space would be defined by the orthogonal complement

to trailing Oseledec spaces. Nevertheless, this design is artificial and would lead to poor filter performance. The orthogonal
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complement to the trailing Oseledec spaces is equal to the span of the leading forward (or adjoint-covariant) Lyapunov vectors

(Kuptsov and Parlitz, 2012, see their Eq. (43)), which has been shown not to contain the largest mass of the uncertainty (Ng

et al., 2011). Furthermore, the forward Lyapunov vectors are defined by the recursive QL factorization (Kuptsov and Parlitz,

2012), and the lower triangular dynamics for the forecast error would transmit filtered uncertainty to the unfiltered subspace,

creating a dynamic downwelling which cannot be accounted for in the ensemble subspace.5

With the recursive form of the filtered error in Eq. (33), we directly compute the covariance of the filtered error, and the

cross covariance of the filtered and unfiltered error, in the basis of BLVs. We define the operators

Φk+1 ,Ufu
k+1−Uff

k+1K̂kHkE
u
k, (34)

Σk ,
[
Ir − K̂kHkE

f
k

]
B̂ff
k

[
Ir − K̂kHkE

f
k

]T
+ K̂kRkK̂

T
k , (35)

where Φk is the operator which describes the propagation of unfiltered error into the filtered space and the operator Σk10

corresponds to the analysis error covariance for the standard KF, written in the basis of BLVs.

We first consider the recursion for the cross covariance. In particular, by combining Eq. (33) and Eq. (27), we obtain

B̂fu
k+1 =Φk+1B̂

uu
k

(
Uuu
k+1

)T
+ Q̂fu

k+1 +Uff
k+1

(
Ir − K̂kHkE

f
k

)
B̂fu
k

(
Uuu
k+1

)T
. (36)

We now consider the covariance of the forecast error in the filtered variables. Using the identity in Eq. (35) we derive the

recursion for the filtered error covariance B̂ff
k+1 as15

Bff
k+1 =Uff

k+1Σk

(
Uff
k+1

)T
+ Q̂ff

k+1 (37a)

+Φk+1B̂
uu
k ΦT

k+1 (37b)

+Uff
k+1

[
Ir − K̂kHkE

f
k

]
B̂fu
kΦT

k+1 (37c)

+Φk+1B̂
uf
k

[
Ir − K̂kHkE

f
k

]T (
Uff
k+1

)T
. (37d)

When the filtered space is the whole space, i.e., Ef
k = Ek, the term (37a) entirely describes the evolution of the forecast error20

in the basis of BLVs — this is indeed just the forward propagation of the analysis error covariance for the KF. The term (37b)

represents the contribution of uncertainty from the unfiltered subspace, propagated via the Φk operator, while terms (37c) and

(37d) describe the forward evolution of the cross covariances of the uncertainty, into the filtered space.

3.3 Assimilation in the unstable subspace exact (AUSE)

Having derived the exact error covariance associated to the reduced rank Kalman estimator, characteristic of the ensemble25

based Kalman gain in geophysical models, we will summarize the result.
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Definition 4. For all k, let the matrix Bk be decomposed as in Eq. (20). Then, define the recursive relationship

B̂uu
k =Q̂uu

k +Uuu
k B̂uu

k−1 (U
uu
k )

T
, (38a)

Φk+1 =Ufu
k+1−Uff

k+1K̂kHkE
u
k, (38b)

B̂fu
k+1 =Φk+1B̂

uu
k

(
Uuu
k+1

)T
+ Q̂fu

k+1 +Uff
k+1

(
Ir − K̂kHkE

f
k

)
B̂fu
k

(
Uuu
k+1

)T
, (38c)

Σk =
[
Ir − K̂kHkE

f
k

]
B̂ff
k

[
Ir − K̂kHkE

f
k

]T
+ K̂kRkK̂

T
k , (38d)5

B̂ff
k+1 =Uff

k+1Σk

(
Uff
k+1

)T
+ Q̂ff

k+1 +Φk+1B̂
uu
k ΦT

k+1

+Uff
k+1

[
Ir − K̂kHkE

f
k

]
B̂fu
kΦT

k +ΦkB̂
uf
k

[
Ir − K̂kHkE

f
k

]T (
Uff
k+1

)T
, (38e)

to be the Kalman Filter, Assimilation in the Unstable Subspace Exact (KF-AUSE) Riccati equation, for a filtered subspace of

dimension 1≤ r < n.

Proposition 1. Assume that a Gaussian prior distribution is given for x0, the state of the system defined by Eq. (6). Assume10

that the initial uncertainty, ε0, is of mean zero and covariance B0, and suppose observations of the state are given as in Eq.

