
Introduction

The authors would like to express their gratitude for referees’ critique of our manuscript. We believe that in formulating
our responses, we have developed additional insights to the problem, and its extensions to future work, which we intend to
discuss in our revised manuscript. However, before entering into details we would like to reiterate the purpose of this work:
we have contributed a rigorous proof of phenomenon, demonstrating one of the underlying mechanisms that determine the5
role of covariance inflation in reduced rank Kalman filters, in a formulation characteristic of the standard ensemble Kalman
filter. We have not, however, made any claim to providing a practical, computationally efficient, means of correcting for this
phenomenon. Similar to how we view the seminal work of AUS as a theoretical framework for understanding the properties
of ensemble based covariances in the presence of chaotic dynamics (and in the absence of model error), the derivation of KF-
AUSE is meant to be used as a theoretical explanation for the empirically observed properties of ensemble based covariances in10
the presence of chaotic dynamics and additive model errors. This is emphasized already in the original submission throughout
sections 3.4 and section 5, and specifically in: (i) lines 5 - 16, page 12; (ii) the discussion in page 13; (iii) lines 8 - 18, page 16;
(iv) lines 3 - 5, page 18; (v) lines 14 - 19 page 19; (vi) lines 1 - 4 page 20; (vii) and lines 5 - 13, page 21. It is in the context of
the above discussion, in which we have presented our results, that we will respond to the referees’ comments.

15

1 Responses to referee 1

Comment(I)
Referee:20

“The difference between covariant and Backward Lyapunov vectors is already known but the au-
thors treat this subtle point in a very precise way and this is surely a merit for the paper.”

Response:25

We are very grateful that the referee has appreciated this subtlety, which we wanted to emphasize
in lines 26 - 33 of page 9 and lines 1 - 15 of page 10. We believe that, although this is a fine
distinction, explaining the equivalences and differences in the span and orthogonal compliments of
the two sets of vectors has important consequences in designing filtering techniques used to treat
the effects of dynamical upwelling.30

Comment(II)
Referee:

“The authors of a recent paper Palatella, Luigi, and Fabio Grasso. "The EKF-AUS-NL algorithm
implemented with- out the linear tangent model and in presence of parametric model error." Soft-
wareX 7 (2018): 28-33. show a possible way to manage model error in the framework of EKF-AUS35
filters in a very low dimensional model. In particular they suggest that a new direction in the phase-
space should be filtered for each degree of freedom of model error. Their approach is obviously
unfeasible in high dimensional model, so I think that the approach followed by the authors of the
manuscript under examination is important and worth of publication on NPG.”

Response:40
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We appreciate the referee highlighting this recent publication and we will discuss it in our review
of recent literature in the conclusion of our manuscript.

2 Responses to referee 2

2.1 Major comments5

Comment(I)
Referee:

“‘In numerical experiments with a nonlinear model, I cite the authors: ‘At each observation time,10
before observations are given, the true trajectory is perturbed by additive Gaussian noise with a
prescribed covariance Q, fixed in time’. This set-up is for an additional observational error rather
than a model error for a nonlinear case. Instead the "true" solution should be obtained from a
stochastic nonlinear model integrated by the Euler-Maruyama scheme, for example.”’

15

Response:

We apologize for not being sufficiently clear in explaining our nonlinear experimental set up, which
is mathematically consistent with the model error scenario for discrete, nonlinear maps. To reit-
erate, at each observation time, before observations are given, the true trajectory is perturbed (in
model space) by additive Gaussian noise with a prescribed covariance Q, fixed in time. Define the20
nonlinear map Ψ(t0, t1) : Rn→ Rn be the flow map, generated from the Lorenz-96 equations

Lm(x) =−xm−2xm−1 +xm−1xm+1−xm+F, (1)

that takes the model state from time t0 to t1. Then, noting that Ψ(t, t+δ) = Ψ(s,s+δ) for all t and
s, we will define Ψδ , Ψ(0, δ). In our experiments, the “truth” is thus evolved via the equation,

xk+1 = Ψδ(xk)+wk+1, wk+1 ∼N(0,Q) (2)25

while the mean trajectory of the “model” state is given by the deterministic evolution, xb
k+1 =

Ψδ(x
b
k). In our experimental design, the extended Kalman filter estimates the state of the non-

linear “true” state, perturbed by the noise wk, Eq. (2), and Mk (the linear propagator for the
covariance forward evolution) is derived by the map ∇Ψδ

∣∣
xb
k

. This experimental configuration is
mathematically consistent with the extended Kalman filter for a discrete nonlinear map with model30
error, and is a standard formulation for model error twin experiments, utilized by e.g, Mitchell and
Carrassi (2015); Sakov et al. (2018), with the configuration using the circulant covariance matrix,
Q, drawn specifically from Raanes et al. (2015). The interval between observations δ controls the
nonlinearity of the map, where our chosen configuration can be considered weakly-nonlinear. We
will include the above expanded discussion in our revision.35

Regarding the use of stochastic differential equations (SDEs), we supply these simulations here in
our response, but we decline from including these results in the revision. In particular, we do not
believe they add substantial additional value to our manuscript as:
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– the results are almost identical to those derived from the discrete EKF configuration;
– their presentation requires significant additional explanation, as many readers are unfamiliar

with mathematically robust simulations of SDEs;
– there is not as simple an interpretation of the local Lyapunov exponents for an SDE system as

in the case of the discrete map perturbed by noise.5

We elaborate on the above points in the following, where we will describe the configuration of our
SDE simulations and the derived results.

Let

dx = L(x)dt+σdW(t) (3)10

where L is defined in Eq. (1), W(t) is an n-dimensional, standard normal Weiner process, and
σ > 0 is a diffusion coefficient, representing uniform variances of the noise in space and time. We
note that for SDEs with additive noise (the above configuration being a special case), there is no
difference between the Itô and Stratonovich integral of the SDE (Kloeden and Platen, 2013, see
page 109), which simplifies our discussion. We utilize the differential operators defined on page15
339, and the approximations for the multiple Stratonovich integrals on pages 202 - 203, to derive
the integration rule for the order 2.0 strong Taylor scheme on page 359 of Kloeden and Platen
(2013). The order 2.0 strong Taylor scheme reduces to the usual order 2.0 Taylor scheme in a
deterministic setting, and the mean trajectory of the “model” state is propagated with the deter-
ministic, order 2.0 Taylor scheme. The time step for both the true and model trajectory is fixed20
at h= 0.0025. The tangent-linear equations of the “model” trajectory is integrated with an order
4.0 Runge-Kutta scheme, with time step 0.005. The interval between observations is kept fixed as
δ = 0.1, maintaining the weakly-nonlinear error growth.

We choose the diffusion coefficient σ = 0.25, plotting the analysis RMSE of EKF, EKF-AUS and25
EKF-AUSE over 100,000 forecast cycles. In the case of σ = 0.25, the results are almost identical
to Fig. 2 of our original manuscript. We find that diffusion coefficients of σ = 0.1 and 0.5 are
qualitatively the same and are not pictured here.
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Figure 1. SDE diffusion σ = 0.25. Analysis RMSE of EKF-AUS plotted with triangles and EKF-AUSE plotted with X’s, varying over the
rank of the sub-optimal gain. Horizontal lines are the observational error standard deviation and EKF analysis RMSE. Note the log scale of
the y-axis.

Given the similarity of the SDE simulation with diffusion coefficient of σ = 0.25 (Fig. 1 above)
to our earlier simulation with discrete nonlinear maps, we choose this parameter configuration to
evaluate the impact of multiplicative inflation on the reduced rank EKF-AUS. We, once again,
choose a filtered subspace of dimension 17 and vary the inflation parameter α on the x-axis in Fig.
2 below.5
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Figure 2. SDE diffusion σ = 0.25. Analysis RMSE of EKF-AUS (y-axis), correction rank 17, with multiplicative inflation plotted versus the
inflation value α (x-axis). Horizontal lines are the observational error standard deviation, EKF-AUSE and EKF analysis RMSE. Note the log
scale of the y-axis.

For the diffusion coefficient of σ = 0.25, the results for the SDE experiment are almost identical
to those of our earlier experiments with discrete nonlinear maps.
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Due to the similarity of the results, and the required addition explanation of the experimental
configuration for SDEs, we do not believe that it is justified to include both the discrete map and
SDE experimental configurations. Given a choice between the two designs, we prefer to use the
discrete nonlinear map configuration, as in this case, there is an easy to interpret role of the local
Lyapunov exponents which is more difficult to define in the case of an SDE, and goes beyond the5
scope of this work. We will, however, remark that: (i) the results are qualitatively the same in the
SDE configuration; (ii) however, the full extension of AUS techniques to the presence of stochastic
differential equations goes beyond the scope of this work and will be the subject of future research.

Comment(II)
Referee:10

“The authors should compare their results with the ensemble Kalman filter with hyperpriors by
Bocquet et al. 2015, as the goal of the latter paper was to remove the intrinsic need for inflation.”

Response:

In discussing a comparison between the EnKF-N and the ideal recursion represented in EKF-15
AUSE, please note the following: the original EnKF-N (Bocquet, 2011; Bocquet et al., 2015) was
designed to be used in the absence of model errors, in order to treat the misrepresentation of the
statistics of the EnKF due to sampling errors. The construction for the EnKF-N, moreover, utilizes
the hypothesis that the effective uncertainty lies within the span of a reduced rank ensemble. In the
case of a perfect model with weakly nonlinear error evolution, this is a well posed hypothesis as20
evidenced by the results of Gurumoorthy et al. (2017); Bocquet et al. (2017). In this case, we can
consider the forecast error evolution of an ideal, reduced rank Kalman filter to be asymptotically
equivalent to the forecast error evolution of the true Kalman filter. Specifically, it is demonstrated
that errors in the span of the trailing, stable BLVs vanish exponentially, and the EnKF-N does not
need to treat the persistent upwelling of uncertainty that is present in the case of model errors.25
The EnKF-N of (Bocquet, 2011; Bocquet et al., 2015), rather seeks to address the sampling errors
in ensemble based Kalman filters, especially in the presence of nonlinearity, which constitutes a
wholly different source of error and reason for inflation.

Therefore, comparing the EnKF-N of (Bocquet, 2011; Bocquet et al., 2015) with EKF-AUSE30
would not provide any meaningful conclusions, and would conflate the disparate sources of uncer-
tainty, as we already discussed throughout section 3.4, and lines 1 - 7, page 20, of our manuscript.
Indeed, the recent work of Raanes et al. (2018), providing an extension of the EnKF-N to the
presence of model errors, utilizes an additional, adaptive inflation factor to account for the under-
estimation of uncertainty due to model errors. However, in our manuscript we have emphasized that35
although the EnKF-N does not currently take into account dynamical upwelling in its formulation
to treat the presence of model errors, an eventual goal would be to incorporate the ideal recursion
for a reduced rank filter into the hyperprior. This is discussed specifically in: lines 21 - 23, page
13; lines 28 - 31, page 13; lines 8 - 15, page 16; lines 7 - 11, page 21. Formerly, the hyperprior
of the EnKF-N has been uninformative in the sense that the hyperprior on the covariance is with40
respect to all positive semi-definite matrices, thus constituting a Jefferys prior. However, as demon-
strated in Fig. 1 of our manuscript, for a reduced rank filter in the presence of model error, there
is additional structure which gives a refinement to this set of matrices. Specifically, if the EnKF-N
has a reduced rank filtered subspace, then we may view the EnKF-N as a Monte Carlo estimate
of the ideal recursion of KF-AUSE, with an error covariance that is stratified across the unfiltered45
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and filtered subspaces — this is discussed in the manuscript in lines 14 - 18 page 6, and lines 5 -
7, page 21. This work goes beyond the scope of the manuscript and is the subject of future research.

In response to your suggestion, we will expand on our earlier discussions, including reference
specifically to the recent submission of Raanes et al. (2018), and further clarify the differences5
between the two treated sources of uncertainty.

2.2 Minor comments

Comment(I)10

Referee:

“How was the inflation factor α obtained? What is its value?”

Response:

In our submission, page 19, lines 11-12 we state,15

"Additionally, we plot the analysis RMSE of EKF-AUS as a function of the inflation value
applied to the forecast error covariance, with the inflation values plotted as triangles."

We apologize that this sentence was not totally clear. We meant to indicate that the selected inflation
is equal to the x-value at each point marked with a triangle in the graph, with the corresponding
y-value equal to the RMSE. In our revisions we will indicate that the values of inflation, α, are20
given as the x-values in the graph, for evenly spaced points in [1,4] at increments of 0.1.

Comment(II)
Referee:

“Additive inflation should be also studied. It is a simple extension which will, however, bring new
insights.”25

Response:

We believe that it is interesting, and highly relevant, to study the effect of covariance and/or gain
augmentation to reduce the effect of the dynamical upwelling and the presence of residual error in
the unfiltered directions. We earlier summarized our thoughts on additive inflation in our original30
submission in lines 1 - 34, page 13, and lines 15 - 18, page 16. In these sections, we emphasized
that augmenting a reduced rank gain by additive inflation or hybridization may reduce the effect
of dynamical upwelling by keeping errors in the trailing BLVs small. However, we also state that
this will generally induce sampling errors by corrupting the error estimates in the standard KF
recursion. This will likewise induce mis-estimation of the error in KF-AUSE, which is simply the35
analytically derived forecast error in the case of a reduced rank gain.

The logical extension of our work studying additive inflation would thus include deriving the ideal
recursion on the forecast error covariance with respect to an ensemble based gain, augmented with
a sub-optimal correction in the trailing BLVs. By deriving the recursion, one can analytically study40
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the effects of the sub-optimal correction on the propagation of errors, and how various computa-
tionally efficient approximations of this error evolution affects the RMSE. This would be the exact
analogue of the work that we have completed, where we have studied the forecast error evolution
with respect to a reduced rank gain, and the approximation of the dynamical upwelling in the ideal
recursion with the computationally efficient alternative of multiplicative inflation. However, the5
mathematical complexity in obtaining an ideal recursion for additive inflation, as described above,
is such that it cannot be included in this manuscript.

On the other hand, we may treat the sources of uncertainty described in this work approximately.
We have highlighted this possibility, proposing a combination of some form of gain augmentation,10
with a hyperprior to account for the corrupted error estimates, to target these sources of uncertainty
— this is suggested in lines 28 - 32, page 13, lines 8 - 18, page 16, lines 7 - 11, page 21. However,
the purpose of this manuscript is only to provide a rigorous proof of phenomenon, and introducing
the above approximations goes beyond the scope of this work. In order to more fully explain the
significance of these extensions to additive inflation, and its mathematical complexity, we will15
include an additional discussion section in our revised manuscript elaborating on the above points.

Comment(III)

“The authors use complete observations. A study of incomplete observations is again a simple
extension which will bring more merit to the manuscript.”

20

Response:

We agree that this is a simple extension, and as such we provide a numerical demonstration in
this response. Specifically, using our original configuration of discrete, nonlinear maps with addi-
tive noise, we simulate the effect of reducing the dimension of the observational subspace while
keeping all other parameters fixed. However, we do not believe that the results with reduced ob-25
servations: (i) are qualitatively different from the results with a fully observed system, or (ii) add
significant new information about the effect of the dynamical upwelling in a reduced rank Kalman
filter. The major difference in the results with reduced observations lies only in the minimum rank
of the filtered subspace to prevent filter divergence.

30
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Figure 3. EKF-AUS and EKF-AUSE RMSE, plotted versus the rank of the filtered subspace. Observations are taken at all odd nodes xi
k for

i ∈ 1, · · · ,39.

We see once again that EKF-AUSE has a lower minimum, and in general lower RMSE, than EKF-
AUS. In the case of an observational subspace of dimension 20, Fig. 3, the minimum rank of the
filtered subspace to prevent divergence is 20 for EKF-AUSE, while EKF-AUS has a minimum rank
of 26. For all RMSE values not pictured in Figs. 3, the EKF-AUSE and EKF-AUS diverge due to
numerical instability. We find qualitatively similar results when using an observational dimension5
of d= 30, and these results are not pictured here.

