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Abstract. Quantitative precipitation forecast (QPF) is still a challenge for numerical weather prediction (NWP), despite the

continuous improvement of models and data assimilation systems. In this regard, the assimilation of radar reflectivity volumes

should be beneficial, since the accuracy of analysis is the element that most affects short-term QPFs. Up to now, few attempts

have been made to assimilate these observations in an operational set-up, due to the large amount of computational resources

needed and to several open issues, like the arise of imbalances in the analyses and the estimation of the observational error.5

In this work, we evaluate the impact of the assimilation of radar reflectivity volumes employing a Local Ensemble Transform

Kalman Filter (LETKF), implemented for the convection permitting model of the COnsortium for Small-scale MOdelling

(COSMO). A 4 days test case on February 2017 is considered and the verification of QPFs is performed using the Fractions

Skill Score (FSS) and the SAL technique, an object-based method which allows to decompose the error in precipitation fields in

terms of structure (S), amplitude (A) and location (L). Results obtained assimilating both conventional data and radar reflectivity10

volumes are compared to those of the operational system of the Hydro-Meteo-Climate Service of the Emilia-Romagna region

(Arpae-SIMC), in which only conventional observations are employed and latent heat nudging (LHN) is applied using surface

rainfall intensity (SRI) estimated from the Italian radar network data. The impact of assimilating reflectivity volumes using

LETKF in combination or not to LHN is assessed. Furthermore, some sensitivity tests are performed to evaluate the effects of

the length of the assimilation window and of the reflectivity observational error (roe). Moreover, balance issues are assessed15

in terms of kinetic energy spectra and providing some examples of how these affect prognostic fields. Results show that the

assimilation of reflectivity volumes has a positive impact on QPF accuracy in the first few hours of forecast both when it is

combined to LHN or not. The improvement is further slightly enhanced when only observations collected close to the analysis

time are assimilated, while the shortening of cycles length worsens QPF accuracy. Finally, the employment of a too small value

of roe introduces imbalances in the analyses resulting in a severe degradation of forecast accuracy, especially when very short20

assimilation cycles are used.

1 Introduction

Numerical weather prediction (NWP) models are widely used in meteorological centres to produce forecasts of the state of the

atmosphere. In particular, they play a key role in the forecast of precipitation (Cuo et al., 2011), which arouses a great interest

due to the many applications in which it is involved, from the issue of severe weather warnings to decision making in several25
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branches of agriculture, industry and transportation. Therefore, an accurate quantitative precipitation forecast (QPF) is of great

value for society and economic activities.

In recent years, the increase of available computing resources has allowed to increment NWP spatial resolution and to

improve the accuracy of parametrization schemes, enabling to develop convection-permitting models (Clark et al., 2016).

Despite that, QPF is still a challenge since it is affected by uncertainties in timing, location and intensity (Cuo et al., 2011;5

Röpnack et al., 2013). These errors arise partly from the chaotic behaviour of the atmosphere and from shortcomings in the

model physics (Berner et al., 2015), but the main factor which affects the quality of QPF, especially in the short range (3-12

hours), is the accuracy of initial conditions (Dixon et al., 2009; Clark et al., 2016).

The initial condition (analysis) is generally produced by a data assimilation procedure which combines model state (back-

ground or first guess) and observations to provide the best possible estimate of the actual state of the atmosphere at a given10

time. In the last decades, different assimilation schemes have been proposed and implemented operationally in meteorological

centres around the world (Bannister, 2016). They can be divided in different families: those based on a variational approach,

like three-dimensional variational data assimilation (3D-Var: Courtier et al., 1998) and four-dimensional variational data as-

similation (4D-Var: Buehner et al., 2010b), those based on the ensemble Kalman filter (EnKF: Evensen, 1994; Houtekamer

and Mitchell, 1998) and those based on the particle filter (PF; see van Leeuwen, 2009 for a review). At the convective scale,15

EnKF methods seem to be preferable to variational schemes (Schraff et al., 2016). In fact, they determine explicitly the back-

ground error covariance, which is highly flow-dependent at the convective scale. Furthermore, in a variational scheme it is

not straightforward to update any variable of a NWP model since an explicit linear and adjoint relation to the control vector

of prognostic variables is needed. These problems can be partly addressed by employing hybrid EnKF-Variational techniques

(like Wang et al., 2008; Gustafsson and Bojarova, 2014) but these approaches have mostly been applied to larger scale NWP. A20

more preferable option would be to employ a PF which is also considered to be the most promising technique to deal with the

non-linear and non-Gaussian characters of dynamics and error statistics (Yano et al., 2018). Unfortunately, despite the efforts

to overcome the dimensionality challenges of this assimilation technique (e.g. Poterjoy, 2016), PF is still not feasible for oper-

ational applications. Returning to EnKF methods, several variants have been suggested (for a survey refer to Meng and Zhang,

2011) and one of the most popular is the local ensemble transform Kalman filter (LETKF), proposed by Hunt et al. (2007).25

It is used operationally in several meteorological centres like at COMET (Bonavita et al., 2010), at MeteoSwiss employing

the version of the scheme developed for the COSMO consortium (Schraff et al., 2016) and for research purposes at both the

Japan Meteorological Agency (JMA; Miyoshi et al., 2010) and at the European Centre of Medium-Range Weather Forecasts

(ECMWF; Hamrud et al., 2015).

The quality of the analysis is not determined only by the data assimilation scheme employed, but also by the quality and30

amount of observations that can be assimilated. With this aim, the assimilation of radar observations can be very beneficial,

since they are highly dense in space (both horizontally and vertically) and in time. Up to now, several attempts have been made

to improve the quality of analyses and subsequently the accuracy of QPFs by assimilating rainfall data estimated from radar

reflectivity observations (Jones and Macpherson, 2006; Leuenberger and Rossa, 2007; Sokol, 2009; Davolio et al., 2017). Con-

versely, only few tries have been made to directly assimilate reflectivity volumes in a convection permitting model employing35
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EnKF techniques (e.g. Snyder and Zhang, 2003), especially in an operational framework (Bick et al., 2016). Despite some

promising results, many issues affect the assimilation of reflectivity volumes at high spatial resolution and several aspects need

to be further investigated.

