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Abstract. A four-dimensional nonlinear spectral ocean model is used to study the transition to chaos induced by periodic

forcing in systems that are non chaotic in the autonomous limit. The analysis relies on the construction of the system’s pullback

attractors (PBAs) through ensemble simulations, based on a large number of initial states in the remote past. A preliminary

analysis of the autonomous system is carried out by investigating its bifurcation diagram, as well as by calculating a metric that

measures the mean distance between two initially nearby trajectories, along with the system’s entropy. We find that nonchaotic5

attractors can still exhibit sensitive dependence on initial data over some time interval; this apparent paradox is resolved by

noting that the dependence only concerns the phase of the periodic trajectories, and that it disappears once the latter have

converged onto the attractor. The periodically forced system, analyzed by the same methods, yields periodic or chaotic PBAs

depending on the periodic forcing’s amplitude ε. A new diagnostic method — based on the cross-correlation between two

initially nearby trajectories — is proposed to characterize the transition between the two types of behavior. Transition to chaos10

is found to occur abruptly at a critical value εc and begins with the intermittent emergence of periodic oscillations with distinct

phases. The same diagnostic method is finally shown to be a useful tool for autonomous and aperiodically forced systems as

well.

1 Introduction and motivation

Understanding the mechanisms that lead to the onset of chaos in dissipative dynamical systems is of fundamental importance15

both from a cognitive viewpoint and for a correct use of the mathematical models on which the systems are based. Chaos arises

in such systems as a control parameter in the governing equations crosses a given threshold. A huge amount of work has been

devoted to analyzing the transition to chaos in the framework of autonomous dynamical systems, i.e., in systems in which the

external forcing and the coefficients do not depend on time. The various routes to chaos in autonomous dissipative systems —

in the presence of time-independent forcing — include period doubling cascade, intermittency and crisis, quasiperiodic routes,20

global bifurcations (e.g., Strogatz, 1994; Nicolis, 1995; Hilborn, 2000; Ott, 2002; Tél and Gruiz, 2006).

*This paper is dedicated to the memory of Anna Trevisan and to her contributions to the applications of dynamical systems
theory to the climate sciences.
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Nonautonomous dissipative dynamical systems represent a crucial extension of autonomous systems for practical appli-

cations, since the external forcing in most real systems — whether deterministic, random or both — depends, typically, on

time. Despite their importance, nonautonomous systems have received, until recently, less attention than autonomous systems.

Transition to chaos induced by time-dependent forcing has, nonetheless, been studied in several significant cases. A classical

example is the Van der Pol oscillator (Van der Pol, 1920, 1926), in which chaotic relaxation oscillations emerge under the5

effect of an external periodic forcing. A few more recent examples in the climate sciences include (i) transition to chaos due to

quasiperiodic forcing (Le Treut and Ghil, 1983; Ghil, 1994); (ii) modification of the autonomous transition by periodic forcing

(Sushama et al., 2007); and (iii) the important contributions of Anna Trevisan and colleagues to the data assimilation problem

for chaotic systems, in which the data stream can be seen essentially as a time-dependent forcing (Trevisan and Uboldi, 2004;

Carrassi et al., 2008a, b; Trevisan and Palatella, 2011).10

The onset of chaos is analyzed here in the framework of nonautonomous systems, which has recently received rapidly

increasing attention in the context of climate dynamics (Ghil et al., 2008; Chekroun et al., 2011; Bódai and Tél, 2012; Bódai

et al., 2013; Pierini, 2014; Drótos et al., 2015, 2017; Ghil, 2015, 2017; Pierini et al., 2016; Lucarini et al., 2017). Our study

focuses on a four-dimensional nonlinear spectral ocean model (Pierini, 2011), which is subjected to periodic forcing, chosen as

the simplest form of time dependence. Cases will be considered that are nonchaotic in the autonomous limit, so that the chaos15

that emerges in the system is strictly associated with the nonstationarity of the forcing.

The study makes use of ensemble simulations performed with many initial states distributed in a given subset of phase space,

following the methodology of Pierini (2014) and Pierini et al. (2016). The overall idea is that the relevant information in the

climate system must be derived from statistical analyses of an ensemble of different system trajectories, each corresponding to

a different initial state, provided that the corresponding trajectories have converged to the system’s time-dependent attractor.20

Such an attractor is called a pullback attractor (PBA; e.g., Ghil et al., 2008; Chekroun et al., 2011; Kloeden and Rasmussen,

2011; Carvalho et al., 2012) in the mathematical literature and a snapshot attractor (e.g., Romeiras et al., 1990; Bódai and Tél,

2012; Bódai et al., 2013) in the physical literature; it provides the natural extension to nonautonomous dissipative dynamical

systems of the classical concept of an attractor that is fixed in time for autonomous systems. A global PBA is defined as a

time-dependent set A(t) in the system’s phase space that is invariant under its governing equations, along with the equally25

time-dependent, invariant measure µ(t) supported on this set, and to which all trajectories starting in the remote past converge

(Arnold, 1998; Rasmussen, 2007; Kloeden and Rasmussen, 2011; Carvalho et al., 2012). In the deterministic case, it is under-

stood that A(t) depends also on the particular forcing, say F (t), that is being applied, but this dependence is usually not kept

track of in the notation. In the random case, the PBA is called a random attractor, and the dependence on the specific realization

ω of the noise process is often included in the notation, as A(t,ω).30

Pierini et al. (2016) rigourously proved that a weakly dissipative nonlinear model like the one used there and herein does

possess a global PBA, subject to mild integrability conditions on the forcing. In the present study, the numerical approach used

for the systematic investigation of the system’s PBAs follows Pierini (2014) and Pierini et al. (2016). Further diagnostic tools

will be introduced for the present periodic-forcing set-up, and a new diagnostic tool will also be proposed to monitor the onset

of chaos in our nonautonomous system.35

2



The paper is organized as follows. In Sect. 2, the mathematical model is described. In Sect. 3, the main properties of the

autonomous system are summarized and an apparent paradox related to the sensitivity to initial states in the periodic regime

is discussed. In Sect. 4, the results obtained for the periodically forced system are presented and discussed; the new cross-

correlation–based method specifically formulated to characterize the onset of chaos is introduced and applied to the specific

case at hand. This method helps characterize the transition to chaos as the amplitude of the periodic forcing increases, as well5

as document the coexistence of local PBAs with chaotic and nonchaotic behavior within the model’s global PBA. In Sect. 5,

the same method is shown to be a useful tool also for autonomous and aperiodically forced systems. Finally, in section 6 the

results are summarized and conclusions are drawn. An appendix illustrates in greater detail the coexistence of local PBAs that

are chaotic and non chaotic in the setting of a periodically forced Van der Pol–Duffing oscillator.

2 Model description10

The highly idealized model of the oceans’ wind-driven, double-gyre circulation (Ghil, 2017, and references therein) used in the

present study is governed by the system of four nonlinear, coupled ordinary differential equations derived by Pierini (2011);

Vannitsem (2014), Vannitsem and De Cruz (2014) and De Cruz et al. (2018) used this model to represent the ocean component

in their low-order climate models. The author introduced such a low-order model to complement the process studies on the

Kuroshio Extension’s low-frequency variability previously carried out with a much more detailed, primitive equation ocean15

model (e.g., Pierini, 2006; Pierini et al., 2009; Pierini and Dijkstra, 2009). The same low-order model was later used by Pierini

(2014) and Pierini et al. (2016) to explore the PBAs of the system in various cases. Here we merely review the main aspects of

the model; for all the technical details and parameter values, the interested reader should kindly refer to Pierini (2011).

The dynamics is governed by the evolution equation of potential vorticity in the quasigeostrophic approximation on the

beta-plane for a shallow layer of fluid, superimposed on an infinitely deep quiescent lower layer. Pierini (2006) found such a20

reduced-gravity model to be a good approximation for process studies of the Kuroshio Extension’s low-frequency variability.

