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Abstract. The ability of a data assimilation system to deal effectively with nonlinearities arising from the prognostic model or 5 

the relationship between the control variables and the available observations has received a lot of attention in theoretical studies 

based on very simplified test models. Less work has been done to quantify the importance of nonlinearities in operational, 

state-of-the-art global data assimilation systems. In this paper we analyse the nonlinear effects present in ECMWF 4D-Var and 

evaluate the ability of the incremental formulation to solve the nonlinear assimilation problem in a realistic NWP environment. 

We find that nonlinearities have increased over the years due to a combination of increased model resolution and the ever-10 

growing importance of observations that are nonlinearly related to the state. Incremental 4D-Var is well suited for dealing with 

these nonlinear effects, but at the cost of increasing the number of outer loop relinearisations. We then discuss strategies for 

accommodating the increasing number of sequential outer loops in the tight schedules of operational global NWP.   

1 Introduction  

The importance of nonlinear effects has been recognised since the early days of the development of 4D-Var (e.g., Gauthier, 15 

1992; Rabier and Courtier, 1992; Miller et al., 1994; Pires et al., 1996). The presence of nonlinearities in either the model or 

the observations can potentially cause significant deviations from the usual Gaussian distribution assumed to describe 

observation and background errors in the definition of the 4D-Var cost function. This in turn translates into a more complex 

topology of the cost function and the potential for multiple minima (e.g., Pires et al., 1996; Hoteit, 2008). In these conditions, 

finding the global minimum of the 4D-Var cost function for realistic numerical weather prediction (NWP) applications 20 

becomes computationally unaffordable and, even if it were possible, the interpretation and usefulness of the result in the case 

of multi-modal error distributions becomes unclear in a deterministic analysis context (Lorenc and Payne, 2007).      

In order to make the variational problem computationally tractable and mathematically well-posed, simplifications are 

required. In particular, the use of a linear model and linear observation operators leads to strictly quadratic cost functions, 

which brings two major benefits: a) it guarantees the convergence of the minimisation algorithm to the global minimum and 25 

b) it allows the use of efficient, gradient-based iterative minimisation algorithms (Fisher, 1998). This consideration has spurred 

research in NWP applications of variational methods towards perturbative solution algorithms, where the full nonlinear 

minimization problem is approximated as a series of quadratic cost functions obtained by repeated linearisations around 

progressively more accurate guess values of the solution. This idea, based on the general Gauss-Newton method for the solution 
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of nonlinear least squares problems (Björck, 1996), was first introduced in the meteorological literature by Courtier, Thépaut 

and Hollingsworth, 1994 (CTH in the following) as “Incremental 4D-Var”. In that paper the main stated objective of 

incremental 4D-Var was the reduction of the computational costs of full 4D-Var in order to make it feasible for operational 

application. Its ability to deal with weak nonlinearities was also noted and subsequently investigated in simplified models, 

particularly in relation to the length of the assimilation window and the global convergence properties of the algorithm (e.g., 5 

Tanguay et al., 1994; Laroche and Gauthier, 1998).  

After the operational implementation of incremental 4D-Var at ECMWF (Rabier et al., 2000) and, later, in other major global 

NWP Centres (Kadowaki, 2005; Rosmond and Xu, 2006; Gauthier et al., 2007; Rawlins et al., 2007) the possibility arose to 

address in realistic NWP settings still open questions about the limits of applicability of 4D-Var in nonlinear situations. A 

series of studies (Andersson et al., 2005; Radnòti et al., 2005; Trémolet, 2004, 2007) conducted with the ECMWF Integrated 10 

Forecasting System (IFS) provided answers to some of these questions in the context of the ECMWF operational system of 

the time. These studies emphasised the importance of the consistency between the nonlinear and linearised evolution of the 

analysis increments during the assimilation window for the global convergence of the incremental 4D-Var. This, in turn, was 

shown to require the availability of accurate linearised models, and the need to run inner and outer loops with not too large 

discrepancies in terms of spatial resolution and time step (a ratio of three between the outer and inner loop resolutions was 15 

found to give satisfactory results). As there is no guarantee of global convergence of the incremental 4D-Var algorithm, the 

aforementioned studies also stressed the importance of regularly re-evaluating the nonlinearity issues in future operational 

systems. 

From the time of these investigations, the operational ECMWF IFS has changed considerably. From the perspective of the 

validity of the linearity assumptions in the incremental formulation, two changes are particularly relevant: a) the increase in 20 

resolution at both outer loop and inner loop level and b) the introduction of a very large number of humidity, cloud and 

precipitation-sensitive satellite observations in the analysis system (Geer et al., 2017). In terms of spatial resolution, the 

effective grid spacing has gone from approx. 40 Km (TL511, i.e. spectral Triangular truncation 511 with a Linear grid) to 

approx. 9 Km (TCo1279, spectral Triangular truncation 1279 with a Cubic grid; see Malardel et al., 2016, for more details), 

for the 4D-Var outer loops, and from approx. 130 Km (TL159) to approx. 50 Km (TL399) for the inner loops. Thus, 25 

nonlinearities are expected to play a larger role in the current IFS, also in view of the fact that the ratio between the resolutions 

of the outer and inner loops of the minimization has increased from approx. 3.2 to 5.5. In terms of observation usage, the 

increase in the number and influence of humidity, cloud and precipitation-sensitive observations can also be expected to expose 

nonlinear effects connected to the way their observation operators respond to forecasted humidity and precipitation structures. 