First of all, the length of the assimilation window, which is one of the key aspects of any data assimilation system, has to

be examined. In EnKF methods, a short window would be desirable to avoid that dynamical features leave the area where5

computed localized increments are significant (Buehner et al., 2010a) and to better preserve the gaussianity of the ensemble

which can be compromised by non-linearities (Ferting et al., 2007). On the other hand, a too short window would lead to an

increase of imbalances in the analysis, since the model has no the time to filter spurious gravity waves, introduced at each

initialization, through the forecast step of the assimilation cycle. When reflectivity volumes are assimilated, the window length

becomes even more crucial since these observations allow to catch small scale features of the atmosphere (Houtekamer and10

Zhang, 2016). In order to exploit the high temporal frequency of these data, which is essential to properly characterize fast

developing and moving precipitation systems, it seems reasonable to employ short windows to assimilate, in each cycle, only

observations collected very close to the analysis time. Furthermore, the choice of a short window is encouraged by the use of

short localization scales, which has to be employed since small scales features are observed. Conversely, the big amount of

radar observations enhances the imbalance issue and, therefore, the imbalances generated in the model by each initialisation15

should be checked and kept under control.

Another important issue is how to determine the observational error for radar reflectivities. As for any other observation,

this is influenced by three different sources: instrumental errors, representativity errors and observation operator errors (Janjić

et al., 2017). Since none of these are known, the choice of its value is not straightforward and can be estimated only in a

statistical sense. Considering the amount of radar data, a correct estimation of the observational error is crucial, since even a20

small departure from the correct value can have a large impact on the quality of the analyses. Moreover, it should be taken

into account that the use of the radar data is highly dependent on the observation operator adopted and its biases should also

be studied and ideally removed. Finally, a further challenge is the estimation of the observational error correlation especially

when dealing with radar data assimilation, due to the high density of this type of observations..

At Arpae-SIMC, the Hydro-Meteo-Climate Service of the Emilia-Romagna region, in Italy, a LETKF scheme is used to25

provide the initial conditions to the convection-permitting components of the operational modeling chain, consisting of one

deterministic run and of one ensemble system both at 2.2 km of horizontal resolution. Currently, only conventional data are

assimilated through the LETKF scheme and latent heat nudging (LHN; Stephan et al., 2008) is performed using rainfall

intensity estimated from the Italian radar network data. The purpose of this paper is to present the first results obtained when

also reflectivity volumes are assimilated using the LETKF scheme. In particular, the impact of assimilating reflectivity volumes30

in combination or not with LHN is evaluated. Furthermore, it is studied the sensitivity of the obtained analysis to two important

characteristics of the assimilation cycle: the length of each cycle and the observational error attributed to the radar reflectivities.

This paper is organised as follows. In section 2 the model and the data assimilation system are described, as well as the

observations employed. Furthermore, the operational set-up implemented at Arpae is reported in conjunction with the set-up

3



Figure 1. Integration domain (grayscale) of the COSMO model employed in this study with the Italian radar network overlapped. For each

radar the approximate coverage area is shown with a dashed line if the radar system contributes only to the SRI composite employed in LHN

and with a solid line if it is used also to directly assimilate reflectivity volumes through KENDA.

of the experiments performed in this study. In section 3 the verification methods are explained. In section 4 results are shown

and discussed. In section 5 some conclusions are drawn.

2 Data, model and methodology

2.1 The COSMO model

The COSMO model (Baldauf et al., 2011) is a non-hydrostatic limited-area model developed by the multi-national COnsortium5

for Small-scale MOdelling (COSMO) and it is designed for both operational NWP and several research applications. It is based

on the primitive equations describing compressible flows in a moist atmosphere and the continuity equation is replaced by a

prognostic equation for the pressure perturbation (deviation from a reference state). The prognostic variables involved in these

equations are the three dimensional wind vector, temperature, pressure perturbation, turbulent kinetic energy (TKE) and specific

amount of water vapour, cloud water, cloud ice, rain, snow and graupel.10

In the present study, the COSMO model is run at 2.2 km horizontal resolution over a domain covering Italy and part of the

neighbouring countries (Figure 1) and employing 65 terrain-following hybrid layers. The model top is at 22 km.

Regarding set-up and parametrizations, deep convection is resolved explicitly while the shallow convection is parametrized

following the non-precipitating part of Tiedtke scheme (Tiedtke, 1989). Cloud formation and decay is controlled by a Lin-type

one moment bulk microphysics scheme which includes all the prognostic microphysical species (Lin et al., 1983; Seifert and15

Beheng, 2001). The turbulent parametrization is based on a TKE equation with a closure at level 2.5, according to Raschendor-
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fer (2001). Radiative effects are described by the δ-two-stream radiation scheme of Ritter and Geleyn (1992) for short-wave

and long-wave fluxes. Finally, the lower boundary conditions at the ground are provided by the multi-layer soil model TERRA

(Doms et al., 2011).

2.2 The KENDA system

The KENDA system (Schraff et al., 2016) implements for the COSMO model the LETKF scheme described by Hunt et al.5

(2007). In this implementation, the method is fully four dimensional, that is all observations collected during the assimilation

window contribute to determine the analysis and the related model equivalents are computed using the prognostic variables at

the proper observation time. To avoid spurious long-distance correlations in the background error covariance matrix, analyses

are performed independently for each model grid point taking into account only nearby observations (observation localization).

Observations are weighted according to their distance from the grid point considered using the Gaspari-Cohn correlation10

function (Gaspari and Cohn, 1999). In the present work, two different values of the Gaspari-Cohn localization length-scale are

employed for conventional and radar observations: 80 km for the former, 16 km for the latter (as done by Bick et al., 2016).

The limited size of the ensemble, combined to the assumption of a perfect model made in the LETKF scheme, leads to an

underestimation of the background and analysis variances (e.g. Anderson, 2009) and, as a consequence, the quality of analyses

is negatively affected. To address this issue, KENDA provides some techniques to enlarge the spread of the ensemble (for a15

complete description of each of them refer to Schraff et al., 2016). Here, multiplicative covariance inflation (Anderson and

Anderson, 1999) and the relaxation to prior perturbation (RTPP; Zhang et al., 2004) are employed. The former consists in

inflating the analysis error covariance by a factor ρ greater than one which is estimated following Houtekamer et al. (2005).

The latter lies on the relaxation of the analysis ensemble perturbations xa
i − x̄a (where xa

i is the analysis for the i-th member

and x̄a is the analysis ensemble mean) towards the background ensemble perturbations xb
i − x̄b, that is:20

xa
i,new − x̄a = (1−α)(xa

i − x̄a)+α(xb
i − x̄b) (1)

where αp = 0.75 (see also Harnisch and Keil, 2015). Another approach provided by KENDA to account for model error is

the additive inflation. It consists in adding random noise with mean 0 and covariance Q to the analysis ensemble members,

where Q is the model error covariance matrix (Houtekamer and Mitchell, 2005). Since Q is not known, it is assumed to be

proportional (by a factor smaller than 1) to a static background error covariance B (Mitchell and Houtekamer, 2000). In the25

present work, additive inflation is not employed.

