
Reply to Referee 1

[Major Comments]
1. I wonder why ETPF can produce finer patterns of permeability field than
ETKF (Fig. 8). Also, why does localization lead to spatially-coarser patterns
(Fig. 15)? In the atmospheric data assimilation, the localization generally en-
ables to obtain spatially finer patterns in analyses.
Reply: ETPF is a↵ected by sampling noise at small scales more than at large
scales, thus the fine pattern of permeability field shown in Fig. 8. When local-
ization is applied it smooths out the unobserved small scales, thus the spatially-
coarse pattern of permeability field shown in Fig. 15.

2. I became to wonder whether or the RMSE is a good measure to evalu-
ate estimated fields. As shown in the results by ETKF, estimating spatially-
smoothed fields would prevent terrible scores in RMSE. If authors can evaluate
with an additional metric, it would be beneficial.
Reply: Indeed the RMSE alone is not a good measure to evaluate estimated
fields for the above reasons. That is why in addition to RMSE we studied the
posterior of modes and used the Kullback-Leibler divergence to assess the pos-
terior estimations.

3. Is it allowable to tune the localization scale not for data misfits but for
RMSE? If we think about realistic applications, such tuning of localization is
not a↵ordable.
Reply: We agree that for realistic applications, it is indeed una↵ordable. How-
ever, it is a standard set-up for theoretical investigation of a data assimilation
method.

4. I recommend revising Fig. 14 to contain two experiments (with and with-
out localization) directly. It would be possible to remove Min/Max since they
are not discussed here.
Reply: Agree.

5. Readers would be interested a lot in how to choose ETKF or ETPF, and
with or without localization. If authors could give some strategies (inferences),
it would be very beneficial. Also, if there would be limitations or issues for
realistic applications, please discuss them in the last section.
Reply: We believe that ETPF is promising for the inverse modelling. However,
more theoretical studies have to be performed for ETPF before it is considered
for realistic applications. Plausible issues related to realistic application are
numerous accurate observations, time-dependency of an underlined model, and
flow being multiphase, for example.

6. Title of the manuscript seems too broad
Reply: Changed to “Application of ensemble transform data assimilation meth-
ods for parameter estimation in reservoir modelling”
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[Minor Comments]
1. Please revise the caption of Fig. 8.
Reply: Agree. Changed to “Log permeability field with dots representing the
observation locations. Truth is shown in (a) and mean obtained by IS with en-
semble size 105 in (d). Mean obtained with ensemble size 103 by ETPF shown
in (b–e) and by ETKF in (c–f), where (b–c) are at the smallest RMSE and (e–f)
are at the largest RMSE over simulations. The corresponding RMSE is given
in brackets.”

Reply to Referee 2

General comment
One important point that needs to be further clarified is what is the motivation
to use ETPF in comparison with the classical IS for this particular application.
Reply: The drawback of IS is that it does not update the uncertain parameters
but only their weight, thus a computationally una↵ordable ensemble is required.
In order to decrease this cost a family of particle filters has been developed where
IS is with resampling and a sample is called particle. The resampling in particle
filtering is, however, stochastic. Ensemble Transform Particle Filter (ETPF) is
a particle filtering method that deterministically resamples the particles.

Minor points

Page 1, line 19 due to sampling error.
Reply: Agree.

Page 1, line 24 leading modes instead of ”first modes”?
Reply: Agree.

Page 1, line 24 This approach is ... this sentence is not clear please rephrase
it.
Reply: Agree. Changed to “which however demands a knowledge at which mode
to truncate.”

Page 7, line 4 introduce sampling errors ?
Reply: Agree.

Page 11, line 10 The sentence starting with While for the parameter c ... is
not clear. Please rephrase it.
Reply: Agree. Removed.

Page 11, line 13, Figure 4 is introduced but the quantities shown here are
disused in line 18 of the same page.
Reply: Agree. Removed.
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Page 11, line 14. In order to avoid any bias... may be better to say in order
to increase the robustness of the results or in order to filter the sensitivity of
the results to the initial parameter ensemble.
Reply: Agree. Changed to “to check the sensitivity of the results to the initial
parameter ensemble...”

Page 11, line 20. Is there a way to know which method produce the best
spread? Can the spread be compared to the estimation error to measure which
method produce the best error / spread relationship.
Reply: Even though both methods are slightly underdispersive, as the spread
to error ratio is below 1, ETKF gives better ratio for all parameters but log(k2)
as seen in Figure 1 of the response to the reviewers.
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Figure 1: Spread to error ratio w.r.t ensemble size. ETPF is on the left and
ETKF is on the right.

Figure 4: It seems that both methods (ETKF and ETPF) have a bias in the
estimation of parameters a, b and c. Is there a reason for that? Does IS also
show that bias?
Reply: We observe that all methods including IS have bias in the estimations
of geometrical parameters, which is due to the small number of observations.
ETPF and ETKF perform comparably in terms of mean estimation, though
some are better estimated by ETKF and other are better estimated by ETPF.
Comparing the error in pressure of the mean parameters seen in Fig. 2 of the
response to the reviewers, we observe that methods are equivalent, which is a
manifestation of the ill-posedness of the problem.

Page 11, line 21. The behaviour of the estimated parameters with respect
to their bounds is not clearly seen from Figs 3 or 4.
Reply: Agree. Removed.
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Figure 2: RMSE of pressure w.r.t ensemble size.

Page 12, It would also be interesting to see which parameter set produce a
better estimation of the true pressure field. Parameter comparison alone is not
conclusive since some parameters are better estimated by the ETKF and others
better estimation by the ETPF, computing the error in P will help to decide
which estimated parameter set produce the best results.
Reply: Agree, please see reply above.