Some of these issues were already described at the time of the introduction of the “all-sky” framework for the assimilation of 30 

microwave imagers sensitive to humidity and precipitation (Bauer et al., 2010), but at that time the number and influence of 

these observation types on the 4D-Var analysis was relatively small. Currently, however, all-sky observations are one of the 

most important components of the observing system used operationally at ECMWF (Geer et al., 2017) and it is thus important 

to understand the capabilities and limitations of 4D-Var to deal with this type of nonlinearities.     
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Given the motivation above, the remainder of this paper is organised as follows. In Sec. 2, we briefly review the incremental 

4D-Var algorithm in order to highlight the hypotheses underlying the tangent linear approximation and the mathematical basis 

of the outer loop iterations. In Sec. 3 evidence of nonlinear effects in current ECMWF 4D-Var is presented, from both an 

observational and a model perspective. In Sec. 4, we evaluate how effective incremental 4D-Var is in dealing with both 

observation and model nonlinearities. Sec. 5 addresses the question of how important the ability to run outer loops is in the 5 

current ECMWF data assimilation system, in terms of both analysis and forecast skill. These results and their implication for 

data assimilation strategy at ECMWF and elsewhere are discussed in Sec. 6.        

2 Algorithmic Aspects  

The aim of variational data assimilation is to determine the model trajectory that best fits in a least square sense the observations 

available during a given time window. This concept naturally leads to the formulation of the standard strong constraint 4D-10 

Var cost function: 

  𝐽(𝐱0) =
1

2
(𝐱0 − 𝐱𝑏)T𝐁−1(𝐱0 − 𝐱𝑏) +

1

2
∑ (𝐲𝑘 − 𝐺𝑘(𝐱0))

T
𝐑𝑘

−1(𝐲𝑘 − 𝐺𝑘(𝐱0)) = 𝐽𝐁(𝐱0) + 𝐽𝐎(𝐱0)𝐾
𝑘=0  .                      (1) 

In (1) x0  is the control vector at the start of the assimilation window; xb and B are the background and its expected error 

covariance matrix; yk  and Rk  are the set of observations presented to the analysis in the k sub-window and their expected error 

covariances; and Gk is a generalised observation operator (or forward model) that produces the model equivalents of the 15 

observations yk by first integrating the prognostic model from t0 to tk and then applying the standard observation operator Hk 

to the propagated fields, i.e.: 

  𝐺𝑘 = 𝐻𝑘°𝑀𝑡0→𝑡𝑘
              (2) 

The formulation (1) represents the general nonlinear weighted least square solution of the assimilation problem using the 

forecast model as a strong constraint. Problem (1) cannot however be solved efficiently by standard optimal control methods 20 

for realistic numerical weather prediction (NWP) data assimilation systems, given the size of the control vector x0 (O(109)). A 

possible solution, first proposed in CTH, 1994, under the name of “Incremental 4D-Var”, is to simplify the solution of (1) 

through the application of an approximated form of the Gauss-Newton method (Lawless et al., 2005; Gratton et al., 2007). 

This consists of approximating the minimization of the nonlinear cost function (1) as a sequence of minimizations of linear, 

quadratic cost functions defined in terms of perturbations around a sequence of progressively more accurate trajectories (i.e., 25 

nonlinear model integrations). The cost function linearised around a guess trajectory xg can be expressed as an exact quadratic 

problem in terms of the increment at the initial time δ𝐱0:  

𝐽(δ𝐱0) =
1

2
(𝛿𝐱0 + 𝐱0

𝑔
− 𝐱𝑏)

T
𝐁−1(𝛿𝐱0 + 𝐱0

𝑔
− 𝐱𝑏) +

1

2
∑ (𝐝𝑘 − 𝐆𝑘(δ𝐱0))

T
𝐑𝑘

−1(𝐝𝑘 − 𝐆𝑘(δ𝐱0)) = 𝐽𝐵(δ𝐱0) + 𝐽𝑂(δ𝐱0)𝐾
𝑘=0  .            

(3) 

In Eq. (3) 𝐝𝑘 =  𝐲𝑘 − 𝐺𝑘(𝐱0
𝑔

)  are the observation departures around the latest model trajectory and 𝐆𝑘 = 𝐇𝑘𝐌𝑡0→𝑡𝑘
 is the 30 

linearisation of the generalised observation operator around the defined trajectory. 
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In the observation part of the cost function, the so-called “tangent linear (TL) approximation” has been made in going from 

(1) to (3): 

𝐲𝑘 − 𝐺𝑘(𝐱0) = 𝐲𝑘 − 𝐺𝑘(𝐱0
𝑔

+ δ𝐱0) = 

= 𝐲𝑘 − 𝐺𝑘(𝐱0
𝑔

) − 𝐆𝑘(δ𝐱0) −
1

2
 (δ𝐱0)T (

∂𝐆𝑘

∂𝐱
)

𝐱𝑔
(δ𝐱0) − 𝑂(‖δ𝐱0‖3) ≈ 𝐲𝑘 − 𝐺𝑘(𝐱0

𝑔
) − 𝐆𝑘(δ𝐱0) .                 (4) 

In the Taylor expansion in Eq. (4), terms of O(‖δ𝐱0‖2) and higher are neglected (note that if (4) is exactly satisfied, then Eq. 5 

(3) is equivalent to Eq. (1)). This approximation, as first noted in Lawless et al, 2005, is equivalent to the standard 

approximation used in the Gauss-Newton optimization algorithm, i.e. neglecting the second order derivatives of  𝐺𝑘 in the 

Hessian of the cost function: 