The flow is described by the streamfunction ψ (x, t): like in the previous studies, ψ, the horizontal coordinates x = (x,y) and

the time t are dimensionless, but the dimensional time will be plotted in all the time series presented in this study to emphasize

the typical time scales of the oceanic phenomena under investigation.

A four-dimensional spectral model is obtained by expanding the streamfunction in a rectangular domain as follows:25

ψ (x, t) =

4∑
i=1

Ψi (t) |i〉 . (1)

The orthonormal basis |i〉 is defined as:

|1〉= e−αx sinxsiny; |2〉= e−αx sinxsin2y; |3〉= e−αx sin2xsiny; |4〉= e−αx sin2xsin2y

where α is a real positive constant. This basis satisfies the free-slip boundary conditions along the borders of the rectangular

domain; it also captures the oceanic flow’s westward intensification thanks to the exponential factor first introduced in the30

two-dimensional model of Jiang et al. (1995).
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The four nonlinear coupled ordinary differential equations that govern the evolution of the vector Ψ(t) = (Ψ1,Ψ2,Ψ3,Ψ4)

can be written, cf. Pierini (2011), as

dΨ

dt
+ ΨJΨ + LΨ =G(t)w; (2)

The coefficients of the nonlinear and linear terms in the equation are encapsulated by the rank-3 and rank-2 tensors J and

L, respectively, and the forcing is represented by the vector w, cf. Pierini (2011). The forcing w is obtained from a suitable5

double-gyre surface wind stress curl, while G is defined in the present paper to be periodic,

G(t) = γ [1 + εsin(ωt)] , (3)

with period Tp = 2π/ω, while γ and ε are positive dimensionless parameters.

To construct the system’s PBAs, ensembles of forward time integrations are carried out; each of these starts at t= 0 from a

different initial point contained in a given subset Ω of the model’s four-dimensional phase space, and ends at t= T∗ = 400 yr;10

as shown in Fig. 3 and 9 below, T∗ is much greater than the spinup time in all cases. Following Pierini (2014) and Pierini et al.

(2016), the four-dimensional hypercube Ω is defined as:

Ψ1,Ψ2 ∈ [−70,150] ; Ψ3,Ψ4 ∈ [−150,120] (4)

and the initial data are all chosen to satisfy Ψ1 = Ψ2 and Ψ3 = Ψ4, i.e., to lie within a plane set embedded in Ω.

The ensembles will consist of 15 000 initial data at t= 0 that are regularly spaced either in Ω or in a small subset thereof. For15

the sake of graphical representation, maps of various quantities will be plotted in the rectangle Γ≡ {−70≤Ψ1 ≤ 150,−150≤
Ψ3 ≤ 120} ⊂ Ω that lies in the (Ψ1,Ψ3)-plane. In the discussion of the results, we will refer, for the sake of simplicity and

concision, to the model’s trajectories as being defined in the (Ψ1,Ψ3)-plane but, naturally, the actual trajectories evolve in the

full four-dimensional phase space.

3 The autonomous system20

3.1 The autonomous model’s attractors

We begin by analyzing some basic properties of the autonomous system that will be useful in the subsequent investigation. The

bifurcation diagram of Fig. 1a shows the range of variability of Ψ1 vs. the forcing parameter γ. The value γ = 1 corresponds

to a global bifurcation that manifests itself by a sudden transition from a small-amplitude limit cycle to a relaxation oscillation

with a much higher amplitude. The previous results in this respect (Pierini, 2011; Pierini et al., 2016) will be further bolstered25

by those in Sect. 5 (Figs. 14 and 15) herein that are based on the diagnostic tool proposed in Sect. 4.2.

Figure 1b shows the limit cycle in Γ arising from arbitrary initial data for γ = 1.1, which corresponds to the red vertical line

in the bifurcation diagram of panel (a). For γ = 1.35 the attractor is chaotic (green line in panel (a); see Sect. 5.1 further below).

In this case, the map of the suitably normalized decimal logarithm of the probability density function (PDF) of the trajectories

in Γ is plotted in Fig. 1c; it is defined by qk (t) = log10 [1000×nk (t)]. Here nk is the number of trajectories contained at time30
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t in the k-th cell belonging to the same regular grid of N square cells of width ∆Ψ that is used in our ensemble simulations,

with N = 15 000 and ∆Ψ = 2, and it is plotted at t= T∗ = 400 yr, i.e. after spinup.

(a) (c)(b)

Figure 1. Behavior of the autonomous ocean model, for which ε= 0 in Eq. (3). (a) Bifurcation diagram, in which the range of the variable

Ψ1 is plotted vs. the wind stress intensity γ; the two cases γ = 1.1 and 1.35 discussed in the text are indicated with a red and a green vertical

line, respectively. (b) Limit cycle in the (Ψ1,Ψ3)-plane, plotted after spinup, that arises from Γ for γ = 1.1. (c) Map of the suitably scaled

PDF of trajectories given by qk; see text for details.

In an autonomous dynamical system, the attractors do, by definition, not depend on time, i.e., an attractor is a geometric

object in phase space that is fixed in time. However, any attractor that is not a fixed point — whether a limit cycle, torus or

strange attractor — can contain time-dependent trajectories. Such ensembles of trajectories arising from specific sets of initial5

states will be plotted to illustrate the attractors of the autonomous system studied herein.

Following Pierini et al. (2016), in Figs. 2(a,b) the attractors that correspond to the two cases in Figs. 1(b,c) are represented

by the time evolution of PΨ3(t) = log10(1000× pΨ3), where pΨ3(t) is the PDF of localization of the Ψ3-variable; see Pierini

et al. (2016) for technical details. The dense distribution of PΨ3(t) for γ = 1.35, as seen in Fig. 2b, is clearly associated with

the chaotic character of the flow, while the periodic distribution of PΨ3
(t) that corresponds to γ = 1.1 in Fig. 2a is due to the10

different phases that each trajectory attains on the limit cycle, depending on the initial point.

In Figs. 2(c,d), the same attractors are characterized through the metric σ that was introduced by Pierini et al. (2016);

this metric measures the mean divergence of trajectories over the total integration time T∗, and is defined as follows. The

instantaneous Euclidean distance between two initially close trajectories is δ(t), and its normalized value is given by δn(t) =

δ(t)/δ(0). Then σ is simply the average of δn over T∗,15

σ(X,Y ) =
1

T∗

T∗∫
0

δn(t)dt, with (X,Y )≡ (Ψ1(0),Ψ3(0)) ∈ Γ. (5)

Pierini et al. (2016) found the quantity σ to be a good indicator of the degree of sensitivity of the system’s evolution with

respect to the initial state during the phase of convergence to the attractor.
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The determination of the PBAs of the periodically forced system and the application of the new qualitative and quantitative

diagnostic methods proposed in section 4 need an analysis of the behavior of trajectories that lie at t= 0 on a given subset Ω

of phase space, as is the case when calculating σ(X,Y ) above. Thus, investigating the behavior of model trajectories as they

emerge from Ω is the most unifying and distinctive feature of the present model study.

(c)
P1

P2

(d)
P1

P2

1 1


3


3

(a) (b)

Figure 2. Distinct autonomous regime behavior for (a,c) γ = 1.1, and (b,d) for γ = 1.35. Upper panels: time evolution of PΨ3 for (a) γ = 1.1,

and (b) γ = 1.35. Lower panels: maps of the mean normalized distance σ for (c) γ = 1.1, and (d) for γ = 1.35; the points P1 = (85,100)

and P2 = (25,5) appear in the panels (c) and (d), respectively. Note the different scales in the two maps; 15 000 trajectories, with regularly

spaced initial points in Γ, were used for both maps.