We decline from including these results in our revised manuscript, though, when we discuss the
qualitative similarity of other experimental configurations, we will discuss that when reducing the
observational dimension, the usual pattern persists. This will be added to the discussion in our10
original submission, in line 18, page 17, through line 3, page 18.

Comment(IV)

“Italics is used too often in the text to give an emphasis, it should be avoided.”

Response:15

We apologize for this distraction. We have removed most, but not all, of the italics. We have chosen
to use the emphasis more selectively in a few key spots to emphasize important points — we hope
that this is more satisfactory.

3 Response to short comments20

Because the short comments are on relatively minor points, we will conclude here by saying that we appreciate the feedback
and will implement the suggestions. Most importantly, we separate the definition of the KF-AUSE Riccati equation, and the
related proposition, so that we can state the proposition in its fullest generality — this will be included in the revised text.
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Abstract. The ensemble Kalman filter and its variants have shown to be robust for data assimilation in high dimensional

geophysical models, with localization, using ensembles of extremely small size relative to the model dimension. A reduced rank

representation of the estimated covariance, however, leaves a large dimensional complementary subspace unfiltered. Utilizing

the dynamical properties of the filtration for the backward Lyapunov vectors, this paper explores a previously unexplained

mechanism, describing the intrinsic role of covariance inflation in reduced rank, ensemble based
:::::::::::::
ensemble-based Kalman5

filters. Our derivation of the forecast error evolution describes the dynamic upwelling of the unfiltered error from outside of

the span of the anomalies into the filtered subspace. Analytical results for linear systems explicitly describe the mechanism for

the upwelling, and the associated recursive Riccati equation for the forecast error, while nonlinear approximations are explored

numerically.

1 Introduction10

It is well understood that in chaotic physical systems, dynamical instability is among the leading drivers of forecast uncertainty

(Trevisan and Palatella, 2011a; Vannitsem, 2017)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Toth and Kalnay, 1997; Trevisan and Palatella, 2011a; Vannitsem, 2017) . Re-

cent mathematical and numerical results have, furthermore, established a rigorous framework for understanding the relationship

between dynamical instability, in terms of the non-negative Lyapunov exponents, and the asymptotic properties of the uncer-

tainty in ensemble based
:::::::::::::
ensemble-based data assimilation techniques: in perfect models, with weakly-nonlinear error growth,15

it was shown that the ensemble of anomalies projects
::
the

:::::::::
anomalies

::
of

::::::::
ensemble

:::::::
Kalman

::::::
filters

::::::
project strongly on the span

of the unstable-neutral backward Lyapunov vectors (Carrassi et al., 2009; Ng et al., 2011; González-Tokman and Hunt, 2013;

Bocquet and Carrassi, 2017), and that the divergence of the ensemble Kalman filter depends significantly upon whether error

in this space is sufficiently observed and corrected.

Inspired by the Assimilation in the Unstable Subspace (AUS)
:::::
(AUS)

:
methodology of Anna Trevisan and her collaborators20

(Trevisan and Uboldi, 2004; Carrassi et al., 2007, 2008; Trevisan et al., 2010; Trevisan and Palatella, 2011b; Palatella et al.,

2013; Palatella and Trevisan, 2015), recent mathematical results have rigorously validated the underlying hypothesis of AUS:

for perfect, linear models, the uncertainty of the Kalman filter asymptotically collapses to the span of the backward Lyapunov

vectors with non-negative exponents (Gurumoorthy et al., 2017). Furthermore, if a sub-optimal
:::::::
reduced

::::
rank

:
filter has an
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estimated covariance initialized only in these modes, and the unstable-neutral subspace is uniformly, completely observed, the

sub-optimal
:::::::
reduced

::::
rank filter becomes asymptotically equivalent to the optimal Kalman filter (Bocquet et al., 2017). This

phenomenon has, furthermore, been generalized as a criterion for the exponential stability of continuous time filters, in perfect

models, in terms of the detectability
::::::::::
detectability

:
of the unstable-neutral subspace (Frank and Zhuk, 2017).

The above mathematical results demonstrate how the stable dynamics in perfect models dissipate forecast errors, in se-5

quential filters, such that a reduced rank representation of the error covariance
::::::
matrix, in the unstable-neutral subspace alone,

suffices to control error growth. This behavior, similarly understood in the smoothing problem (Pires et al., 1996; Trevisan

et al., 2010), is now also mathematically verified for the linear Kalman smoother, and its nonlinear ensemble formulation

is shown numerically to exhibit the same behavior, in a weakly-nonlinear regime for error dynamics (Bocquet and Carrassi,

2017).10

The work of Grudzien et al. (2017) extends the mathematical framework for AUS, so far established for perfect models, to

the presence of additive model errors with additional qualifications:
:
.
::::
This

::::
work

:::::::::
introduces

:::::
novel

::::::
bounds

::
on

:::
the

:::::::
Kalman

::::::
filter’s

:::::::::
asymptotic

:::::::
forecast

::::::::::
uncertainty,

:::
and

::
a
::::::::
necessary

::::::::
criterion

:::
for

::::
filter

::::::::
stability,

::
as

:::
an

::::::
inverse

::::::::::
relationship

::::::::
between

:::
the

:::::::
model’s

::::::::
dynamical

::::::::::
instabilities

::::
and

:::
the

::::::::
precision

::
of

:::::::::::
observations.

::::::::::
Particularly,

:
in the absence of observations,

:::::::::
corrections

::
to

:::::::
forecast

:::::
errors

::
in

:::
the

:::::
stable

::::::
modes,

::::
this

:::::
work

:::::::::::
demonstrates

:::
that

:::
the

:
model dynamics alone are still

::::
once

:::::
again

:
sufficient to uniformly15

bound the errors in the span of the stable backward Lyapunov vectors. However, the uniform bound may be impractically

large due to the excitation of model errors by the transient instabilities in stable directions. While uncertainty is asymptotically

::::::::::::
asymptotically dissipated by the stable dynamics, the reintroduction of uncertainty from model error significantly differentiates

imperfect models. Newly injected errors are subject to the growth rates of the local (in time) Lyapunov exponents, and stable

Lyapunov exponents of sufficiently high variance may experience transient periods of growth. Therefore, strategies for repre-20

senting the forecast error with a reduced
::
low

:
rank ensemble must be adapted for imperfect models to account for a residual

error in the span of the stable, backward Lyapunov vectors which never vanishes and, moreover, may go through transient

periods of growth. As a consequence, confining the error description within a reduced rank Kalman filter to only the unstable-

neutral subspace does not suffice when model error is present and suggests that one must include additional, asymptotically

stable, modes.25

In this work we show, furthermore, that such an increase of the ensemble span does not automatically render the filter

optimal: one may also need to account for the injection of error from unfiltered directions into the ensemble span. In particular,

when a reduced rank, ensemble based
::
an

:::::::::::::
ensemble-based

:
Kalman gain is used to correct the forecast errors, the dynamics

induce error propagation which transmits uncertainty from the uncorrected, complementary subspace into the ensemble span.

In this study, the propagation of error in the linear Kalman filter, written in a basis of backward Lyapunov vectors, will reveal30

the leading order evolution of the unfiltered uncertainty. Although the evolution is derived for linear models, the mechanism

for error propagation can be considered a generic feature of reduced rank ensemble Kalman filters: under .
::::::
Under the condition

that error evolution is weakly-nonlinear, the ensemble span will align with the span of the leading backward Lyapunov vectors

— therefore the error decomposition in the basis of backward Lyapunov vectors will be valid for the ensemble Kalman filter.

::::::
Similar

::
to

::::
how

:::
we

::::
view

::::
AUS

::
as

::
a

:::::::::
theoretical

:::::::::
framework

::
for

::::::::::::
understanding

:::
the

:::::::::
properties

::
of

:::::::::::::
ensemble-based

::::::::::
covariances

::
in

:::
the35
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:::::::
presence

::
of

:::::::
chaotic

::::::::
dynamics

::::
(and

::
in

:::
the

:::::::
absence

::
of

::::::
model

::::::
error),

:::
this

:::::
work

::
is

:::::
meant

::
to

:::
be

::::
used

::
as

::
a
:::::::::
theoretical

::::::::::
explanation

::
for

:::
the

::::::::::
empirically

:::::::
observed

:::::::::
properties

::
of

:::::::::::::
ensemble-based

::::::::::
covariances

::
in

:::
the

::::::::
presence

::
of

::::::
chaotic

::::::::
dynamics

:::
and

:::::::
additive

::::::
model

:::::
errors.

:

This paper is structured as follows: section 2.1 concerns essential results from the theory of Lyapunov vectors which will

be
:::
are used throughout; sections 2.2 and 2.3 describe the basic framework for the Kalman filter, and will motivate our subse-5

quent results; section 3 contains our main analytical result, i.e., the derivation of the evolution of
::::
exact forecast error under a

sub-optimal
::::::
reduced

:::::
rank filter in a basis of backward Lyapunov vectors; finally, section 4 will use numerics to qualitatively

explore the ideal linear recursion for the forecast error of the sub-optimal
::::::
reduced

::::
rank

:
filter, and its approximation in nonlinear

models. Conclusions
::::::::::
Implications

::
of

:::
the

::::::
results

::
in

::::
this

::::
work

:::
are

:::::::::
discussed

::
in

::::::
section

::
5,

::::
with

::
an

::::::::
emphasis

:::
on

:::::
future

:::::::::
directions

::
of

:::::::
research

:::
and

::::
their

::::::::::
challenges.

::::
Final

::::::::::
conclusions

:
are drawn in section 6.

:
10

2 Preliminaries

We begin by introducing our notation and the problem formulation.

:
,
::::
with

:::::::::
definitions

::
in

:::::
bold.

:::::
There

::
is
::::::::::
inconsistent

::::
use

::
of

:::
the

:::::::::::
terminology

:::
for

::::::::
Lyapunov

:::::::
vectors

::
in

:::
the

:::::::::
literature,

:::
and

:::
so

:::
we

::::::
choose

::
to

:::
use

:::
the

:::::::::::
nomenclature

::
of

:::::::::::::::::::::::::
Kuptsov and Parlitz (2012) for

:::
its

::::::::
generality

::::
and

:::::::::::::
self-consistency.

:

2.1 Lyapunov vectors15

Throughout the entire text, the conventional notation k = 0,1,2, . . . is adopted to indicate that the quantity is defined at time tk.

Let zk−1 ∈ Rn be an arbitrary vector, the matrix propagator of the forward model from tk−1 to tk is given by Mk, such that

zk = Mkzk−1. We denote the operator taking the system state from an arbitrary time tl to tk as Mk:l , MkMk−1 . . .Ml+1,

with the symbol , used to signify that the expression is a definition. We will denote Mk:k , In, where In is the identity matrix

(of size n×n in this case). At all times we assume Mk to be non-singular and to be uniformly bounded in k.20

Although much of the derivations that follow are done for linear dynamics, we are ultimately concerned with nonlinear

systems — therefore, we will assume that Oseledec’s theorem holds, even for linear model propagators. In general, this

is a non-trivial assumption, but one which can be considered generic for the tangent-linear model of nonlinear systems

(Barreira and Pesin, 2002, see the Multiplicative Ergodic theorem, Theorem 2.1.2) . The backward Lyapunov vectors can be

defined by a choice of an orthonormal eigenbasis for the far-past operator (Kuptsov and Parlitz, 2012) . Define the matrix Ek25

to be the orthogonal matrix whose i-th column is the i-th backward Lyapunov vector (BLV) at time k, corresponding to the

Lyapunov exponent λi. :
a
::::
wide

:::::
class

::
of

::::::::
nonlinear

:::::::
systems,

:::
due

::
to
:::
the

::::::::::::
Multiplicative

:::::::
Ergodic

::::::::
Theorem

::::::
(MET):

::::
with

::::::::::
probability

:::
one,

::::::::::
Oseledec’s

:::::::
theorem

::::::
holds,

:::
the

:::::::::
Lyapunov

:::::::::
exponents

:::
are

::::
well

:::::::
defined

::::
and

:::
the

::::::
values

::
of
::::

the
:::::::::
Lyapunov

::::::::
exponents

::::
are

::::::::::
independent

::
of

:::
the

:::::
initial

::::::::
condition

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Barreira and Pesin, 2002, see their Theorems 2.1.1 and 2.1.2 for a full statement and proof) .

:
A
:::::
more

::::::
general

:::::::
version

::
of

:::
the

:::::
MET,

:::
and

::
its

::::::::::::
interpretation

:::
for

::::::
several

:::::::
physical

:::::::
systems,

::
is

:::::::
provided

:::
by

::::::::::::::::::::
Froyland et al. (2013) in30

::::
their

:::::::
Theorem

:::
1.1

::::
and

:::::::
example

::::
1.2.
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We order the Lyapunov exponents

λ1 ≥ ·· · ≥ λn0 ≥ 0> λn0+1 ≥ ·· · ≥ λn, (1)

such that the unstable-neutral subspace is defined to be of dimension n0 and the model state dimension is n. Note ,
:::
that

:
we do

not assume that the Lyapunov exponents are distinct.

We will
:::::::::
Oseledec’s

:::::::
theorem

:::::::::::
decomposes

:::
the

:::::::::::::
(tangent-linear)

::::::
model

:::::
space

::::
into

::
a
:::::
direct

:::::
sum

::
of

::::::::::::
time-varying,

::::::::
covariant5

:::::::
Oseledec

:::::::
spaces,

:::::::
referred

::
to

:::
as

::
an

::::::::
Oseledec

::::::::
splitting

::
or

:::::::::::::
decomposition.

:::
At

::::::
times,

:::
we

:::
will

:::::
refer

::
to

::::
the

::::::::
covariant

::::::::
Oseledec

::::::
spaces,

::
as

::::
well

::
as

::
to

:::
the

::::::::
covariant,

::::
and

::
to

::
the

:::::::
forward

:::::::::
Lyapunov

::::::
vectors.

::::::
These

:::::::::
discussions

::::
will

::::::
provide

::
a

:::::
deeper

::::::::::::
interpretation

::
of

:::
our

::::::
results

:::
for

:::::
those

:::::::
familiar

::::
with

:::::
these

:::::::
technical

::::::
points.

:::::::::
However,

::::
these

::::::::::
discussions

:::
are

:::
not

::::::
crucial

:::
to

:::
the

::::::::::::
understanding

::
of

:::
our

:::::::
results,

:::
and

:::
we

::::::::
therefore

:::::
limit

:::
the

:::
use

:::
of

::::::
formal

:::::::::
definitions

::
to

:::
the

:::::::::
backward

:::::::::
Lyapunov

:::::::
vectors.

:::
For

::
a
:::::
more

::::::
formal

::::::::
discussion

:::
of

:::
the

::::::::
Oseledec

::::::
spaces,

:::::::::::
constructions

:::
for

:::::::::
Lyapunov

::::::
vectors

:::
and

:::::::
related

:::::
results

:::
for

:::
the

::::
full

::::
rank

:::::::
Kalman

:::::
filter,

:::
see10

:::::::::::::::::::
Grudzien et al. (2017) ;

::
for

::
a
:::::
survey

:::
on

:::
the

:::::::::::
mathematical

:::
and

::::::::
numerical

:::::::::::
construction

::
of

::::::::
Lyapunov

:::::::
vectors,

:::
see

:::::::::::::::::::::::
Kuptsov and Parlitz (2012) ;

::
for

::
a
:::::::::
discussion

::
of

::::::
general

::::::::
Oseledec

:::::::
splitting,

::::
and

:
a
::::::::::
comparison

::
of

::::::::
methods

::
for

:::
its

:::::::::::
computation,

:::
see

:::::::::::::::::::
Froyland et al. (2013) .

:::
The

::::::::
backward

:::::::::
Lyapunov

::::::
vectors

::::
can

::
be

:::::::
defined

::
by

::
a
::::::
choice

::
of

::
an

:::::::::::
orthonormal

:::::::::
eigenbasis

:::
for

:::
the

::::::
far-past

::::::::
operator,

::::::
and/or

::
by

::::::::
recursive

:::
QR

:::::::::::
factorizations

:::
of

:::
the

:::::::::::::
(tangent-linear)

:::::
model

:::::::::
propagator

::::::::::::::::::::::::
(Kuptsov and Parlitz, 2012) .