  ∇2𝐽 = 𝐁−1 + ∑ (𝐆𝑘)T𝐑𝑘
−1(𝐆𝑘)𝐾

𝑘=0 − ∑ (
∂𝐆𝑘

∂𝐱
)

𝐱𝑔

𝐾
𝑘=0 𝐑𝑘

−1 (𝐲𝑘 − 𝐺𝑘(𝐱0
𝑔

)) ≈ 

𝐁−1 + ∑ (𝐆𝑘)T𝐑𝑘
−1(𝐆𝑘)𝐾

𝑘=0   .                                                                                  (5) 10 

The validity of the tangent linear approximation is thus based on whether either the increments δ𝐱0 are in some sense small or 

the dependence of the linearization of 𝐺𝑘   (i.e., 𝐆𝑘 = 𝐇𝑘𝐌𝑡0→𝑡𝑘
) to the reference trajectory is negligible. Concerning the first 

aspect, we only note here that the size of analysis increments is, to first order, a linear function of observation departures. Thus, 

the size of departures need to be small with respect to the observation and background errors used in the analysis update for 

the TL approximation to hold (The interested reader can find further details in Bonavita et al., 2017b). The other aspect 15 

affecting the validity of the TL approximation relies on an implicit linearity assumption of both the forecast model and the 

observation operator in a neighbourhood of the reference trajectory. Experience at ECMWF indicates that there is a clear 

sensitivity of both the linearised observation operator and the linearised model to the linearisation state (e.g., Bauer et al., 2010; 

Janisková and Lopez, 2013). It is thus relevant to revisit the roles of model and observation nonlinearities in the current 

operational ECMWF 4D-Var implementation and validate the effectiveness of the incremental 4D-Var method in dealing with 20 

these nonlinearities.  

Other, possibly less well-known, sources of nonlinearities in the ECMWF incremental 4D-Var formulation stems from the 

variational quality control (VarQC) of the observations and the nonlinear change of variable used for the humidity analysis. 

The VarQC algorithm is based on the Huber norm (Tavolato and Isaksen, 2015) and has the effect of making the observation 

error matrix R a function of the current departure 𝐝𝑘 and thus of the reference state. However, as it is currently applied to 25 

conventional observation only, its impact on the linearity of the minimisation is limited. The other source of nonlinearity arises 

from the nonlinear change of variable used in the humidity analysis (Holm et al., 2002), which implies that also the 𝐽𝐁 part of 

the cost function in Eq. (3) is not a purely quadratic function of the initial increment δ𝐱0 and, consequently, the gradient of 

𝐽𝐁with respect to the initial increment is not linear in δ𝐱0 . Consistently with the incremental 4D-Var philosophy, this is handled 

by a linear update of the humidity control variable in the quadratic cost function (3), followed by a nonlinear update of the 30 

humidity field at the outer loop level to provide the initial state for the new reference trajectory. The nonlinear effects connected 
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with the humidity control variable are intimately linked with the usage of the all-sky observations, which provide the vast 

majority of humidity sensitive observations, and will be discussed in that context.           

3 Evidence of nonlinear effects in 4D-Var 

3.1 The role of the model  

Model nonlinearities affect the 4D-Var solution in two main ways. First, the more nonlinear the high-resolution trajectory 5 

solution is, the spatially noisier the low-resolution interpolated linearization state for the 4D-Var inner loops becomes. This 

roughness of the interpolated trajectory increases when differences between the timesteps and resolutions of the inner loops 

and the trajectory become larger. Second, the tangent linear evolution differs more from the nonlinear solution as nonlinearities 

increase. One measure of the degree of nonlinearity (Rabier and Courtier, 1992) is to take the difference between the 

nonlinearly and linearly evolved increments in the last minimization: 10 

 𝑀(𝒙𝑛−1 + 𝛿𝒙𝑛) − (𝑀(𝒙𝑛−1) + 𝐌𝛿𝒙𝑛)  ,                                                                                                                   (6) 

and the globally averaged profile of the standard deviation of this quantity is shown in Fig. 1 for selected years from 2004 to 

2017. Over the years, there has been an increase in the resolution of the trajectory and the inner loops and the gap in resolution 

between the two has increased. This has resulted in increased differences, which we interpret as increased nonlinearity due to 

the combination of increased model resolution and resolution differences between the inner loop and the trajectory. One way 15 

to counteract the nonlinearity that comes with resolution increases is to shorten the length of the assimilation window. This 

can be achieved either by very short windows or by the use of overlapping assimilation windows. In this second case the 

reduction in nonlinearity is realised by reducing the size of the analysis increments 𝛿𝒙𝑛 as each new window will start from a 

first guess trajectory that has already seen the observations in the overlapped part of the window. 

3.2 The role of the observations  20 

The significance of nonlinearities in the observation operators can be estimated using statistics from the Ensemble of Data 

Assimilations (EDA, Isaksen et al., 2010) system which is run operationally at ECMWF. Each ensemble member is initialised 

using a perturbed model state with perturbations drawn from a distribution with zero mean. For linear observation operators 

and Gaussian perturbations, the ensemble mean of the model equivalents provided by the observation operators is expected to 

be close to the unperturbed control member (in fact, it should match it exactly in the limit of infinite ensemble size): 25 

1

𝑁
∑ 𝐺𝑘

𝑁
𝑖=0 (𝑥0 + 𝛿𝑥𝑖) =

1

𝑁
∑ 𝐺𝑘

𝑁
𝑖=0 (𝑥0) +

1

𝑁
∑ 𝐺𝑘

𝑁
𝑖=0 (𝛿𝑥𝑖) = 𝐺𝑘(𝑥0) + 𝐺𝑘(∑ 𝛿𝑥𝑖

𝑁
𝑖=0 ) ≅ 𝐺𝑘(𝑥0)  .                     (7) 