(6). Let Kk be defined as the Kalman estimator restricted to the span of Ef
k (rank 1≤ r < n) as in Eq. (22). Then, the forecast

error defined by Eq. (16) is Gaussian, mean zero, with covariance matrix defined recursively by the KF-AUSE Riccati equation,

Eq. (38).

Proof. Proving the covariance is given by Eq. (38) is the content of sections 3.1 and 3.2. That the error is mean zero and15

Gaussian is easily proven by induction.

It should be noted that the KF-AUSE Riccati equation is also valid for the exact forecast error covariance of a reduced rank

Kalman filter in perfect models, where Qk , 0n for all k. Let r = n0, Qk , 0n and Pk , Ef
kΓk

(
Ef
k

)T
be defined as the

estimated forecast error covariance for EKF-AUS (Trevisan and Palatella, 2011b), then the recursion is defined by

Γk+1 ,Uff
k+1

[
Ir − K̂kHkE

f
k

]
Γk

[
Ir − K̂kHkE

f
k

]T (
Uff
k+1

)T
+Uff

k+1K̂kRkK̂
T
k

(
Uff
k+1

)T
, (39)20

analogous to term (37a). Comparing Eq. (38) and Eq. (39), we see that even in perfect models the estimated error covariance of

EKF-AUS in the filtered subspace and the exact error covariance do not agree, i.e., Γk+1 6= B̂ff
k+1. This is because the estimated

AUS error in Eq. (39) neglects the upwelling of the initial error in the unfiltered subspace, described by terms (37b), (37c) and

(37d). However, the unfiltered error decays exponentially and the mis-estimation in the filtered space does not threaten filter

stability: the AUS estimated error covariance converges to the exact error in its asymptotic limit, though possibly arithmetically25

(Bocquet et al., 2017).

3.4 Discussion: dynamical upwelling and covariance inflation

We emphasize that the KF-AUSE Riccati equation (38) is not intended to provide a computational advantage — its computation

requires knowledge of error in the unfiltered subspace and, in nonlinear models, a full rank representation of the tangent linear
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dynamics. Nonetheless, this recursion is demonstrative of an important concept: for a reduced rank Kalman estimator that

applies its analysis update in the span of the leading BLVs, the exact error in the same span always depend on the unfiltered

error in the trailing vectors. The upwelling of uncertainty from the unfiltered subspace to the (filtered) ensemble span thus

explains one of the dynamical mechanisms determining the intrinsic role of covariance inflation in the EnKF, providing a

theoretical motivation for its use to prevent filter divergence.5

Generally, the reasons for using covariance inflation in the EnKF are wide, including treatment of model error, sampling

error, intrinsic bias, and non-Gaussianity of error distributions (Raanes et al., 2018, see section 2.2 for a survey). However, Eq.

(38) demonstrates that even when excluding nonlinearity, non-Gaussianity, and intrinsic deficiencies of the EnKF, the exact

correction to the error in the ensemble span requires the covariance of the unfiltered error as well as the cross covariance

of the error in the filtered and unfiltered subspaces, as in Eq. (38). In practice, one must find a suitable approximation of the10

upwelling phenomenon to prevent the systematic underestimation of the forecast error, and/or, extend the rank of the ensemble-

based correction to control the transient growth of errors in the stable modes.

Reduced rank Kalman filters have previously corrected for the upwelling of model errors with both multiplicative and

additive covariance inflation methods. Although it was not explicitly formulated as such, the SEEK filter of Pham et al. (1998)

can been seen to compensate for model errors originating in the unfiltered, stable subspace: while components of the model15

error covariance which are orthogonal to the filtered subspace are left neglected, there is an implicit treatment by utilizing its

forgetting factor to inflate the variance of the estimated error in the filtered subspace (Nerger et al., 2005). The contribution of

the unfiltered error to the estimated error was also studied in ensemble methods by Raanes et al. (2015), in which the authors

explored sampling methodology to compensate for the unresolved model errors, residing outside of the ensemble span. Our

work adds to this discussion, now highlighting the explicit mechanism which necessitates these covariance inflation techniques20

under a rank deficient gain.

The dynamical upwelling of model error differs from the misrepresentation of the covariance due to truncation error or

sampling error induced by nonlinear dynamics in perfect models, treated in the modified EKF-AUS-NL (Palatella and Trevisan,

2015) and in the finite size ensemble Kalman filter, (EnKF-N) (Bocquet, 2011; Bocquet et al., 2015). We have shown that the

upwelling of the unfiltered error through the Lyapunov filtration acts as a linear effect and is acute in the presence of additive25

model errors which are excited by transient instabilities. While the effect of the dynamical upwelling could be neglected in

perfect models (Bocquet et al., 2017), the work of Grudzien et al. (2017) has demonstrated that transient instability in the span

of the stable BLVs can drive the unfiltered error to become impractically large — furthermore, this error is transmitted into the

filtered subspace, driving filter divergence if it is left uncorrected. However, the significance of perfect models is not lost: if the

dimension of the filtered space is sufficiently large such that dynamical stability rapidly dissipates unfiltered errors, the effect30

of the upwelling may become negligible.