::::::::::
Throughout

:::
the

::::
text,

:::
we

utilize the invariance of the BLVs
::::::::
backward

::::::::
Lyapunov

::::::
vectors

:
under the recursive QR algorithmof Benettin et al. (1980) and15

Shimada and Nagashima (1979) .
:
.

Definition 1.
:::::
Define

:::
the

::::::
matrix

:::
Ek:::

to
::
be

:::
the

::::::::::
orthogonal

::::::
matrix

::::::
whose

:::
i-th

:::::::
column

::
is

:::
the

::::
i-th

::::::::
backward

:::::::::
Lyapunov

::::::
vector

:::::
(BLV)

:
at

::::
time

::
k,

::::::::::::
corresponding

::
to
:::
the

:::::::::
Lyapunov

:::::::
exponent

:::
λi.:

Lemma 1. There is an n×n upper triangular matrix Uk, such that the (tangent-linear) model propagator satisfies The

diagonal elements of Uk, denoted U ik, define the20

Mk = EkUkE
T
k−1. (2)

:::::
Define

:::
the

:::::::
product

::
of

::::::::
matrices,

Uk:l , Uk · · ·Ul, (3)

::
the

::::
i-th

::::::::
Lyapunov

::::::::
exponent

::
is

:::::
equal

::
to

:::
the

::::
limit

λi = lim
l→−∞

1

k− l
log
(
|U iik:l|

)
, (4)25

:::::
where

::::
U iik:l :is:::

the
::::
i-th

:::::::
diagonal

:::::::
element

::
of

:::
the

::::::
matrix

:::::
Uk:l. :::

The
:
local Lyapunov exponents

::
are

:::::::
defined

::
by

:::::::::
log
(
|U iik |

)
.

Proof. Equation (2) follows from Eq. (31) of Kuptsov and Parlitz (2012) and is a simple consequence of the invariance of

the BLVs under the recursive QR decomposition (Grudzien et al., 2017).
:::::::::
Computing

:::::::::
Lyapunov

::::::::
exponents

:::
via

::::::::
recursive

::::
QR

:::::::::::
factorizations

::
as

::
in

:::
Eq.

:::
(4)

:
is
:::
the

:::::::
standard

:::::::
method,

::::::::
described

:::
by

:::
e.g.,

::::::::::::::::::::::::::::::
Shimada and Nagashima (1979) and

::::::::::::::::::
Benettin et al. (1980) .

30
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The decomposition in Eq. (2) represents a change of basis of the model space into the upper triangular dynamics of the

::::::
moving

:::::
frame

::
of

::::::
BLVs,

:::::::
defining

::
a

::::
basis

:::
for

:::
the backward Lyapunov filtration (Legras and Vautard, 1996). In particular, ET

k−1

takes the model state into the orthogonal projection coefficients in the basis of
::
the

:
BLVs at time k− 1. We will denote the

projection coefficients of an arbitrary vector zk into a basis of BLVs with a “hat”, i.e. ET
k zk , ẑk. Using the orthogonality of

the matrix Ek, the invariant dynamics in the BLVs is written5

ẑk = Ukẑk−1 ⇔ zk = Mkzk−1. (5)

The operator Uk thus describes the invariant, upper triangular dynamics, transferring the model state into its forward represen-

tation in the BLVs at time k.

2.2 The Kalman filter

We seek to estimate the distribution of a Gaussian random variable
:::::
vector

::::::::
xk ∈ Rn evolved via a linear Markov model with10

additive white noise,

xk = Mkxk−1 +wk, (6)

and with observations
:::::::
yk ∈ Rd given in the form

yk = Hkxk +vk. (7)

The forecast mean, xb
k, is propagated from the last posterior mean, xa

k−1 by the deterministic component of Eq. 6, i.e.,15

xb
k = Mkx

a
k−1. (8)

The model variables xk ∈ Rn and observational variables yk ∈ Rd,
:::
and

::::::::::
observation

::::::
vectors

:
are related via the linear observa-

tion operator Hk : Rn 7→ Rd. Model and observation noise, wk and vk, are assumed mutually independent, unbiased, Gaussian

white sequences such that

E[vkvT
l ] = δk,lRk and E[wkw

T
l ] = δk,lQk, (9)20

where E is the expectation, Rk ∈ Rd×d is the observation error covariance matrix at time tk, and Qk ∈ Rn×n stands for the

model error covariance matrix. The error covariance matrix Rk can be assumed invertible without losing generality. To avoid

pathologies, we assume that the model error and the observational
:::
and

:::
the

::::::::::
observation error covariance matrices are uniformly

bounded. For 1≤ t < s≤ n, and given a matrix A ∈ Rn×n, we define At:s ∈ Rn×s−t+1
:::::::::::::::
At:s ∈ Rn×(s−t+1)

:
to be the matrix

composed (inclusively) of columns s through t of A.25

Definition 2. The forecast error is defined as the difference of the mean state estimated by the filter and the unknown random

state, i.e.,

εk , xb
k −xk. (10)

5



The innovation is the measured difference between the forecast and
:
in

:::
the

::::::::::
observation

:::::
space

::::
and

:::
the observation,

δk , yk −Hkxk = Hkεk −vk. (11)

We define the true
::::
exact

:
forecast error covariance at time k to be

Bk , E
[
εkε

T
k

]
. (12)

On the other hand, suppose some filter, yet to be identified, is used to estimate the forecast mean and error covariance — the5

estimated forecast error covariance will be denoted Pk, defined according to the chosen estimation algorithm.

Suppose that Kk ∈ Rn×d is some estimator which takes the forecast state to the analysis state. In the case of the ideal

::::::::
theoretical

:
Kalman filter, where the true

::::
exact forecast error covariances are computed exactly,

::::::::
Pk ≡Bk,

:::
the

::::
gain

:
Kk will be

defined

Kk , PkH
T
k

(
HkPkH

T
k +Rk

)−1
10

= BkH
T
k

(
HkBkH

T
k +Rk

)−1
. (13)

In this text, we will vary the choice of the analysis update operator Kk, but the functional form of the recursion for the analysis

update of the mean will be unchanged and defined as

xa
k , xb

k +Kk

(
yk −Hkx

b
k

)
= xb

k −KkHkεk +Kkvk. (14)15

Therefore, for any estimator, the forecast mean can be derived recursively from Eq. (8) and Eq. (14) as

xb
k+1 , Mk+1

(
xb
k −KkHkεk +Kkvk

)
(15)

where Kk is some choice for the gain. The recursion on the forecast error can be derived equal to

εk+1 , Mk+1 [(In−KkHk)εk +Kkvk]−wk+1, (16)

though εk,vk and wk+1 are assumed to be unknown.20

2.3 Rank deficiency in the Kalman filter

In an ideal
:
a
:
linear model, with known , Gaussian observational

:::::::
Gaussian

::::::::::
observation

:
and model error distributions, the

estimated and true error covariances of the KF are equal
::::
exact: the posterior error distribution for the state is Gaussian, and

the KF completely describes the
:::::::
Bayesian

:
posterior through its recursive equations for the estimated mean and covariance.

However, it is often the case that the recursion for the posterior error distribution is approximated with a reduced rank surrogate25

in which the estimated covariance, Pk, and resulting true
::::
exact

:
error covariance, Bk, may not be equal (Chandrasekar et al.,
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2008). This mis-match between the approximated and true forecast error covariance, and the resultant sub-optimal analysis

update, can lead to systematic underestimation of the true forecast error and filter divergence.

Nonetheless, it is possible in an ideal setting to analytically describe the error statistics of a reduced rank Bayesian
:::::::
Kalman

filter — to illustrate this, assume we have a linear model with known Gaussian error distributions. Suppose we apply the

analysis update in a reduced rank set of BLVs, as has been done in EKF-AUS (Trevisan and Palatella, 2011b). Suppose,5

furthermore, the true
::::
exact

:
error covariance, Bk, is known. Then the gain

Kk ,E1:n0

k

(
E1:n0

k

)T
BkE

1:n0

k

(
E1:n0

k

)T
HT
k×[

HkE
1:n0

k

(
E1:n0

k

)T
BkE

1:n0

k

(
E1:n0

k

)T
HT
k +Rk

]−1
(17)

yields the exact Bayesian update
::::::
Kalman

:::::::::
estimator with respect to a subset of the anomaly variables, defined by the span of

the leading n0 BLVs. We may use Eq. (16) to derive the analytical recursion for the covariance of the true forecast error under10

the sub-optimal analysis operator
::::::
forecast

:::::
error

:::::::::
covariance,

::::::
Bk+1,

:::::
under

::::
the

:::::::
reduced

::::
rank

::::
gain

:
in Eq. (17). As in the ideal

KF, this will describe the ideal forecast error recursion with respect to a rank deficient estimator — the rank deficiency (or

reduced rank) is defined by
:::
The

:::::
rank

:::::::::
deficiency

:::
(or

::::::::
reduced

:::::
rank)

:
is
:::::::
defined

::
by

:::
the

:::::::::
restriction

:::
of

:::
the

:::::::
Kalman

::::::::
estimator

::
to

:
a
::::
low

::::::::::
dimensional

::::::::
subspace.

:::::
Note

::::
that,

::::::::
although

:::
the

::::::::
estimator

::
is

::::::::
restricted

::
to

:::
the

::::
span

:::
of

:::::
E1:n0

k ,
::::

the
:::::::::
observation

::::::::
operator

:
is
::::

still
:::::::
applied

::
to

:::
the

::::
full

::::
state

::::::
vector,

::::
and

::::
thus

:::
the

:::::::
analysis

::::
does

::::
not

:::::
equal the restriction of the Bayesian update to a low15

dimensional subspace
:::
the

::::::
leading

:::
n0:::::

BLVs.
:::
We

:::::::
recover

:::
the

::::::::
restricted

::::::::
Bayesian

:::::
update

:::::
using

:::
the

::::::::
estimator

::
in

:::
Eq.

::::
(17)

::::::::
precisely

::::
when

:::::::::::::::::::::
HkE

n0+1:n
k ≡ 0d×(n−n0).

The significance of deriving an analytical recursion for the forecast error under the sub-optimal
::::::
reduced

:::::
rank estimator in

Eq. (17) is as follows. The analysis operator in Eq. (17) is characteristic of the generic
::::::
typical gain for the ensemble Kalman

filter (EnKF) in large, geophysical models: the ensemble based
:::::::::::::
ensemble-based gain applies its update with respect to the20

subspace defined by the span of the ensemble of anomalies, which is typically of low
::::::
usually

::
of

:::::::
reduced rank and aligns with

the span of the leading BLVs (Bocquet and Carrassi, 2017) . The EnKF is
:::::::::::::::::::::::::::::::::::::
(Ng et al., 2011; Bocquet and Carrassi, 2017) .

::::
The

:::::::
standard

:::::
EnKF

:::
can, therefore,

::
be

:::::::::
considered a Monte Carlo estimate of the true error statistics resulting from a rank deficient

analysis update
::::::
Kalman

::::::::
estimator

:
as in Eq. (17). The ideal error distribution that the EnKF samples is thus characterized by

the recursion derived for the error under the rank deficient Bayesian estimator. This is the motivation of section 3, where we25

will define a sub-optimal analysis gain ,
::::::
reduced

::::
rank

::::
gain

:
which operates within the span of an arbitrary number of the leading

BLVs , and derive the resulting true
::::
exact

:
forecast error covariance.

3 Filtering in the backward Lyapunov basis vectors

Consider the forecast error recursion for the linear KF in Eq. (16). As we are motivated by reduced rank ensemble covariances,

suppose Kk is defined as a sub-optimal
:::::::
reduced

::::
rank gain which corrects only the leading r BLVs, with r < n.

:::
The

::::::::
subspace30

::::::
defined

::
by

:::
the

:::::
span

::
of

:::
the

::::::::
anomalies

::::::
defines

::
a
::::::::
subspace

::
of

:::::::
"filtered

::::::::
variables"

::::::
where

:::
we

::::::
perform

::::
our

:::::::
analysis.

::::
The

:::::::::
"unfiltered

7



::::::::
subspace"

::
is

:::::::
uniquely

:::::::
defined

:::
(up

::
to

:::
the

::::
inner

::::::::
product)

::
as

:::
the

:::::::::
orthogonal

::::::::::
complement

::
to

:::
the

::::::
filtered

::::::
space,

:::
i.e.,

:::
the

::::::::
subspace

::
in

:::::
which

:::
the

:::::::
reduced

::::
rank

:::::::
Kalman

:::::::
estimator

::::::
makes

:::
no

:::::::::
correction.

Definition 3. We denote the filtered subspace
:::::
filtered

::::::::
subspace by the column span of the vectors Ef

k , E1:r
k and the unfiltered

subspace
::::::::
unfiltered

::::::::
subspace Eu

k , Er+1:n
k for all k. The projection coefficients of a vector z ∈ Rn into the filtered and

unfiltered subspace will be denoted ẑ f ,
(
Ef
k

)T
z and ẑ u , (Eu

k)
T

z, respectively. We can5

:::
We thus decompose the forecast error into its orthogonal projections in the filtered and unfiltered subspaces as

εk , Ef
kε̂

f
k +Eu

kε̂
u
k . (18)

:::
For

:::::
r = n,

::::::
define

::::::::
Ef
k , Ek :::

and
::::::::
Eu
k , 0n ::::

such
:::
that

:::
ε̂ f
k :

is
:::
the

::::
full

::::
error

::::::
written

::
in

:::
an

:::::::::
orthogonal

::::::
change

::
of

::::
basis

:::
—

:::
this

::::
case

::::
will

::::
only

::
be

:::::::
referred

::
to

:::
for

::::::::::
comparison.

For i, j ∈ {f,u}, we write the sub-covariances in the basis defined by Ek as10

B̂ij
k , E

[
ε̂ ik

(
ε̂ jk

)T]
. (19)

such that the true
::::
exact

:
forecast error covariance is given

Bk ≡Ek

B̂ff
k B̂fu

k

B̂uf
k B̂uu

k

ET
k , (20)

where B̂ff
k and B̂uu

k are symmetric . We will write
:::::::
matrices,

:::
and

:::::::::::::
B̂fu
k =

(
B̂uf
k

)T
.
:::
We

::::::::
similarly

::::::
express

:
Uk as a block matrixas ,

:

Uk ,

 Uff
k Ufu

k

0(n−r)×r Uuu
k

 . (21)15

For an arbitrary
::::
rank filtered subspace, the sub-optimal

::::::
reduced

:::::
rank gain Kk , which corrects only

::::::::
correcting

:
the span of

Ef
k , is defined by

Kk ,Ef
kK̂k,

K̂k ,Bff
k

(
Ef
k

)T
HT
k

[
HkE

f
kB

ff
k

(
Ef
k

)T
HT
k +Rk

]−1
, (22)

Where
:::::
where K̂k represents the projection coefficients of the sub-optimal

::::::
reduced

::::
rank gain into the filtered variables.20

For every k ≥ 1, we decompose the model error covariance into the basis of filtered and unfiltered BLVs as

Qk , Ek

Q̂ff
k Q̂fu

k

Q̂uf
k Q̂uu

k

ET
k (23)

where Q̂ff
k and Q̂uu

k are symmetric matrices
:
,
:::
and

:::::::::::::
Q̂fu
k =

(
Q̂uf
k

)T
.
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With the above notation, and using Eq. (2), the evolution of the true forecast error under the sub-optimal
:::::::
reduced

::::
rank gain

is derived from Eq. (16) as

εk+1 =Mk+1

(
In−Ef

kK̂kHk

)
εk +Mk+1E

f
kK̂kvk −wk+1

=
(
Ek+1Uk+1E

T
k −Ek+1Uk+1In×rK̂kHk

)
εk +Ek+1Uk+1In×rK̂kvk −wk+1. (24)

Equation (24) describes the evolution of the true forecast error in
::::::
forecast

:::::
error

::::
with

::::::
respect

::
to

:
the sub-optimal filter, and5

suggests, as in Eq. (5), how we may write the error evolution into the invariant upper triangular dynamics of the BLVs.