The map of σ in Fig. 2c reveals, in the autonomous case at hand, the same striking features found by Pierini et al. (2016)5

for the nonautonomous, aperiodic-forcing case, namely the coexistence of extended regions of Γ with σ 6 1, shown by cold

colors, and with σ > 1, appearing as warm colors. In the first case, two trajectories that are initially close remain close at all

times, as seen in Fig. 3a. In the second case, though, two trajectories that are initially close may attain a large phase difference

once they have converged to the attractor, cf. Fig. 3b, while still remaining perfectly coherent.
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(a) (b)

(c) (d)

Evolution of two initially nearby trajectories

from P1 from P2

g=

1.1

g=

1.35

t (yr)                                                                                 t (yr)

3

3

3

3

Figure 3. Typical behavior of time evolution of Ψ3(t) for different values of the parameter γ and different initial points in Γ. (a) Two

trajectories obtained for γ = 1.1 and initialized at P1 (red line) and at a nearby point (blue line). (b) Same as in panel (a), but for two

trajectories starting from the point P2 (red) and near it (blue). (c,d) Same as in (a,b) but for γ = 1.35.

In the chaotic case with γ = 1.35, the warm-color regions, in which σ > 1, overwhelm the cold-color regions, in which

σ ≤ 1, cf. Fig. 2d. To illustrate the two types of behavior, Figs. 3(c,d) show the evolution of Ψ3(t) of two initially nearby

trajectories. If σ < 1, as is the case near P1, the two trajectories are virtually coincident (Fig. 3c). If, on the other hand, σ > 1,

as is the case near P2, the two aperiodic signals loose their coherence (Fig. 3d). Finally, it is worth noting that, for simulations

with sufficiently small γ (not shown), σ < 1 everywhere.5

A different and useful way of looking at these two types of behavior is to analyze the corresponding mixing properties of

the flow in the model’s phase space. To do so, one can make use of the system’s entropy (Shannon, 1948):

Sϑ (t) =−
N∑
k=1

pk lnpk. (6)

Here Γ is decomposed into a regular grid of N square cells of width ∆Ψ — with N = 15 000 and ∆Ψ = 2, so that the grid

corresponds to that of the initial data used in our ensemble simulations — and pk(t) is the probability of localization in the10

k-th cell at time t of the trajectories emanating at time t= 0 from a given subset ϑ⊂ Γ.

Figure 4a shows the intersection with the (Ψ1,Ψ3)-plane at t= 300 yr of 15 000 trajectories originating from the box ϑ1

that coincides with the ∆Ψ×∆Ψ grid cell centered at P1; the red dots correspond to the case γ = 1.1 and the green dots

to γ = 1.35. Figure 4b shows Sϑ1
for the two cases; note that Sϑ1

(0) = 0 since all the initial states lie in the single cell ϑ1,
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and thus p1 = 1. The entropy of the periodic case γ = 1.1 characterized by σ < 1, oscillates between 0 and 1, with the final

evolution limited to virtually a single cell over the limit cycle; the latter cell is enclosed in the red circle of Figure 4a.

In the chaotic case γ = 1.35, σ ≤ 1 for 43% of the points contained in ϑ1, while σ > 1 for the remaining points. The evolution

of the former lead to the localized blue dots in Figure 4a while the evolution of the latter lead to the green dots scattered over

the strange attractor. The green line of Figure 4b, giving Sϑ1
computed with all the trajectories, shows the gradual spreading5

of the initial points with σ > 1.

(c) (d)

(a) (b)

Figure 4. Chaotic and non chaotic behavior of the autonomous model, for time-independent forcing intensity γ = 1.1 (red) and γ = 1.35

(green), respectively. Typical behavior of (a,c) the trajectories in the model’s phase plane (Ψ1,Ψ3); and (b,d) of the model’s entropy Sϑ(t).

(a) Intersection with the (Ψ1,Ψ3)-plane at t= 300 yr of 15 000 trajectories emanating from the small square box ϑ1 of width ∆Ψ = 2 and

centered at the point P1 (black dot), for γ = 1.1 (red dots, enclosed in the red circle) and for γ = 1.35 (green dots); for the blue dots see the

text. (b) Time evolution of the corresponding entropy Sϑ1 for γ = 1.1 (red line) and γ = 1.35 (green line). (c,d) Same as panels (a,b), but

for the initial box ϑ2 centered at P2, likewise shown as a black dot in (c). For the evolution of the points contained at t= 300 yr in the black

rectangle of panel (c), see Fig. 5 below.
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Figures 4(c,d) show the same quantities for the initial ∆Ψ×∆Ψ box ϑ2 centered at P2. The chaotic case is similar to that for

ϑ1, but with a greater entropy; on the other hand, the periodic case differs in that now σ > 1, cf. Fig. 2c. Figure 4c shows that

the asymptotic evolution of the very small ϑ2 covers a limited but significant part of the limit cycle, as seen by comparing this

figure with Fig. 1b; the corresponding entropy in Fig. 4d eventually oscillates periodically between the values Sϑ2 ∼ 2.2−3.7.

Figure 4 thus demonstrates clearly the usefulness of the metric σ in characterizing subsets of Γ and the effect of the control5

parameter γ.

Finally, it is worth stressing that, since the forcing is constant, the range of variability of the entropy in the chaotic case

with σ > 1 must tend to zero as the number of points tends to infinity. This tendency is clearly illustrated by the green line

of Figure 4d. On the other hand, the range of variability of Sϑ1
in the chaotic case (Figure 4b) is still quite large after 400 yr

because, as pointed out above, the number of points with σ > 1 contained in ϑ1 is relatively small.10

3.2 An apparent paradox

We conclude the analysis of the autonomous system by discussing an apparent paradox. We have just seen that, in regions of Γ

where σ > 1, the trajectories for γ = 1.1 exhibit sensitive phase dependence on initial data, as shown, for instance, by Fig. 3b,

by the red dots in Fig. 4c and by the red curve in Fig. 4d. Sensitive dependence on initial data is usually associated with chaotic

dynamics, but in this case the dynamics is periodic.15

This paradox is resolved by noting that such sensitivity concerns only the phase of the periodic trajectories, as already

noticed in the previous subsection and, in addition, it occurs only if the initial data lie outside the attractor, e.g, elsewhere on

Γ; on the attractor, this phase sensitivity disappears, as we will show below. On the contrary, in the chaotic case γ = 1.35, the

sensitivity to initial data for trajectories with σ > 1 always holds, off the attractor as well as on it, in excellent agreement with

the chaotic character of the dynamics in the latter case.20

We must show, therefore, that the trajectories are stable for γ = 1.1 and unstable for γ = 1.35, once they have settled onto

the attractor. This distinction between the two cases can already be inferred from Figs. 3 and 4 but it is worth investigating the

issue in greater detail. The usual quantitative approach relies on the computation of the leading finite-time Lyapunov exponent

λ of each trajectory (e.g., Ott, 2002).

The results (not shown) are consistent with the assumption above, but the exponents are highly dependent on the time Tλ25

over which the finite-time exponents are computed, and on the amplitude of the perturbation superimposed on the reference

trajectory at each time step Tλ. Moreover, the assumption of exponential divergence of chaotic trajectories is not fully met in

our highly nonlinear framework, so that the transition between periodic and chaotic dynamics may actually occur at a value of

λ that is not exactly equal to 0. A qualitative diagnostic method is instead illustrated in Fig. 5, and we propose, furthermore, in

Sect. 4 an alternative quantitative method.30

Let us consider the points lying in the black rectangle shown in Fig. 4c at t= 300 yr: the corresponding evolution at four

subsequent time instants, T∆ = 25 yr apart, is shown in Fig. 5a for γ = 1.1 (red dots). Note that the period of the orbits on the

attractor is Tp∗ = 14.08 yr, i.e. T∆ > Tp∗ .

9



(a) (b)

Figure 5. Chaotic and non chaotic behavior of the autonomous model. (a) Evolution of the 1774 points (red dots) contained at t= 300 yr in

the black rectangle of Fig. 4c for γ = 1.1; the attractor is illustrated by the entire set of 15 000 points, shown in light red. (b) Same but for

the 135 points (green dots) that lie within the same rectangle for γ = 1.35; in this case, the attractor composed of the 15 000 points is shown

in light green. Due to the chaotic nature of the dynamics in this case, only one snapshot, after 25 yr, is drawn.