Figure 5 I suggest removing the 0 line from the figure legend.
Reply: Agree.

Page 16, line 13, this means that ETPF sensitivity to the initial ensemble is
due to the ...
Reply: Agree.

Page 16, line 13. If IS produce the same result with the same ensemble
size, what is the advantage of the ETPS in this application? It is important to
provide a good motivation (which can be verified with the results) for using a
more complex and computationally expensive technique.
Reply: Agree. Removed.
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Page 16, line 17. In Fig. 9 we plot the variance ...
Reply: Agree.

Page 16, line 19. Why ETKF provides a smother variance? Is the variance
estimation provided by the ETKF better or worse than the one provided by
ETPF?
Reply: ETKF provides smoother variance than ETPF due to smaller sampling
errors.

Figure 13, it seems that ETPF is more a↵ected by sampling noise at small
scales, so using a truncated representation of the fields significantly improve the
results for ETPS. ETKF is more robust, it is probably filtering out the small
scales (which are poorly observed and more di�cult to retrieve) and because of
this its performance is less a↵ected by the truncation presented in this figure.
Reply: Agree. Added.

Table 1: In this table ETPS and ETKS are used instead of ETPF and
ETKF. Note also that the optimal localization radius do not change much with
ensemble size (usually in the ETKF the localization radius increases with the
increase of the ensemble size eventually going to infinity).
Reply: The optimal localization radius between 0.2 and 1.2 was obtained in
terms of the smallest RMSE, when the domain is 1 by 1.

Page 20, line 10. The sentence between parenthesis is not clear. How do the
authors select the localization radius for each method?
Reply: The optimal localization radius between 0.2 and 1.2 was obtained in
terms of the smallest RMSE. However, we also checked the performance of non-
optimal LETPF. We removed this sentence as no results are discussed anyway.

For clarity the localized versions of ETPF and ETKF can be referred as
LETPF and LETKF respectively.
Reply: Agree.

Page 21, line 16. However , localization applied in the form of the ... I think
that as long as the values of the parameters are within the required range the
method achieves something interesting for parameter estimation (since parame-
ter bounds are usually di�cult to handle with other techniques like the EnKF).
Reply: It should be noted that unlike ETKF, LETPF does not converge to
ETPF as the localization radius goes to infinity due to the transport problem
being univariate for LETPF and multivariate for ETPF.

Page 24, line 10. This conclusion also holds for the five parameter test case.
From my point of view the results are not so conclusive in this case. An objec-
tive measure of the posterior error is missing in the discussion of the results.
Reply: For the five parameter test case, the mean estimations obtained by
ETPF are not consistently better than the ones obtained by ETKF and the
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spread is smaller. The Kullback-Leibler divergence from ETKF is smaller than
from ETPF for all parameters. (We added analysis of the Kullback-Leibler di-
vergence in the five-parameter section.)

Page 24, line 7. Another approach ... This approach also assumes that the
log permeability can be represented as a Gaussian process. It is also not clear
for me why the authors state that this approach is fully Bayesian?
Reply: Agree. Changed to “Another approach to improve ETPF performance is
instead of applying localization to use only leading modes in the approximation
of log permeability as they are better estimated by the method. However, one
needs to know at which mode to make a truncation and this is highly dependent
on the covariance matrix of the log permeability.
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Abstract. Over the years data assimilation methods have been developed to obtain estimations of uncertain model parameters

by taking into account a few observations of a model state. The most reliable methods of MCMC are computationally expen-

sive and sequential ensemble methods such as ensemble Kalman filers and particle filters provide with a favourable alternative.

However, Ensemble Kalman Filter has an assumption of Gaussianity. Ensemble Transform Particle Filter does not have this

assumption and has proven to be highly beneficial for an initial condition estimation and a small number of parameter esti-5

mation in chaotic dynamical systems with non-Gaussian distributions. In this paper we employ Ensemble Transform Particle

Filter (ETPF) and Ensemble Transform Kalman Filter (ETKF) for parameter estimation in nonlinear problems with 1, 5, and

2500 uncertain parameters and compare them to importance sampling (IS). The large number of uncertain parameters is of

a particular interest for subsurface reservoir modelling as it allows to parameterise
::::::::::
parametrise permeability on the grid. We

prove that the updated parameters obtained by ETPF lie within the range of an initial ensemble, which is not the case for ETKF.10

We examine the performance of ETPF and ETKF in a twin experiment setup, where observations of pressure are synthetically

created based on the know values of parameters. For small number of uncertain parameters (1 and 5) ETPF performs com-

parably to ETKF in terms of the mean estimationand outperforms in terms of the posterior estimation as the ensemble size

increases. For large number of uncertain parameters (2500) ETKF is robust with respect to the initial ensemble while ETPF is

sensitive due to a sampling error. An issue of an increase in the root mean square error after data assimilation is performed in15

ETPF for a high-dimensional test problem is resolved by applying distance-based localization, which however deteriorated the

posterior estimation of the first
::::::
leading

:
mode by largely increasing the variance, which is due to a combination of less varying

localized weights, not keeping the imposed bounds on the modes via the Karhunen-Loeve expansion and the main variability

explained by the first
::::::
leading

:
mode. A possible remedy is instead of applying localization to use only first

:::::
leading

:
modes that

are well estimated by ETPF. This approach is fully Bayesian but
:
,
:::::
which demands a knowledge at which mode to truncate.20

1 Introduction

An accurate estimation of subsurface geological properties like permeability, porosity etc. is essential for many fields specially

where such predictions can have large economic or environmental impact, for instance prediction of oil or gas reservoir loca-

tions. Knowing the geological parameters a so-called forward model is solved for the model state and a prediction can be made.