Figures 2a-d show the relationship between the ensemble mean model equivalent value and the model equivalent values in the 

unperturbed control member for different observation types. For observations sensitive to tropospheric temperature, such as 

the Advanced Microwave Sounding Unit A (AMSU-A) channel 6 (Fig 2a) and radiosonde temperature observations (Fig 2b), 

a strong linear relationship holds, indicating that nonlinear effects in the observation operators are negligible. However, 30 
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operators associated with observations sensitive to humidity and cloud show more significant nonlinear behaviour. For 

example, the Advanced Technology Microwave Sounder (ATMS) channel 20 (Fig 2c) is sensitive to humidity and the 

Advanced Microwave Scanning Radiometer 2 (AMSR-2) channel 11 (Fig 2d) is sensitive to cloud liquid water. 

4 Dealing with nonlinearities through the incremental approach  

The incremental approach to 4D-Var (CTH, 1994) reduces the resolution of the inner loops to make the solution more 5 

affordable. Observation departures are calculated at high resolution and then the high-resolution trajectory is truncated and 

interpolated to the resolution of the inner loop for each timestep of the low-resolution minimization (Trémolet, 2004). At the 

end of the minimization, the increments are projected back to the high resolution and added to the previous trajectory at the 

start of the assimilation window. This process is repeated for all minimizations, which can be at different resolutions, starting 

with the lowest resolution to capture the larger scales and increasing the resolution in later minimizations to extract more 10 

detailed information from the observations (Veerse and Thépaut, 1998). 

4.1 Impact diagnostics in observation space 

Bauer et al (2010) discussed how the difference in departures at the end of each minimisation step, and those in the subsequent 

nonlinear trajectory step (i.e., 𝛿𝑑𝑘 = 𝑑𝑘
𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟 − 𝑑𝑘

𝑙𝑖𝑛𝑒𝑎𝑟) indicate the presence of nonlinearities in the system. Figure 3 

shows the standard deviation of the guess departures at each stage of the operational 4D-Var for the AMSR-2 channel 10, 15 

which is sensitive to water vapour (see Sec. 5 for details of the operational 4D-Var setup). It can be seen that each minimisation 

improves the fit between the model trajectory and the observations. However, the standard deviation in each nonlinear 

trajectory step is consistently higher than that at the end of the previous minimisation. This is to be expected because of the 

resolution difference between nonlinear and linearised models and also due to the fact that nonlinear processes cannot be 

represented by the linear model and operators used in the minimisations.  20 

Figure 4 plots the correlation coefficient and standard deviation of these differences at each outer loop, demonstrating that 

nonlinearities become smaller at each successive outer loop. For “linear” observation types such as radiosonde temperature 

and AMSU-A channel 6, the nonlinearities are less significant than for ATMS channel 20 (which is sensitive to humidity). 

As expected, the departures for observations sensitive to cloud and humidity show increased nonlinear impacts. Figure 5 shows 

results from AMSR-2 channel 11 categorized using estimates of cloudiness from both the observations and the model fields 25 

(Geer and Bauer, 2011). It can be seen that the linear assumption holds less well for observations in cloudy regions compared 

to those in areas of clear sky. 
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4.2 Impact diagnostics in model space 

 A clear indicator of the success or otherwise of the incremental strategy is the size of the analysis increments produced by the 

linearised cost function (3) during successive outer loop iterations. For a well-behaved incremental 4D-Var converging towards 

the solution of the nonlinear cost function (1), successive analysis increments are expected to become smaller, reflecting the 

hypothesis that successive first guess trajectories provide increasingly accurate descriptions of the flow. This hypothesis is 5 

supported by the experimental results shown in Fig. 6, where we present the vertical profiles of the standard deviations of the 

analysis increments of vorticity (left panel) and temperature (right panel) from a multi-incremental 4D-Var experiment with 

five outer loops (in this experiment the outer loop resolution is TCo399, approx. 30 km, and the inner loop resolutions are 

TL95/TL159/TL255/TL255/TL255, approx. 210, 125, 80 km; more details in Table 1). The magnitude of the analysis 

increments is seen to gradually decrease for successive outer loop iterations, more rapidly in the stratosphere for vorticity. 10 

After five outer loop iterations, the magnitude of the analysis increments appears to asymptote to a relatively small value for 

temperature throughout the atmospheric column (∆𝑇𝑎 ≈ 0.05𝐾), and for vorticity in the stratosphere and mesosphere (∆𝑣𝑜𝑎 ≈

10−7𝑠−1  for model levels greater than 70). On the other hand, incremental 4D-Var does not seem to have fully converged for 

vorticity in the troposphere. This is confirmed by the longitudinal averages of the analysis increments produced by the first 

and the last outer loop for temperature, vorticity and humidity, which are shown in Fig. 7.  It is apparent how the last outer 15 

loop iteration still manages to produce non-negligible increments for the tropospheric wind and humidity fields (middle and 

bottom rows in Fig. 7), as a result of the increased presence of nonlinear observations and the increased nonlinearity of the 

relevant meteorology (e.g., organised convection and baroclinic instability). This suggests that increasing the number of outer 

loops from the current operational value of three up to at least five can lead to a better use of available observations and, 

ultimately, more accurate analyses and forecasts. An interesting side aspect of this investigation has been to highlight the 20 

relative large analysis increments produced by 4D-Var in the mesosphere (i.e., above model level 20 in the plots). This is due 

to a combination of relatively inaccurate model dynamics due to sponge layer effects and the scarcity of observational 

constraints in this part of the atmosphere (the highest peaking channels from current microwave sounders are only marginally 

sensitive to this upper atmospheric layer).        