The stability of the trajectories under consideration is clearly demonstrated in Fig. 5a by the compact form and limited extent

of the cluster: indeed, these points that start from t= 300 yr, evolve anticlockwise around the attractor, covering it roughly six

times during the interval 4T∆ = 100 yr that separates the first snapshot from the last one. On the contrary, Fig. 5b shows that

for γ = 1.35 (green dots) the compact form of the initial cluster is lost already after a single 25-yr lapse of time. The trajectories

will thus soon be scattered over the strange attractor, due to their divergence.5

In conclusion, our autonomous system becomes chaotic for sufficiently large values of γ, e.g., for γ = 1.35. The system’s

periodic regime spans a range of γ that includes the bifurcation at γ = 1, which is apparent in Fig. 1a.

We have shown, moreover, when γ = 1.1, that regions of Γ exist within which the mean normalized distance σ between

two initially nearby trajectories is larger than unity; see again Fig. 2c. In this case, despite the attractor’s being a limit cycle,

the trajectories leaving from such regions of phase space experience sensitive phase dependence on the initial data. Although10

sensitive dependence is typically associated with chaotic systems, this sensitivity is not in contradiction with the periodic

character of the solutions: as a matter of fact, the trajectories under discussion are stable and the sensitive dependence disappears

once the trajectories have converged onto the attractor.

The existence of regions with σ > 1 for an autonomous periodic system is an important feature for the transition to chaos

when the system is subjected to time-dependent forcing: this issue will be discussed in the next section. Besides, the new15

diagnostic method introduced in Sect. 4.2 to help analyze transition to chaos in the non-autonomous case will be applied in

Sect. 5.1 to the autonomous case.
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4 The periodically forced system

For the idealized double-gyre model governed by Eq. (2), we have seen that the autonomous system given by ε= 0 in Eq. (3)

exhibits a limit cycle when γ = 1.1; this limit cycle corresponds to the large-amplitude relaxation oscillation of Fig. 1b. On

the other hand, Pierini (2014) showed that, when the same model, with the same value of γ, is subjected to periodic forcing

with ε= 0.2 and Tp = 30 yr, it exhibits chaotic, cyclostationary and cycloergodic behavior; see figures 2 and 3 therein and5

the related discussion. To understand the transition to deterministically chaotic behavior induced by the forcing, we will now

apply in Sect 4.1 the methodology used in Sect. 3 to the PBAs corresponding to γ = 1.1 and Tp = 30 yr across the intervening

parameter range 0≤ ε≤ 0.2. In Sect. 4.2, the transition to chaos induced by the periodic forcing will be analyzed in greater

detail through an additional method here developed explicitly for this purpose.

4.1 The pullback attractors of the forced system10

(e) (f) (g) (h)

(c) (d)(c) (d)(b)(a)

Figure 6. Transition from a periodic to a chaotic PBA as the amplitude ε of the periodic forcing in Eq. (3) increases. (a,b,c,d) Time evolution

of PΨ3; and (e,f,g,h) maps of σ for γ = 1.1, Tp = 30 yr and ε= 0,0.05,0.1, and 0.2, respectively.

Recall that the PBAs of a periodically forced system (e.g., Pierini, 2014, and references therein) are always periodic. This

periodicity of the PBAs occurs for both periodic and chaotic systems; the latter are typically referred to as cyclostationary. For

the sake of simplicity we will refer below to chaotic and non chaotic PBAs, abbreviated as CPBAs and NPBAs, respectively.

For the autonomous case, the time evolution of PΨ3(t) and the map of σ(X,Y ) — already shown in Figs. 2a and 2c,

respectively — are again plotted in Figs. 6a and 6e for the sake of comparison; Figs. 6d,h correspond to the CPBA studied15

by Pierini (2014), but in that case ε was multiplied by the aperiodic forcing shown in Fig. 17 below. Two intermediate cases

that correspond to ε= 0.05 and ε= 0.1 are shown in Figs. 6b,f and Figs. 6c,g, respectively. In Sect. 4.2, we will show in
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greater detail that the transition to chaotic behavior occurs abruptly, when crossing a critical value εc that lies between the two

intermediate values of 0.05 and 0.1; here we merely provide some qualitative arguments showing that, in fact, the case ε= 0.05

is still periodic, while the case ε= 0.1 is chaotic.

(a) (d)(c)(b)

(e) (h)(g)(f)

Figure 7. Intersection with the (Ψ1,Ψ3)-plane at t= 400 yr (magenta dots) of 15 000 trajectories emanating from Γ at t= 0 for γ = 1.1

and Tp = 30 yr. The complete set of the initial points covering Γ is in blue. Top panels: (a) ε= 0, (b) 0.05, (c) 0.10, and (d) 0.2. Bottom

panels: (e,f,h,g) the corresponding entropy Sϑ2 is plotted, along with the number no of occupied cells.

Figure 7 provides further information on the four cases illustrated in Fig. 6. In Figs. 7a–d, the magenta dots represent the

intersection with the (Ψ1,Ψ3)-plane at t= 400 yr of 15 000 trajectories, whose initial points (in blue) are evenly distributed in5

Γ at t= 0; in addition, in Figs. 7e–h, the corresponding entropy Sϑ=Γ is plotted as a function of time, along with the number

no of cells that are occupied by at least one point. Clearly, the structure of the PBA snapshot in Fig. 7b, for ε= 0.05, is very

similar to that of the autonomous case in Figs. 1b and 7a, while the PBA snapshots plotted at t= 400 yr — for ε= 0.1 and 0.2

in Figs. 7c and 7d, respectively — are quite different.

To understand better this difference, we focused in Fig. 8 on the subdomain ϑ2 of Γ that was defined in Fig. 4c and for which10

σ > 1. The autonomous case has already been analyzed in Sect. 3.1: in fact, Figs. 8a,e are equivalent to Figs. 4c,d. In the case

of ε= 0.05, the same behavior is found, i.e., the sensitivity to initial data leads to only a compact subset of the attractor being

covered; this implies the periodicity of the trajectories.

On the contrary, for ε= 0.1 the intersection of the trajectories at t= 400 yr with the (Ψ1,Ψ3)-plane, shown by the magenta

dots in Fig. 8c, is virtually indistinguishable from the one that appears in Fig. 7c, when the initial data are selected in the15
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whole of Γ: this excellent match is an unequivocal sign of the mixing property of chaotic dynamics, as already discussed for

the autonomous case γ = 1.35 in connection with Figs. 4 and 5. That the same property holds for ε= 0.2 in Fig. 8d is not

surprising, since Pierini (2014) already recognized the model’s chaotic behavior for this parameter value.

(a) (d)(c)(b)

(e) (h)(g)(f)

Figure 8. Same as Fig. 7, but for 15 000 trajectories emanating at t= 0 from the small rectangle ϑ2 of width ∆Ψ = 2 centered at P2.

Finally, it is instructive to visualize Ψ3(t) for a couple of trajectories that are very close at t= 0, as done in Fig. 3 for the

autonomous case. Figure 9 shows Ψ3(t) for the four cases of Figs. 6–8 and for trajectories that emerge from ϑ2. In Figs. 9a,b the5

two trajectories are periodic, but with a phase difference. In the two chaotic cases of ε= 0.1,0.2 in Figs. 9c,d, both trajectories

are clearly aperiodic. In Fig. 9c, though, i.e., in the case that is closer to the transition, this aperiodicity is merely associated

with a temporary shift in phase of an otherwise periodic signal within the intervals t' 40− 120 yr and t' 360− 400 yr.