The KENDA suite also allows to compute the analysis weights, i.e. the analysis on ensemble space, on a coarsened grid (Yang

et al., 2009). After being computed on the coarsened grid, weights are interpolated on the original high resolution grid and then

used to compute analysis increments in model space. In this way, the computational cost is decreased without significantly

affecting the accuracy of analysis (Yang et al., 2009). In the present study, a coarsening factor equal to 3 is employed.30

2.3 Assimilated data

KENDA allows the assimilation of both conventional and non conventional observations.
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Conventional observations assimilated in this work include aircraft measurements (AMDAR) of temperature and horizontal

wind, surface station measurements (SYNOP) of 10 m horizontal wind, 2 m temperature, 2 m relative humidity and surface

pressure, radiosonde data (TEMP) of temperature, horizontal wind and humidity.

With regards to non conventional observation, KENDA allows also the assimilation of radar reflectivity volumes and radial

winds. Radar data are assimilated through the Efficient Modular VOlume RADar Operator (EMVORADO) expressly designed5

for the COSMO model. It simulates the radar reflectivity factor and radial velocities processing the COSMO model fields one

radar system at a time. Operator characteristics, resolution and the management of no-precipitation information are described

in (Bick et al., 2016).

Although the operator gives the possibility to assimilate both radial winds and reflectivities, in the present work only reflec-

tivity volumes are assimilated. Reflectivity volumes come from four different radar stations over Northern Italy (solid circles10

in Figure 1): Bric Della Croce (Piedmont Region), Settepani (Liguria Region), Gattatico and San Pietro Capofiume (Emilia-

Romagna Region). Due to the complex orography of the considered area, radar are placed at very different altitudes and have

different acquisition strategies. Observations are acquired every 10 minutes for Bric Della Croce radar, every 5 minutes for

Settepani radar, every 15 minutes for San Pietro Capofiume radar and every 15 minutes starting from minutes 5 and 10 of each

hour for Gattatico radar.15

Data have a range resolution of 1 km, while the azimuthal resolution is 1 degree for Bric Della Croce and Settepani and

0.9 degree for San Pietro Capofiume and Gattatico. Before assimilation raw reflectivity are pre-processed taking into account

non meteorological echoes, beam blocking and attenuation to improve the quality of data. In particular, it is important to

eliminate the clutter signal that would affect the analysis retrieval introducing spurious observations. However, due to the fact

that volumes from single radars undergo different pre-processing, it is not possible to define a homogeneous quality criterion.20

For this reason, all data in the volume that are not rejected from pre-processing step are supposed to have the same quality and

are used into the assimilation cycle.

The high temporal and spatial density of observations is precious to estimate the initial state of numerical weather forecast.

This allows to gather a lot of information on the real state of the atmosphere, but it determines an increase in analysis computa-

tional cost, in data transfer time and in memory disk occupation. Moreover, a spatial and/or temporal high density violates the25

assumption made in many data assimilation schemes: the non-correlation of observational errors. To reduce the total amount

of data and to extract essential content of information, the superobbing technique is chosen (Michelson, 2003). In this way, re-

flectivities over a defined area are combined through a weighted mean into one single observation representative of the desired

greater spatial scale. As in Bick et al. (2016), the horizontal resolution chosen in this work for the superobbing is equal to 10

km. Furthermore, before performing superobbing on the observed and simulated fields, a threshold of 5 dBZ is applied to both30

fields in order to avoid that large innovations associated to non-precipitating signals would lead to large analysis increments

without physical relevance.

To evaluate the observational error associated to reflectivity volumes, a diagnostic based on statistical averages of observations-

minus-background and observations-minus-analysis residuals, as described in Desroziers et al. (2005), is used. Employing all
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radar data available during the test case, a reflectivity observational error (roe) equal to 5 dBZ is estimated, as found also by

Tong and Xue (2005).

Finally, fields of surface rainfall intensity (SRI) are also assimilated in each member of the assimilation ensemble using a

latent heat nudging scheme. SRI data come from the composite of the Italian radar network (all circles in Figure 1) and are

distributed by the National Department of Civil Protection. These data have a temporal resolution of 10 minutes and a spatial5

resolution of 1 km, but before the assimilation they are interpolated at the model resolution. Data coming from each station

undergo a quality control that removes those with low quality. The quality depends on different factors such as ground clutter,

beam blocking, range distance, vertical variability and attenuation as described in Rinollo et al. (2013). The composite is then

obtained as a weighted average of surface rain rates from single radar stations, where weights are represented by quality. These

fields are assimilated through the LHN scheme, based on the assumption that the latent heat, integrated along the vertical10

column, is approximately proportional to the observed precipitation. The scheme, which is applied continuously during the

integration of the model, acts in rescaling temperature profiles with an adjustment of the humidity field according to the ratio

between observed and modelled rain rates. LHN has been gainfully employed in different frameworks, including forecasts

over complex terrain (Leuenberger and Rossa, 2004; Leuenberger and Rossa, 2007). Our hypothesis is that, in the KENDA

framework, LHN allows to have the model first guess closer to the observed atmospheric state, improving the analysis quality.15

For this reason, in all experiments (except one) presented here, LHN is applied together to the direct assimilation of reflectivity

volumes through KENDA.

2.4 Operational set-up

The KENDA system is implemented operationally at Arpae using an ensemble of 20 members plus a deterministic run, which

is obtained by applying the Kalman gain matrix for the ensemble mean to the innovations of the deterministic run itself.20

In principle, ensemble mean analyses can be deployed to initialize the deterministic forecasts, but this would lead to some

inaccuracies since the mean of a non-Gaussian ensemble is generally not in balance (Schraff et al., 2016). For this reason

the deterministic branch is added to the system, which differs from the ensemble ones only due to boundary conditions. The

ensemble members use lateral boundary conditions provided every 3 hours at a 10 km horizontal resolution by the ensemble

of the data assimilation system of the Centro Operativo per la Meteorologia (COMet), based on a LETKF scheme (Bonavita25

et al., 2010). The deterministic run employs hourly boundary conditions provided by a 5 km version of COSMO run at Arpae

(COSMO-5M) which domain covers a large part of the Mediterranean basin and surrounding countries.