Specifically, we consider the projections of the forecast error into the filtered and unfiltered subspaces
::
in

:::
the

::::::
moving

::::::
frame

::
of

:::::
BLVs.

::::::::::
Computing

:::
the

:::::::
evolution

:::
of

::̂
ε f
k:::

and
:::
ε̂ u
k:

under the forecast-analysis update cycle in Eq. (24). Computing the evolution of

ε̂ f
k and ε̂ u

k , we may ,
:::
we

:::
will

:
derive the exact recursion for B̂ff

k, i.e. , the exact .
::::
This

::::
will

:::::::
describe

:::
the

::::
exact

:
forecast uncertainty

in the filtered subspace , under a gain which operates in the span of the leading r BLVs.10

3.1 Evolution of unfiltered error

Here we will derive
::
We

:::::
begin

:::
by

:::::::
deriving

:
the evolution of error in the unfiltered subspace, and verify

::
by

::::::::
verifying

:
that it

evolves according to the free evolution. Notice first the following relation,(
Eu
k+1

)T
Ek+1Uk+1In×r = 0(n−r)×r, (25)

due to the fact that Ek+1 is an orthogonal matrix and, therefore, that the above product is equal to the lower left block of Uk+1,15

which is upper triangular. With substitution of Eq. (18) into in Eq. (24) for εk, multiplying on the left by (Eu
k)

T to move into

the unfiltered subspace, and by utilizing Eq. (25) to cancel the error in the filtered space, we find

ε̂ u
k+1 =

(
Eu
k+1

)T
Ek+1Uk+1E

T
k

(
Ef
kε̂

f
k +Eu

kε̂
u
k

)
−
(
Eu
k+1

)T
wk+1 (26)

=Uuu
k+1ε̂

u
k − ŵu

k+1. (27)20

Equation (27) demonstrates that the evolution of the error in the unfiltered subspace follows exactly the free forecast evolution.

The unfiltered error can be induced as mean zero, with covariance
:::::::::
covariance

::
of

:::::::::
unfiltered

::::
error

:
at time k equal to

:::
can

:::
be

::::::::
computed

::::
from

:::
Eq.

::::
(27)

::
as
:

B̂uu
k = Uuu

k:0B̂
uu
0 (Uuu

k:0)
T
+

k∑
l=1

Uuu
k:lQ̂

uu
l (Uuu

k:l)
T
. (28)

The initial uncertainty in the unfiltered subspace evolves as Uuu
k:0B̂

uu
0 (Uuu

k:0)
T and thus, when r > n0, vanishes exponentially.25

This implies that asymptotic unfiltered error is independent of the initialization, similar to the results of Bocquet et al. (2017).

The remaining sum in Eq. (28) represents the contribution to the current forecast uncertainty from
::
the

:
model error at all

subsequent times
:::::
times

::::
after

:::::::::::
initialization, propagated under the upper triangular evolution in the BLVs. Therefore, while the

9



initial error is forgotten, the asymptotic error in the reduced rank filter here explicitly depends on the dimension of the unfiltered

subspace and the local variability of the stable BLVs therein.

The error in the i-th BLV in Eq. (28) is given by the invariant evolution of perturbations, formerly studied by Grudzien et al.

(2017): when the filtered subspace dimension is of dimension r ≥ n0, we can recursively, and stably, compute the unfiltered

uncertainty via5

B̂uu
k+1 = Q̂uu

k+1 +Uuu
k+1B̂

uu
k

(
Uuu
k+1

)T
. (29)

When r < n0, we see explicitly that the filter will diverge as a consequence of leaving an unstable direction unfiltered.

3.2 Evolution of filtered error

While the evolution of the unfiltered error in Eq. (28) is a simple extension of the results from Grudzien et al. (2017) , that

work did not explicitly consider the evolution of error in a reduced rank filter — we10

:::
We now consider the evolution of the projection of the forecast error into the filtered space, with respect to the reduced rank

gain. From Eq. (24) we derive

ε̂ f
k+1 =

(
Ef
k+1

)T
Ek+1Uk+1E

T
k

(
Ef
kε̂

f
k +Eu

kε̂
u
k

)
−
(
Ef
k+1

)T
Ek+1Uk+1In×rK̂kHk

(
Ef
kε̂

f
k +Eu

kε̂
u
k

)
+
(
Ef
k+1

)T(
Ek+1Uk+1In×rK̂kvk −wk+1

)
. (30)

Similar to Eq. (25), we see that the terms15

(
Ef
k+1

)T
Ek+1Uk+1E

T
kEf

k = Uff
k+1, (31)(

Ef
k+1

)T
Ek+1Uk+1E

T
kEu

k = Ufu
k+1, (32)

using the orthogonality of the BLVs. Therefore, substitution into Eq. (24) yields

ε̂ f
k+1 =

(
Uff
k+1−Uff

k+1K̂kHkE
f
k

)
ε̂ f
k (33a)

+Uff
k+1K̂kvk − ŵf

k+1 (33b)20

+
(
Ufu
k+1−Uff

k+1K̂kHkE
u
k

)
ε̂ u
k . (33c)

The terms (33a) and (33b) correspond to the standard recursion on the KF forecast error. When
:
If the filtered subspace is the

entire state space
(
:::
i.e., Ef

k , Ek, it is
)

::
the

:::::
term

::::
(33c)

::
is
::::::::::

identically
::::
zero,

::::
and

:::
the

:::::
terms

:::::
(33a)

:::
and

:::::
(33b)

:::
are

:
equivalent to a

change of basis for the forecast error recursion in Eq. (16), written in the invariant dynamics for the
::::::
moving

:::::
frame

::
of

:::
the

:
BLVs.

The remaining term in the recursion on the filtered error
:::
For

::::::
r < n,

:::
the

:::::::::
remaining

::::
term

:::::
(33c)

:
is our primary object of25

interest. The term
:::::
Term (33c) is fundamentally different from the relationship described by terms (33a) and (33b), which

represents the usual stabilizing effect of the forecast-analysis cycle. Instead, Eq.
:::
term

:
(33c) describes two different processes:

10



(i)
:::::
Ufu
k+1:::::::::

represents
:::
the

:::::
purely

:::::::::
dynamical

::::::::
upwelling

:::
of

::
the

:::::::::
unfiltered

::::
error

::::
into

::
the

:::::::
filtered

::::::::
variables;

:::
(ii) Uff

k+1K̂kHkE
u
k is the

correction in the filtered subspace, due to the sensitivity of these variables to observations in the unfiltered subspace, forward

propagated to time tk+1; (ii) Ufu
k+1 represents the purely dynamical upwelling of the unfiltered error into the filtered variables.

Generically Ufu
k+1−Uff

k+1K̂kHkE
u
k 6= 0 .

::::::
When

:::
Kk:::::

yields
:::
the

::::::::
restricted

::::::::
Bayesian

:::::::
update,

:::
i.e.,

:::
for

::::::::::::::::
HkE

u
k ≡ 0d×(n−r),:::::

term

::::
(33c)

:::::::::
represents

:::::::::
dynamical

::::::::
upwelling

::::::
alone.

:::::::::
Generically

:::::::::::::::::::::::::::::::
Ufu
k+1−Uff

k+1K̂kHkE
u
k 6= 0r×(n−r) and ε̂ u

k is Gaussian distributed5

with covariance given by Eq. (28),
:::
and

:
thus is almost surely non-zero. This demonstrates that the forecast error in the filtered

subspace depends on the unfiltered error via the forward evolution, whereas the unfiltered error does not depend on the error

in the filtered space.

This implies that the direct application of EKF-AUS from perfect dynamics (Trevisan and Palatella, 2011b) to a noisy,

linear system systematically underestimates the uncertainty
:::::
linear

::::::
system

::::
with

::::::
model

::::
error

::::::::::::
systematically

:::::::::::::
underestimates

:::
the10

:::::::::
uncertainty

:
in the span of the leading r BLVs. Specifically, EKF-AUS neglects the injection of the errors from the trailing

vectors
::::::
trailing

::::::
vectors, ε̂ u

k , into the forecast of the leading vectors ε̂ f
k+1, represented in Eq. 33c

::::
(33c). Even when

::
the

:
uncer-

tainty in the stable BLVs is bounded uniformly (Grudzien et al., 2017), error in the trailing BLVs moves up
:::::
moves

:::
up the

Lyapunov filtration, and may cause filter divergence. In perfect, linear models, where uncertainty in the stable BLVs van-

ishes exponentially, the injection of error from the stable BLVs into the unstable subspace results in temporary mis-estimation15

though does not pose an issue to the asymptotic stability (Bocquet et al., 2017). However, with model error, the term (33c)

demonstrates that EKF-AUS
:::::::
reduced

::::
rank

:::::::
Kalman

:::::
filters must be augmented to correct a persistent underestimation.

It is important to note that the error in the unfiltered subspace moves upward through the backward Lyapunov filtration

precisely because the unfiltered subspace is defined by the span of the trailing BLVs, governed by the invariant upper triangular

dynamics. The span of the trailing BLVs is not equal to
:::
not

:::::
equal

::
to the direct sum of the trailing Oseledec spaces, which are20

themselves covariant
:::::::
covariant

:
with the dynamics. This choice for the unfiltered subspace comes naturally, however, as the

filtered subspace (the image space of Kk) is given by the span of the leading BLVs,
:::
and

::
is equivalent to the span of the leading

covariant Lyapunov vectors (Kuptsov and Parlitz, 2012, see Eq. 43) .

The unfiltered subspace is uniquely defined (up to the inner product) as the orthogonal complement to the filtered space,

i.e., the subspace in which the gain makes no correction in the analysis step. In ensemble data assimilation it has been25

demonstrated numerically for perfect models, with weakly-nonlinear error growth, that the ensemble span of the ensemble

Kalman filter and smoother typically aligns with the span of the unstable-neutral backward and covariant Lyapunov vectors

(Ng et al., 2011; Bocquet and Carrassi, 2017) , and thus the upwelling of unfiltered error may be considered a generic phenomena.

In particular, we may consider a rank deficient EnKF to sample the error statistics of an estimator which applies a rank deficient

analysis update, confined to the span of the leading BLVs
:::::::::::::::::::::::::::::::::::::
(Kuptsov and Parlitz, 2012, see their Eq. (43)) .30

In principle, data assimilation could be designed to prevent dynamical upwelling of unfiltered error by defining the unfiltered

space to be the direct sum of the trailing, stable Oseledec spaces— in
:
.
::
In this case, unfiltered error would be covariant with the

dynamics and leave the filtered error unaffected,
:::::
while

:::
the

:::::::
filtered

:::::
space

:::::
would

:::
be

::::::
defined

:::
by

:::
the

:::::::::
orthogonal

:::::::::::
complement

::
to

::::::
trailing

::::::::
Oseledec

:::::
spaces. Nevertheless, this design is artificial and would lead to poor filter performance: the

:
.
::::
The orthogonal

complement to the trailing Oseledec spaces , defining the filtered space, is equal to the span of the leading forward
::::::
forward (or35

11



adjoint-covariant) Lyapunov vectors (Kuptsov and Parlitz, 2012, see Eq. 43)
:::::::::::::::::::::::::::::::::::::
(Kuptsov and Parlitz, 2012, see their Eq. (43)) , which

has been shown not to contain the largest mass of the uncertainty (Ng et al., 2011). Furthermore, the dynamics in the forward

Lyapunov vectors are defined by the
:::::::
recursive

:
QL factorization (Kuptsov and Parlitz, 2012), and the lower triangular propagator

would transmit error from the filtered subspace
:::::::
dynamics

:::
for

:::
the

:::::::
forecast

:::::
error

:::::
would

:::::::
transmit

:::::::
filtered

:::::::::
uncertainty

:
to the un-

filtered subspace, creating a dynamic downwelling which cannot be accounted for in the ensemble subspace. Defining the5

unfiltered space as the direct product of the stable, covariant Oseledec spaces would thus be contrary to the covariant dynamics

and the properties of ensemble based covariances.

With the recursive form of the filtered error in Eq. (33), we directly compute the covariance of the filtered error, and the

cross covariance of the filtered and unfiltered error, in the basis of BLVs. We define the operators

Φk+1 ,Ufu
k+1−Uff

k+1K̂kHkE
u
k, (34)10

Σk ,
[
Ir − K̂kHkE

f
k

]
B̂ff
k

[
Ir − K̂kHkE

f
k

]T
+ K̂kRkK̂

T
k , (35)

where Φk is the operator which describes the propagation of unfiltered error into the filtered space and the operator Σk

corresponds to the analysis error covariance for the standard KF, written in the basis of BLVs.

We first consider the recursion for the cross covariance. In particular, by combining Eq. (33) and Eq. (27), we obtain

B̂fu
k+1 =Φk+1B̂

uu
k

(
Uuu
k+1

)T
+ Q̂fu

k+1 +Uff
k+1

(
Ir − K̂kHkE

f
k

)
B̂fu
k

(
Uuu
k+1

)T
. (36)15

We now consider the covariance of the forecast error in the filtered variables. Using the identity in Eq. (35) we derive the

recursion for the filtered error covariance B̂ff
k+1 as

Bff
k+1 =Uff

k+1Σk

(
Uff
k+1

)T
+ Q̂ff

k+1 (37a)

+Φk+1B̂
uu
k ΦT

k+1 (37b)

+Uff
k+1

[
Ir − K̂kHkE

f
k

]
B̂fu
kΦT

k+1 (37c)20

+Φk+1B̂
uf
k

[
Ir − K̂kHkE

f
k

]T (
Uff
k+1

)T
. (37d)

When the filtered space is the whole space, i.e., Ef
k = Ek,

:::
the term (37a) entirely describes the evolution of the forecast error

in the basis of BLVs — this is indeed just the forward propagation of the analysis error covariance for the KF. The term (37b)

represents the contribution of uncertainty from the unfiltered subspace, propagated via the Φk operator, while terms (37c) and

(37d) describe the forward evolution of the cross covariance
:::::::::
covariances of the uncertainty, into the filtered space.25

3.3 Assimilation in the unstable subspace exact (AUSE)

Having derived the exact error covariance associated to the linear, sub-optimal estimator, which applies an analysis update

::::::
reduced

::::
rank

:::::::
Kalman

:::::::::
estimator, characteristic of the EnKF

::::::::
ensemble

:::::
based

:::::::
Kalman

::::
gain

::
in

::::::::::
geophysical

::::::
models, we will sum-

marize the result.

12



Definition 4.
:::
For

:::
all

::
k,

::
let

:::
the

::::::
matrix

:::
Bk:::

be
::::::::::
decomposed

::
as

::
in

::::
Eq.

:::
(20)

:
.
:::::
Then,

:::::
define

:::
the

::::::::
recursive

::::::::::
relationship

:

B̂uu
k =Q̂uu

k +Uuu
k B̂uu

k−1 (U
uu
k )

T
, (38a)

Φk+1 =Ufu
k+1−Uff

k+1K̂kHkE
u
k, (38b)

B̂fu
k+1 =Φk+1B̂

uu
k

(
Uuu
k+1

)T
+ Q̂fu

k+1 +Uff
k+1

(
Ir − K̂kHkE

f
k

)
B̂fu
k

(
Uuu
k+1

)T
, (38c)

Σk =
[
Ir − K̂kHkE

f
k

]
B̂ff
k

[
Ir − K̂kHkE

f
k

]T
+ K̂kRkK̂

T
k , (38d)5

B̂ff
k+1 =Uff

k+1Σk

(
Uff
k+1

)T
+ Q̂ff

k+1 +Φk+1B̂
uu
k ΦT

k+1

+Uff
k+1

[
Ir − K̂kHkE

f
k

]
B̂fu
kΦT

k +ΦkB̂
uf
k

[
Ir − K̂kHkE

f
k

]T (
Uff
k+1

)T
, (38e)

:
to

::
be

:::
the

:::::::
Kalman

::::::
Filter,

::::::::::
Assimilation

::
in

:::
the

::::::::
Unstable

::::::::
Subspace

:::::
Exact

::::::::::
(KF-AUSE)

:::::
Riccati

::::::::
equation,

:::
for

::
a

::::::
filtered

::::::::
subspace

::
of

::::::::
dimension

:::::::::
1≤ r < n.