Without augmenting the ensemble-based Kalman gain, the upwelling of uncertainty into the filtered space can be emulated

with multiplicative inflation. In the following section, we numerically explore the interaction of the filtered subspace rank, the

stability in the unfiltered directions, and multiplicative covariance inflation in relation to the effect of dynamical upwelling in

reduced rank Kalman filters.35
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4 Numerical results

4.1 Experimental setup

We will explore two different discrete model configurations in which we vary the effect of nonlinearity. In the continuous model

configuration with stochastic differential equations, we also achieve qualitatively similar results which will not be included.

It is important to remark that the analytic form for the forecast error in Eq. (38) is only a useful representation for weakly-5

nonlinear evolution of error, corresponding to the error evolution of the EnKF on short time scales. As the effect of nonlinearity

is increased, the linear approximations utilized in our work will no longer be adequate, leading to truncation errors as discussed

by, e.g., Palatella and Trevisan (2015).

In the following, we use two different formulations of the standard Lorenz 96 equations (L96) (Lorenz and Emanuel, 1998).

For each m ∈ {1, · · · ,n}, the (L96) equations read dx
dt , L(x),10

Lm(x) =−xm−2xm−1 +xm−1xm+1−xm+F (40)

such that the components of the vector x are given by the variables xm with periodic boundary conditions, x0 = xn, x−1 =

xn−1 and xn+1 = x1. The term F in L96 is the forcing parameter. The tangent linear model (Kalnay, 2003) is governed by the

equations of the Jacobian matrix,∇L(x),

∇Lm(x) =
(
0, · · · ,−xm−1,xm+1−xm−2,−1,xm−1,0, · · · ,0

)
. (41)15

4.1.1 Discrete linear experiments

In linear experiments, we construct a discrete, linear model from the L96 system. Fixing the system dimension n, 10, the

linear propagator in our model Mk is generated by computing the discrete, tangent linear model from the resolvent of the

Jacobian equation, Eq. (41). This linear model satisfies Oseledec’s theorem by construction (Barreira and Pesin, 2002). In

generating the discrete, tangent linear model, the discretization time between observations is fixed at δk , δ = 0.1 for all k.20

We numerically integrate the Jacobian equation with a fourth order Runge-Kutta scheme with a fixed time step of h, 0.01.

For the forcing value of F = 8, with 10 dimensions, there are three unstable, one neutral, and six stable Lyapunov exponents,

i.e, n0 = 4. The observation error covariance Rk, model error covariance Qk and observation operator Hk are all fixed as the

identity I10 in this setup for simplicity.

4.1.2 Discrete nonlinear experiments25

In our experiments with the discrete extended Kalman filter for nonlinear systems, we use Eq. (40) directly for our model state

evolution, and fix the state dimension to n, 40. For the 40 dimensional L96, with standard forcing F = 8, the unstable neutral

subspace is of dimension n0 = 14, with one neutral Lyapunov exponent. The nonlinear trajectory is integrated with a fourth

order Runge-Kutta scheme, with a fixed step size of h, 0.05, and an interval between observation times of δk , δ = 0.1. At

each observation time, before observations are given, the true trajectory is perturbed (in model space) by additive Gaussian30

noise with a prescribed covariance Q, fixed in time.
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Let us define the nonlinear map Ψ(t0, t1) : Rn→ Rn to be the flow map, generated from Eq. (40), that takes the model state

from time t0 to t1. Then, noting that Ψ(t, t+δ) = Ψ(s,s+δ) for all t and s, we will define Ψδ , Ψ(0, δ). In our experiments,

the “truth” is thus evolved via the equation,

xk+1 = Ψδ(xk)+wk+1, (42)

wk+1 ∼N(0,Q), while the mean trajectory of the “model” state is given by the deterministic evolution, xb
k+1 = Ψδ(x

b
k). In5

our experimental design, the extended Kalman filter estimates the state of the nonlinear “true” state, perturbed by the noise wk,

Eq. (42), and Mk+1 (the linear propagator for the covariance forward evolution) is defined by the map Mk+1 ,∇Ψδ

∣∣
xb
k

.