4.3 A test case 25 

An informative example of the effectiveness of incremental 4D-Var in dealing with nonlinear error evolution in active weather 

systems is described in the following test case of organised convection in the southern United States. These high-impact 

weather phenomena are particularly interesting from a data assimilation perspective because: 1) they have been shown to be 

potential precursors of significant forecast “busts” in downstream regions, Europe in particular (Rodwell et al., 2013); and 2) 

they occur in probably the most densely observed region of the world, thus allowing a more in-depth look into the ability of 30 

the assimilation system to make effective use of the observations. 
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In the case described here, large scale organised convection with the satellite signature of a mesoscale convective complex 

(Fig. 8, left panel), was forming in the southern US coastal plains in the local evening hours of 2017-05-03, continuing for 

most of the night. The synoptic situation, as depicted by the ECMWF operational analysis (Fig. 8, right panel) is characteristic 

of this type of events (Maddox, 1980): A strong warm, moist southerly flow from the Gulf of Mexico is taking place in the 

lower troposphere, in the region ahead of an upper level trough. The combination of strong warm and moist air advection in 5 

the lower levels with vorticity advection aloft leads to a situation conducive to intense organised convection in a region along 

the Texas-Louisiana cost, starting at around 13UTC on the 3 May 2017 and lasting until approx. 6UTC of the 4 May 2017. 

Forecasting the intensity and location of convection is notoriously difficult and the ECMWF analysis increments (Fig. 9) show 

that the operational 4D-Var makes significant changes to the first guess fields throughout the atmospheric column. In particular, 

the analysis appears to adjust the strength of the convective system through a significant cooling at the top of the troposphere 10 

and associated enhancement of the divergent wind field (Figure 9, left panel). In the boundary layer (Figure 9, right panel), the 

analysis increments show more spatial variability, but the main signal of localised warming and convergence of the wind field 

in the direction of movement of the convective system are apparent.  

The magnitude of the analysis increments in the case studied here (up to ~8 K for temperature, ~30 m/s for wind) is more than 

an order of magnitude larger than their average standard deviations: thus, significant nonlinear effects are expected in the 15 

assimilation update. This is confirmed in Figure 10 where we show the standard deviation of the first guess and analysis 

departures from wind observations in the 100-400 hPa layer for the first guess and the one, three, five outer loop analyses over 

the 9 to 21 UTC assimilation window of 2017-05-03 (All experiments are performed at the operational TCo1279 resolution, 

approx. 9 km grid spacing, using IFS cycle 43R3). It is visually apparent that the analysed trajectories are better able to fit the 

observations with increasing number of outer loops: the area-averaged standard deviation of the innovations decreases from 20 

2.301 m/s in the first guess trajectory to 2.117 m/s, 1.705 m/s and 1.622 m/s in the one, three and five outer loop analysis 

trajectories respectively. No further improvements were seen with further increases in the outer loop count, which points to 

residual model deficiencies, either in terms of spatial resolution and/or model errors; or missing representativeness errors in 

the specified observation errors. We note that the wind observations whose departures are shown in the plots in Fig. 10 come 

from the US radiosonde network and from aircraft observations, which implies that linear observation operators are used. Thus, 25 

the nonlinear effects seen in the plots arise exclusively from nonlinearities in the evolution of model perturbations in the 

assimilation window.         

5 Results from cycling data assimilation experiments  

The diagnostics presented in section 4 showed that increasing the number of outer loop iterations in the ECMWF 4D-Var helps 

to reduce the magnitude of nonlinearities in the analysis and suggests that it can lead to a better use of available observations, 30 

in particular those that are nonlinearly related to the model state. The next step is then to verify that these findings are confirmed 

in a cycled data assimilation environment as close as it is computationally affordable to the operational ECMWF assimilation 
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system. To this end a series of data assimilation experiments has been run with a recent ECMWF IFS cycle (cycle 43R3, 

operational from July 2017), in which only the horizontal spatial resolution has been changed for both outer loops and inner 

loop minimizations. The operational 4D-Var runs three outer loops at TCo 1279 resolution (approx. 9 km) and performs three 

inner loop minimizations at TL255/TL319/TL399 resolution (approx. 80/60/50 km). In the experiments described here the 

outer loop resolution has been reduced to TCo399 (approx. 30 km) and the inner loop resolutions vary from TL95 to TL159 5 

to TL255 (approx. 210, 125, 80 km; more details in Table 1). The number of outer loop updates varies from one to five. In the 

following, we present results for the one, three, four and five outer loop experiments. In these experiments, the full 

observational dataset used in operations at ECMWF has been assimilated. The number of inner loop iterations in the 

minimisations is not prescribed, because minimisations stop when a convergence criterion based on the information content 

of the minimisation is reached (Fisher, 2003). Convergence is usually reached in approx. 30 iterations, and this number has 10 

been found not to be sensitive to resolution and number of outer loop relinearizations. A hard stopping criterion of 50 iterations 

is also present, but in all the experiments reported here it was never reached. An additional point to note is that all the 

experiments have at least one minimization performed at the highest resolution (i.e., TL255). Thus, differences in analysis and 

forecast performance cannot be attributed to either insufficient resolution in the minimization or incomplete convergence. 