At Arpae, in the operational set-up, the COSMO model configuration described in Section 2.1 is adopted for all the 21

members. At present, in the operational chain only conventional observations are assimilated and LHN is performed on each

member of the ensemble. The KENDA analyses are used operationally to provide initial conditions to COSMO-2I, the 2.2 km30

deterministic run initialized twice a day at 00 UTC and 12 UTC and to COSMO-2I EPS, an ensemble which is run every day

at 00 UTC for a 48 hours forecast range.
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2.5 Experimental set-up

In order to evaluate the impact of the assimilation of reflectivity radar volumes, several experiments are performed. Each

experiment has the same set-up of the operational chain described in Section 2.4 regarding the number of members of the

ensemble, boundary conditions and the COSMO model configuration. Therefore, they differ only due to the assimilation set-

up. The complete list is provided in Table 1.5

In conv60 and conv60_nolhn experiments only conventional observations are assimilated using KENDA through cycles of

60 minutes. Moreover, in the former, LHN is performed during the forecast step of each assimilation cycle, replicating com-

pletely the operational set-up described in Section 2.4. Experiments rad60 and rad60_nolhn are the analogous of conv60 and

conv60_nolhn when also radar reflectivity measurements are assimilated through KENDA, using a reflectivity observation error

(roe) of 5 dBZ. A comparison between conv60 and rad60 or between conv60_nolhn and rad60_nolhn allows an assessment of10

whether, under the same conditions, the assimilation of reflectivity observations improves the quality of analyses. Furthermore,

comparing rad60 to rad60_nolhn it is possible to evaluate if the assimilation of reflectivity volumes combined with the LHN

provides better results than the assimilation of only radar volumes.

Trial Window length [min] Assimilated obs. roe [dBZ] Note

conv60 60 conv. - -

conv60_nolhn 60 conv. - No LHN

rad60 60 conv. + radar 5 -

rad60_nolhn 60 conv. + radar 5 No LHN

rad30 30 conv. + radar 5 -

rad15 15 conv. + radar 5 -

rad60_lst15 60 conv. + radar 5 Use obs. in the last 15 min. of the window

rad60_roe10 60 conv. + radar 10 -

rad60_roe0.5 60 conv. + radar 0.5 -

rad15_roe10 15 conv. + radar 10 -

rad15_roe0.5 15 conv. + radar 0.5 -
Table 1. Experimental set-up of each experiment including the length of the assimilation cycles, the type of observations assimilated, the

reflectivity observation error (roe) associated to radar data and any additional feature.

All the other experiments involve the assimilation of both conventional data and reflectivity volumes, in addition to LHN. In

order to test the impact of assimilating only observations which are not too far from the analysis time, sensitivity experiments15

on the duration of the assimilation windows are performed. This is tested by comparing rad60 to experiments rad30 and rad15

which differ from rad60 only for the length of the assimilation window, equal to 30 and 15 minutes respectively. An alternative

way to assimilate only the most relevant observations is to select in each cycle a subset of data including the closest to the
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analysis time. In the experiment rad60_lst15 an assimilation window of 60 minutes is employed but only the observations

(both conventional and radar reflectivities) collected in the last 15 minutes of the cycle are taken into account.

Since the estimation of observation error is not straightforward and different techniques can be applied, it is worth to eval-

uate the sensitivity of the assimilation system to this parameter. In addition to the value of 5 dBZ employed in the previous

experiments, two other values are selected: 10 dBZ or 0.5 dBZ. Both of them are tested employing a 60 minutes assimilation5

window (rad60_roe10 and rad60_roe0.5) and using 15 minutes cycles (rad15_roe10 and rad15_roe0.5).

The experiments described above are carried out over a period of almost 4 days from February 3rd at 06 UTC to February 7th

at 00 UTC in 2017. During 3 and 4 February, middle tropospheric circulation over Northern and Central Italy was dominated

by southwesterly divergent flows associated with the passage of some precipitating systems. On February 5 a trough moved

from France to Italy and this caused the formation of new precipitating systems in Northern Italy. During February 6 the trough10

moved slowly from Central Italy to the southern part of the country and precipitation systems weaken gradually. For each

experiment, analyses of the deterministic member are used to initialize forecasts up to 24 hours every 3 hours from February 3

at 12 UTC to February 6 at 06 UTC with a total of 22 forecasts.

3 Verification

The performance of the experiments described in the previous section is assessed by the verification of precipitation employing15

three methods: comparison of areal average precipitation, SAL technique and Fractions Skill Score (FSS). The first method is

applied only to the precipitation during the assimilation procedure for the deterministic member of the first 4 experiments in

Table 1, while SAL and FSS are used to evaluate the QPF accuracy of the 22 forecasts initialized for each experiment.

3.1 Areal average precipitation

The method consists in comparing spatially averaged model precipitation to the average precipitation observed by rain-gauges20

over the same area. In order to have comparable samples, model precipitation is first interpolated on station locations by

selecting the value at the nearest grid point. The rain-gauge stations employed for this verification method (nearly 1500) are

the black dots in the dark grey region in Figure 2. This area is chosen to cover approximately the domain where reflectivity

volumes are assimilated. Both model and rain-gauges precipitation are accumulated in 3 hours steps. Since this method is

used for the verification during the assimilation procedure and the duration of each assimilation cycle, for the experiments25

considered, is 1 hour, model hourly precipitation is accumulated in order to obtain the 3-hourly precipitation. To summarize

the results, the correspondence between model and observations is evaluated in terms of root mean square error (RMSE).

3.2 SAL

The SAL metrics (Wernli et al., 2008) is an object based verification score which allows to overcome the limitations of tradi-

tional scores for convection-permitting models, like the double-penalty problem (Rossa et al., 2008). The detection of individual30

objects in the accumulated precipitation fields is achieved by considering continuous areas of grid points exceeding a selected
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Figure 2. Verification domains employed to perform SAL (dark grey area) and FSS (union of dark grey and light grey areas). The rain-gauges

(black dots) are used to correct precipitation estimated from the Italian radar network. Furthermore, rain-gauges over the black grey domain

are employed for the verification of areal average precipitation during the assimilation procedure.

threshold. Comparing objects from observed and forecast fields, SAL provides information about the structure S, the amplitude

A and the location L errors of QPF. A perfect match between forecast and observations would lead to S =A= L= 0; the

more the values differ from 0, the greater the disagreement between model and observations. More in detail, a too sharp/flat

(broad/small) structure of forecast precipitation compared to observations is associated to positive (negative) values of S; an

overestimation (underestimation) of average rainfall over the domain is associated to positive (negative) values of A; a mis-5

placement of precipitating systems leads to positive values of L. Note that L can range between 0 and 2, while S and A between

-2 and 2.