:

Proposition 1. Assume that the initial forecast error
:
a
::::::::
Gaussian

:::::
prior

::::::::::
distribution

::
is

:::::
given

:::
for

::::
x0,

:::
the

::::
state

::
of
::::

the
::::::
system10

::::::
defined

::
by

:::
Eq.

:::
(6)

:
.
::::::
Assume

::::
that

:::
the

:::::
initial

:::::::::
uncertainty, ε0, has

::
is

::
of mean zero and covariance B0:

,
:::
and

:::::::
suppose

:::::::::::
observations

::
of

::
the

:::::
state

:::
are

:::::
given

::
as

::
in

:::
Eq.

:::
(6). Let Kk be defined as in Eq. (22) for all k, such that Kk is the sub-optimal gain which makes

corrections only in
::
the

:::::::
Kalman

::::::::
estimator

:::::::::
restricted

::
to the span of Ef

k (rank 1≤ r < n) . The forecast error ,
::
as

::
in

:::
Eq.

::::
(22)

:
.

:::::
Then,

::
the

:::::::
forecast

:::::
error defined by Eq. (16) , has covariance Bk , EkB̂kE

T
k ,

:
is

:::::::::
Gaussian,

::::
mean

:::::
zero,

::::
with

:::::::::
covariance

::::::
matrix

defined recursively by
::
the

:::::::::
KF-AUSE

::::::
Riccati

::::::::
equation,

:::
Eq.

::::
(38)

:
.15

Equation

Proof.
::::::
Proving

:::
the

:::::::::
covariance

::
is
:::::
given

:::
by

:::
Eq.

:
(38) is defined to be the Kalman Filter, Assimilation in the Unstable Subspace

Exact (KF-AUSE) Riccati equation, for a filtered subspace of dimension r.
:::
the

::::::
content

::
of

:::::::
sections

:::
3.1

::::
and

:::
3.2.

::::
That

:::
the

:::::
error

:
is
:::::
mean

::::
zero

:::
and

::::::::
Gaussian

::
is
:::::
easily

::::::
proven

:::
by

::::::::
induction.

:

It should be noted that the KF-AUSE Riccati equation is also valid for the true
:::::
exact forecast error covariance in perfect20

models
:
of

::
a
::::::
reduced

::::
rank

:::::::
Kalman

::::
filter

::
in

::::::
perfect

::::::
models, where Qk , 0n for all k. Let r = n0, Qk , 0n and Pk , Ef

kΓk
(
Ef
k

)T
be defined as the estimated

::::::::
estimated forecast error covariance for EKF-AUS

:::::::::::::::::::::::::
(Trevisan and Palatella, 2011b) , then the recur-

sion is defined by

Γk+1 ,Uff
k+1

[
Ir − K̂kHkE

f
k

]
Γk

[
Ir − K̂kHkE

f
k

]T (
Uff
k+1

)T
+Uff

k+1K̂kRkK̂
T
k

(
Uff
k+1

)T
, (39)

analogous to term (37a). Comparing Eq. (38) and Eq. (39), we see that even in perfect models the estimated error covariance25

of EKF-AUS in the filtered subspace and the true
::::
exact

:
error covariance do not agree, i.e., Γk+1 6= B̂ff

k+1. This is because the

estimated AUS error in Eq. (39) neglects the upwelling of the initial error
:::::
initial

::::
error

:
in the unfiltered subspace, described

by terms (37b), (37c) and (37d). However, in this case, the unfiltered initial
::
the

::::::::
unfiltered

:
error decays exponentially and the

mis-estimation in the filtered space doesn’t
::::
does

:::
not

:
threaten filter stability: the AUS estimated error covariance converges to

the true
::::
exact error in its asymptotic limit

:
,
::::::
though

:::::::
possibly

:::::::::::
arithmetically

:
(Bocquet et al., 2017).30
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3.4 Discussion:
::::::::::
dynamical

::::::::
upwelling

::::
and

::::::::::
covariance

:::::::
inflation

In ideal, linear models, the KF-AUSE Riccati equation (38) describes the exact evolution of the forecast error decomposed into

a basis of BLVs, where a sub-optimal gain applies the Bayesian update with respect to an arbitrary number, r, of the leading

basis vectors. Although the analysis update in Eq. (22) is sub-optimal, and defined via a rank deficient filtered subspace, the

recursion in Eq. (38) has no mis-estimation of its error statistics. We emphasize , however,
::
We

:::::::::
emphasize

:
that the KF-AUSE5

Riccati equation (38) is not intended to provide a computational advantage — its computation requires knowledge of error

in the unfiltered subspace and, in nonlinear models, a full rank representation
:::
full

::::
rank

::::::::::::
representation

:
of the tangent linear

dynamics. Nonetheless, this recursion is demonstrative of an important concept: in
:::
for a reduced rank

::::::
Kalman

:
estimator that

applies its analysis update in the span of the leading BLVs, the true
::::
exact

:
error in the same span will always depend on the

unfiltered error
:::::
always

:::::::
depend

::
on

:::
the

::::::::
unfiltered

:::::
error in the trailing vectors.10

The upwelling of uncertainty from the unfiltered subspace to the filtered
:::::::
(filtered)

:
ensemble span thus explains one of the

dynamical mechanisms determining the intrinsic role of covariance inflation in a reduced rank
:::
the EnKF, providing a theoretical

motivation for its use to prevent filter divergence. If one wishes to correct the error in the span of the leading BLVs exactly, it

requires calculating

::::::::
Generally,

:::
the

:::::::
reasons

:::
for

:::::
using

:::::::::
covariance

::::::::
inflation

::
in

:::
the

:::::
EnKF

:::
are

:::::
wide,

:::::::::
including

::::::::
treatment

::
of

::::::
model

:::::
error,

::::::::
sampling15

::::
error,

::::::::
intrinsic

::::
bias,

::::
and

::::::::::::::
non-Gaussianity

::
of

:::::
error

::::::::::
distributions

:::::::::::::::::::::::::::::::::::::::::
(Raanes et al., 2018, see section 2.2 for a survey) .

:::::::::
However,

:::
Eq.

::::
(38)

:::::::::::
demonstrates

::::
that

::::
even

:::::
when

:::::::::
excluding

:::::::::::
nonlinearity,

::::::::::::::
non-Gaussianity,

::::
and

:::::::
intrinsic

::::::::::
deficiencies

::
of
::::

the
::::::
EnKF,

:::
the

::::
exact

:::::::::
correction

::
to

:::
the

::::
error

::
in

:::
the

::::::::
ensemble

::::
span

:::::::
requires

:
the covariance of the unfiltered error as well as the cross covariance

of the error in the filtered and unfiltered subspaces
:
, as in Eq. (38). In practical applications

::::::
practice, one must find a suitable

approximation of the upwelling phenomenon to prevent the systematic underestimation of the forecast error, and/or, extend the20

rank of the
:::::::::::::
ensemble-based correction to control the transient growth of errors in the stable modes.

Reduced rank Kalman filters have previously corrected for the upwelling of model errors with
:::
both

::::::::::::
multiplicative

::::
and

::::::
additive

:
covariance inflation methods. For instance, although

:::::::
Although

:
it was not explicitly formulated as such, the SEEK

filter of Pham et al. (1998) can been seen to compensate for model errors originating in the unfiltered, stable subspace: while

components of the model error covariance which are orthogonal to the filtered subspace are left neglected, there is
::
an implicit25

treatment by utilizing its forgetting factor to inflate the variance of the estimated error in the filtered subspace (Nerger et al.,

2005). The contribution of the unfiltered error to the estimated error was also studied in ensemble methods by Raanes et al.

(2015), in which the authors explored sampling methodology to compensate for the unresolved model errors, residing outside

of the ensemble span. Our work adds to this discussion, now highlighting the explicit mechanism
::::::
explicit

:::::::::
mechanism

:
which

necessitates these covariance inflation techniques under a rank deficient gain.30

The dynamical upwelling of model error differs from the sampling errors
::::::::::::::
misrepresentation

:::
of

:::
the

::::::::::
covariance

:::
due

:::
to

::::::::
truncation

:::::
error

::
or

::::::::
sampling

:::::
error induced by nonlinear dynamics in perfect models, treated in the modified EKF-AUS-NL

(Palatella and Trevisan, 2015) and in the finite size ensemble Kalman filter, (EnKF-N) (Bocquet, 2011; Bocquet et al., 2015).

Rather, we
:::
We have shown that the upwelling of the unfiltered error through the Lyapunov filtration acts as a linear effect and
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is acute in the presence of additive model errors which are excited by transient instabilities. While the effect of the dynamical

upwelling could be neglected in perfect models (Bocquet et al., 2017), the work of Grudzien et al. (2017) has demonstrated that

transient instability in the span of the stable BLVs can drive the unfiltered error to become impractically large — furthermore,

this error is transmitted into the filtered subspace, driving filter divergence if it is left uncorrected. However, the significance of

results with AUS in perfect models is not lost: if the dimension of the filtered space is sufficiently large , such that dynamical5

stability in the unfiltered subspace is strong enough to rapidly dissipate
::::::
rapidly

::::::::
dissipates

::::::::
unfiltered

:
errors, the effect of the

upwelling may become negligible.

Uncorrected forecast errors leading to filter divergence has been previously studied in the context of perfect, nonlinear

models, with an important connection to our above discussion: if an EnKF applies a correction of rank less than the number

of unstable and neutral Lyapunov exponents, it has been found the filter’s estimated error can become small while the filter10

permanently loses track of the true trajectory (Ng et al., 2011) . This behavior is easily understood in terms of the filter’s

failure to correct the error growth in the span of at least one of the unstable-neutral BLVs. For large geophysical models,

where ensemble based covariances may be extremely rank deficient, hybridized gains have been shown to account for the

failure of ensemble based gain to correct the error in the span of all the unstable-neutral BLVs (Penny, 2017) . In hybridization

the
:::::::
Without

::::::::::
augmenting

:::
the ensemble-based estimated error covariance is augmented by a static, climatological estimate —15

using the climatological covariance, the rank of the estimator used for the analysis update is increased, and has the effect of

applying a correction to additional modes outside of the ensemble span (Hamill and Snyder, 2000) . The need to rectify the rank

deficiency of the ensemble based Kalman gain takes on a new significance given our understanding of the dynamical upwelling

of uncertainty. In the presence of model error, even when the ensemble rankis greater than the number of unstable-neutral

Lyapunov exponents, a hybridized gain or additive inflation (Whitaker and Hamill, 2012) may improve filter performance by20

keeping the errors in the span of the weakly stable BLVs small, diminishing the effect of their transient growth and upwelling.

Multiplicative inflation , acting only within the ensemble span, can rectify the under-estimation of uncertainty in the filtered

subspace, due to neglecting
::::::
Kalman

::::
gain,

:
the effect of the upwelling of error. For example, the linear form of EKF-AUS does

not include the upwelling of unfiltered error in its estimated covariance — inclusion of multiplicative inflation to the estimated

error covariance compensates for the upwelling of unfiltered errors which is not represented in the recursion for EKF-AUS,25

and simulates the terms (37b), (37c) and (37d) in the KF-AUSE recursion. Multiplicative inflation may also be used to account

for mis-estimation of forecast errors resultant from nonlinear evolution, but this mis-estimation may also be accounted for

using less ad hoc approaches including parameterizing this error with hyperpriors (Bocquet et al., 2015) . We argue that the

hyperprior in EnKF-N can, in principle, also
::::::::
upwelling

::
of

:::::::::
uncertainty

::::
into

::
the

:::::::
filtered

::::
space

::::
can be selected to take into account

the structure of the ideal posterior for the reduced rank estimator, in the presence of model error , described by KF-AUSE (see30

also the discussion at the end of section 4.2) .

Whitaker and Hamill (2012) hypothesized that additive inflation could better compensate for the effects of unresolved model

error, while multiplicative inflation is best suited to account for sampling error, consistent with what was noted by Bocquet (2011) and

Bocquet and Sakov (2012) . This hypothesis is supported by our results and the above discussion: the combination of rank

deficiency of the analysis and the presence of additive model error determines an intrinsic role for covariance inflation35
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in ensemble based Kalman filters in chaotic, dynamical systems, due to the upwelling of unfiltered errors . However, our

above discussion also highlights how the need for inflation can be mitigated by: (i) sufficiently increasing the ensemble size

(Grudzien et al., 2017) ; (ii) rectifying the rank deficiency of the analysis update via hybridization (Penny, 2017) ; (iii) utilizing

a hyperprior which takes into account the dynamical upwelling and mis-estimation of error (Bocquet et al., 2015) ; or (iv) some

combination of the above. In
:::::::
emulated

::::
with

::::::::::::
multiplicative

:::::::
inflation.

::
In
:
the following section, we numerically explore the effects5

of stability, transient instability, and the strength therein, on filter divergence and the need for covariance inflation with reduced

rank estimators.
:::::::
following

:::::::
section,

:::
we

:::::::::::
numerically

::::::
explore

:::
the

::::::::::
interaction

::
of

:::
the

::::::
filtered

::::::::
subspace

:::::
rank,

:::
the

:::::::
stability

:::
in

:::
the

::::::::
unfiltered

:::::::::
directions,

:::
and

::::::::::::
multiplicative

:::::::::
covariance

:::::::
inflation

::
in
:::::::

relation
::
to
:::

the
::::::

effect
::
of

:::::::::
dynamical

::::::::
upwelling

:::
in

:::::::
reduced

::::
rank

::::::
Kalman

::::::
filters.

4 Numerical results10

4.1 Experimental setup

Numerically studying the KF, we construct a discrete, linear model from the

:::
We

:::
will

:::::::
explore

:::
two

::::::::
different

:::::::
discrete

:::::
model

::::::::::::
configurations

:::
in

:::::
which

:::
we

::::
vary

:::
the

:::::
effect

::
of

:::::::::::
nonlinearity.

::
In

:::
the

::::::::::
continuous

:::::
model

:::::::::::
configuration

:::::
with

::::::::
stochastic

::::::::::
differential

:::::::::
equations,

:::
we

::::
also

:::::::
achieve

:::::::::::
qualitatively

::::::
similar

::::::
results

::::::
which

::::
will

:::
not

:::
be

:::::::
included.

::
It
::
is
:::::::::
important

::
to

::::::
remark

::::
that

:::
the

:::::::
analytic

::::
form

:::
for

:::
the

:::::::
forecast

::::
error

:::
in

:::
Eq.

::::
(38)

::
is

::::
only

:
a
::::::
useful

::::::::::::
representation

:::
for15

::::::::::::::
weakly-nonlinear

::::::::
evolution

::
of

:::::
error,

::::::::::::
corresponding

:::
to

:::
the

::::
error

::::::::
evolution

:::
of

:::
the

:::::
EnKF

:::
on

::::
short

::::
time

::::::
scales.

:::
As

:::
the

:::::
effect

:::
of

::::::::::
nonlinearity

:
is
:::::::::
increased,

:::
the

:::::
linear

:::::::::::::
approximations

::::::
utilized

::
in

:::
our

:::::
work

:::
will

:::
no

:::::
longer

:::
be

::::::::
adequate,

::::::
leading

::
to

:::::::::
truncation

:::::
errors

::
as

::::::::
discussed

:::
by,

::::
e.g.,

:::::::::::::::::::::::::
Palatella and Trevisan (2015) .

::
In

:::
the

::::::::
following,

:::
we

:::
use

:::
two

::::::::
different

::::::::::
formulations

::
of

:::
the

:::::::
standard

:
Lorenz 96 equations (L96) (Lorenz and Emanuel, 1998).

For each m ∈ {1, · · · ,n},
:
the (L96) equations read dx

dt , L(x),20

Lm(x) =−xm−2xm−1 +xm−1xm+1−xm+F (40)

such that the components of the vector x are given by the variables xm with periodic boundary conditions, x0 = xn, x−1 =

xn−1 and xn+1 = x1. The term F in L96 is the forcing parameter. The tangent linear model (Kalnay, 2003) is governed by the

equations of the Jacobian ,∇xL(x), In linear experiments, we fix
::::::
matrix,

:::::::
∇L(x),

∇Lm(x) =
(
0, · · · ,−xm−1,xm+1−xm−2,−1,xm−1,0, · · · ,0

)
. (41)25

4.1.1
:::::::
Discrete

:::::
linear

:::::::::::
experiments

::
In

:::::
linear

:::::::::::
experiments,

:::
we

::::::::
construct

:
a
:::::::
discrete,

::::::
linear

:::::
model

:::::
from

:::
the

::::
L96

::::::
system.