5.1 Analysis skill – full observing system 15 

A standard way to evaluate the skill of the analyses produced by a cycling data assimilation system is to look at the statistics 

of observation minus analysis (o-a) departures and observation minus first guess departures (o-b). In the ECMWF 4D-Var the 

o-a departures are computed from a full model integration started from the analysed model state at the beginning of the 12 

hour assimilation window. Thus, they give an indication of how closely a nonlinear forecast started from the initial analysis is 

able to fit observations throughout the assimilation window. The o-b departures are computed from a short-range forecast 20 

started from a 4D-Var analysis valid three hours before the start of the new assimilation window. Thus, the new observations 

are confronted with a nonlinear forecast in the 3 to 15 hour range. The o-b fit gives an indication of how much of the observation 

information from the previous assimilation window is retained in the short-range forecast used for cycling the analysis. 

A representative sample of o-a and o-b departures is shown in Figure 11. In these plots the observation departures for a standard 

three outer loops 4D-Var assimilation cycle are used as a baseline against which the departures for one, four and five outer 25 

loop experiments are compared. The first thing to note is the significant degradation in both o-a and o-b statistics of the one-

outer loop experiment. This degradation is visible for all observation types (not shown) and indicates that a linear analysis 

update is inadequate in the context of a 12-hour assimilation window. The other significant result is that increasing the number 

of outer loops to four, and to a smaller extent five, can bring additional benefits in the tropospheric analysis, in particular for 

observations sensitive to humidity and clouds and for wind observations (not shown). This confirms the diagnostics of Figs. 6 30 

and 7, i.e. that the wind and humidity analysis increments in the troposphere are still relatively large in the fourth and fifth 

outer loop updates, indicating that the minimization has not fully converged. 
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The only degradation in o-a and o-b statistics for the four and five outer loop experiments is visible in the stratospheric-peaking 

channels of the microwave (Fig 11, bottom right, channels 10 to 14) and infrared hyperspectral instruments (not shown). This 

is particularly visible in the five outer loop experiment, where o-a statistics are clearly degraded for channels 10 to 14 (approx. 

peaking from 50 to 2 hPa) while the degradation in the fit to the short range forecast (o-b) is only marginal. This result can be 

partially explained by the diagnostic shown in Fig. 1, where it was shown that the magnitude of nonlinear effects in the 5 

ECMWF analysis system is relatively small in the stratosphere. Thus, the incremental minimisation can be expected to 

converge more rapidly in the stratosphere and additional outer loops beyond the standard three cannot be expected to 

significantly improve o-a and o-b fits. On the other hand, the reason why these fits are actually degraded is the subject of 

current investigations. Preliminary results indicate that the main cause of this behaviour can be traced to the different timesteps 

used in the inner and outer loops.  This difference in timesteps leads to different speed of propagation of gravity waves in the 10 

stratosphere, which then leads to oscillating behaviour in the minimization. This is ongoing work and we defer a more complete 

treatment of this interesting effect to a future publication.  

5.2 Forecast skill – full observing system 

The forecast skill scores show a high level of consistency with the analysis skill diagnostics. In Figure 12 we present a selection 

of tropospheric forecast skill scores relevant for evaluating standard synoptic performance (500 hPa geopotential RMS forecast 15 

error, top row), the water cycle (Total Column Water Vapour RMS error, second row) and the wind field (200 and 850 hPa 

wind vector RMS errors, third and bottom row). All the diagnostics confirm the significant degradation in performance for the 

one outer loop experiment and the small but statistically significant improvement of the four and five outer loop experiments 

with respect to the baseline three outer loop experiment. In the stratosphere (not shown) forecast skill scores again show 

degraded performance for the one outer loop experiment, while results are mostly neutral or slightly positive for the four and 20 

five outer loop experiments. One notable exception is the tropical stratospheric layer from 5 to 1 hPa where the five outer loop 

experiment show a statistically significant degradation, again confirming the analysis skill diagnostic results.  

5.3 Analysis and Forecast skill - linear observation operators 

In Sect. 2 of this paper we have shown how nonlinear effects in 4D-Var arise from two different sources: nonlinearities in the 

model evolution during the assimilation window and nonlinearities in the observation operators. It is difficult to cleanly 25 

disentangle the two effects, as they are linked inside the generalised observation operator G and its linearisations. We have 

however tried to evaluate the impact of the model nonlinearities in isolation by running a set of multi-outer loop assimilation 

experiments where we have retained a subset of observations that are linearly related to the control variables (Conventional 

in-situ observations, Atmospheric Motion Vectors, GPS Radio Occultation bending angles, microwave temperature sounders). 

A sample of results from this set of experiments is presented in Figure 13, which shows the same set of forecast skill scores 30 

shown in Fig. 12 for the experiments with the full observing system. It can be seen that the impact of going from one to three 

outer loops is still very significant. However, the impact of going from three to four outer loops appear to be smaller than in 
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the experiments with the full observing system, and this effect is visible in other forecast skill measures as well (not shown). 

This suggests that in the current ECMWF 4D-Var it is the presence of nonlinear observations (in particular the all-sky radiances 

sensitive to cloud and precipitation) that is responsible for the additional benefit of running more than the current three outer 

loops.    

6 Discussion and Conclusions  5 

In modern atmospheric data assimilation (and, arguably, in most of the other Earth system components as well) nonlinearities 

play an ever more important role. This is due to the ever-increasing resolution and complexity of the prognostic models, which 

exhibit instabilities at smaller scales and thus present faster nonlinear error growth during the assimilation window, and to the 

emergence of an array of observations that are nonlinearly related to the control vector variables used in the variational 

analyses. Both these trends are expected to continue in the near future, which makes the capacity of the assimilation algorithms 10 

to deal effectively with nonlinear effects an increasingly important benchmark.  