The matrix Q is defined by the circulant matrix with c0 = 0.5, c1 = 0.25, c2 = 0.125, c39 = 0.25, c38 = 0.125 and all other

entries zero,

Q ,



c0 c39 · · · c2 c1

c1 c0 c39 c2
... c1 c0

. . .
...

c38
. . . . . . c39

c39 c38 · · · c1 c0


. (43)10

The choice of the circulant matrix reflects the stationary statistics and periodic nature of the L96 model, and the fact that we

wish to highlight the effect of analytically resolving complex model error. The observation error covariance matrix is fixed as

0.25 ∗ I40. The observation operator is fixed in time as Hk , I40.

This experimental configuration is mathematically consistent with the extended Kalman filter for a discrete nonlinear map

with model error, and is a standard formulation for model error twin experiments, utilized by e.g, Mitchell and Carrassi (2015);15

Sakov et al. (2018), with the configuration using the circulant covariance matrix, Q, drawn specifically from Raanes et al.

(2015). The interval between observations δ controls the nonlinearity of the map, where our chosen configuration can be

considered weakly-nonlinear.

4.2 Linear Kalman filter

In a linear setting, we compute the exact forecast error covariance of KF-AUSE via the recursive Riccati equation, Eq. (38), and20

compare it with that of the KF, for which the filtered space is the entire model space. This illustrates the performance of a rank

deficient filter where the forecast error is treated analytically, without mis-estimation of the error covariances. We compute the

average eigenvalues of the forecast covariance matrix for each the KF and KF-AUSE over 100,000 parallel forecast cycles and

examine the stratification of the uncertainty in a basis of BLVs, i.e., how strongly the covariance projects into each direction.

Specifically, for both the KF and KF-AUSE we compute the average projection coefficient of the forecast error covariance into25

the i-th BLV at each forecast time,
(
Ei
k

)T
BkE

i
k, and average this coefficient over k.

In Fig. 1, the averaged eigenvalues of the KF and KF-AUSE forecast error covariance are plotted, with triangle markers,

differentiated by color. In each subplot, the KF remains the same but we vary the dimension of the filtered subspace, r, for
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Figure 1. Eigenvalues of the KF and KF-AUSE forecast error covariance plotted with triangles. Projection coefficients of the KF-AUSE

forecast error covariance plotted with X’s. Dimension of the KF-AUSE filtered subspace is r. Note the log scale of the y-axis.

KF-AUSE. In the top left panel of Fig. 1 the number of corrected modes is equal to n0, corresponding to correcting the error

in the unstable-neutral subspace. Here, the leading eigenvalue of the forecast uncertainty of KF-AUSE is orders of magnitude

above the forecast uncertainty in the KF. This should be contrasted with perfect models where, asymptotically, there can only

be four non-zero eigenvalues, and under generic conditions, the KF and EKF-AUS will coincide (Bocquet et al., 2017). In

accordance with the results of Grudzien et al. (2017), correcting error in the first stable mode (r = 5) brings a substantial5

reduction in forecast uncertainty (see top right Fig. 1). We see the forecast uncertainty likewise diminishes as each additional

mode is corrected, as the KF-AUSE covariance converges to that of the KF.

It is of special interest how the projection coefficients of the forecast error covariance relates to the dimension of the filtered

subspace, r. In the KF, the projection coefficients are closely aligned with the eigenvalue profile, descending in the order of

the Lyapunov exponents, and this line is not pictured due to the redundancy. However, in the forecast error covariance of10

KF-AUSE, the leading uncorrected stable mode is the dominant direction for the uncertainty among the BLVs, systematically

across n0 ≤ r < n, with projection coefficient on the order of the leading eigenvalue. This distinguishes the setting of additive

model error from perfect models where the projection coefficients of the forecast error covariance in the stable BLVs will be

zero asymptotically (Gurumoorthy et al., 2017).

4.3 Discrete extended Kalman filter15

In our experiments with the discrete extended Kalman filter, we compute the analysis root mean square error (RMSE) of each

the: (i) full rank extended Kalman filter (EKF), (ii) EKF-AUS and (iii) EKF-AUSE, for which Eq. (38) is used to compute

the estimated covariance and rank r gain. We will study the effect of analytically resolving the unfiltered error as compared
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with the straightforward implementation of EKF-AUS, which will make no correction to account for the unfiltered error in the

trailing BLVs, or its upwelling into the leading BLVs.

Recall that EKF-AUS has historically only been studied without additive model errors — we implement EKF-AUS in the

presence of model error by computing a rank r estimated error covariance, which includes the projection of the model error

covariance, Qk into the span of the leading BLVs in the forecast Riccati equation, i.e.
(
Ef
k

)T
QkE

f
k = Q̂ff

k. This corresponds to5

utilizing only the first line of the recursion for B̂ff
k, Eq. (37a), to compute the estimated forecast error covariance of EKF-AUS.