The subsurface reservoirs, however, are buried thousands of feet below the earth surface and exhibit a highly heterogeneous25
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structure, which makes it difficult to obtain their geological parameters. Usually a prior information about the parameters is

given, which still needs to be corrected by observations of pressure and production rates. These observations are, however,

known only at well locations that are often hundreds of meter apart and corrupted by errors. This gives instead of a well-

posed forward problem an ill-posed inverse problem of estimating uncertain parameters, since many possible combinations of

parameters can result in equally good matches to the observations.5

Different inverse problem approaches for groundwater and petroleum reservoir modelling, generally termed as history

matching, have been developed over the past years, e.g. Oliver et al. (1997) implemented Markov chain Monte Carlo methods

with different perturbations and tested it on a 2-D reservoir model; Reynolds et al. (1996) obtained reservoir parameters esti-

mations using Gauss-Newton method; Vefring et al. (2006) used Levenberg–Marquardt method to characterize reservoir pore

pressure and permeability. A review of history matching developments is written by Oliver and Chen (2011).10

For reservoir models the term data assimilation and history matching are used interchangeably, as the goal of data assimi-

lation is the same as that of history matching, where observations are used to improve a solution of a model. Ensemble data

assimilation methods such as Ensemble Kalman filters (Evensen, 2009) have been originally developed in meteorology and

oceanography for the state estimation. Now it is one of the frequently employed approaches for parameter estimation in sub-

surface flow models as well (e.g. Oliver et al., 2008). A detailed review of ensemble Kalman filter developments in reservoir15

engineering is written by Aanonsen et al. (2009). An ensemble Kalman filter efficiently approximates a true posterior distri-

bution if the distribution is not far from Gaussian, as it corrects only the mean and the variance. For nonlinear models with

multimodal distributions, however, an ensemble Kalman filter fails to correctly estimate the posterior, as shown by Dovera and

Della Rossa (2011).

Importance Sampling (IS) is quite promising for such models as it does not have any assumptions of Gaussianity. It is also20

an ensemble based method in which the probability density function is represented by a number of samples. One sample cor-

responds to one configuration of uncertain model parameters. The forward model is solved for each sample and predicted data

is computed. The weight is assigned to samples based on the observations of the true physical system and the predicted data.

The drawback of IS is that it does not update the uncertain parameters but only their weight. Therefore ,
::::
thus

:
a
::::::::::::::
computationally

::::::::::
unaffordable

::::::::
ensemble

::
is
::::::::

required.
:::

In
:::::
order

::
to

::::::::
decrease

:::
this

::::
cost

:
a family of particle filters (Doucet et al., 2001) has been25

developed where IS is supplied with resampling and a sample is called particle. A significant work for parameter estimation

using particle filtering has been done in hydrology. Moradkhani et al. (2005) used it to estimate model parameters and state

posterior distributions for a rainfall-runoff model. Weerts and El Serafy (2006) compared an ensemble Kalman filter and a

particle filter with different resampling strategies for a rainfall-runoff forecast and obtained that as the number of particles

increases the particle filter outperforms the ensemble Kalman filter. Guingla et al. (2012) employed particle filtering to correct30

the soil moisture and to estimate hydraulic parameters.

The resampling in particle filtering is, however, stochastic. Ensemble Transform Particle Filter (ETPF) developed by Re-

ich and Cotter (2015) is a particle filtering method that deterministically resamples the particles based on their weights and

covariance maximization among the particles. ETPF has been used for initial condition estimations and for parameter estima-

tions in chaotic dynamical systems with a small number of uncertain parameters (Lorenz 63 model). It has not been applied,35
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however, in subsurface reservoir modelling for estimating a large number of uncertain parameters. In this paper we employ

it for estimating uncertain parameters in subsurface reservoir modelling. ETPF provides the equations that are solved in the

space defined by the ensemble members. Therefore for comparison we employ Ensemble Transform Kalman Filter (ETKF)

developed by Bishop et al. (2001) that also transforms the state from the model space to the ensemble space, minimises the

uncertainty in the ensemble space and transforms the estimation back to the model space.5

In this paper we investigate the performance of ETPF and ETKF for parameter estimation in nonlinear problems and compare

them to IS with a large ensemble. This paper is organized as follows: in the section 2 we describe IS, ETPF, and ETKF for

parameter estimation. We apply these methods in Sect. 3 to a one parameter nonlinear test case, where the posterior can be

computed analytically, and in Sect. 4 to a single-phase Darcy flow, where the number of parameters is 5 and 2500. In Sect. 5

we draw the conclusions.10

2 Data assimilation methods

We implement an ensemble transform Kalman filter and an ensemble transform particle filter for estimating parameters of sub-

surface flow. Both of these methods are based on Bayesian framework. Assume we have an ensemble of M model parameters

{um}Mm=1, then according to this framework, the posterior distribution, which is the probability distribution ⇡(um|yobs) of the

model parameters um given a set of observations yobs, can be estimated by the pointwise multiplication of the prior probability15

distribution ⇡(um) of the model parameters um and the conditional probability distribution ⇡(yobs|um) of the observations

given the model parameters, which is also referred as the likelihood function,

⇡(um|yobs) =
⇡(yobs|um)⇡(um)

⇡(yobs)
.