::::::
Fixing

:
the system dimension n, 10, and

the linear propagator in our model Mk is generated by computing the discrete, tangent linear model from the resolvent of the

Jacobian equation, Eq. (41): .
:
This linear model satisfies Oseledec’s theorem by construction (Barreira and Pesin, 2002). In

generating the discrete, tangent linear model, the discretization time between observations is fixed at δk , 0.1
:::::::::::
δk , δ = 0.130
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for all k. We numerically integrate the Jacobian equation with a fourth order Runge-Kutta scheme with a
::::
fixed

:
time step of

h, 0.01. The observational
::
For

:::
the

:::::::
forcing

:::::
value

::
of

::::::
F = 8,

:::::
with

::
10

:::::::::::
dimensions,

::::
there

:::
are

:::::
three

::::::::
unstable,

:::
one

:::::::
neutral,

::::
and

::
six

::::::
stable

::::::::
Lyapunov

:::::::::
exponents,

:::
i.e,

:::::::
n0 = 4.

:::
The

::::::::::
observation

:
error covariance Rk, model error covariance Qk and observation

operator Hk are all fixed as the identity I10 , for simplicity, in this setup
::
for

:::::::::
simplicity.

In our nonlinear experiments with the5

4.1.2
:::::::
Discrete

:::::::::
nonlinear

:::::::::::
experiments

::
In

:::
our

::::::::::
experiments

::::
with

:::
the

:::::::
discrete

:
extended Kalman filter (EKF) (Jazwinski, 1970)

::
for

::::::::
nonlinear

:::::::
systems, we use Eq. (40)

directly for our model state evolution, and fix the state dimension to n, 40.
:::
For

::
the

:::
40

::::::::::
dimensional

::::
L96,

::::
with

:::::::
standard

:::::::
forcing

::::::
F = 8,

::
the

::::::::
unstable

:::::
neutral

::::::::
subspace

::
is

::
of

:::::::::
dimension

:::::::
n0 = 14,

::::
with

::::
one

::::::
neutral

::::::::
Lyapunov

::::::::
exponent.

:
The nonlinear trajectory is

integrated with a
:::::
fourth

::::
order

:::::::::::
Runge-Kutta

:::::::
scheme,

::::
with

:
a
:::::
fixed step size of h, 0.05, with

:::
and

:
an interval between observation10

times of δk , 0.1
:::::::::::
δk , δ = 0.1. At each observation time, before observations are given, the true trajectory is perturbed

::
(in

:::::
model

:::::::
space) by additive Gaussian noise with a proscribed

:::::::::
prescribed covariance Q, fixed in time.

:::
Let

::
us

:::::
define

:::
the

::::::::
nonlinear

::::
map

:::::::::::::::::
Ψ(t0, t1) : Rn→ Rn

::
to
:::
be

:::
the

::::
flow

::::
map,

::::::::
generated

:::::
from

:::
Eq.

::::
(40),

::::
that

::::
takes

:::
the

::::::
model

::::
state

::::
from

::::
time

::
t0::

to
:::
t1.

:::::
Then,

:::::
noting

::::
that

::::::::::::::::::::
Ψ(t, t+ δ) = Ψ(s,s+ δ)

:::
for

:::
all

:
t
:::
and

::
s,

:::
we

:::
will

::::::
define

::::::::::::
Ψδ , Ψ(0, δ).

::
In

:::
our

:::::::::::
experiments,

::
the

::::::
“truth”

::
is
::::
thus

:::::::
evolved

:::
via

:::
the

::::::::
equation,15

xk+1 = Ψδ(xk)+wk+1, (42)

:::::::::::::::
wk+1 ∼N(0,Q),

:::::
while

:::
the

:::::
mean

::::::::
trajectory

::
of

:::
the

:::::::
“model”

:::::
state

:
is
:::::
given

:::
by

:::
the

:::::::::::
deterministic

::::::::
evolution,

:::::::::::::::
xb
k+1 = Ψδ(x

b
k). ::

In

:::
our

:::::::::::
experimental

::::::
design,

:::
the

:::::::
extended

:::::::
Kalman

::::
filter

::::::::
estimates

:::
the

::::
state

::
of

:::
the

::::::::
nonlinear

:::::
“true”

:::::
state,

::::::::
perturbed

:::
by

::
the

:::::
noise

::::
wk,

:::
Eq.

::::
(42),

:::
and

::::::
Mk+1::::

(the
:::::
linear

:::::::::
propagator

:::
for

:::
the

:::::::::
covariance

:::::::
forward

::::::::
evolution)

::
is

::::::
defined

:::
by

:::
the

::::
map

:::::::::::::::
Mk+1 ,∇Ψδ

∣∣
xb
k

.
:

The matrix Q
:
is
:
defined by the circulant matrix with c0 = 0.5, c1 = 0.25, c2 = 0.125, c39 = 0.25, c38 = 0.125 and all other20

entries zero,

Q ,



c0 c39 · · · c2 c1

c1 c0 c39 c2
... c1 c0

. . .
...

c38
. . . . . . c39

c39 c38 · · · c1 c0


. (43)

The choice of the circulant matrix reflects the stationary statistics and periodic nature of the L96 model, and the fact that

we wish to highlight the effect of analytically resolving complex model error. The observational
:::::::::
observation

:
error covariance

matrix is fixed as 0.25 ∗ I40, the scalar matrix with eigenvalue 0.25. The observation operator is fixed in time as Hk , I40.25

::::
This

:::::::::::
experimental

:::::::::::
configuration

::
is

:::::::::::::
mathematically

::::::::
consistent

::::
with

:::
the

::::::::
extended

:::::::
Kalman

::::
filter

:::
for

::
a
:::::::
discrete

::::::::
nonlinear

::::
map

::::
with

:::::
model

:::::
error,

:::
and

::
is

:
a
:::::::
standard

::::::::::
formulation

:::
for

:::::
model

::::
error

::::
twin

:::::::::::
experiments,

::::::
utilized

:::
by

:::
e.g,

::::::::::::::::::::::::::::::::::::::::
Mitchell and Carrassi (2015); Sakov et al. (2018) ,

::::
with

:::
the

:::::::::::
configuration

:::::
using

:::
the

::::::::
circulant

:::::::::
covariance

:::::::
matrix,

::
Q,

::::::
drawn

::::::::::
specifically

::::
from

::::::::::::::::::
Raanes et al. (2015) .

::::
The

:::::::
interval
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:::::::
between

::::::::::
observations

:
δ
:::::::
controls

:::
the

::::::::::
nonlinearity

::
of

:::
the

::::
map,

::::::
where

:::
our

::::::
chosen

:::::::::::
configuration

:::
can

::
be

:::::::::
considered

:::::::::::::::
weakly-nonlinear.

4.2 Linear Kalman filter

In a linear setting, we compute the
::::
exact

:
forecast error covariance of KF-AUSE via the recursive Riccati equation, Eq. (38),

and compare it with that of the KF, for which the filtered space is the entire model space. This illustrates the ideal performance5

of a rank deficient , sub-optimal filter without estimation errors; we compare this relative to a full rank correction, where the

sub-optimal filter applies corrections only to the leading r BLVs and the
::::
filter

:::::
where

:::
the

:
forecast error is treated analytically

:
,

::::::
without

:::::::::::::
mis-estimation

::
of

:::
the

:::::
error

::::::::::
covariances. We compute the average eigenvalues of the forecast covariance matrix for

each the KF and KF-AUSE over 100,000 parallel forecast cycles and examine the stratification of the uncertainty in a basis of

BLVs, i.e., how strongly the covariance projects into each direction. Specifically, for both the KF and KF-AUSE we compute10

the average projection coefficient of the forecast error covariance into the i-th BLV at each forecast time,
(
Ei
k

)T
BkE

i
k, and

average this coefficient over k.

In order to visualize the full spectrum of the forecast error covariance, we use the 10 dimensional discrete, tangent-linear

model of L96 as the linear model for our KF-AUSE experiments. For the standard forcing value of F = 8, there are three

unstable, one neutral, and six stable Lyapunov exponents, i.e, n0 = 4. In Fig. 1, the averaged eigenvalues of the KF and KF-15

AUSE forecast error covariance are plotted, with triangle markers, differentiated by color. In each subplot, the KF remains the

same but we vary the dimension of the filtered subspace, r, for KF-AUSE.

In the top left panel of Fig. 1 the number of corrected modes is equal to n0, corresponding to correcting the error in the

unstable-neutral subspace. Here, the leading eigenvalue of the forecast uncertainty of KF-AUSE is orders of magnitude above

the forecast uncertainty in the KF. This should be contrasted with perfect models where, asymptotically, there can only be four20

non-zero eigenvalues, and under generic conditions, the KF and EKF-AUS will coincide (Bocquet et al., 2017). In accordance

with the results of Grudzien et al. (2017), correcting
::::
error

::
in

:
the first stable mode (r = 5) brings a substantial reduction in

forecast uncertainty (see top right Fig. 1). We see the forecast uncertainty likewise diminishes as each additional mode is

corrected, as the KF-AUSE covariance converges to that of the KF.

It is of special interest how the projection coefficients of the forecast error covariance relates to the dimension of the filtered25

subspace, r. In the KF, the projection coefficients are closely aligned with the eigenvalue profile, descending in the order of

the Lyapunov exponents, and this line is not pictured due to the redundancy. However, in the forecast error covariance of

KF-AUSE, the leading uncorrected stable mode is the dominant direction for the uncertainty among the BLVs, systematically

across n0 ≤ r < n, with projection coefficient on the order of the leading eigenvalue. This distinguishes the setting of additive

model error from perfect models where the projection coefficients of the forecast error covariance in the stable BLVs will be30

zero asymptotically (Gurumoorthy et al., 2017). In a straightforward implementation of KF-AUS in the presence of model

error, which neglects corrections to the weakly stable modes and the upwelling of the unfiltered error on the order of the

uncertainty in Bn0+1
k , this unfiltered error will furthermore transmit into the filtered subspace, driving filter divergence.
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Figure 1. Eigenvalues of the KF and KF-AUSE forecast error covariance plotted with triangles. Projection coefficients of the KF-AUSE

forecast error covariance plotted with X’s. Dimension of the KF-AUSE filtered subspace is r. Note the log scale of the y-axis.

The structure of the forecast error covariance of KF-AUSE, revealed in the basis of BLVs, has special significance for the

rank deficient EnKF. Particularly, we may understand the covariance of KF-AUSE to express the ideal forecast error of the rank

deficient EnKF, and should guide any independent, identically distributed (iid) sampling scheme which represents this error

distribution. The hyperprior in EnKF-N (Bocquet et al., 2015) , used to describe the mis-estimation of the true error statistics

from a finite iid draw of samples, may also incorporate the structure of the ideal posterior under a rank deficient gain. Similarly5

to how the hyperprior for the covariance in EnKF-N is restricted to the cone of positive semi-definite symmetric matrices in

perfect models, its extension to additive model error may incorporate a restriction to the covariance matrices which share the

stratification of uncertainty expressed in KF-AUSE. Likewise, when unfiltered error is known to be large, the structure of the

KF-AUSE covariance demonstrates the benefit of hybridization to rectify the rank deficiency: even if the hybrid gain induces

sampling error by corrupting the recursion for the estimated error, controlling the unfiltered error by some means can diminish10

the leading order source of uncertainty.

4.3 Extended
:::::::
Discrete

::::::::
extended

:
Kalman filterwith nonlinear model dynamics

In our nonlinear experiments
:::::::::
experiments

::::
with

:::
the

:::::::
discrete

::::::::
extended

:::::::
Kalman

::::
filter, we compute the analysis root mean square

error (RMSE) of each the:
:
(i) full rank extended Kalman filter (EKF), (ii) EKF-AUS and (iii) EKF-AUSE, for which Eq. (38)

is used to compute the estimated covariance and rank r gain. We will study the effect of analytically resolving the unfiltered15

error as compared with the straightforward implementation of EKF-AUS, which will make no correction to account for the

unfiltered error complementary to the anomaly subspace
::
in

:::
the

::::::
trailing

:::::
BLVs,

:::
or

::
its

:::::::::
upwelling

:::
into

:::
the

::::::
leading

::::::
BLVs.

Recall that EKF-AUS so far has
:::
has

:::::::::
historically

:
only been studied in the perfect model scenario

::::::
without

:::::::
additive

::::::
model

:::::
errors — we implement EKF-AUS in the presence of model error by computing a rank r estimated error covariance, which
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includes the projection of the model error covariance, Qk into the span of the leading BLVs in the forecast Riccati equation,

i.e.
(
Ef
k

)T
QkE

f
k = Q̂ff

k. This corresponds to utilizing only the first line of the recursion for B̂ff
k, Eq. (37a), to compute the

estimated forecast error covariance of EKF-AUS. The implementation of EKF-AUSE thus differs by utilizing a full rank
:::
full

::::
rank ensemble of anomalies to compute the complete Riccati equation, Eq. (38). We utilize this n dimensional covariance

equation to compare the effect of the additional inflation, by including the terms in Eq. (37b), Eq. (37c) and Eq. (37d) in the5

correction to the filtered space, on the performance of filter RMSE.

We study the performance of EKF-AUS/E when the dimension of the filtered subspace is greater than
:::::
greater

::::
than, or equal

to, the dimension of the unstable-neutral subspace; the case r < n0 will trivially lead to divergence (Bocquet et al., 2017). For

the 40 dimensional L96, with standard forcing F = 8, n0 = 14, with one neutral Lyapunov exponent. In Fig. 2, we plot the

analysis RMSE of EKF-AUS and EKF-AUSE with triangles and X’s respectively, while we vary over the dimension of the10

filtered subspace, with the RMSE computed over 100,000 analysis cycles.

To benchmark the performance of EKF-AUS/E, we plot the observational
:::::::::
observation

:
error standard deviation and the

analysis RMSE of the standard, full rank EKF in horizontal lines — the algorithms for EKF-AUS/E are tantamount to a change

of basis for the EKF when the filtered subspace is equal to the full space, and thus this is the logical point of comparison. We are

interested in finding the necessary dimension of the filtered subspace such that EKF-AUS/E has an RMSE which: (i) performs15

better than the observational
:::::::::
observation

:
error standard deviation and (ii) performs comparably to filtering the entire space.

When the RMSE of EKF-AUS/E falls below the observational
:::::::::
observation

:
error standard deviation, the filter has a forecast

performance superior to initializing observations directly in the model; when it performs closely to the EKF, the filter can be

considered close to optimal performance, while utilizing a sub-optimal correction based on only r < n directions.

14 15 16 17 18 19 20 21 22 23 24 25 26 27 280.15
0.2

0.5

1.56

3.62 EKF-AUS
EKF-AUSE

Obs Err Std
EKF

Correction Rank

RM
SE

Figure 2. Analysis RMSE of EKF-AUS plotted with triangles and EKF-AUSE plotted with X’s, varying over the rank of the sub-optimal

gain. Horizontal lines are the observational
:::::::::
observation error standard deviation and EKF analysis RMSE. Note the log scale of the y-axis.
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In Fig. 2, when the the dimension of the filtered subspace for both AUS/E reaches 28 the difference between both EKF-

AUS/E and the full-rank EKF becomes negligible. The
:::::
RMSE

::
of

::::
the:

::
(i)

::::
EKF

::
is
::::::::::::
approximately

::::::
0.198;

:::
(ii)

:::::::::
EKF-AUS,

:::::::
r = 28,

:
is
:::::::::::::
approximately

:::::
0.213;

::::
(iii)

::::::::::
EKF-AUSE,

:::::::
r = 28,

::
is

::::::::::::
approximately

::::::
0.205.