The implementation of EKF-AUSE thus differs by utilizing a full rank ensemble of anomalies to compute the complete Riccati

equation, Eq. (38).

We study the performance of EKF-AUS/E when the dimension of the filtered subspace is greater than, or equal to, the

dimension of the unstable-neutral subspace; the case r < n0 will trivially lead to divergence (Bocquet et al., 2017). In Fig. 2,10

we plot the analysis RMSE of EKF-AUS and EKF-AUSE with triangles and X’s respectively, while we vary over the dimension

of the filtered subspace, with the RMSE computed over 100,000 analysis cycles.

To benchmark the performance of EKF-AUS/E, we plot the observation error standard deviation and the analysis RMSE of

the standard, full rank EKF in horizontal lines — the algorithms for EKF-AUS/E are tantamount to a change of basis for the

EKF when the filtered subspace is equal to the full space, and thus this is the logical point of comparison. We are interested in15

finding the necessary dimension of the filtered subspace such that EKF-AUS/E has an RMSE which: (i) performs better than the

observation error standard deviation and (ii) performs comparably to filtering the entire space. When the RMSE of EKF-AUS/E

falls below the observation error standard deviation, the filter has a forecast performance superior to initializing observations

directly in the model; when it performs closely to the EKF, the filter can be considered close to optimal performance, while

utilizing a sub-optimal correction based on only r < n directions.20
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Figure 2. Analysis RMSE of EKF-AUS plotted with triangles and EKF-AUSE plotted with X’s, varying over the rank of the sub-optimal

gain. Horizontal lines are the observation error standard deviation and EKF analysis RMSE. Note the log scale of the y-axis.
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In Fig. 2, when the dimension of the filtered subspace for both AUS/E reaches 28 the difference between both EKF-AUS/E

and the full-rank EKF becomes negligible. The RMSE of the: (i) EKF is approximately 0.198; (ii) EKF-AUS, r = 28, is approx-

imately 0.213; (iii) EKF-AUSE, r = 28, is approximately 0.205. The fact that EKF-AUS obtains near optimal performance,

representing the uncertainty in the leading r = 28 BLVs while neglecting the remaining, corroborates the claim of Grudzien

et al. (2017): in the presence of model noise, the filter correction should also incorporate weakly stable directions that can5

be instantaneously unstable. It is of particular interest, however, that the convergence of EKF-AUSE to the skill of the full

rank EKF is substantially faster: EKF-AUSE obtains adequate filter performance (RMSE lower than observation error standard

deviation) by correcting the error in only 16 BLVs while EKF-AUS requires a correction of rank 19. For other scalings of

the matrix Q, multiplying Q by 0.1, 0.2, 1.5, 2, changing the observation dimension, e.g. d= 20 or d= 30, and by varying

the time between observations, e.g. δk = 0.01 or 0.5, we obtain qualitatively similar results, that are not pictured here. The10

profiles of the curves in Fig. 2 are similar across these experimental configurations: the RMSE of EKF-AUSE is improved over

EKF-AUS by analytically resolving the effect of the analytical, and the RMSE approaches an adequate/optimal level with a

smaller dimension for the filtered space. We emphasize again that EKF-AUSE does not represent a computational advantage

as a full rank set of perturbations is used to describe the analytic form for the upwelling of the error.

We look at the behavior of the local Lyapunov exponents for the L96 model to explain the convergence of EKF-AUS to the15

full rank EKF. In Fig. 3 we show the box plot statistics of the local Lyapunov exponents for exponents 14 through 28 of the

L96 model. Exponent λ14 = 0, and the remaining pictured exponents correspond to the leading, stable BLVs. We emphasize

that the local Lyapunov exponents of λ15 through λ18, though having negative mean, are sufficiently unstable locally such that

EKF-AUS diverges when it disregards the upwelling of the error from these asymptotically stable modes.
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Figure 3. Box plot statistics of the local Lyapunov exponents, for Lyapunov exponents 14 through 24, over 100,000 realizations for the 40

dimensional L96 model. The mean (i-th Lyapunov exponent) is plotted as a triangle with median the horizontal line. Box contains inner two

quartiles of realizations, with whiskers extending to 1.5 the inner quartile width from the third and first quartile. Outliers are realizations

outside of this range, plotted individually.
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When the filtered subspace for EKF-AUS is of dimension 19, such that the leading unfiltered BLV corresponds to λ20, all

unfiltered Lyapunov exponents have over 75% of local realizations strictly stable; this corresponds to the rank when EKF-AUS

has adequate performance. Likewise, the difference between EKF-AUS/E and the EKF is negligible when the leading unfiltered

BLV corresponds to λ29, with only 1.51% of its local realizations being non-negative. These findings are consistent with the

results in Grudzien et al. (2017): in the presence of model error, unconstrained forecast error is strongly forced by the error in5

BLVs, which are asymptotically stable but, that experience strong and frequent local instabilities.