The denominator ⇡(yobs) represents the marginal of observations and can be expressed as:

⇡(yobs) =
MX

m=1

⇡(yobs,um) =
MX

m=1

⇡(yobs|um)⇡(um),20

which shows that ⇡(yobs) is just a normalisation factor.

2.1 Ensemble Transform Kalman Filter

Assume we have an ensemble of M initial model parameters {ub
m}Mm=1, where b refers to a background (prior) ensemble, which

are sampled from a chosen prior probability density function, then the ensemble Kalman estimate (or analysis) {ua
m}Mm=1 is

given by:25

ua
m =

MX

l=1

diag
✓
slm + ql �

1

M

◆
ub
l , m= 1, . . . ,M,

where diag is a diagonal matrix, slm is the (l,m) entry of a matrix S

S =


I+ 1

M � 1
(Ab)T R�1Ab

��1/2

, (1)
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and ql is the l-th entry of a column q

q =
1

M � 1
1M � S2(Ab)T R�1(ȳb �yobs).

Here I is an identity matrix of size M⇥M , 1M is a vector of size M with all ones, ȳb is the mean of the predicted data defined

by

ȳb =
1

M

MX

m=1

yb
m,5

Ab is the background ensemble anomalies of the predicted data defined as

Ab =
h
(yb

1 � ȳb) (yb
2 � ȳb) . . . (yb

M � ȳb)
i
,

and R is the measurement error covariance. To ensure that the anomalies of analysis remain zero centered we check whether

Aa1M = AbS1M = 0, given S1M = 1M and Ab1M = 0. The model parameters ub
m and the predicted data yb

m are related by

yb
m = h(ub

m), where h is a nonlinear function and here we assume that the function h is known.10

2.2 Ensemble Transform Particle Filter

In particle filtering we represent the probability distribution function using ensemble members (also called particles) as in

ensemble Kalman filter. We start by assigning prior (background) weights {wb
m}Mm=1 to M particles and then compute new

(analysis) weights {wa
m}Mm=1 using the Bayes’ formula and observations yobs

wa
m =

⇡(yobs|ub
m)wb

m

⇡(yobs)
. (2)15

We assume that initially all particles have equal weight, thus wb
m = 1/M for m= 1, . . . ,M , and that the likelihood is Gaussian

with error covariance matrix R, then from Eq. (2) wa
m is given by

wa
m =

exp
⇥
� 1

2 (y
b
m �yobs)T R�1(yb

m �yobs)
⇤

PM
j=1 exp

⇥
� 1

2 (y
b
j �yobs)T R�1(yb

j �yobs)
⇤ , m= 1, . . . ,M. (3)

In Importance Sampling (IS), which will be used in this paper as a "ground" truth, these weights define the posterior pdf. The

mean parameter for IS is then20

ūa =
MX

m=1

ub
mwa

m.

It is important to note that IS does not change the parameters u, it only modifies the weight of the particles (samples). Therefore

a resampling needs to be implemented for parameter estimation, which is usually stochastic. Instead particle filtering has been

modified using a deterministic coupling methodology which resulted in an ensemble transform particle filter of Reich and

Cotter (2015). ETPF looks for a coupling between two discrete random variables B1 and B2 so as to convert the ensemble25
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members belonging to the random variable B2 with probability distribution ⇡(B2 = ub
m) = wa

m to the random variable B1

with uniform probability distribution ⇡(B1 = ub
m) = 1/M . The coupling between these two random variables is an M ⇥M

matrix T whose entries should satisfy

tmj � 0, m,j = 1, . . . ,M, (4)
MX

m=1

tmj =
1

M
, j = 1, . . . ,M, (5)5

MX

j=1

tmj = wa
m, m= 1, . . . ,M. (6)

An optimal coupling matrix T⇤ with elements t⇤mj minimizes the squared Euclidean distance

J(tmj) =
MX

m,j=1

tmj ||ub
m �ub

j ||2 (7)

and the analysis model parameters are obtained by the linear transformation

ua
j =M

MX

m=1

t⇤mju
b
m, j = 1, . . . ,M. (8)10

Then the mean parameter for ETPF is

ūa =
MX

m=1

ua
m

1

M
.

We use FastEMD algorithm of Pele and Werman (2009) to solve the linear transport problem and get the optimal transport

matrix.

Remark: An important property of ETPF is preservation of imposed interval bounds on ensemble members. Consider an15

ensemble of parameters {ub
m}Mm=1 given by

ub
m = (abm bbm cbm)T , m= 1, . . . ,M,

where we assume all the parameters {abm}Mm=1, {bbm}Mm=1 and {cbm}Mm=1 are bounded between 0 and 1. Therefore, the following

inequalities hold:

0< amin  abm  amax < 1, m= 1, . . . ,M,20

0< bmin  bbm  bmax < 1, m= 1, . . . ,M,

0< cmin  cbm  cmax < 1, m= 1, . . . ,M.

Now we assume two discrete random variables B1 and B2 have probability distributions given by

⇡(B1 = ub
m) = 1/M, ⇡(B2 = ub

m) = wa
m,
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with wa
m � 0, m= 1, . . . ,M and

PM
m=1w

a
m = 1. As ETPF looks for a matrix T⇤ which defines coupling between these two

probability distributions, each entry of this coupling matrix satisfies the conditions given by Eq. (4)–(6). These conditions

assure that each entry of the coupling matrix will be non-negative and less than 1. Since the analysis given by Eq. (8) is

ua
m =

2

664

ab1(Mt⇤1m)+ ab2(Mt⇤2m)+ · · ·+ abM (Mt⇤Mm)

bb1(Mt⇤1m)+ bb2(Mt⇤2m)+ · · ·+ bbM (Mt⇤Mm)

cb1(Mt⇤1m)+ cb2(Mt⇤2m)+ · · ·+ cbM (Mt⇤Mm)

3

775 , m= 1, . . . ,M,

these conditions lead to5

0< amin  aam  amax < 1, m= 1, . . . ,M,

0< bmin  bam  bmax < 1, m= 1, . . . ,M,

0< cmin  cam  cmax < 1, m= 1, . . . ,M.