Observations employed to perform SAL are hourly accumulated precipitation estimated from the Italian radar network and

corrected using rain-gauges data. The radar-raingauges adjustment, adapted for a radar composite, derives from the method

described in Koinstinen and Puhakka (1981). The original method comprises two terms: a range dependency adjustment and10

a spatial varying adjustment. In our case, only the second term is taken into account due to the fact that, in overlapping areas

of the composite, rainfall estimation is obtained combining data from different radars and, therefore, the original information

on the range distance from the radar is lost. The correction is based on a weighted mean of the ratio between rain gauges and

estimated radar rainfall amount calculated over the station locations. Weights are a function of the distance of the grid point

from the station and of a filtering parameter calculated as the mean spacing between 5 observations. Then a smoothing factor15

is applied to the correction.

The verification area, shown in dark gray in Figure 2, is the same as for the areal average precipitation. In this case, the

rain-gauges inside it are employed to correct the rainfall estimation from the radar network. As mentioned before, this area

covers approximately the domain where reflectivity volumes are assimilated. The choice of a larger domain would not be

feasible. In Wernli et al. (2009) it is recommended to use an area not larger than 500× 500 km2 since, otherwise, the domain20

may include different meteorological systems making the interpretation of results problematic. In fact, if the domain contains
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strongly differing meteorological systems, then results obtained using the SAL technique may not be representative of the

weakest one.

3.3 FSS

The Fractions Skill Score is a verification method introduced by Roberts and Lean (2008) based on the neighbourhood approach

and applied to fractional coverage, that is the fraction of grid points exceeding a threshold. The score consists in comparing5

forecast and observed fractional coverage over squared box (neighbourhoods) and it ranges between 0 (completely wrong

forecast) and 1 (perfect forecast). Therefore, a perfect match between model and observations is obtained when the two fields

have the same frequency of events in each box. In this way, the method implicitly acknowledges that the actual resolution of

a model is larger than the grid resolution and, at the same time, that also observations may contain random error at the model

grid scale. Like SAL, this approach allows to overcome the limitation of traditional grid point based scores. Furthermore, it can10

be applied over a domain larger than that employed for SAL since it is based on dichotomy events instead of being based on

the amount of precipitation. For this reason, in this work FSS is applied over the whole Italian country (union of dark gray and

light gray domains in Figure 2) considering boxes of 0.2◦ in both latitude and longitude and, as for SAL, observations consist

in hourly accumulated precipitation estimated from the Italian radar network corrected using rain-gauges data (all black dots

in Figure 2).15

4 Results

4.1 Impact of assimilating the radar reflectivities

A preliminary assessment of the impact of assimilating radar reflectivity volumes with the KENDA system is provided by

comparing two pairs of experiments: conv60_nolhn with rad60_nolhn and conv60 with rad60. In the experiment named

conv60_nolhn only conventional observations are assimilated while in the rad60_nolhn experiment both conventional and20

radar reflectivity volumes are employed. The same dichotomy is preserved in the second pair of experiments but, in this case,

LHN of SRI data is performed additionally in both conv60 and rad60.

The areal average of 3-hourly precipitation during the assimilation procedure is displayed in Figure 3, employing precipi-

tation recorded by rain-gauges (black line) as independent reference observation. Comparing rad60_nolhn (solid orange line)

to conv60_nolhn (dashed blue line), the correspondence between forecast and observed precipitation is improved when re-25

flectivity volumes are assimilated in combination with conventional data through KENDA. In fact, the root mean square error

(RMSE) is reduced from 0.38 mm of conv60_nolhn to 0.26 mm of rad60_nolhn experiment. The same conclusion holds when

the assimilation through KENDA is combined to LHN: the RMSE is reduced from 0.37 mm of conv60 (dashed red line) to

0.29 mm of rad60 (solid green line; this colour will be used from here onwards to identify uniquely this experiment). Note

that the LHN substantially unaffects the overall agreement between forecast and observed precipitation when it is combined30

to the assimilation of only conventional data (RMSE equal to 0.38 mm for conv60_nolhn experiment and to 0.37 mm for
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Figure 3. Areal average 3 hourly precipitation for rain-gauges (black) in the verification area shown in dark grey in Figure 2 and for the

corresponding model forecast, during the assimilation procedure, relative to experiments conv60_nolhn (dashed blue line), conv60 (dashed

red line), rad60_nolhn (solid orange line) and rad60 (solid green line).

conv60) while slightly degrades the correspondence when also reflectivity volumes are employed (RMSE equal to 0.26 mm for

rad60_nolhn experiment and to 0.29 mm for rad60).

Verification of areal average precipitation during the assimilation procedure suggests that the quality of analyses is improved

when radar reflectivity volumes are assimilated. To validate this result, the accuracy of QPF for the 22 forecasts initialized for

each experiment is evaluated. In order to give an insight about how analysis affects a forecast, hourly forecast precipitation5

from analyses on February 3 at 12 UTC are shown in Figure 4. Each column represents different lead times, from +1h to

+3h going from left to right. The first row is the observed rainfall estimated from radars corrected by rain-gauges, that is the

observed field employed for SAL and FSS described in Section 3. The shaded yellow area highlights the acquisition domain of

the Italian radar network. The other rows are, in the order from top to bottom, the forecasts of the experiments conv60_nolhn,

conv60, rad60_nolhn and rad60. Forecast precipitation of conv60_nolhn is too weak and too spread, especially at lead time +2h10

in which large nuclei are forecast west of 12◦E. A significant improvement at +1h is obtained when considering conv60, even if

a strong unobserved nucleus is forecast near 45.5◦N 13.5◦E, while at +2h and especially at +3h the precipitation is completely

misplaced. When considering forecasts initialized from rad60_nolhn and rad60, rainfall accuracy at +1h is further enhanced

in terms of location. Moreover, a significant improvement of both experiments compared to conv60_nolhn and conv60 can be

noticed in location and intensity at lead times +2h and +3h. In particular, rad60 is the only one able to forecast nuclei of the15

correct intensity with just a slight misplacement error.

For an objective verification of QPF, hourly precipitation of the 22 forecasts initialized from the analyses of each experiment

is verified using SAL; to detect rainfall objects a 1 mm threshold is set. The verification using a threshold of 3 mm is also

performed but, since results do not differ significantly from those obtained with a 1 mm threshold, they are not shown here.