The intermittent behavior seen in Fig. 9c appears — from many simulations that are not shown here — to be typical of

chaotic solutions near the transition point εc and suggests a possible mechanism through which chaos is induced by an external10

periodic forcing. For values of ε just past εc, the model still tends to behave periodically, but the external forcing is sufficiently

strong to entrain a trajectory occasionally into a nearby region, where the periodicity is preserved but the phase differs by a

finite amount. Since these shifts are very sensitive to the initial data, the result is a chaotic trajectory characterized by separate

intervals of periodic oscillations with a different phase. This mechanism also explains why the transition to chaos leads to

a notable increase of the measure of the regions in Γ where sensitive dependence to initial data occurs; such an increase is15

visually obvious when comparing Figs. 6e,f with Figs. 6g,h. As ε increases further, the duration of the intervals of constant

phase decreases, and the oscillations tend to become more genuinely aperiodic, as seen in Fig. 9d.
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(a) (b)

(c) (d)

Figure 9. Increasing instability of trajectories as ε increases. Time evolution of Ψ3(t) for the trajectory initialized at the point P2 (red line)

and at a nearby point (blue line) for γ = 1.1,Tp = 30 yr, and (a–d) ε= 0,0.05,0.1, and 0.2.

This behavior is similar to the intermittency found in autonomous dissipative systems (e.g., Manneville and Pomeau, 1979;

Pomeau and Manneville, 1980), in which a trajectory switches back and forth from periodic to aperiodic oscillations provided

a certain control parameter of the system — e.g., the amplitude of the steady, time-independent forcing — crosses a given

threshold. In our nonautonomous system, the amplitude of the periodic forcing ε plays a similar role. This transition to chaos

induced by time-dependent forcing appears, therefore, to be directly linked to the existence of regions in phase space in which5

sensitive dependence to initial data occurs in the limit of periodic solutions. Thus, the chaotic behavior merely due to the

time-dependent nature of the forcing can be traced back to the apparently paradoxical property of the autonomous system that

was emphasized in Sect. 3.2. This striking observation deserves to be analyzed in greater depth in future studies.

4.2 Transition to chaos studied by a cross-correlation method

Recognizing qualitatively whether a PBA is chaotic or not is relatively simple; e.g., this can be done through the heuristic10

arguments illustrated in Fig. 4 and Fig. 5 and through those outlined in the previous subsection and illustrated in Figs. 6–9.

But how to characterize the transition from periodic to chaotic dynamics as a control parameter, such as the amplitude ε of the

periodic forcing, changes?

We have already discussed in Sect. 3.1 the limitations of using the mean finite-time Lyapunov exponents. Here we propose a

new, simple and robust method that is particularly useful in our periodic-forcing case, but can be applied also to any autonomous15
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system and even to aperiodically forced systems; the latter situations will be addressed in Sect. 5. In Secs. 3 and 4.1, we have

relied on the mixing properties of chaotic dynamics, as measured by the system’s entropy Sϑ, to recognize the occurrence

of chaotic behavior. Now we rely on the emergence of aperiodic signals from a subset of Γ; this subset will necessarily be

contained in the region where sensitive dependence on initial data occurs, i.e., where σ > 1.

The most obvious approach would be to compute the power spectrum of each trajectory. Periodic signals can, however, be5

quite complex, as seen, for instance, in Figs. 9a,b; this complexity makes it quite difficult to identify a parameter whose value

will distinguish, accurately and reliably, between periodic and chaotic dynamics, based solely on the Fourier spectra of a finite

number of finite-length trajectories.

We propose a simpler alternative method that takes advantage of the ensemble simulations carried out to obtain numerically

the PBAs. Let Ψ̄3 and ζ3 be the mean and root-mean square values of Ψ3(X,Y,t), and consider the centered and normalized10

anomaly time series Ψ̃3(X,Y,t) and Ψ̃3 (X ′,Y ′, t), of Ψ3, with

Ψ̃3 =
Ψ3− Ψ̄3

ζ3
, (7)

where (X,Y ) and (X ′,Y ′) are two points in Γ that are near to each other, and from which these two time series emerge at

t= 0. We can then compute the cross-correlation between the two signals, after removing the initial transient, as

c(X,Y,τ) =
1

T∗− 2T

T∗−T∫
T

Ψ̃3 (X,Y,t)Ψ̃3(X ′,Y ′, t+ τ)dt; (8)15

here T∗ = 400 yr is again the maximum integration time, and −T ≤ τ ≤ T , while T = 50 yr; once more, the following results

are independent of T , provided it is sufficiently larger than the typical time scale of the phenomenon. Note also that, in the

above definition, we have dropped the dependence of c on (X ′,Y ′) for the sake of conciseness.

Now, if σ < 1, the two signals are periodic and virtually coincident, as seen, for instance, in Fig. 3a,c. Hence, defining the

maximal cross-correlation by20

Θ(X,Y ) = max{c(X,Y,τ) : τ ∈ [−T,T ]} , (9)

one will have Θ(X,Y )∼= 1, with Θ being attained at τ = 0.

On the other hand, if σ > 1, there are two possibilities:

– either the PBA is not chaotic, in which case all couples (X,Y ) and (X ′,Y ′) yield two periodic and virtually equal

signals, apart from a finite phase difference, as seen, for instance, in Figs. 3b and 9a,b; in this case, again, Θ∼= 1, which25

will now occur at some lag τ 6= 0 that depends on the phase difference;

– or the PBA is chaotic, in which case all couples yield two aperiodic and significantly different signals, as seen, for

instance, in Figs. 3d and 9c,d; in this case, Θ will be substantially less than unity.

This alternative is illustrated in Fig. 10 for the four couples of trajectories plotted in Figs. 9a–d, all of which were initialized

in ϑ2, where σ > 1.30
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e = 0.00,  0.05,  0.10,  0.20

Figure 10. Cross-correlation c(τ) between the two initially nearby trajectories shown in Figs. 9a–d, computed for the centered and normalized

anomalies Ψ̃3, according to Eq. (7), for ε= 0 (red line), 0.05 (orange line), 0.1 (green line), and 0.2 (blue line).

It is then useful to analyze the maps of the parameter Θ. Figures 11a-d show Θ for the four cases of Figs 6–9. In the two

cases that we have already identified as nonchaotic, Θ varies within a range of values [0.95,1.1] that lies very close to unity,

as expected; see Figs. 11a,b. There is only a small neighborhood of P0 = (−16,−83) in which Θ is very small: this is because

P0 in the autonomous case is a fixed point; see Fig. 12.

The two cases that we have identified as chaotic appear here as Figs. 11c,d, and in them Θ exhibits in fact smaller values.5

These values lie in the range [0.2,0.8] for a large subset of the domain, where σ > 1, as shown in Figs. 6g,h. Regions in which

σ > 1 but Θ' 1 are present as well, but the corresponding trajectories are nonetheless unstable once they have converged onto

the PBA, because they will always pass sufficiently near trajectories that are chaotic, thanks to the mixing properties of the

latter.

In summary, if Θ∼ 1 everywhere (yellow colors) we have an NPBA, whereas — if Θ yields values that are sufficiently10

smaller than unity (grey colors) — then we have a CPBA.

To summarize in a clear and simple way the information provided by the values of both σ and Θ, we introduce the integer-

valued parameter Φ, defined as follows:

Φ(X,Y ) =


1 if σ 6 1 (yellow)

2 if σ > 1 and Θ>Θ0 (green)

3 if σ > 1 and Θ 6 Θ0 (red).

(10)

Here Θ0 is a threshold value and Φ(X,Y ) is plotted in Figs. 11e–h for Θ0 = 0.8.15

As an example of the usefulness of Φ, let us note that the σ-maps in Figs. 6f and 6g are fairly similar, except for the

more extended warm-color region, where σ > 1, in the second map. Recall, however, that the meaning of σ > 1 is profoundly
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(a)

(h)(g)(f)(e)

(d)(c)(b)

Figure 11. PBA diagnostics for γ = 1.1 and Tp = 30 yr, with ε= 0,0.05,0.1, and 0.2, respectively, for the two sets of four maps. Upper-

row panels (a–d) show the field of Θ(X,Y ), as defined in Eq. (9); the color bar for the Θ(X,Y )-values is shown to the right of each panel,

and it extends over the range [0.1,1.12]. Lower-row panels (e–h) show the field of Φ(X,Y ), as defined in Eq. (10), with the threshold

value Θ0 = 0.8; here Φ = 1 is colored yellow; Φ=2 is green, and Φ = 3 is red. The corresponding maps of σ(X,Y ) appear in Figs. 6(e–h),

respectively.