Thus the coupling matrix bounds the analysis ensemble members to be in the desired range. This is not observed in ETKF as

the matrix S given by Eq. (1) does not impose any of the non-equality and equality constraints, so it results in values outside10

the bound.

2.3 Localization

All variations of ensemble Kalman filter and particle filter are limited by the ensemble size. Since, even if the dimension of the

problem is just up to a few thousands, a large ensemble size will make each run of the model computationally very expensive.

This limit of a small ensemble size introduces a sampling error
:::::::
sampling

:::::
errors. To deal with this issue localization for ETKF15

:::::::
localized

::::::
ETKF

::::::::
(LETKF)

:
was introduced by Hunt et al. (2007) and for ETPF

:::::::
localized

:::::
ETPF

::::::::
(LETPF) by Reich and Cotter

(2015). More recent approaches to particle filter localization include Penny and Miyoshi (2016) and Poterjoy (2016)

For the local update of a model parameter um(Xi) at a grid point Xi, we introduce a diagonal matrix Ĉi 2RNy⇥Ny in the

observation space with an element

(Ĉi)ll = ⇢

✓
||Xi � rl||

rloc

◆
, (9)20

where i= 1, . . . ,n2, l = 1, . . . ,Ny , n2 is the number of model parameters, Ny is the dimension of the observation space, rl
denotes the location of the observation, rloc is a localisation radius and ⇢(·) is a taper function, such as Gaspari-Cohn function

Gaspari and Cohn (1999)

⇢(r) =

8
>>>><

>>>>:

1� 5
3r

2 + 5
8r

3 + 1
2r

4 � 1
4r

5, 0 r  1,

� 2
3r

�1 +4� 5r+ 5
3r

2 + 5
8r

3 � 1
2r

4 + 1
12r

5, 1 r  2,

0, 2 r.
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Then the estimated model parameter at the location Xi is

ua
m(Xi) =

MX

l=1

diag
✓
slm(Xi)+ ql(Xi)�

1

M

◆
ub
l (Xi), m= 1, . . . ,M,

u
:
a
m(Xi) =

MX

l=1

diag
✓
slm(Xi)+ ql(Xi)�

1

M

◆
ub
l (Xi), m= 1, . . . ,M,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::

where diag is a diagonal matrix, slm(Xi) is the (l,m) entry of the localized transformation matrix S(Xi)5

S(Xi) =


I+ 1

M � 1
(Ab)T (ĈiR�1)Ab

��1/2

and ql(Xi) is the l-th entry of the localized column q(Xi)

q(Xi) =
1

M � 1
1M � S(Xi)

2(Ab)T R�1(ȳb �yobs).

Localization of ETPF
::::::
LETPF

:
modifies the likelihood and thus the weights given by Eq. (3) are computed locally at each

grid Xi10

wa
m(Xi) =

exp
h
� 1

2 (y
b
m �yobs)T (ĈiR�1)(yb

m �yobs)
i

PM
j=1 exp

h
� 1

2 (y
b
j �yobs)T (ĈiR�1)(yb

j �yobs)
i , m= 1, . . . ,M, (10)

where Ĉi is the diagonal matrix given by Eq. (9). Then the estimated model parameter ua
j (Xi) at the grid Xi is given by

ua
j (Xi) =M

MX

m=1

t⇤mju(Xi)
b
m, j = 1, . . . ,M,

where t⇤mj is an element of an optimal coupling matrix T⇤ which minimizes the squared Euclidean distance at the grid point

Xi15

J(tmj) =
MX

m,j=1

tmj [u
b
m(Xi)�ub

j(Xi)]
2, (11)

which reduces the localized ETPF
::::::
LETPF to a univariate transport problem. It should be noted that localization can be applied

only for grid-dependent parameters.

3 One parameter nonlinear problem

First we consider a one parameter nonlinear problem from Chen and Oliver (2013). The prior distribution is Gaussian distribu-20

tion with mean 4 and variance 1. The nonlinear forward model is

h(u) =
7

12
u3 � 7

2
u2 +8u.
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Figure 1. Probability density functions for the one parameter nonlinear problem. Top: ETPF, bottom: ETKF. Left: ensemble size 102, center:

ensemble size 103, right: ensemble size 104. Prior is in red. True pdf obtained by IS with ensemble size 105 is in black.

The true parameter utrue gives h(utrue) = 48 and the observation error is drawn from a Gaussian distribution with zero mean

and variance 16. In Fig. 1 we plot the posterior probability density functions estimated by ETPF (top), ETKF (bottom) with

ensemble sizes 102 (left), 103 (center), and 104 (right). The prior distribution is shown in red and the posterior estimated by IS

with ensemble size 105 is shown in black. We can see that ETPF provides better approximation of the true probability density

function, while ETKF gives a skewed posterior. It should be noted that ETKF is able to give a non-Gaussian (though wrong)5

posterior due to the nonlinearity of the map between the uncertain parameters and observations.