::::
The fact that EKF-AUS obtains near optimal per-

formance, representing the uncertainty in the leading r = 28 BLVs while neglecting the remaining, corroborates the claim of

Grudzien et al. (2017): in the presence of model noise, the filter correction should also incorporate weakly stable directions5

that can be instantaneously unstable. It is of particular interest, however, that the convergence of EKF-AUSE to the skill of

the full rank EKF is substantially faster: EKF-AUSE obtains adequate filter performance (RMSE lower than observational

:::::::::
observation

:
error standard deviation) by correcting

::
the

:::::
error

::
in

:
only 16 BLVs while EKF-AUS requires a correction of rank

19. For other scalings of the matrix Q, multiplying Q by 0.1, 0.2, 1.5, 2,
::::::::
changing

:::
the

::::::::::
observation

:::::::::
dimension,

:::
e.g.

:::::::
d= 20

::
or

::::::
d= 30, and by varying the time between observations, e.g. δk = 0.01 or 0.5we obtain

:
,
::
we

::::::
obtain

::::::::::
qualitatively

:
similar results,10

:::
that

:::
are

:
not pictured here. The profiles of the curves in Fig. 2 are similar across these experimental configurations: the RMSE

of EKF-AUSE is improved over EKF-AUS by including the analyticalinflation factor
:::::::::
analytically

::::::::
resolving

:::
the

:::::
effect

:::
of

:::
the

::::::::
analytical, and the RMSE approaches an adequate/optimal level with a smaller dimension for the filtered space. This pattern

demonstrates that including the inflation factor to the filtered subspace, resolving the upwelling of the unfiltered error, reduces

the necessary ensemble rank to obtain a stable filter. We emphasize again that EKF-AUSE does not represent a computational15

advantage as a full rank
:::
full

::::
rank

:
set of perturbations is used to describe the analytic form for the upwelling of the error.

To explain the convergence of EKF-AUS, which doesn’t account for the unfiltered subspace, to the full rank EKF, we
:::
We

look at the behavior of the local Lyapunov exponents for the L96 model
::
to

::::::
explain

:::
the

:::::::::::
convergence

::
of

:::::::::
EKF-AUS

::
to

:::
the

::::
full

::::
rank

::::
EKF. In Fig. 3 we show the box plot statistics of the local Lyapunov exponents for exponents 14 through 28 of the L96

model. Exponent λ14 = 0, and the remaining pictured exponents correspond to the leading, stable BLVs. We emphasize that20

the local Lyapunov exponents of λ15 through λ18, though having negative mean, are sufficiently unstable locally such that

EKF-AUS diverges when it disregards the upwelling of the error from these asymptotically stable modes.

When the filtered subspace for EKF-AUS is of dimension 19, such that the leading unfiltered
::::::::
unfiltered

:
BLV corresponds

to λ20, all unfiltered Lyapunov exponents have over 75% of local realizations strictly stable; this corresponds to the rank

when EKF-AUS has adequate performance. Likewise, the difference between EKF-AUS/E and the EKF is negligible when the25

leading unfiltered BLV corresponds to λ29, with only 1.51% of its local realizations being non-negative. These findings are con-

sistent with the results in Grudzien et al. (2017): in the presence of model error, unconstrained forecast error is strongly forced

by the error in BLVs, which are asymptotically stable but, that experience strong and frequent local instability
:::::::::
instabilities.

Finally, we are interested in how analytically computing the upwelling of error from the unfiltered subspace, as in EKF-

AUSE, compares with a homogeneous, multiplicative inflation applied to the EKF-AUS algorithm. Multiplicative scalar in-30

flation is among the most common approaches to mitigate for sampling and model error in Kalman filtering methods, and

it is widely used in operational environmental forecasts utilizing the EnKF(Whitaker and Hamill, 2012) . In our experiments,

if Pk ,
(
Eff
k

)T(
Ψk + Q̂ff

k

)
Eff
k is

:
.
:::
We

:::::
define

::::::::::::::::::::::::
Pk ,

(
Eff
k

)T(
Γk + Q̂ff

k

)
Eff
k:::

to
::
be

:
the estimated forecast error of EKF-AUS,

we define the
:::::
where

:::
Γk ::

is
::::::
defined

:::
in

:::
Eq.

:::::
(39).

:::
The

:
inflated covariance PI

k as PI
k =

(
Eff
k

)T(
αΨk + Q̂ff

k

)
Eff
k ::

is
::::::
defined

:::
as

:::::::::::::::::::::::::
PI
k =

(
Eff
k

)T(
αΓk + Q̂ff

k

)
Eff
k for some chosen scalar α. The inflated covariance PI

k is used to compute the sub-optimal35
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Figure 3. Box plot statistics of the local Lyapunov exponents, for Lyapunov exponents 14 through 24, over 100,000 realizations for the 40

dimensional L96 model. The mean (i-th Lyapunov exponent) is plotted as a triangle with median the horizontal line. Box contains inner two

quartiles of realizations, with whiskers extending to 1.5 the inner quartile width from the third and first quartile. Outliers are realizations

outside of this range, plotted individually.

::::::
reduced

::::
rank

:
gain, as a simple way to compensate for the underestimation of the forecast error when using the recursion in Eq.

(37a).
:::::::::::
Furthermore,

:::
the

::::::
inflated

:::::::::
covariance

::
is

:::::::::::
subsequently

::::
used

::
in

:::
the

::::::::
recursion

:::
for

:::
the

:::::::::
subsequent

:::::::
analysis

::::
and

::::::
forecast

:::::
error

::::::::::
covariances.

From the results in Fig. 2, we select the dimension of the filtered subspace to be 17, such that EKF-AUSE has RMSE below

the observational
::::::::::
observation error standard deviation while EKF-AUS (without inflation) has diverged. In Fig. 4, we plot the5

analysis RMSE of EKF-AUSE, with filtered subspace dimension 17, the observational
:::::::::
observation error standard deviation and

the full-rank EKF analysis RMSE as in Fig. 2 as horizontal lines. Additionally, we plot the analysis RMSE
::::::
(y-axis)

:
of EKF-

AUS as a function of the inflation value
:::
(the

::::::
x-axis)

:
applied to the forecast error covariance, with the inflation valuesplotted as

:
.
:::
The

:::::::
inflation

::::::
values,

:::
α,

::
are

:::::::
defined

::
as

:::
the

::::::
evenly

:::::
spaced

::::::
points

::
in

::::
[1,4]

::
at

:::::::::
increments

:::
of

:::
0.1,

:::::::
denoted

::
by

:
triangles. The RMSE

of all the above is again computed over 100,000 forecast cycles.10

Figure 4 highlights distinctly the impact of including multiplicative inflation to EKF-AUS: the performance of EKF-AUS

with inflation quickly becomes comparable to the analytically resolved EKF-AUSE, which in this case, represents the lower-

most bound for the RMSE of EKF-AUS with homogeneous inflation.
:::
The

::::::
lowest

::::::
RMSE

::
for

:::::::::
EKF-AUS

::::
with

::::::::
inflation,

:::::::
realized

::
in

:::
Fig.

:::
4,

::
is

::::::::::::
approximately

:::::
0.322

:::::::::
compared

::
to

:::
the

::::::
RMSE

:::
of

::::::::::
EKF-AUSE,

:::::::::::::
approximately

:::::
0.304.

:
Figure 4 confirms the role

of multiplicative inflation as compensating for the upwelling of unfiltered error under weakly-nonlinear error growth, and15

explains the underlying dynamical mechanism: multiplicative inflation brings the estimated forecast error covariance of EKF-

AUS closer to the ideal covariance given by EKF-AUSE.
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Figure 4. Analysis RMSE of EKF-AUS
::::::
(y-axis), correction rank 17, with multiplicative inflation plotted versus the inflation value

:
α
::::::
(x-axis).

Horizontal lines are the observational
::::::::
observation error standard deviation, EKF-AUSE and EKF analysis RMSE. Note the log scale of the

y-axis.

It is important to remark that the analytic form for the inflation in Eq. (38) is only a useful representation for the weakly-nonlinear

evolution of

5
::::::::::
Discussion:

:::
the

:::::::
reduced

:::::
rank

:::
KF

::::::::::
covariance

:::
and

:::::
gain

::::::::::::
augmentation

::::::::::::::::::::::::::::
Whitaker and Hamill (2012) found

:::::::
evidence

::::
that

:::::::
additive

:::::::
inflation

:::::
could

:::::
better

::::::::::
compensate

::
for

:::
the

::::::
effects

::
of

:::::::::
unresolved

::::::
model

::::
error,

:::::
while

::::::::::::
multiplicative

:::::::
inflation

:
is
::::
best

:::::
suited

::
to

:::::::
account

::
for

::::::::
sampling error; for more nonlinear error evolution, multiplicative5

inflation will also compensate for the sampling erroras described by Palatella and Trevisan (2015) , and the performance

of EKF-AUSE is not expected to provide a bound in this regime. The ways that multiplicative inflation can mitigate the

nonlinear sources of error are discussed by, e. g. , Bocquet (2011); Bocquet et al. (2015)
::::::::
consistent

:::::
with

::::
what

::::
was

:::::
noted

:::
by

::::::::::::::::
Bocquet (2011) and

:::::::::::::::::::::::
Bocquet and Sakov (2012) .

::::
This

:::::::::
hypothesis

::
is
:::::::::
supported

::
by

::::
our

::::::
results

::
as

:::::::
follows.

::::
The

::::::::::
combination

:::
of

::::
rank

::::::::
deficiency

:::
of

:::
the

:::::::
analysis

:::
and

:::
the

::::::::
presence

::
of

:::::::
additive

::::::
model

::::
error

::::::::::
determines

::
an

::::::::
intrinsic

:::
role

:::
for

:::::::::
covariance

::::::::
inflation10

::
in

:::::::::::::
ensemble-based

:::::::
Kalman

:::::
filters

::::
due

::
to

:::
the

:::::::::
persistent,

:::::::
residual

:::::::::
unfiltered

::::::
model

::::
error

::::
and

::
its

::::::::
resultant

:::::::::
upwelling

::::
into

:::
the

::::::::
ensemble

::::
span.

::::
The

:::::::::
dynamical

::::::::
upwelling

::::::
forms

:::
the

::::
basis

:::
for

:
a
:::::::::
systematic

::::::::::::::
underestimation

::
of

:::
the

::::::::::
uncertainty

::
in

:::
the

::::::::
ensemble

:::::
space,

::
as

::::::::::::
demonstrated

::
in

::::
Fig.

:::
2.

::::
This

:::
can

:::
be

:::::::::::
compensated

::::
for

::::
with

::::::::::::
multiplicative

:::::::
inflation

:::
in

:::
the

::::::::
ensemble

:::::
span,

::::::
which

:::::::
emulates

:::
the

:::::::::
additional

::::::::::
uncertainty

:::
that

::
is
:::::::::

neglected
::
in

:::
the

::::::::
standard,

:::::::
reduced

::::
rank

::::::::
Kalman

::::
filter

::::::::
recursion

:::
—

:::
this

::::::
effect

::
is

:::::::
exhibited

:::
in

:::
Fig.

::
4. Figure 5 gives a conceptual diagram of the number of samples

::::::::
(ensemble

:::::::::
members) needed to prevent15

divergence of the EnKF in different dynamical regimes, and the effect of multiplicative inflation on this requirement.
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Figure 5.
::::::::

Conceptual
::::::::::
representation

:::
of

::
the

::::::
number

::
of
:::::::

samples
:::::::
necessary

::
to
::::::
prevent

::::::::
divergence

:::
of

::
the

:::::
EnKF

::
in

:::::::
different

::::::
filtering

:::::::
regimes.

::::
Dark

::::
green

::::::::
represents

::::::::::
near-optimal

::::
filter

:::::::::
performance

:::
and

::::
dark

:::
red

::::::::
represents

::::
filter

:::::::::
divergence.

::
In

::::::::::
perfect-linear

::::::
models,

::::
only

::
n0:::::::

samples

::
are

::::::
needed

::
for

::
an

:::::::::::
asymptotically

::::::
optimal

::::::::::
performance.

::::::
Without

:::::::
inflation,

::
in

::::
noisy

:::::
linear

:::
and

::::::
perfect,

:::::::::::::
weakly-nonlinear

::::::
regimes,

::::
near

::::::
optimal

:::::::::
performance

:::
can

::
be

:::::::
obtained

::
by

::::::::
correcting

::::
error

::
in

::
all

::::::
modes

::
up

::
to

::
the

:::::::::
moderately

:::::
stable

::::
BLVs

:::
—

:::
here

::::
nws:::::::::

corresponds
::
to

:::
the

::::::
number

::
of

::::::
unstable/

::::::
neutra/

::::::::::
weakly-stable

::::::
modes,

:::::
while

:::
nms:::::::::

furthermore
:::::::

includes
:::::::::::::
moderately-stable

::::::
modes.

::::::::
Additional

:::::::
samples

:::
may

::
be

::::::::
necessary

::
to

:::::
control

::::
error

::::::
growth

:::
with

:::::
noisy,

:::::::::::::
weakly-nonlinear

::::::::
evolution.

:::::::::::
Multiplicative

::::::
inflation

::::::
corrects

:::
for

:::
the

:::::::
upwelling

::::
from

:::
the

:::::::::
uncorrected

:::::
stable

:::::
modes

::
so

:::
that

:::
near

::::::
optimal

::::::::::
performance

:::
can

::
be

:::::::
obtained

::::
when

:::
the

::::
error

:::::
growth

::
in

:::::::
unstable/

::::::
neutral/

::::::::::
weakly-stable

:::::
modes

:::
are

::::::::
corrected.

::::::::
However,

:::::::::::
multiplicative

:::::::
inflation

:::
(in

:::
the

::::::::
ensemble

::::
span)

:::::::
neglects

:::
the

:::::::::::
fundamental

::::
issue

::::
that

:::
the

::::::::
unfiltered

::::
error

:::::
lying

::::::
outside

::
of

:::
the

::::::::
ensemble

::::
span

:::
can

:::
be

:::
the

:::::
major

:::::
driver

::
of

:::
the

::::::::::
uncertainty

::
in

::
a

::::::
reduced

:::::
rank

::::
filter

::::
with

::::::
model

::::
error.

::::::
Figure

::
1

:::::
shows

::::
that

::::
when

:::
the

:::::::::
upwelling

::
is
::::::::::
analytically

::::::::
resolved,

:::
the

::::::
largest

::::::::::
uncertainty

::::::::
typically

:::
lies

::
in
::::

the
::::::
leading

:::::::::
unfiltered

::::
BLV,

:::::
even

:::::
when

:::
this

::
is

::
an

:::::::::::::
asymptotically

:::::
stable

:::::
mode.

::::
We

::::::
provide

::
a
::::::::::
conceptual,

::::::::::::::
two-dimensional

::::::::::
visualization

:::
of

:::
the

::::::::
difference

::::::::
between

:::
the

:::::::
standard

::::
(full

:::::
rank)

:::::::
Kalman

::::
filter

:::::::
forecast

:::::
error

:::::::::
covariance

::::
and

:::
the

:::::::
reduced

::::
rank

:::::::
Kalman

:::::
filter

:::::::
forecast

::::
error

:::::::::
covariance

:::
in5

:::
Fig.

::
6.

:::::::
Unless

::::
local

:::::::::
Lyapunov

::::::::
exponents

::
in
:::

the
:::::::::

unfiltered
:::::
space

:::
are

:::::::
strongly

::::::
stable,

::::::
thereby

::::::
rapidly

::::::::::
dissipating

:::
the

::::::::
unfiltered

:::::::::::
perturbations

::
of

:::::
model

:::::
error,

:::::::
transient

::::::::::
instabilities

:::
can

:::::
make

:::
the

::::::::
unfiltered

:::::
errors

:::::
large

::::::
enough

::
to

::::::
prevent

::::::
useful

::::
state

::::::::
estimates

:::::::::::::::::::
(Grudzien et al., 2017) .

::::
This

:::
is

::::::::
evidenced

:::
in

::::
Fig.