Figure 12. Fixed point P0 of the autonomous case, with ε= 0. Time evolution of Ψ3 for the trajectory initialized at P0 = (−16,−83) (blue

line) and at a nearby point (solid red line) for γ = 1.1 and Tp = 30 yr .

different if the system is chaotic, in which case mixing is present, as opposed to when it is not, in which case sensitive

dependence to initial data concern only the phase of the signal and is not accompanied by mixing. This ambiguity is resolved

by the use of the step function Φ: if ε= 0.05 (Fig. 11f), sensitive dependence to initial data, i.e. σ > 1, yields the value of

Φ = 2 (green regions), since Θ' 1, which tells us that the system is not chaotic. On the contrary, if ε= 0.1 (Fig. 11g), regions

with Φ = 2 (in red) appear within the green regions: this implies low Θ-values and therefore chaos.5
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Figure 13. Transition from periodic to chaotic behavior, illustrated by the metric 〈Θ〉Γ plotted vs. the amplitude ε of the periodic forcing in

Eq. (3); γ = 1.1 and Tp = 30 yr.

We conclude by analyzing the transition from NPBAs to CPBAs via a suitable function of the control parameter ε: this metric

is provided by the average value 〈Θ〉Γ of Θ over Γ. The graph of 〈Θ〉Γ (ε) in Fig. 13 is obtained by performing many ensemble

simulations of system trajectories with many distinct values of ε; the latter values are chosen to lie closer to each other where

the variation of 〈Θ〉Γ (ε) is stronger. An abrupt transition from NPBAs, with 〈Θ〉Γ ' 1, to CPBAs occurs at εc
∼= 0.09. Many

additional analyses (not shown) for values just below and above εc confirm that this is in fact the critical value beyond which5

chaos sets in.

5 Further applications of cross-correlation diagnostics

5.1 Application to the autonomous system

The diagnostic method proposed in Sect. 4.2 to monitor the transition from NPBAs to CPBAs in periodically forced systems

relies on two properties: (i) in an NPBA all trajectories are periodic; and (ii) in a CPBA diverging aperiodic trajectories emerge10

from a subset of Γ, in which necessarily σ > 1. Thus, the same cross-correlation–based method can obviously be applied to an

autonomous system as well. The method’s application to the autonomous model studied in Sect. 3 will shed new light on the

periodic vs. chaotic character of its solutions.

The graph in Fig. 14 shows 〈Θ〉Γ (γ) and is obtained, like that of Fig. 13, by performing many ensemble simulations,

each with a different value of γ, rather than ε, which equals zero in the present case. The first thing to notice is the sudden15
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Figure 14. Same as Fig. 13, but for the autonomous model with ε= 0 and the amplitude γ of the time-independent forcing on the abscissa.

The vertical red and green lines denote the periodic and the chaotic cases, respectively, that were analyzed in Sect. 3.1; see again Fig. 1.

Please see the text for the interpretation of the dashed lines corresponding to γc = 1 and γ0 = 1.3475.

drop of 〈Θ〉Γ at γ = γc = 1, where a global bifurcation separates small-amplitude limit cycles from large-amplitude relaxation

oscillations, as shown in Pierini (2011) and in Sect. 3.1 here. In addition, Pierini (2012) investigated the stochastic version of

this deterministic tipping point in the case of random forcing.

The chaotic nature of the attractor for γc is illustrated in Fig. 15. For γ = 0.99, the Ψ3-time series exhibits the typical small-

amplitude, purely periodic behavior studied in subsection 3.1, while for γ = 1 both small- and large-amplitude oscillations5

occur irregularly in the same time series. The behavior at γ = 1.01 illustrates the return to more regular behavior.

Thus, chaotic dynamics occurring in an extremely restricted γ-range separates two different types of limit cycles. Figure 16

shows this dramatic transition in terms of σ: the chaotic nature of the flow for γc = 1 is such that the warm-colored regions in

which σ > 1 overwhelm the cold-colored regions, as in Fig. 2d, where γ = 1.35.

For γ > 1, the system is not chaotic — except for limited γ-intervals centered at γ ' 1.25 and γ ' 1.335 — until a new10

abrupt drop of 〈Θ〉Γ at γ = γ0 = 1.3475, shown by a dashed black line in Fig. 14. This drop signals the presence of chaotic

attractors beyond γ0; in particular, the chaotic case γ = 1.35, shown by the solid green line and discussed in Sect. 3, lies just

after this transition. It is worth noting the large fluctuations dominate the chaotic regime.

19



g=0.99 g=1.00 g=1.01

P1

P2

(a)

(d)

(c)(b)

(f)(e)

Figure 15. Critical transition in the autonomous system at γc. Panels (a,d), (b,e) and (c,f) correspond to γ = 0.99,1.0 and 1.01, respectively.

(a,b,c) Time evolution of Ψ3 for the trajectory initialized at P1 (red line) and at a nearby point (blue line); (d,e,f) same but for trajectories

initialized at P2.

g=0.99 g=1.00 g=1.01

Figure 16. Critical transition in the autonomous system at γc, illustrated by maps of the mean normalized distance σ for γ = 0.99, 1.0, 1.01.

5.2 Application to an aperiodically forced system

Our cross-correlation diagnostics has been shown to apply to both periodically forced and autonomous systems. Its validity,

however, is even more general, since it extends to a large class of aperiodically forced systems as well. We choose the model

setup of Pierini et al. (2016) to illustrate the latter possibility. A thorough analysis of this application is beyond the scope of the

present study: we will therefore limit ourselves to analyzing the basic aspects of the problem, and leave the details for a future5

investigation.
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Pierini et al. (2016) considered the same system — governed by Eq. (2), and within the same parameter regime adopted here

and in Pierini (2011). The forcing, though, was aperiodic and given by:

G(t) = γ [1 + ε′f(t), ] (11)

where ε′ > 0 is a dimensionless coefficient and f(t) is a normalized, fixed realization of an Ornstein-Uhlenbeck process that

has been smoothed to resemble multi-annual wind-stress forcing of the mid-latitude oceans’ double-gyre circulation. Figure 175

shows G(t) for γ = 1 and ε′ = 0.2.

Figure 17. Aperiodic forcing G(t)/γ of the idealized ocean model — defined by Eq. (11) herein, and plotted using the value ε′ = 0.2, as

adopted in Pierini et al. (2016).

Figure 18 shows the evolution of two initially nearby trajectories emerging from P2, along with the corresponding cross-

correlation, for γ = 1.1, with ε′ = 0.05 in the two upper panels and ε′ = 0.20 in the two lower panels; both cases have σ > 1

and the corresponding time series of PΨ3
are plotted in figures 4(h,j) of Pierini et al. (2016). The case ε′ = 0.2 corresponds to

the CPBA analyzed in detail by Pierini et al. (2016). The chaotic character of the solution is clearly visible from Fig. 18c; the10

cross-correlation between the two signals is plotted in Fig. 18d and it is accordingly small.

On the contrary, the case ε′ = 0.05 corresponds to an NPBA: the two signals in Fig. 18a develop a large phase difference

after the initial transient, but are virtually identical and remain coherent at all times. Now, unlike in Fig. 3b and Figs. 9a,b, the

two signals are not periodic because they are modulated by the aperiodic forcing, but this is irrelevant; in fact, the nonchaotic

character of the solution can still be highlighted by the corresponding cross-correlation in Fig. 18b, whose maximum value is15

Θ' 1, like in the autonomous and periodically forced case. Obviously, this is possible because the period of the modulated

relaxation oscillation is much smaller than the time scale of the forcing; this is in fact the only condition required for the

applicability of this diagnostic method to aperiodically forced systems.