4 Single-phase Darcy flow

We consider a steady-state single-phase Darcy flow model defined over an aquifer of two-dimensional physical domain D =

[0,1]⇥ [0,1], which is given by,

�r · (k(x,y)rP (x,y)) = f(x,y), (x,y) 2D10

P (x,y) = 0, (x,y) 2 @D

where r= (@/@x @/@y)T , · denotes the dot product, P (x,y) the pressure, k(x,y) the permeability, f(x,y) the source term,

which we assume to be 2⇡2cos(⇡x)cos(⇡y), and @D the boundary of domain D. The forward problem of this second order

elliptical equation is to find the solution of pressure P (x,y) for given f(x,y) and k(x,y). We, however, are interested in finding

permeability given noisy observations of pressure at a few locations.15
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We perform numerical experiments with synthetic observations, where instead of a measuring device a model is used to

obtain observations. We implement a cell-centered finite difference method to discretize the domain D into n⇥n grid cells Xi

of size �x2 and solve the forward model with the true parameters. Then the synthetic observations are obtained by

yobs = L(P)+ ⌘,

with an element of L(P) being a linear functional of pressure, namely5

Ll(P) =
1

2⇡�2

n2X

i=1

exp
✓
� ||Xi � rl||2

2�2

◆
Pi�x2, l 2 1, . . . ,Ny

where n= 50, � = 0.01, rl denotes the location of the observation and Ny = 16, which is the number of observations. The

observation locations are spread uniformly across the domain D and ⌘ denotes the observation noise drawn from a normal

distribution with zero mean and standard deviation of 0.09. This form of the observation functional and parameterization

:::::::::::::
parametrization of the uncertain parameters given below guaranty the continuity of the forward map from the uncertain param-10

eters to the observations and thus the existence of the posterior distribution as shown by Iglesias et al. (2014).

4.1 Five parameter nonlinear problem

For our first numerical experiment with Darcy flow, we consider a low-dimensional problem where the permeability field is

defined by mere 5 parameters similarly to Iglesias et al. (2014). We assume that the entire domain D = [0,1]⇥ [0,1] is divided

into two subdomains D1 and D2 as shown in Fig. 2. Each subdomain of D represents a layer and is assumed to have a15

permeability function k(X), where an element of X is defined by Xi for i= 1, . . . ,n2. The thickness of a layer on both sides a

and b, correspondingly, defines the slope of the interface and a parameter c defines a vertical fault. The layer moves up or down

depending on c < 0 or c > 0, respectively, and its location is assumed to be fixed at x= 0.5.

Further, for this test case we assume piecewise constant permeability within each of the subdomains, hence k(X) is given by

k(X) = k1�D1(X)+ k2�D2(X),20

where k1 and k2 represent permeability of the subdomain D1 and D2, respectively, and � is Dirac function. Then the parameters

defining the permeability field for this configuration are

u= (a b c log(k1) log(k2))
T .

We assume that the true parameters are atrue = 0.6, btrue = 0.3, ctrue =�0.15, ktrue
1 = 12 and ktrue

2 = 5. These parameters are

used to create synthetic observations. Figure 2 shows the true permeability with dots representing the observation locations.25

Next, we assume that the five uncertain parameters are drawn from a uniform distribution over a specified interval, namely

a,b⇠ U [0,1], c⇠ U [�0.5,0.5], k1 ⇠ U [10,15] and k2 ⇠ U [4,7].
As it was pointed out in Sect. 2.2, ETPF updates the parameters within the original range of an initial ensemble, while ETKF

does not. Therefore a change of variables has to be performed for ETKF so that the updated parameters are physically viable.
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Figure 2. True permeability of the 5 parameter nonlinear problem with dots representing the observation locations.

In order to be consistent we perform the change of variables for ETPF as well. As the domain D is [0,1]⇥ [0,1], the parameters

a and b should lie within the interval [0,1]. To enforce this constraint we substitute a according to

a0 = log
✓

a

1� a

◆
, a0 2R

and similarly b is substituted by b0. Thus the uncertain parameters are now u0 = (a0 b0 c log(k1) log(k2))T .

In Fig. 3 we plot probability density functions for parameters a (a)–(d), c (e)–(h) and log(k2) (i)–(l), as the parameters b and5

log(k1) show similar results. The posterior obtained by IS with ensemble size 106 is plotted as a black line and the true value

of parameters is plotted as a black line with crosses. The posterior of ETPF is shown at the top and the posterior of ETKF at

the bottom. ETPF and ETKF used 103 (odd columns) and 104 (even columns) ensemble members. It is interesting to note that

ETKF overestimates the tails of the pdfs while ETPF underestimates them, which indicates that there is not enough spread in

the ensemble. While for the parameter
::
In

:::::
order

::
to

:::::::
perform

::
an

::::::::
objective

::::::::::
comparison

:::::::
between

:::
the

::::::::::
probabilities

:::
we

::::::::
compute

:::
the10

::::::::::::::
Kullback-Leibler

:::::::::
divergence

::
of

:
a
::::::::
posterior

::
⇡

:::::::
obtained

:::
by

:::::
either

:::::
ETPF

::
or

::::::
ETKF

:::
and

:::
the

:::::::
posterior

::::
⇡IS

:::::::
obtained

::
by

:::
IS

DKL(⇡
IS k ⇡) =

NbX

i=1

⇡IS(ui) log
⇡IS(ui)

⇡(ui)
(ui �ui�1),

:::::::::::::::::::::::::::::::::::::::::

(12)

:::::
where

:::::::
Nb = 20

::
is
:::
the

:::::::
number

::
of

:::::
bins.