The ECMWF implementation of 4D-Var relies on a perturbative approach to nonlinearity. Incremental 4D-Var is based on the 

concept of a purely linear analysis update iterated on ever more accurate first guess trajectories. Diagnostics in both observation 

space and model space support this interpretation and show that the capacity to run more than one outer loop is a significant 

driver of the overall ECMWF analysis and forecast skill. Results from long data assimilation cycling experiments show that 15 

running the current ECMWF 4D-Var with one outer loop only, which is equivalent to making a purely linear analysis update, 

would result in very significant deterioration in all analysis and forecast accuracy metrics. Conversely, adding one, or possibly 

two additional outer loops to the current operational set-up of three outer loop updates, appear beneficial both in terms of 

analysis quality and in terms of general forecast skill. Results from limited additional experimentation (not shown) also indicate 

that more than five outer loops do not appear to bring further benefits, at least in the experimental configuration we have used. 20 

One interesting question is about the limits of applicability of the multi-incremental approach in the ECMWF data assimilation 

system. As noted in Sec. 5, while the tropospheric analyses and forecasts were consistently improved in the four and five outer 

loop assimilation experiments, signs of degradation started to appear in the analysis and first guess fit of some types of 

stratospheric peaking radiance observations. Interestingly, these degradations were not seen in the experiments using only 

observations which are linearly related to the state. This suggests that changes to the analysis introduced by the assimilation 25 

of nonlinear observations (mainly humidity and cloud and precipitation sensitive radiances) affect the stratospheric analysis 

either through the shape of the background error spatial correlations or by the generation of gravity wave structures in the 

initial conditions. Interestingly, the stratospheric degradation of the multi-outer loop experiments also disappeared in tests run 

with the full observing system with matching timesteps for the outer and inner loop integrations. This result gives further 

support to the hypothesis that the representation in the 4D-Var analysis of stratospheric gravity waves excited by the 30 

assimilation of all-sky observations could be one of the main drivers of these effects. These interactions are currently being 

investigated. 
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Another obvious factor potentially limiting the applicability of the incremental algorithm is the range of validity of the tangent 

linear (TL) hypothesis (Sect. 2). As reported in Bonavita et al. 2017b, problems in 4D-Var convergence connected with the 

TL hypothesis usually arise in situations where the first guess departures are at least one order of magnitude larger than the 

assumed observation errors. In most cases, use of more realistic values of the observation errors, which better take into account 

the representativity and observation operator components, are sufficient to regularise the minimization. 5 

While the advantages of being able to run an increased number of outer loop linearisations are clear, the question remains on 

how to fit them inside the typically tight operational schedules of operational weather centres. Taking the ECMWF data 

assimilation system as an example, the three outer loops 4D-Var analysis has about 45 minutes to complete. Given the 

sequential nature of the 4D-Var minimization, each additional outer loop would increase this time by approx. 15 minutes. This 

implies that, in the current set-up, the observation cut-off time would have to be pushed back by a similar time interval, quickly 10 

negating any advantage that the increased number of outer loops might bring. One possible way to overcome this problem 

would be to allow late arriving observations to enter the assimilation at successive outer loop updates. This would effectively 

push the observation cut-off time forward to the beginning of the last minimization, thus allowing to start the 4D-Var analysis 

earlier and consequently accommodate additional outer loop updates. This assimilation framework, which we call “continuous 

DA”, is currently being tested at ECMWF and results will be documented in a forthcoming paper. Note that in the continuous 15 

DA the problem being solved is conceptually different from that of incremental 4D-Var. In incremental 4D-Var we solve a 

nonlinear problem through repeated linearisations. In the continuous DA we solve a sequence of slightly different nonlinear 

minimisation problems, taking advantage of increasingly accurate first guess trajectories. 

Another possible approach to increase the number of outer loops within the operational time constraints is to adopt an 

“overlapping” assimilation window framework, for example along the lines discussed in Bonavita et al, 2017a. In this 20 

configuration, observations that have been assimilated in both successive overlapping windows will have effectively be seen 

by twice the number of guess trajectories as in a standard non-overlapping configuration. This idea, similar to the quasi-static 

variational DA approach of Pires et al, 1996 and Jarvinen et al, 1996, is also being actively investigated.   
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Experiment Resolution of Outer Loop Number of Outer Loops Resolution of Minimizations 

Reference TCo399 3 TL95/TL159/TL255 

1 Outer Loop Experiment TCo399 1 TL255 

4 Outer Loop Experiment TCo399 4 TL95/TL159/TL255/TL255 

5 Outer Loop Experiment TCo399 5 TL95/TL159/TL255/TL255/TL255 

 

Table 1. Resolution and number of outer loop iterations for the sensitivity experiments discussed in Sec. 5. TCo399 means IFS model 

integrations with spectral triangular truncation 399 and a cubic octahedral reduced Gaussian grid. TLXXX mean IFS model 

integrations carried out at spectral triangular truncation XXX on a linear reduced Gaussian grid. All minimizations are performed 

using the full physics tangent linear and adjoint models. 5 

 

 

 

 