We can therefore conclude that the parameter 〈Θ〉Γ can be a valuable tool for monitoring the onset of chaos in aperiodically

forced systems as well. For example, this diagnostic method can be applied to study the onset of chaos in systems that possess20

a drift mimicking global warming and other climate change scenarios (as done, for instance, in Drótos et al., 2015).
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0.05

0.20(a) (b)

(d)(c)

Figure 18. Role of the cross-correlation diagnostics in characterizing chaotic behavior for an aperiodically forced system, given by Eqs. (2)

and (11); γ = 1.1. (a) Time evolution of Ψ3 for ε′ = 0.05 in Eq. (11); and (b) corresponding cross-correlation. (c,d) Same as (a,b) but for

ε′ = 0.2. The trajectories initialized at P2 are in red and those initialized at a nearby point are in blue.

6 Summary and conclusions

In this paper, we studied the transition from nonchaotic to chaotic PBAs in a nonautonomous system whose autonomous limit

is non chaotic, and in which, therefore, chaos is induced by the periodic forcing. The illustrative example chosen for this

general problem was a low-order quasigeostrophic model of the mid-latitude wind-driven ocean circulation, subject to periodic

forcing. The model was described, and connected with previous work, in Sect. 2.5

We first investigated, in Sect. 3, the autonomous system, following up on the work of Pierini (2011), who obtained its

governing equations and analyzed their solutions. Here, ensemble simulations based on a large number of initial data and

the calculation of the system’s entropy allowed us to determine novel and interesting features of the system subject to steady

forcing.

To do so, we used the metric σ that was introduced by Pierini et al. (2016) and measures the time average of the distance10

between two trajectories that are very close at t= 0 on a subset Γ of phase space. The analysis based on this metric yielded

regions in Γ with σ-values that can be either larger or less than unity. The spatial structure of these regions, cf. Figs. 2c,d here,

is very similar to that of the nonautonomous case investigated by Pierini et al. (2016), as seen in Fig. 6 therein. This similarity
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suggests that the nonautonomous behavior of a dynamical system is profoundly influenced by the convergence properties of

trajectories initialized off the attractor in the autonomous case; this finding, in turn, implies that ensemble simulations are very

helpful in studying said properties.

We investigated next, still in the autonomous case, the apparent paradox of regions with σ > 1 coexisting in the periodic

regime of γ = 1.1 with the expected regions of σ < 1. A large number of trajectories emanating from the small square box5

of Fig. 4c, for which σ > 1, evolves into the extended red line shown in the same figure at a given time, t= 300 yr: this line

belongs to the periodic attractor shown in Fig. 1b and the entropy evolution along it oscillates periodically, cf. Fig. 4d; but it is

clearly distinct from the chaotic attractor apparent as the green cloud of points in the same figure panel. Further evidence for

the stability of the trajectories in this periodic case with σ > 1 is provided by Fig. 5a.

We conclude that sensitive phase dependence to initial data in a periodic regime may be present if the trajectories are ini-10

tialized off the attractor, but that it disappears once the trajectories have converged onto the attractor. Clearly, generic sensitive

dependence on initial data is, therewith, a necessary but not sufficient condition for chaotic behavior.

In Sect. 4, we studied the onset of chaos in the system subject to the periodic forcing given by Eq. (3) in the case of γ = 1.1,

in which the system is non chaotic in the autonomous limit, so that chaos is induced by the periodic forcing. The PBAs were

analyzed at first for four different sinusoidal-forcing amplitudes, with ε= 0,0.05,0.10, and 0.2, while using the same γ = 1.115

and Tp = 30 yr.

We found that the first two cases, namely ε= 0 and 0.05, are non chaotic, while the other two, namely ε= 0.10 and 0.20, are

chaotic. A large number of trajectories emanating from the small square box where σ > 1 in Figs. 8a–d evolves — depending

on the value of ε — into two very different fixed-instant subsets of the model’s PBA, with the snapshot taken at t= 400 yr, i.e.

after convergence of the trajectories to the PBA. In the first two cases, this snapshot is a curved-line segment that belongs to20

the PBA, while in the latter two cases it covers the whole PBA, due to the typical mixing property of chaos.

An analysis of the trajectories, as shown in Fig. 9, for instance, indicates that the transition to chaos occurs via an intermittent

emergence of periodic oscillations with different phases; see again Fig. 9c. We have shown that, for values of ε in the chaotic

regime just above the transition, the periodic character of the system is still predominant, but the external forcing is now

sufficiently strong to cause a trajectory’s occasionally shifting to a phase space region in which a different phase prevails: since25

the shifts are very sensitive to the initial data, the result is a chaotic trajectory characterized by irregular jumps of the oscillatory

solutions between distinct phases.

In Sect. 4.2, we introduced a novel diagnostic method for the study of the transition between nonchaotic and chaotic behavior

as the amplitude ε of the periodic forcing increases. The method’s basic idea is that in a nonchaotic regime any couple of initially

nearby trajectories emerging from Γ remain coherent at all times, while in a chaotic regime aperiodic diverging trajectories30

emerge from a subset of Γ. Hence, a systematic recognition of the character of all the trajectories allows one to diagnose which

of these two types of behavior occurs or whether the two actually coexist.

A simple and robust way to do this is to compute the cross-correlation c(X,Y,X ′,Y ′, τ) at lag τ between two initially nearby

trajectories started at (X,Y ) and (X ′,Y ′) in Γ, then compute its maximum value Θ(X,Y ) over τ . If Θ(X,Y )' 1 everywhere

in Γ, then the system is non chaotic, and is therefore periodic under periodic forcing; on the contrary, if Θ is appreciably smaller35
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than unity in some subset of Γ, the system is chaotic. The diagram of the average 〈Θ〉Γ (ε) of Θ(X,Y ) over Γ, as plotted in

Fig. 13, reveals an abrupt transition to chaos at εc ' 0.09.

This cross-correlation–based method has also been applied to the autonomous system, in which the conditions required for

the periodically-forced case do apply as well. The diagram of 〈Θ〉Γ (γ) in Fig. 14 reveals that chaotic dynamics occurs at

first within an extremely restricted range centered at the global bifurcation point γ = γc = 1, which separates small-amplitude,5

fairly smooth oscillations below γc from large-amplitude relaxation oscillations above it. A considerably broader range of

chaotic behavior occurs in the autonomous case for values of γ greater than a threshold γ0 = 1.3475.

We have then applied the cross-correlation–based method to the aperiodically forced system studied by Pierini et al. (2016).

Our results show that, in fact, this method can be applied to systems subject to aperiodic forcing when the system’s intrinsic

periodicity and the characteristic time scale of the external forcing are sufficiently well separated from each other, which is the10

case in Pierini et al. (2016), cf. Fig. 17 here. Once more, the cross-correlations in Figs. 18c,d agree remarkably well with the

character of the model trajectories in Figs. 18a,b.

Finally, the coexistence of local PBAs with chaotic vs. nonchaotic behavior within a global PBA — as first described by

Pierini et al. (2016) in the aperiodic-forcing case — was confirmed here for the periodically forced case, cf. Figs. 6 and 11.

This situation was explored in greater depth in App. A for an even simpler, weakly dissipative nonlinear model, namely a Van15

der Pol–Duffing oscillator (e.g., Jackson, 1991), and additional references were given for this type of PBA bistability.

Overall, this paper provides additional insights into the complex and varied behavior that arises even in highly idealized

atmospheric, oceanic and climate models from the interaction of nonlinear intrinsic dynamics with various types of external

forcing. In addition, it stresses the importance of using the framework of nonautonomous dynamical systems and of their PBAs

for a deeper understanding of this complexity and variety.20
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Appendix A: Coexistence of pullback attractors in a Van der Pol-Duffing oscillator

The purpose of this appendix is to provide further insight into the coexistence of local PBAs with quite different stability

properties, as illustrated in the main text by Figs. 6 and 11. In complex autonomous systems, several local attractors may

coexist for a given set of the system’s parameters; each of these attractors possesses attracting sets of initial data that are30

typically separated by fractal boundaries (Grebogi et al., 1987). Basins of attraction with fractal boundaries have consequences

for predictability: uncertainties on the initial state x0 may result in different types of dynamical behavior, depending on which
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basin x0 lies in; see, for instance, Roques and Chekroun (2011). When the number of the coexisting attractors is two, one

speaks of bistability, and multistability refers colloquially to more than two coexisting attractors.