Finally, we are interested in how analytically computing the upwelling of error from the unfiltered subspace, as in EKF-

AUSE, compares with a homogeneous, multiplicative inflation applied to the EKF-AUS algorithm. Multiplicative scalar

inflation is among the most common approaches to mitigate for sampling and model error in Kalman filtering methods,

and it is widely used in operational environmental forecasts utilizing the EnKF. We define Pk ,
(
Eff
k

)T(
Γk + Q̂ff

k

)
Eff
k to10

be the estimated forecast error of EKF-AUS, where Γk is defined in Eq. (39). The inflated covariance PI
k is defined as

PI
k =

(
Eff
k

)T(
αΓk + Q̂ff

k

)
Eff
k for some chosen scalar α. The inflated covariance PI

k is used to compute the reduced rank gain,

as a simple way to compensate for the underestimation of the forecast error when using the recursion in Eq. (37a). Furthermore,

the inflated covariance is subsequently used in the recursion for the subsequent analysis and forecast error covariances.

From the results in Fig. 2, we select the dimension of the filtered subspace to be 17, such that EKF-AUSE has RMSE below15

the observation error standard deviation while EKF-AUS (without inflation) has diverged. In Fig. 4, we plot the analysis RMSE

of EKF-AUSE, with filtered subspace dimension 17, the observation error standard deviation and the full-rank EKF analysis

RMSE as in Fig. 2 as horizontal lines. Additionally, we plot the analysis RMSE (y-axis) of EKF-AUS as a function of the

inflation value (the x-axis) applied to the forecast error covariance. The inflation values, α, are defined as the evenly spaced

points in [1,4] at increments of 0.1, denoted by triangles. The RMSE is again computed over 100,000 forecast cycles.20
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Figure 4. Analysis RMSE of EKF-AUS (y-axis), correction rank 17, with multiplicative inflation plotted versus the inflation value α (x-axis).

Horizontal lines are the observation error standard deviation, EKF-AUSE and EKF analysis RMSE. Note the log scale of the y-axis.
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Figure 4 highlights distinctly the impact of including multiplicative inflation to EKF-AUS: the performance of EKF-AUS

with inflation quickly becomes comparable to the analytically resolved EKF-AUSE, which in this case, represents the lower-

most bound for the RMSE of EKF-AUS with homogeneous inflation. The lowest RMSE for EKF-AUS with inflation, realized

in Fig. 4, is approximately 0.322 compared to the RMSE of EKF-AUSE, approximately 0.304. Figure 4 confirms the role

of multiplicative inflation as compensating for the upwelling of unfiltered error under weakly-nonlinear error growth, and5

explains the underlying dynamical mechanism: multiplicative inflation brings the estimated forecast error covariance of EKF-

AUS closer to the covariance given by EKF-AUSE.

5 Discussion: the reduced rank KF covariance and gain augmentation

Whitaker and Hamill (2012) found evidence that additive inflation could better compensate for the effects of unresolved model

error, while multiplicative inflation is best suited to account for sampling error, consistent with what was noted by Boc-10

quet (2011) and Bocquet and Sakov (2012). This hypothesis is supported by our results as follows. The combination of rank

deficiency of the analysis and the presence of additive model error determines an intrinsic role for covariance inflation in

ensemble-based Kalman filters due to the persistent, residual unfiltered model error and its resultant upwelling into the ensem-

ble span. The dynamical upwelling forms the basis for a systematic underestimation of the uncertainty in the ensemble space,

as demonstrated in Fig. 2. This can be compensated for with multiplicative inflation in the ensemble span, which emulates the15

additional uncertainty that is neglected in the standard, reduced rank Kalman filter recursion — this effect is exhibited in Fig.

4. Figure 5 gives a conceptual diagram of the number of samples (ensemble members) needed to prevent divergence of the

EnKF in different dynamical regimes, and the effect of multiplicative inflation on this requirement.