:
4
::::::

where
::::::
neither

:::::::::::
EKF-AUSE

::
or

::::::::::
EKF-AUS,

::::
with

::::::::::::
multiplicative

::::::::
inflation,

::::::
achieve

::
an

::::::
RMSE

::::::::::
comparable

::::
with

:::
the

::::
full

::::
rank

::::
EKF.

::::
For

:::
this

::::::
reason,

::
it
::
is

::::::
highly

:::::::
pertinent

::
to
:::::::
explore

:::
the

::::
role

::
of

::::::::::
augmenting

::
the

::::::
EnKF

::::
gain

::::
with

::
a
::::::::::
sub-optimal

:::::::::
correction

::::::
which

:::::::
provides

:::::
some

:::::::
control

::
on

:::
the

::::::::
transient

:::::
error

::::::
growth

::
in

:::
the

::::::::::
orthogonal10
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Figure 6.
::::::::

Conceptual
:::::
digram

::
of
:::

the
:::::
shape

::
of

:::
the

::::
exact

::::::
forecast

::::
error

:::::::::
covariance

::
of

::
the

:::
full

::::
rank

:::::::
Kalman

:::
filter

::::
and

::
the

:::::
exact

::::::
reduced

::::
rank

::::::
Kalman

::::
filter.

:::
The

:::
U

:::
axis

::::::::
represents

:::
the

::::
span

::
of

:::
the

::::::::::::
unstable-neutral

:::::
BLVs,

:::::
where

:::
the

::::::
forecast

:::::::::
uncertainty

::::::
projects

::::
most

:::::::
strongly

::
in

:::
the

::::::
standard

::::
(full

::::
rank)

::::::
Kalman

::::
filter.

::::
The

:
S
::::
axis

:::::::
represents

:::
the

::::
span

::
of

:::
the

::::
stable

:::::
BLVs,

:::::
where

:::
the

::::::::
uncertainty

::
is
:::
the

:::::
largest

::::::
(though

::::::::
bounded),

::
for

:
a
:::::::

reduced
:::
rank

:::::::
Kalman

:::
filter

::::
that

::::::
neglects

:::::::::
corrections

:
to
:::::

these
:::::
modes.

::::
The

:::::::::
comparison

::::::
between

:::
the

:::
full

:::
rank

::::
and

::::::
reduced

::::
rank

::::::
Kalman

:::
filter

:::::::::
covariance

:::::::::
corresponds

::
to

::
the

:::::::
behavior

:::::::
exhibited

::
in

:::
the

:::::
curves

::
in

:::
Fig.

::
1.

::::::::::
complement

::
to

:::
the

::::::::
ensemble

:::::
span.

::::::
Ideally,

:::::
some

::::::::
constraint

:::
on

::
the

:::::::::
unfiltered

::::
error,

:::::
even

:
if
:::::::::::
sub-optimal,

:::::
would

::::::
further

:::::
close

:::
the

:::
gap

:::::::
between

:::
the

::::::
RMSE

::
of

::::::::::
EKF-AUSE

::::
and

::::
EKF

::
in

::::
Fig.

::
4.

::::
This

::::
issue

::
of

:::::::::
instability

::::::
forcing

::::::::
unfiltered

:::::
error

:
is
:::::
even

::::
more

:::::
acute

::
in

:::::::
practice.

::::
For

::::
large

::::::::::
geophysical

:::::::
models,

::::::::::::
computational

:::::::::
limitations

::::
may

:::::::
prohibit

:::
the

:::
use

:::
of

::
an

::::::::
ensemble

:::
of

::::
size

::::::::
sufficient

::
to

::::
even

:::::
span

:::
the

:::::::::::::
unstable-neutral

:::::::::
subspace,

:::
let

:::::
alone

:::
the

::::::
weakly

:::::
stable

::::::
modes

:::::
which

:::::::
exhibit

:::::::
transient

::::::::::
instabilities.

:::
In

:::
this

:::::
case,

:::
the

::::::::
unfiltered

:::::
error

::
in

:::
the

:::::::::::::
unstable-neutral

::::::
modes

::::
can5

::::
grow,

:::::::
possibly

::::::::::::
exponentially,

:::
and

:::
the

::::
filter

::::
may

:::::::::
experience

::::::::::
catastrophic

::::
filter

::::::::::
divergence,

:::
due

::
to

:::
the

::::::
failure

::
of

::
the

::::::::::::::
ensemble-based

:::
gain

:::
to

::::::
correct

:::
the

:::::
error

::
in

:::
the

:::::
span

::
of

:::
all

:::
the

:::::::::::::
unstable-neutral

::::::
BLVs

:::::::::::::
(Penny, 2017) .

::
In

::::::::::::
hybridization,

:::
the

::::::::::::::
ensemble-based

::::::
Kalman

::::::::
estimator

::
is

:::::::::
augmented

:::
by

:
a
:::::
static,

::::::::::::::
climatologically

:::::
based

::::::::
estimator

::
—

:::::
using

:
a
::::::::::
background

::::::::::::
climatological

::::::::::
covariance,

::
the

:::::
rank

::
of

:::
the

::::::::
estimator

:::::
used

:::
for

:::
the

:::::::
analysis

::::::
update

::
is

::::::::
increased,

::::
and

:::
has

:::
the

::::::
effect

::
of

::::::::
applying

:
a
:::::::::
correction

::
to

:::::::::
additional

:::::
modes

:::::::
outside

::
of

:::
the

::::::::
ensemble

:::::
span

:::::::::::::::::::::::
(Hamill and Snyder, 2000) .

::::::::
Likewise,

:::
the

::::
use

::
of

:::::::
additive,

:::::::
random

:::::::::::
perturbations

:::
to

:::
the10

:::::::::::::
ensemble-based

:::::::::
covariance

:::
has

::::
been

::::::
shown

::
to

::::::
prevent

::::
filter

::::::::::
divergence

::
by

::::::::
rectifying

:::
the

::::
rank

:::::::::
deficiency

::
of

:::
the

:::::::::
covariance,

::::
and

:::::::
therefore

:::
the

::::
rank

:::::::::
deficiency

::
of

:::
the

:::::::::::::
ensemble-based

::::
gain

:::::::::::::::::::
(Corazza et al., 2007) .

::::::::
However,

::::
there

::
is

::::::::::
considerable

::::::::
difficulty

::
in

:::::::::::::
mathematically

::::::::
analyzing

::
the

:::::
exact

::::::::
recursive

::::
form

:::
for

:
a
::::::::::
sub-optimal

:::::::::::
augmentation

::
of

:::
the

:::::::::::::
ensemble-based

:::::::::
covariance

:::
and

::::::::::::::
ensemble-based

:::::::
Kalman

::::
gain.

::::::::
Although

:::
the

:::::::::
dynamical

:::::::::
upwelling

::
of

:::::
errors

::
is

:
a
:::::::
generic

::::::::
dynamical

::::::
feature

:::
of

::::
these

::::::::
systems,

:::
the

:::::::
one-way

::::::::::
dependence

:::
of

:::
the

::::
error

::
in
:::
the

:::::::
leading

:::::
BLVs

:::
on

:::
the

::::::
trailing

:::::
BLVs

:::::
does

:::
not15

::::::
persist,

:::
due

::
to
::::

the
::::::::::
introduction

::
of

:::::::::
estimation

:::::
errors

::::
into

:::
the

:::::::
trailing

::::::
modes

:::
via

:::
the

:::::::::
augmented

:::::
gain.

:::::::::
Moreover,

:::
the

::::::::
surrogate

:::::::::
covariance

::::
used

::
to

::::::::
constrain

::::
error

::
in
:::

the
:::::::

trailing
:::::
BLVs

::::
will

:::
not

::::::::
generally

:::::
agree

::::
with

:::
the

:::::
exact

::::
error

:::::::::
covariance

::
in

:::
the

:::::::
trailing

:::::
BLVs,

:::::::
making

:
a
::::::
closed

::::
form

:::::
more

:::::::
difficult

::
to

::::::
derive.

::
In
::::

this
::::::
setting,

::
it
::::
may

:::
be

::::
more

::::::::::
appropriate

::
to

::::::
derive

:::::::
heuristic

::::::::
methods

:::::
which

::::::
attempt

:::
to:

:::
(i)

::::::
provide

:::::
some

:::::::::
corrections

::
in
:::

the
:::::::

trailing
:::::
BLVs,

:::::
albeit

:::::::::::
sub-optimal;

:::
(ii)

:::::::
describe

:::
the

:::::::::
dynamical

:::::::::
upwelling

::
of

:::
the

::::::
residual

:::::
error

::::
from

:::
the

::::::
trailing

:::::
BLVs

::::
into

:::
the

::::::
leading

::::::
BLVs;

:::
and

:::
(iii)

::::::::
describe

::
the

:::::
cross

::::::::::
covariances,

:::::::
between

:::
the

:::::::
leading20

:::
and

::::::
trailing

::::::
BLVs,

::::
with

::::::
respect

::
to

:::
the

::::::::::
corrections.
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:::::::::::
Multiplicative

::::::::
inflation

::::
may

:::
be

::::
used

:::
in

:::
this

:::::
case

::
to

:::::::
account

:::
for

:::::::::::::
mis-estimation

:::
of

:::::::
forecast

:::::
errors

::::::::
resulting

:::::
from

:::::
these

:::::::::::::
approximations,

:::
but

:::
this

:::::::::::::
mis-estimation

:::
can

::::
also

::
be

:::::::::
accounted

:::
for

:::::
using

:::
less

:::
ad

:::
hoc

::::::::::
approaches

::::::::
including

::::::::::::
parameterizing

::::
this

::::
error

::::
with

::::::::::
hyperpriors

:::::::::::::::::::
(Bocquet et al., 2015) .

:::
We

:::::
argue

::::
that

:::
the

:::::::::
hyperprior

::
in

:::
the

:::::::
EnKF-N

::::
can,

::
in

::::::::
principle,

::::
also

:::
be

:::::::
selected

::
to

:::
take

::::
into

:::::::
account

:::
the

:::::::::
dynamical

::::::::
upwelling

::::::::
exhibited

:::
by

:::::::::
KF-AUSE.

:::::::::
Recently,

::
an

::::::::
extension

::
of
::::

the
:::::::
EnKF-N

::
to

:::
the

::::::::
presence

::
of

:::::
model

:::::
error

:::
has

:::::::
utilized

:::
an

:::::::
adaptive

::::::::::::
multiplicative

:::::::
inflation

:::::
term

::
to

::::::::::
compensate

:::
for

::::::
model

:::::
errors

:::::::::::::::::::
(Raanes et al., 2018) ,5

:::
but

:::
we

::::::
suggest

::::
that

::
an

::::::::::
alternative

::::::::
approach

::::::::
including

::::
gain

:::::::::::
augmentation

::::::::::::::::::::::::::::::::::::::
(Bocquet et al., 2015, suggested in section 7) ,

::::
and

:
a
:::::::::
hyperprior

::::::::::::
parametrizing

:::
the

:::::::
resulting

:::::
error

::::::::::
distribution,

:::::::::
including

:::::::::
dynamical

:::::::::
upwelling,

:::::
would

:::
be

:
a
::::::

logical
:::::::::

extension
:::
for

:::::
future

:::::::
research.

:

6 Conclusions

Assimilation in the Unstable Subspace (AUS)
:::::
(AUS)

:
has provided a useful conceptual framework for understanding the dy-10

namical properties of data assimilation cycling in perfect models. Both numerical and mathematical results have confirmed

the underlying hypothesis of Anna Trevisan: in the setting of perfect, chaotic models, the evolution of uncertainty is confined

to a space characterized by non-negative Lyapunov exponents, typically of much lower dimension than the full model state

space (Palatella et al., 2013). In ensemble data assimilation, we see that the asymptotic characteristics of the anomalies exhibit

these properties, which can be exploited to reduce the computational burden of the assimilation cycle (Bocquet and Carrassi,15

2017). This phenomena has recently also been exploited
::::::
utilized

:
to reduce the numerical cost of synchronization in dynamical

shadowing based data assimilation methods (de Leeuw et al., 2017).
:::
The

:::::
work

::
of

::::::::::::::::::::::::::
Palatella and Grasso (2018) has

::::::::::
furthermore

:::::::
proposed

:::
an

::::::::
extension

::
of

:::
the

::::::::::::
EKF-AUS-NL

::::::::
algorithm

::
to
:::::::
account

:::
for

:::::::::
parametric

::::::
model

:::::
errors.

:

This paper
::::
now demonstrates that the framework of AUS can likewise be used to understand the underlying mechanisms

for the evolution of uncertainty in reduced rank filters applied to chaotic dynamics in the presence of additive model error
:::
for20

:::::::::::::
ensemble-based

:::::
filters

::
in

:::::::
chaotic

::::::
models

::::
with

:::::::
additive

:::::
errors. Due to the high dimensional models, and unresolved physical

processes, this circumstance is ubiquitous in high-dimensional geoscience applications where standard EnKFs are extremely

rank deficient. Utilizing the Lyapunov filtration for the backward vectors, we have shown how unfiltered error, outside of the

span of the anomalies, is transmitted by the dynamics into the filtered subspace. In perfect models, or when stability in the

unfiltered subspace is sufficiently strong, this effect can be neglected due to the rapid dissipation of unfiltered errors. However,25

Grudzien et al. (2017) demonstrate how weakly stable modes of high variance can go through periods of transient instability,

exciting unfiltered error. The dynamic upwelling of unfiltered error, characterized by the term (33c), acts as a linear effect on

filters with small ensemble sizes. Under weakly-nonlinear error growth, the span of the anomalies projects strongly onto the

span of the leading BLVs — therefore, the Riccati equation, Eq. (38), highlights an important, and previously unexplained,

mechanism driving the need for covariance inflation in reduced rank, ensemble based
::::::::::::
ensemble-based

:
Kalman filters.30

The role of inflation we describe differs from previous studies, e.g., the work of Palatella and Trevisan (2015), which studied

the nonlinear interactions of error in perfect models. The phenomena of dynamical upwelling is also independent of the mis-

estimation of error due to a finite sample size representing the true error statistics (Bocquet et al., 2015). Rather, we exhibit an

26



effect which can contribute to filter divergence over short time scales in ensemble data assimilation , when the error dynamics

are linear or weakly-nonlinear, if
:::
and

:
uncertainty is forced by additive model errors. This persistent dynamical upwelling of

errors from the unfiltered space into the ensemble subspace is a phenomena which we prove analytically in linear models,

and demonstrate numerically to be a valid approximation of weakly-nonlinear error growth in nonlinear models for reduced

rank extended Kalman filters. The KF-AUSE Riccati equation, Eq. (38), therefore represents the ideal recursion for the error5

covariance of a reduced rank Kalman filter.

If we treat the standard EnKF as Monte Carlo estimate of the error statistics characteristic of the KF-AUSE covariance, the

ideal uncertainty for a reduced rank Kalman filter
:::
Eq.

::::
(38), the dynamical upwelling explains the intrinsic role for covariance

inflation in the reduced rank EnKF. But in addition, our work also confirms that the role of
::
our

::::::
results

::::
also

:::::::
suggest

:::
that

::::
this

::::
need

:::
for covariance inflation may potentially be mitigated by: (i) sufficiently increasing the ensemble size to include asymp-10

totically stable modes that produce transient instabilities, such that unfiltered error is rapidly dissipated by stable dynamics;

(ii) increasing the rank of the analysis update itself, with a hybridized gain; (iii) parameterizing the upwelling of error via a

hyperprior which targets the ideal evolution true forecast error
::::::::
evolution

::
of

:::::::
forecast

:::::
errors; or (iv) some combination of the

above. Our new understanding of the dynamics of error propagation thus opens new opportunities in algorithm design, where

the above techniques may be used directly to ameliorate the effects of dynamical upwelling.15

Where there is dynamical chaos, AUS will continue to be a robust framework for the theory of data assimilation in physical

models. Understanding the dynamical mechanisms that govern the evolution of error in fully nonlinear data assimilation, e.g.,

the unstable-neutral manifolds of the (stochastic) chaotic attractor, will be the subject of future research and may be considered

the logical extension of the framework put forward by Anna Trevisan — her insight to the underlying processes in assimilation

will continue to provide inspiration to both developers and practitioners of data assimilation methods.20
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