:::
The

:::::::::::::::
Kullback-Leibler

:::::::::
divergence

:::
for

:::::::::
parameters

::
a,
:
c pdf shown in Fig. 3(h) this is an

advantage of ETKF, for the parameter
:::
and

:
log(k2) pdf shown in

:
is

::::::::
displayed

:::
in

:::
the

::::
titles

:::
of Fig. 3(l) it is most certainly a

disadvantage. ETKF optimises for the mean (and variance), which is better approximated by ETKF than by ETPF, as seen in15

Fig. 4(e). However this comes at a price of incorrect posterior shown in Fig. 3(k–l).
:
,
:::::
where

:::
we

:::::::
observe

:::
that

::::::
ETKF

::::::::::
outperforms

:::::
ETPF.

:

In order to avoid any bias due to an initial
:::::
check

:::
the

:::::::::
sensitivity

::
of

:::
the

::::::
results

::
to

:::
the

:::::
initial

:::::::::
parameter ensemble we perform

10 simulations based on a random draw of an initial ensemble from the same prior distributions. We conduct the numerical

experiments for ensemble sizes varying from 10 to 103 with an increment of 50. In Fig. 4 we plot the true parametersutrue, the20
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Figure 3. Probability density functions for the parameters a (a)–(d), c (e)–(h), and log(k2) (i)–(l). The posterior obtained by IS with ensemble

size 106 is plotted as a black line and the true values of parameters are plotted as black crosses. The posterior of ETPF is shown at the top

and the posterior of ETKF at the bottom. ETPF and ETKF used 103 (odd columns) and 104 (even columns) ensemble members.

mean
:::::::
estimated

:::
by

:::
IS,

:::
the

:::::
mean ¯̄ua and the spread ¯̄ua ± ūa

std of estimated parameters averaged over 10 simulations

¯̄ua
i =

1

10

10X

r=1

ūa,r
i , ūa

std =
1

10

10X

r=1

vuut 1

M � 1

MX

m=1

(ua,r
i,m � ūa,r

i )2, where ūa,r
i =

1

M

MX

m=1

ua,r
i,m, r = 1, . . . ,10,

M is ensemble size, i= 1, . . . ,5 is parameter index, and the superscript a is for the analysis. We observe that both data

assimilation methods
::
all

:::::::
methods

:::::::::
including

::
IS

::::
have

::::
bias

:::
in

:::
the

::::::::::
estimations

::
of

::::::::::
geometrical

::::::::::
parameters,

::::::
which

::
is

:::
due

:::
to

:::
the

::::
small

:::::::
number

:::
of

:::::::::::
observations.

:::::
ETPF

::::
and

::::::
ETKF perform comparably in terms of mean estimation. The ,

:::::::
though

:::::
some

:::
are5

:::::
better

::::::::
estimated

::
by

::::::
ETKF

:::
and

:::::
other

:::
are

:::::
better

::::::::
estimated

::
by

::::::
ETPF.

:::::::::
Comparing

:::
the

:::::
error

::
in

:::::::
pressure

::
of

:::
the

:::::
mean

:::::::::
parameters

:::
we

::::::
observe

::::
that

:::::::
methods

:::
are

:::::::::
equivalent

:::
(not

:::::::
shown),

:::::
which

::
is
::
a

:::::::::::
manifestation

::
of

:::
the

:::::::::::
ill-posedness

::
of

:::
the

::::::::
problem.

::
In

:::
Fig.

::
4
:::
we

:::
see

:::
that

:::
the

:
spread from ETPF is , however, smaller than from ETKF for each parameter. ETPF provides ensemble members that

stay within the original bounds, while ETKF—outside the bounds.
::::
Even

::::::
though

::::
both

:::::::
methods

:::
are

:::::::
slightly

::::::::::::::
underdispersive,

::
as

::
the

::::::
spread

::
to

:::::
error

::::
ratio

::
is

:::::
below

::
1,
::::::
ETKF

:::::
gives

:::::
better

::::
ratio

:::
for

:::
all

:::::::::
parameters

:::
but

:::::::
log(k2),:::::::

namely
::
for

:::
the

:::::::::
ensemble

:::
size

::::
10310

:::
and

::::
each

:::::::::
parameter

:
it
::
is

::
()

:::
for

:::::
ETKF

::::
and

:
()
:::
for

::::::
ETPF.

We compute an average of the relative error over all parameters

REa,r =
1

5

5X

i=1

|ūa,r
i �utrue

i |
|utrue

i |
|ūa,r

i �utrue
i |

|utrue
i |

::::::::::

, r = 1, . . . ,10,

and the data misfit

misfita,r = (ȳa,r �yobs)
TR�1(ȳa,r �yobs), r = 1, . . . ,10 (13)15

after data assimilation. The same metrics are computed before data assimilation and denoted by a superscript b. In Fig. 5(a)–(b)

we plot (misfita,r �misfitb,r) and (REa,r �REb,r), respectively, for each simulation r as a function of ensemble size. ETPF is

11



200 400 600 800
Ensemble size

0.2

0.3

0.4

0.5

0.6

0.7

0.8

a

(a)
Truth
mean IS
mean ETPF
mean ETKF
spread ETPF
spread ETKF

200 400 600 800
Ensemble size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

b

(b) Truth
mean IS
mean ETPF
mean ETKF
spread ETPF
spread ETKF

200 400 600 800
Ensemble size

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

c

(c)
Truth
mean IS
mean ETPF
mean ETKF
spread ETPF
spread ETKF

200 400 600 800
Ensemble size

2.35

2.4

2.45

2.5

2.55

2.6

2.65

lo
g(
k
1
)