Following the approach of Davolio et al. (2017), in Figure 5 the average of the absolute value of each component of SAL is20
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Figure 4. In the first row, the observed field, consisting in hourly rainfall estimated from radars corrected by rain-gauges, is shown for

February 8 at 13, 14 and 15 UTC; the shaded yellow area highlights the acquisition domain of the Italian radar network. In the subsequent

rows, forecast hourly precipitation of experiments conv60_nolhn (second row), conv60 (third row), rad60_nolhn (fourth row) and rad60 (fifth

row) initialized on February 3 at 12 UTC is shown. Each column represents different lead times, from +1h to +3h going from left to right.

plotted as a function of lead time. Although forecasts are up to 24 hours, the verification is shown only for the first 8 hours,

since after this lead time scores of the different experiments become very close. The average is computed considering only

cases in which the observed or forecast rainfall field consists of at least 1000 grid points, which is approximately equal to an

area of 50×50 km2. Using the absolute value of the components of SAL, only the magnitude of the error is considered, loosing

the information on the type of error (e.g., for A, an overestimation of forecast precipitation cannot be distinguished from an5
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Figure 5. Average of the absolute value of each component of SAL over the 22 forecasts initialized from conv60_nolhn (blue), conv60 (red),

rad60_nolhn (orange) and rad60 (green) analyses. Objects are selected using a threshold of 1 mm in hourly accumulated precipitation fields..

Cases in which the observed precipitation field consists of less than 1000 points are not taken into account in the average.

underestimation). This choice slightly limits the potential of SAL but provides an intuitive picture of the overall performance

of each experiment.

Comparing conv60_nolhn to rad60_nolhn, QPF accuracy is slightly improved when forecasts are initialized from analyses

obtained by assimilating both conventional data and reflectivity volumes instead of employing only conventional data. In fact,

at lead times +1h and +2h values of each component of SAL of rad60_nolhn are smaller than those of conv60_nolhn. An5

improvement can be noticed also at +3h in the A component, while S and L are substantially unaffected. At +4h S and A

are improved while L is very slightly deteriorated. From +5h onwards, slight improvements and deteriorations alternate in

an incoherent manner, therefore we can assess that the impact on QPF of using conv60_nolhn or rad60_nolhn analyses is

substantially neutral.

The accuracy of QPF obtained by assimilating conventional data is improved at lead times +1h and +2h by activating LHN10

during the assimilation procedure: all components of SAL for conv60 experiment are smaller than those of conv60_nolhn. The
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Figure 6. Fractions Skill Score as a function of lead time for conv60_nolhn (blue), conv60 (red), rad60_nolhn (orange) and rad60 (green).

Verification is performed considering hourly precipitation and 1 mm (solid lines) and 5 mm (dashed lines) thresholds.

positive impact of LHN is already lost at +3h (in particular, a significant degradation in L component is observed) but, again,

a benefit can be obtained by assimilating also reflectivity volumes. In fact, although at +1h the structure and amplitude errors

of rad60 are larger than those of conv60 (while location error is slightly smaller), from +2h to +4h each component of SAL is

smaller indicating a clear improvement in QPFs accuracy. Again, from +5h onwards, the impact of initializing forecasts from

different analyses becomes neutral. Regarding the combined use of LHN and the assimilation of reflectivity volumes through5

KENDA, at +1h the S component for rad60 is slightly larger than that of rad60_nolhn, while A and L are almost equal. From

+2h to +4h each component of SAL of rad60 is always equal or slightly smaller than the corresponding one of rad60_nolhn.

Finally, to strengthen the results obtained using SAL over Northern Italy, the verification of QPF is extended to the whole

Italian country employing FSS. Results are shown in Figure 6 for two thresholds: 1 mm (solid lines) and 5 mm (dashed lines).

Regarding the 1 mm threshold, a strong improvement in QPF accuracy can be noticed at +1h when reflectivity volumes are10

assimilated (rad60_nolhn and rad60 experiments). At this lead time also only the use of LHN (conv60) is able to improve

significantly the assimilation of conventional data (conv60_nolhn). At +2h the FSS value of the two experiments in which

reflectivities are assimilated is still slightly larger than that of conv60_nolhn, while from +3h onwards differences become very

small. Regarding conv60, the QPF accuracy strongly worsen between +2h and +4h and it is the worst among the 4 experiments.

Similar conclusions hold when the 5 mm threshold is considered but, in this case, QPF of experiments in which reflectivity15

volumes are assimilated outperforms conv60 even at the first hour of forecast. Furthermore, values of FSS of rad60_nolhn are

slightly larger than those of rad60 between +2h and +4h.
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In conclusion, summarizing the verification with SAL and FSS, at lead time +1h the assimilation of both conventional data

and reflectivity volumes (rad60 and rad60_nolhn) has a positive impact on QPF accuracy compared to the assimilation of

only conventional data (conv60_nolhn). The improvement is seen not only where reflectivities are assimilated (Northern Italy),

but also over a much larger area (the whole Italian country). Verification with SAL shows that a slight positive impact over

Northern Italy holds up to +4h, while FSS scores reveal a benefit up to +2h over Italy for both 1 mm and 5 mm thresholds.5

The two experiments in which reflectivity volumes are assimilated do not substantially improve the QPF accuracy at +1h of

the experiment in which only conventional data are assimilated in combination to LHN (conv60). However, they remarkably

outperform it from +2h to +4h, as highlighted by both SAL and FSS. In this case, the positive impact is even enhanced when

the 5 mm threshold is considered.

Finally, regarding the use of LHN combined to the assimilation of reflectivity volumes, SAL shows comparable results10

between rad60 and rad60_nolhn at +1h, while QPF accuracy of rad60 is very slightly enhanced compared to rad60_nolhn

between +2h and +4h. Verification with FSS does not show significant differences between the two experiments for the 1

mm threshold, while rad60_nolhn very slightly outperforms rad60 at +2h and +3h for the 5 mm threshold. Therefore, we can

assess that QPF accuracy is substantially unaffected by assimilating twice an information derived from radar. On the basis of

this result, even if we recognize that the combined assimilation of reflectivity volumes through KENDA and SRI by LHN may15

not be a rigorous process from a theoretical point of view, it is decided to keep the LHN for the subsequent experiments. In fact,

this choice does not affect negatively the results of the sensitivity tests that are presented in this work and, at the same time, the

LHN allows to use radar derived information on the state of the atmosphere in the whole Italian country, despite reflectivity

volumes can be assimilated, at present, only over Northern Italy.

4.2 Impact of the length of the assimilation cycles20

To obtain some insights about this topic, assimilation cycles of 15 and 30 minutes (respectively rad15 and rad30) are tested and

the results are compared to those obtained with the 60 minutes window (rad60), discussed in the previous subsection. Further-

more, an experiment in which observations are assimilated only if collected during the last 15 minutes of hourly assimilation

cycles is performed (rad60_lst15). Accordingly, the total amount of assimilated data is reduced and the increments computed

by the LETKF scheme should be more appropriate for computing the analysis, since the observations time is always very close25

to the analysis time.