 10 

Figure 1. Globally averaged profiles of historical ECMWF 4D-Var differences 𝑴(𝒙𝒏−𝟏 + 𝜹𝒙𝒏) − (𝑴(𝒙𝒏−𝟏) + 𝐌𝜹𝒙𝒏)in the last 

minimization 9 hours into the 12h assimilation window for vorticity (left) and divergence (right) in 2004, 2008, 2013 and 2017. Over 

the years, the resolution and number of inner and outer loops have increased from 60-level TL511/TL95-TL159 in 2004 to 137-level 

TCo1279/TL255-TL319-TL399 in 2017. 
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(a) AMSU-A channel 6 

 

 

(b) Radiosonde temperature 

 

(c) ATMS channel 20 

 

(d) AMSR-2 channel 11 

 

Figure 2. Ensemble mean G(x) (x-axis) against control member G(x) for (a) AMSU-A channel 6 in clear sky locations (b) radiosonde 

temperature (c) ATMS channel 20 (clear sky) and (d) ASMR-2 channel 11 observations (all-sky). 
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Figure 3. Standard deviation of departures for AMSR-2 channel 10 in the nonlinear trajectories (circles) and at the end of the 

minimisation of the linearised cost function (triangles) for each outer loop of 4D-Var. Note how the nonlinear and linearised 

departure standard deviations should coincide in the linear case. The average background error standard deviation in observation 

space for this type of observations is 3.4 K.  Results from a single cycle from the ECMWF operational assimilation system. 5 
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Figure 4. Taylor diagram showing the correlation (azimuthal angle) and standard deviation (distance from the origin) of the 

differences in the departures [K] between the nonlinear trajectory and linear minimisation steps for each outer loop. Results are 

shown for satellite brightness temperature observations (ASMU-A channel 6 , ATMS channel 20) and radiosonde temperature 

observations. 5 
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Figure 5. As Fig. 4 but showing results from AMSR-2 channel 11 categorising observations by those in clear sky regions and those 

impacted by cloud. 
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Figure 6: Vertical profiles of the globally averaged standard deviation of the analysis increments produced by successive outer loop 

iterations for vorticity (left panel) and temperature (right panel). Values have been averaged over a one-month period. The 

assimilation experiment has been run with an outer loop resolution corresponding to a cubic octahedral reduced Gaussian grid with 

spectral truncation 399 (TCo399, approx. 30 km grid spacing); and inner loop resolutions corresponding to linear reduced resolution 

Gaussian grids at spectral truncations TL95/159/255/255/255, corresponding to approx. 210/120/80 km grid spacing.  5 



22 

 

 

Figure 7. Vertical profiles of the longitudinally averaged standard deviation of the analysis increments produced at the end of the 

first outer loop minimisation (left column) and the fifth outer loop minimisation (right column) for temperature (first row), vorticity 

(second row) and humidity (third row). Details of the assimilation experiments as described in text. 
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Figure 8. Left panel: Infrared image of the continental US from the GOES-13 geostationary satellite, valid on 2017-05-03 17.45 UTC 

(credits: National Centers for Environmental Information, NOAA). Right panel: ECMWF operational analysis of geopotential at 5 

200 hPa (continuous isolines), temperature at 200 hPa (dashed isolines) and equivalent potential temperature at 850 hPa (shaded, 

units Kelvin), valid on 2017-05-03 18 UTC. 

 

 

Figure 9 Left panel: ECMWF operational analysis of geopotential at 200 hPa (continuous isolines), temperature analysis increments 10 

at 150 hPa (colour shaded, units Kelvin) and wind vector analysis increments at 150 hPa (arrows, units m/s), valid on 2017-05-03 12 

UTC. Right panel: as left, all quantities at 850 hPa. 
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Figure 10. Standard deviation of wind vector observation minus model departures over the 09 to 21 UTC assimilation window of 

2017-5-03 in the 100-400 hPa layer for a pre-operational version of the IFS 43R3 cycle: first guess departures (top left panel); a one 

outer loop analysis departures (top right panel); a three outer loop analysis departures (bottom left plot); a five outer loop analysis 

departures (bottom right panel). 5 
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Figure 11. Normalised standard deviations of analysis (o-a) and first guess (o-b) departures for radiosonde temperature observations 

(top left); radiosonde humidity observations (top right); the microwave imager AMSR-2 (bottom left); the combined observations 

from the AMSU-A microwave sounder instrument on board the AQUA, METOP-A/B, NOAA-15/18/19 satellites (bottom right). The 

100% baseline refers to the three outer loop experiment, the black/red/green lines to the one/four/five outer loop experiments 5 

respectively. Values smaller/larger than 100 indicated tighter/looser fit of the analysis/first guess to the observations relative to the 

three outer loop baseline experiment. Values are averaged over the 2016-12-20 to 2017-02-28 period. Error bars represent 95% 

confidence levels.   
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Figure 12. Normalised root mean square forecast errors for geopotential at 500 hPa (top row); Total Column Water Vapour (second 

row); Wind Vector at 200 hPa (third row); Wind Vector at 850 hPa (bottom row). The black/red/green lines refer to the one/four/five 

outer loop experiments, respectively. Errors are normalised with respect to the three outer loop experiments and are computed using 

the operational ECMWF analysis as verification. Error bars represent 95% confidence levels. 5 
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Figure 13. Normalised root mean square forecast errors for geopotential at 500 hPa (top row); Total Column Water Vapour (second 

row); Wind Vector at 200 hPa (third row); Wind Vector at 850 hPa (bottom row) for the assimilation experiments using the linear 

observations subset. The black/red lines refer to the one/four outer loop experiments, respectively. Errors are normalised with 

respect to the three outer loop experiment and are computed using the operational ECMWF analysis as verification. Error bars 5 

represent 95% confidence levels.    