Our goal here is to illustrate how multistability for nonautonomous systems manifests itself unambiguously through the

existence of disjoint local PBAs. In the case of periodically forced systems, such as considered in this article, similar results

can be inferred, of course, from the analysis of Poincaré maps. Nevertheless, the presence of other frequencies in the internal5

dynamics, the external forcing or the noise may render the analysis of Poincaré maps difficult, whereas the framework of PBAs

includes naturally such additional levels of complexity (Chekroun et al., 2018). Pierini et al. (2016), for instance, demonstrated

already the usefulness of this framework in the context of bistability.

Furthermore, the purpose of this Appendix is also to illustrate that multistability of local PBAs arises not only for our quasi-

geostrophic model, as discussed in the paper’s main text. More generally, PBA coexistence occurs fairly often for externally10

forced systems, albeit a careful analysis of the flow’s dependence on initial data may be required in practice in order to conclude

on multistability.

A paradigm of multistability is provided by dissipative nonlinear systems that become Hamiltonian in the limit of vanishing

dissipation, as is the case, for instance, in celestial mechanics (e.g., Ghil and Wolansky, 1992). In this situation, it is expected

that the number of coexisting attractors exceeds any fixed bound in approaching this limit, as documented for various nearly-15

integrable maps and flows, cf. (Feudel et al., 1996; Zaslavsky and Edelman, 2008; Celletti, 2009; Pisarchik and Feudel, 2014;

Dudkowski et al., 2016) and references therein.

To illustrate this multistability phenomenon, we consider the following periodically forced Van der Pol–Duffing oscillator,

given by the second-order nonlinear ODE

ẍ= µ(1− ẋ2)x− bx3 +F sin(ωt), (A1)20

where µ, b, F and ω are positive constants that determine the dynamical behavior of the system. This system is non-autonomous

and its PBAs are analyzed hereafter in the (x, ẋ)-plane. This nonlinear ODE arises in various applications such as in engineer-

ing, electronics, biology, and neurology (Jackson, 1991; Kozlov et al., 1999; Kuznetsov et al., 2009). It combines the nonlin-

earity of the dissipation −µẋ2x, which characterizes the Van der Pol (1920) oscillator with that of the internal force −bx3,

which characterizes the Duffing (1918) oscillator.25

Multistability was already numerically documented for Eq. (A1) by relying on Poincaré maps (Venkatesan and Lakshmanan,

1997; Dudkowski et al., 2016). In our calculations, we have followed (Dudkowski et al., 2016) and assumed µ= 0.2, F = b=

1.0, and ω = 0.955. While this parameter regime does not correspond to the limit of vanishing dissipation that was mentioned

above, it still allows for a coexistence of PBAs, given a careful choice of initial states.

The numerical protocol followed to analyze multistability for Eq. (A1) in terms of PBAs is described next. First, the initial30

data have been drawn uniformly in the two disjoint domains D1 and D2 of the (x, ẋ)-plane, with

D1 = [−2.5,−1.5]× [−2.5,−1.5],D2 = [−0.34,−0.33]× [−0.34,−0.33]. (A2)

25



6 000 initial data from each domain were propagated according to Eq. (A1). The ODE was integrated using a Runge-Kutta

fourth-order method with a constant time step ∆t= 10−2, generating a total of 12 000 trajectories, and keeping 106 data points

for each, after removal of the transient.

The majority of the initial data taken in the smaller domain D2 leads to a quasiperiodic orbit, while each of the 6 000 initial

data taken in D1 leads to a chaotic trajectory — as do a few “rare” initial data from D2. An example of such a quasiperiodic5

trajectory is shown in blue in Fig. A1(a), within the (x, ẋ) phase plane. This blue trajectory is superimposed upon a red, chaotic

trajectory emanating from an initial point taken inD1. The corresponding power spectra are shown in Fig. A1(b), with the same

blue and red color coding. The chaotic trajectory is clearly more diffuse within the phase plane than its quasiperiodic counter-

part, and its power spectrum is quite a bit noisier. Both of these features are well known to be symptomatic of deterministic

chaos (Eckmann and Ruelle, 1985).10

By allowing the quasiperiodic trajectories that emanate from D2 to evolve up to t= 2 000, one obtains the set of blue points

shown in Fig. A2. Somewhat surprisingly, this set does not form a closed curve: each blue dot in Fig. A2 corresponds actually

to the state at t= 2 000 in the phase plane of a quasiperiodic orbit. One such orbit is represented in blue in Fig. A1(a), after

removal of the transient dynamics. Each blue dot in Fig. A2 corresponds to a different quasiperiodic orbit, whose frequency

characteristics may slightly change from one blue dot to another. All these quasiperiodic orbits share, however, a spectral15

signature that resembles the one shown by the blue curve in Fig. A1(b).

To illustrate further the distinction between quasiperiodic and chaotic orbits, the return maps for the minima of the x(t)-

variable have been computed. As is well-known (e.g., Strogatz, 2018), if the return map contains just one point, the solution is

periodic in time, with all minima having the exact same value, and the period of the oscillation can be estimated by calculating

the time interval between two consecutive minima. If the return map contains continuous-looking curves that fill up with more20

and more points as the length of the orbit increases, the solution is quasiperiodic, while the presence of folds and self-similarity

in the return map provides strong evidence for chaotic solutions. For the blue and red trajectories of Fig. A1(a), we plot the

corresponding return maps in Figs. A3(a) and (b), respectively. The two plots clearly discriminate between the quasiperiodic

nature of the former and the chaotic one of the latter solution.

The initial data taken in D1, when allowed to flow according to Eq. (A1), lead to a totally different local PBA that is formed25

by the red points shown in Fig. A2. Although the approximation of this local PBA shown here is relatively sparse, one can

clearly discern the fact that its constitutive points are arranged according to a stretching and folding pattern that is typical of

nonlinear, chaotic dynamics in the autonomous, as well as in the nonautonomous setting (Chekroun et al., 2018).

The features that we find here to be exhibited by the local chaotic PBA are highly reminiscent of those that were obtained,

in this deterministic case, by applying a standard Poincaré section analysis, cf. Dudkowski et al. (2016, Fig. 17(c)). In the30

presence of noise, though, the fine structure of the PBAs that results from stretching and folding in phase space, is still captured

by the PBA framework (Chekroun et al., 2018), whereas a Poincaré-map approach would lead only to a cloud of points with

no particular geometric structure. This statement was numerically illustrated by Chekroun et al. (2011) in their Fig. 7, by

contrasting the upper-right panel vs. the six lower panels of the figure.
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Finally, we emphasize that it is not the disjointness of the two domains, D1 and D2, that leads to the two distinct types of

PBA, chaotic and quasiperiodic.2 Indeed, as mentioned earlier, even though the area of D2 is small, it still contains initial data

whose evolution lands within the local PBA associated with chaos, i.e., with the other red points shown in Fig. A2.

Figure A1. Coexistence of local forward attractors. (a) Quasiperiodic forward attractor (blue) and chaotic attractor (red). (b) Power spectrum

associated with the quasiperiodic orbit (blue) and the chaotic one (red).

Competing interests. Stefano Pierini is a member of the editorial board of the journal. The authors declare no conflict of interest.

2Other such quasiperiodic PBAs exist (not shown), whereas only one chaotic PBA seems to exist for the parameter regime analyzed herein.
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Figure A2. Coexistence of local PBAs. The initial data leading to quasiperiodic (resp. chaotic) orbits are taken from the small domain D2

(resp. D1) described by Eq. (A2). The snapshot of the PBAs shown here is taken at the fixed time t= 2 000.
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