In the same way as described in the previous subsection, QPF accuracy of the 22 forecasts initialized for each experiment

is verified employing SAL and FSS. Results are shown, respectively, in Figure 7 and Figure 8 for rad15 (red), rad30 (orange),

rad60 (green) and rad60_lst15 (blue). Considering SAL verification, at lead time +1h the shorter the cycle the smaller the error

in structure and amplitude; however, the smallest location error among the experiments which differ only for the cycle length30

is associated to rad30 while rad15 and rad60 are almost equal. Moreover, at lead time +1h also QPF of rad60_lst15 is more

accurate than that of rad60 in each component. Between +2h and +4h, both rad15 and rad30 have always larger errors than

rad60, with the only exception of S at +4h. In particular, a relevant worsening in the location of rainfall nuclei is observed at

+3h. Regarding rad60_lst15, the comparison with rad60 in the same forecast range reveals that the differences are always small
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Figure 7. As in Figure 5 but considering experiments rad15 (red), rad30 (orange), rad60 (green) and rad60_lst15 (blue).

but, except for S at +2h and +3h, rad60 slightly outperforms rad60_lst15. From lead time +5h onwards, differences among the

4 experiments become small and the results are mixed.

Extending the verification to the whole Italian country employing FSS, at +1h no significant differences can be noticed

among the 4 experiments when the 1 mm threshold is considered. Between +2h and +4h, as observed with SAL verification,

the shortening of the assimilation cycle worsens the QPF accuracy. Similarly, the differences between rad60 and rad60_lst155

are very small but, contrary to what observed with SAL, in this case the latter very slightly outperforms the former. From +5h

onwards, FSS values of all the experiments are almost equal. When the 5 mm threshold is considered, the comparison between

rad15, rad30 and rad60 leads to the same results as those observed for the 1 mm threshold with even more pronounced

differences at lead times +2h and +3h. Regarding rad60_lst15, a significant improvement compared to rad60 is noticed at +1h

and a slight positive impact still holds at the subsequent lead times.10

In summary, assimilating observations collected in the last 15 minutes of hourly cycles does not affect significantly the

QPF accuracy when a 1 mm threshold is considered: at +1h a slight improvement is observed only over Northern Italy, while

from +2h onwards the mixed results obtained with FSS and SAL suggest a neutral impact. However, rad60_lst15 slightly
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Figure 8. As in Figure 6 but considering experiments rad15 (red), rad30 (orange), rad60 (green) and rad60_lst15 (blue).

outperforms rad60 over the whole Italian country when the 5 mm threshold is considered. Regarding the length of assimilation

cycles, when it is shortened a slight improvement on QPF accuracy is observed at +1h over Northern Italy, but the impact

over Italy is neutral. Thereafter, from +2h to +4h, a clear worsening is observed both where assimilation is performed and

in the rest of Italy. To investigate if this worsening is due to the imbalance issue, the kinetic energy (KE) spectra of the

experiments is computed following the method described in Errico (1985). Curves displayed in Figure 9 are obtained as an5

average over the whole assimilation period (from 3 February at 06 UTC to 7 February at 00 UTC) of KE spectra computed

each hour using analysis values of u, v and w over the whole domain. Kinetic energy spectra of rad15 (red) and rad60 (green)

are almost overlapping, even at very small wavelength, indicating that shortening the length of cycles from 60 to 15 minutes

does not introduce imbalances in the analyses (Skamarock, 2004). Furthermore, both spectra have a −5/3 dependence on the

wavenumber beyond a wavelength of 15-20 km, in agreement with observed spectra at the mesoscale (Nastrom and Gage,10

1985). Same considerations apply also to KE spectra of rad30 which is not shown. Therefore, with the current set-up, the use

of a sub-hourly window length degrades QPF accuracy but this is not due to the introduction of imbalances in the analysis. A

possible different explanation is that the reduced analysis error associated to rad15 and rad30 compared to rad60 makes the

ensemble employed for the LETKF scheme too small to correctly characterize the forecast error, as suggested in Uboldi and

Trevisan (2015).15
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Figure 9. Kinetic energy (KE) spectra computed following the method described by Errico (1985). Each curve is obtained averaging KE

spectra with a frequency of one hour during the assimilation procedure and employing analysis values of u, v and w over the whole model

domain. The spectra are displayed for experiments rad15 (red), rad60 (green), rad15_roe0.5 (grey) and rad60_roe0.5 (violet). The dashed

black line represents a function with a dependence to the wavenumber equal to −5/3.

4.3 Impact of changing the reflectivity observational error

A set of experiments is performed to investigate the impact of the reflectivity observational error in the assimilation scheme.

In addition to the value of 5 dBZ employed so far, which was estimated applying the diagnostic described in Desroziers et al.

(2005) to this case study, two other values of roe are tested: 10 dBZ and 0.5 dBZ. The former is employed by Bick et al. (2016)

for the assimilation of reflectivity volumes from the German radar network using KENDA and COSMO and, therefore, should5

be reasonable also for the present study. The latter is a deliberately extreme value that may be chosen in the case of a great

confidence in the quality of radar observations. These two different values of roe are used in assimilation cycles of 60 minutes
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Figure 10. As in Figure 5 but considering, in the left panel, experiments rad60_roe0.5 (violet), rad60 (green) and rad60_roe10 (orange)

while, in the right panel, experiments rad15_roe0.5 (grey), rad15 (red) and rad15_roe0.5 (blue).

(rad60_roe0.5 and rad60_roe10) and 15 minutes (rad15_roe0.5 and rad15_roe10). Therefore, they can be compared with the

experiments with our standard value of roe = 5dBZ, respectively rad60 and rad15.

Results of QPF verification in terms of SAL and FSS are reported, respectively, in Figure 10 and Figure 11. Regarding

the experiments with a 60 minutes assimilation cycle, SAL verification (left panel) reveals that rad60_roe0.5 slightly reduces

structure and amplitude errors on QPF at lead time +1h compared to rad60, but the location error is very slightly increased.5

From +2h to +4h, rad60_roe0.5 has a larger error in all components, except S at +2h and +3h. In particular, the A component

is remarkably worsened at +4h and the L component at +2h and +3h. As observed for the previous experiments, from +5h

onwards the results become mixed. When comparing rad60_roe10 to rad60, differences are small and mixed in the whole

forecast range. The FSS verification carried out over the whole Italian country substantially confirms what observed with SAL:

rad60_roe0.5 worsens QPF accuracy from +2h to +4h and the differences compared to rad60 are even enhanced and extended10

to +1h when the 5 mm threshold is considered; at the same time, the impact of using a value of roe equal to 10 dBZ instead of

5 dBZ as a neutral impact over the whole forecast range.