However, multiplicative inflation (in the ensemble span) neglects the fundamental issue that the unfiltered error lying outside

of the ensemble span can be the major driver of the uncertainty in a reduced rank filter with model error. Figure 1 shows that20

when the upwelling is analytically resolved, the largest uncertainty typically lies in the leading unfiltered BLV, even when this is

an asymptotically stable mode. We provide a conceptual, two-dimensional visualization of the difference between the standard

(full rank) Kalman filter forecast error covariance and the reduced rank Kalman filter forecast error covariance in Fig. 6. Unless

local Lyapunov exponents in the unfiltered space are strongly stable, thereby rapidly dissipating the unfiltered perturbations of

model error, transient instabilities can make the unfiltered errors large enough to prevent useful state estimates (Grudzien et al.,25

2017). This is evidenced in Fig. 4 where neither EKF-AUSE or EKF-AUS, with multiplicative inflation, achieve an RMSE

comparable with the full rank EKF. For this reason, it is highly pertinent to explore the role of augmenting the EnKF gain

with a sub-optimal correction which provides some control on the transient error growth in the orthogonal complement to the

ensemble span. Ideally, some constraint on the unfiltered error, even if sub-optimal, would further close the gap between the

RMSE of EKF-AUSE and EKF in Fig. 4.30

This issue of instability forcing unfiltered error is even more acute in practice. For large geophysical models, computational

limitations may prohibit the use of an ensemble of size sufficient to even span the unstable-neutral subspace, let alone the

weakly stable modes which exhibit transient instabilities. In this case, the unfiltered error in the unstable-neutral modes can

20



Without Multiplicative Inflation With Multiplicative Inflation

n0

nws

nms

nall

N
um

be
r o

f s
am

pl
es

Linear Weakly nonlinear Linear Weakly nonlinear

Figure 5. Conceptual representation of the number of samples necessary to prevent divergence of the EnKF in different filtering regimes.

Dark green represents near-optimal filter performance and dark red represents filter divergence. In perfect-linear models, only n0 samples

are needed for an asymptotically optimal performance. Without inflation, in noisy linear and perfect, weakly-nonlinear regimes, near optimal

performance can be obtained by correcting error in all modes up to the moderately stable BLVs — here nws corresponds to the number of

unstable/ neutra/ weakly-stable modes, while nms furthermore includes moderately-stable modes. Additional samples may be necessary to

control error growth with noisy, weakly-nonlinear evolution. Multiplicative inflation corrects for the upwelling from the uncorrected stable

modes so that near optimal performance can be obtained when the error growth in unstable/ neutral/ weakly-stable modes are corrected.

grow, possibly exponentially, and the filter may experience catastrophic filter divergence, due to the failure of the ensemble-

based gain to correct the error in the span of all the unstable-neutral BLVs (Penny, 2017). In hybridization, the ensemble-based

Kalman estimator is augmented by a static, climatologically based estimator — using a background climatological covariance,

the rank of the estimator used for the analysis update is increased, and has the effect of applying a correction to additional

modes outside of the ensemble span (Hamill and Snyder, 2000). Likewise, the use of additive, random perturbations to the5

ensemble-based covariance has been shown to prevent filter divergence by rectifying the rank deficiency of the covariance, and

therefore the rank deficiency of the ensemble-based gain (Corazza et al., 2007).

However, there is considerable difficulty in mathematically analyzing the exact recursive form for a sub-optimal augmen-

tation of the ensemble-based covariance and ensemble-based Kalman gain. Although the dynamical upwelling of errors is a

generic dynamical feature of these systems, the one-way dependence of the error in the leading BLVs on the trailing BLVs does10

not persist, due to the introduction of estimation errors into the trailing modes via the augmented gain. Moreover, the surrogate
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Figure 6. Conceptual digram of the shape of the exact forecast error covariance of the full rank Kalman filter and the exact reduced rank

Kalman filter. The U axis represents the span of the unstable-neutral BLVs, where the forecast uncertainty projects most strongly in the

standard (full rank) Kalman filter. The S axis represents the span of the stable BLVs, where the uncertainty is the largest (though bounded),

for a reduced rank Kalman filter that neglects corrections to these modes. The comparison between the full rank and reduced rank Kalman

filter covariance corresponds to the behavior exhibited in the curves in Fig. 1.

covariance used to constrain error in the trailing BLVs will not generally agree with the exact error covariance in the trailing

BLVs, making a closed form more difficult to derive. In this setting, it may be more appropriate to derive heuristic methods

which attempt to: (i) provide some corrections in the trailing BLVs, albeit sub-optimal; (ii) describe the dynamical upwelling

of the residual error from the trailing BLVs into the leading BLVs; and (iii) describe the cross covariances, between the leading

and trailing BLVs, with respect to the corrections.5

Multiplicative inflation may be used in this case to account for mis-estimation of forecast errors resulting from these approx-

imations, but this mis-estimation can also be accounted for using less ad hoc approaches including parameterizing this error

with hyperpriors (Bocquet et al., 2015). We argue that the hyperprior in the EnKF-N can, in principle, also be selected to take

into account the dynamical upwelling exhibited by KF-AUSE. Recently, an extension of the EnKF-N to the presence of model

error has utilized an adaptive multiplicative inflation term to compensate for model errors (Raanes et al., 2018), but we sug-10

gest that an alternative approach including gain augmentation (Bocquet et al., 2015, suggested in section 7), and a hyperprior

parametrizing the resulting error distribution, including dynamical upwelling, would be a logical extension for future research.

6 Conclusions

Assimilation in the Unstable Subspace (AUS) has provided a useful conceptual framework for understanding the dynamical

properties of data assimilation cycling in perfect models. Both numerical and mathematical results have confirmed the un-15

derlying hypothesis of Anna Trevisan: in the setting of perfect, chaotic models, the evolution of uncertainty is confined to a

space characterized by non-negative Lyapunov exponents, typically of much lower dimension than the full model state space

(Palatella et al., 2013). In ensemble data assimilation, we see that the asymptotic characteristics of the anomalies exhibit these

properties, which can be exploited to reduce the computational burden of the assimilation cycle (Bocquet and Carrassi, 2017).

This phenomena has recently also been utilized to reduce the numerical cost of synchronization in dynamical shadowing based20
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data assimilation methods (de Leeuw et al., 2017). The work of Palatella and Grasso (2018) has furthermore proposed an

extension of the EKF-AUS-NL algorithm to account for parametric model errors.

This paper now demonstrates that the framework of AUS can likewise be used to understand the underlying mechanisms

for the evolution of uncertainty for ensemble-based filters in chaotic models with additive errors. Due to the high dimensional

models, and unresolved physical processes, this circumstance is ubiquitous in high-dimensional geoscience applications where5

standard EnKFs are extremely rank deficient. Utilizing the Lyapunov filtration for the backward vectors, we have shown how

unfiltered error, outside of the span of the anomalies, is transmitted by the dynamics into the filtered subspace. In perfect mod-

els, or when stability in the unfiltered subspace is sufficiently strong, this effect can be neglected due to the rapid dissipation

of unfiltered errors. However, Grudzien et al. (2017) demonstrate how weakly stable modes of high variance can go through

periods of transient instability, exciting unfiltered error. The dynamic upwelling of unfiltered error, characterized by the term10

(33c), acts as a linear effect on filters with small ensemble sizes. Under weakly-nonlinear error growth, the span of the anoma-

lies projects strongly onto the span of the leading BLVs — therefore, the Riccati equation, Eq. (38), highlights an important,

and previously unexplained, mechanism driving the need for covariance inflation in ensemble-based Kalman filters.

The role of inflation we describe differs from previous studies, e.g., the work of Palatella and Trevisan (2015), which studied

the nonlinear interactions of error in perfect models. The phenomena of dynamical upwelling is also independent of the mis-15

estimation of error due to a finite sample size representing the error statistics (Bocquet et al., 2015). Rather, we exhibit an

effect which can contribute to filter divergence over short time scales in ensemble data assimilation when the error dynamics

are linear or weakly-nonlinear, and uncertainty is forced by additive model errors. This persistent dynamical upwelling of

errors from the unfiltered space into the ensemble subspace is a phenomena which we prove analytically in linear models, and

demonstrate numerically to be a valid approximation of weakly-nonlinear error growth in nonlinear models for reduced rank20

extended Kalman filters.

If we treat the standard EnKF as Monte Carlo estimate of the error statistics characteristic of the KF-AUSE covariance,

Eq. (38), the dynamical upwelling explains the intrinsic role for covariance inflation in the EnKF. But our results also suggest

that this need for covariance inflation may potentially be mitigated by: (i) sufficiently increasing the ensemble size to include

asymptotically stable modes that produce transient instabilities; (ii) increasing the rank of the analysis update itself, with a25

hybridized gain; (iii) parameterizing the upwelling of error via a hyperprior which targets the evolution of forecast errors; or

(iv) some combination of the above. Our new understanding of the dynamics of error propagation thus opens new opportunities

in algorithm design, where the above techniques may be used directly to ameliorate the effects of dynamical upwelling.

Where there is dynamical chaos, AUS will continue to be a robust framework for the theory of data assimilation in physical

models. Understanding the dynamical mechanisms that govern the evolution of error in fully nonlinear data assimilation, e.g.,30

the unstable-neutral manifolds of the (stochastic) chaotic attractor, will be the subject of future research and may be considered

the logical extension of the framework put forward by Anna Trevisan — her insight to the underlying processes in assimilation

will continue to provide inspiration to both developers and practitioners of data assimilation methods.
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