In regards with 15 minutes assimilation cycles, rad15_roe0.5 dramatically worsens QPF accuracy over Northern Italy in

terms of structure (right panel in Figure 10) up to +5h and up to +12h in terms of amplitude and location (the range between

+9h and +12h is not shown). In this regard, the verification of individual forecasts (not shown here) reveals that the large error in15

A component is due to a systematic underestimation of the average precipitation over the domain. This marked worsening can

be appreciated also with FSS verification (right panel in Figure 11), especially for the 1 mm threshold. When comparing results

of SAL verification for rad15_roe10 and rad15, differences are small and mixed over the whole forecast range. However, in this
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Figure 11. As in Figure 6 but considering, in the left panel, experiments rad60_roe0.5 (violet), rad60 (green) and rad60_roe10 (orange)

while, in the right panel, experiments rad15_roe0.5 (grey), rad15 (red) and rad15_roe0.5 (blue).

case, FSS reveals that the former slightly outperforms the latter between +2h and +4h when the 1 mm threshold is considered

and this is enhanced when considering the 5 mm threshold.

The overall poor quality of rad15_roe0.5 forecasts is the direct consequence of the poor quality of the analyses from which

they are initialized. As an example, in Figure 12 it is shown the mean sea level pressure (MSLP) and specific humidity at 850

hPa of rad15_roe0.5 (right column) analysis on February 5 at 12 UTC and it is compared with the same quantities for the5

analysis of rad15 (central column) and of the Integrated Forecasting System (IFS) of ECMWF (left column). Slight variations

can be observed between IFS and rad15 analyses and it seems reasonable that they may simply arise from differences between

models and assimilation systems. Conversely, rad15_roe0.5 analysis exhibits a noticeable increase in MSLP and a decrease in

specific humidity over Northern Italy. This is in agreement with the decrease in forecast precipitation previously described.

In the same way as described in Section 4.2, KE spectra are computed for rad15_roe0.5 and rad60_roe0.5 and displayed10

in Figure 9. In both cases, at the smallest wavelength the KE is significantly greater that that of rad15 or rad60 and this is

particularly evident for rad15_roe0.5. This behaviour is indicative of the presence of some undesired noise at small scales

(Skamarock, 2004). Therefore, employing a value of roe equal to 0.5 dBZ, the assimilation system is not able to correctly

remove small scale noise, especially when really short cycles are employed. Furthermore, the excess of energy associated to

the highest wavenumber modes propagates to the larger scales and the slope of the curves at wavelengths greater than 15 km15

differs from -5/3.

5 Conclusions

The assimilation of radar data in an operational set-up is a challenging issue. Most of the previous studies is devoted to the

assimilation of rainfall estimated from radar data and it is currently widely employed in meteorological centres all over the
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Figure 12. Mean sea level pressure (top) and specific humidity at 850 hPa (bottom) analysis on February 5 at 12 UTC for IFS (left) rad60

(middle) and rad15_roe0.5 (right).

world. The continuous increase of computer resources now allows to directly assimilate reflectivity volumes, but few studies

have been dedicated to test the assimilation of these observations in an operational context. In the present work, the assimilation

of reflectivity volumes using the LETKF scheme developed for the high resolution COSMO model is evaluated. A case study

of 4 days in February 2017 is carried out using data from 4 radars over Northern Italy. The quality of the analyses generated

by the data assimilation system is assessed in terms of the accuracy of QPF which is verified using SAL (approximately in the5

region where reflectivity volumes are assimilated) and FSS (over the whole Italian country).

The assimilation of both conventional data and radar reflectivity volumes in combination to LHN (rad60) improves QPF

accuracy compared to our operational set-up (conv60), in which only conventional data are employed together with LHN, and

to conv60_nolhn, in which conventional observations are assimilated without performing LHN. The improvement compared to

conv60 is remarkable between lead times +2h and +4h and observed both with SAL and FSS. Regarding the comparison with10

conv60_nolhn, the improvement is consistent at +1h and holds (attenuated) up to +4h over Northern Italy, while it becomes

irrelevant over Italy from lead times +3h. Similar improvements are observed when both conventional data and reflectivity

volumes are assimilated without LHN (rad60_nolhn), suggesting that the combined use of radar volumes and SRI, not rigorous

from a theoretical point of view, does not degrade the results. This can be due to the different nature of the observed values: in

case of reflectivity volumes the measure is direct while for SRI the field is indirectly calculated using an empiric relationship15

between reflectivity and rain rate. Furthermore, also the assimilation schemes differ dramatically.

In this context, the assimilation of observations collected only in the last 15 minutes of each assimilation cycles (rad60_lst15),

further slightly enhances the positive impact of assimilating reflectivity volumes. This result is observed when considering pre-

cipitation more intense than 5 mm/h while the impact of using rad60_lst15 instead of rad60 analyses is neutral when a 1 mm

threshold is employed. Taking into account that this configuration also reduces the computational cost associated to the assim-20
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ilation of radar data, it seems to be the most promising for an operational implementation. However, further tests would be

necessary to evaluate if the same conclusion arises when only observations at the analysis time are assimilated. Regarding the

length of assimilation cycles, the shortening of their length to 30 and 15 minutes slightly improves QPF accuracy at lead time

+1h over the region where they are assimilated, but worsens results between lead times +2h and +4h both over Northern Italy

and in the rest of the country. This is not due to the introduction of imbalances in the analyses. A possible explanation, which5

needs further investigation, is that the more frequent assimilation reduces the analysis error potentially making the ensemble

spread too small to properly characterize the forecast error (Uboldi and Trevisan, 2015).

With regards to the observational error, it is found that a value of roe equal to 0.5 dBZ negatively affects the quality of the

analyses and of the subsequent forecasts, because the model is not able to remove noise at the smallest scales. This leads to

large errors in all prognostic fields in the area where radar data are assimilated and, as a consequence, to a very poor quality10

of the forecasts. This is particularly significant when 15 minutes assimilation cycles are employed, in which case forecast

precipitation is strongly underestimated and misplaced. Conversely, a value of 10 dBZ, that is a value which is twice that

estimated using Desroziers statistics, lead to similar results obtained with roe = 5 dBZ but slightly improves QPF accuracy

when 15 minutes cycles are employed.

The observed improvement on QPF accuracy associated to the assimilation of reflectivity volumes is promising, even if15

it is limited only to the first few hours of forecast. Other tests are necessary to validate if this improvement holds in other

synoptic conditions and for longer case studies. Furthermore, several tests need to be performed to extend the impact of the

assimilation beyond the first few hours of forecast. In particular, the value of the reflectivity observational error seems to have

a strong impact on QPF accuracy. Therefore, it seems reasonable that a further improvement can be achieved when roe is made

dependent on the range, elevation, radar station and meteorological condition, but a better comprehension and estimation of20

this value is mandatory before testing more complex configurations.
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