(d)
Truth
mean IS
mean ETPF
mean ETKF
spread ETPF
spread ETKF

200 400 600 800
Ensemble size

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

lo
g(
k
2
)

(e) Truth
mean IS
mean ETPF
mean ETKF
spread ETPF
spread ETKF

Figure 4. ¯̄ua and ¯̄ua ± ūa
std w.r.t ensemble size: (a) for the parameter a, (b) for b, (c) for c, (d) for log(k1), (e) for log(k2). ETPF is shown

in blue, ETKF in redand ,
:
the true parameters are in black

:::
and

::
the

:::::
mean

::
of

::
IS

:
in
:::::::
magenta.

shown in blue and ETKF in red. Black line is at zero level. Positive values of the differences mean an increase of either data

mismatch or relative error after data assimilation. We observe a data misfit decrease for both ETPF and ETKF except at an

ensemble size 10. RE does not always decrease for ETPF: for some simulations ETPF is at zero level or slightly above it, while

for ETKF the sole exception is at an ensemble size 10.

4.2 High-dimensional nonlinear problem5

Next, we consider a high-dimensional problem where the dimension of the uncertain parameter is n2 = 2500. The domain D is

now not divided into subdomains. However, unlike in the previous test case here we implement a spatially varying permeability

field. We assume the log permeability is generated by a random draw from a Gaussian distribution N (log(5),C). Here 5 is an

n2 vector with all 5. C is assumed to be an exponential correlation with an element of C being

Ci,j = exp(�3(|hi,j |/v)), i, j = 1, . . . ,n2.10
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Figure 5. misfita,r�misfitb,r (a) and REa,r�REb,r (b) w.r.t ensemble size. ETPF is shown in blue, ETKF in red and the zero level in black.

A circle is for one simulation.

Here hi,j is the distance between two spatial locations and v is the correlation range which is taken to be 0.5. For the log

permeability we use Karhunen-Loeve expansions of the form

log(kj) = log(5)+
n2X

i=1

p
�i⌫i,jZi, for j = 1, . . . ,n2 (14)

where � and ⌫ are eigenvalues and eigenfunctions of C, respectively, and the vector Z is of dimension n2 iid from a Gaussian

distribution with zero mean and variance one. Making sure that the eigenvalues are sorted in descending order Zi ⇠N (0,1)5

produces log(k)⇠N (log(5),C). The uncertain parameter is thus u= Z with the dimension n2 = 2500.
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Figure 6. Mean, minimum and maximum over 10 simulations after data assimilation for the data misfit (a), RMSE (b), and variance (c).

ETPF is shown in blue and ETKF in red.

We perform 10 different simulations based on a random draw of an initial ensemble from the prior distribution. We conduct

the numerical experiments for ensemble sizes varying from 10 to 103 with an increment of 50. We compute the root mean

square error (RMSE) of the log permeability field

RMSEr,a =

r⇣
log(ka,r

)� log(ktrue)
⌘T ⇣

log(ka,r
)� log(ktrue)

⌘
, r = 1, . . . ,10,

and variance5

variancer,a =
1

M � 1

MX

m=1

⇣
(log(ka,r

m )� log(ka,r
)
⌘T ⇣

log(ka,r
m )� log(ka,r

)
⌘
, r = 1, . . . ,10.

We also compute the data misfit for each simulation after data assimilation by Eq. (13). In Fig. 6 we plot mean, minimum

and maximum over 10 simulations after data assimilation for the data misfit (left), RMSE (center), and variance (right). ETPF

is shown in blue and ETKF in red. We observe that ETPF is underdispersive compared to ETKF as particle filters are highly

degenerative compared to Kalman filters. Misfit given by ETPF is smaller than the one given by ETKF for almost all simulations10

at ensemble sizes greater than 150. The RMSE on the contrary is larger. In Fig. 7(a)–(b) we plot (misfita,r �misfitb,r) and

(RMSEa,r �RMSEb,r), respectively, as a function of ensemble size for a simulation r = 1, . . . ,10. The superscript b is for

the metrics before data assimilation and the superscript a is for the metrics after data assimilation. ETKF always provides a

decrease in both the data misfit and RMSE except at ensemble size 10. ETPF gives a decrease in the data misfit though an

increase in RMSE, which indicates that ETPF overfittes the data. However, as the ensemble size increases this happens less15

often as can be seen in Fig. 7(c), where we plot for ETPF a percentage of simulations that result in (RMSEa �RMSEb)> 0

and a linear fit as a function of ensemble size.

In Fig. 8 we plot log permeability fields. In Fig. 8(a) the true permeability is shown with dots representing the observation

locations, and in Fig. 8(d) the mean permeability field obtained by IS with ensemble size 105. The RMSE provided by IS is
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Figure 7. misfita,r �misfitb,r (a) and RMSEa,r �RMSEb,r (b) w.r.t ensemble size. ETPF is shown in blue, ETKF in red and zero level in

black. One circle is for one simulation. For ETPF % of simulations that result in (RMSEa �RMSEb)> 0 and a linear fit as a function of

ensemble size are shown in (c).

32.62. In Fig. 8(b–e) and Fig. 8(c–f) we display mean permeability fields obtained with ensemble size 103 by ETPF and ETKF,

respectively. In Fig. 8(b–c) we plot the mean log permeabilities for the smallest RMSE over simulations, which is 30.51 for

ETPF and 32.48 for ETKF. In Fig. 8(d–e) we plot the mean log permeabilities for the largest RMSE over simulations, which

is 39.2 for ETPF and 33.87 for ETKF. We observe that ETKF as well as IS provide smooth mean permeability fields that

have smaller absolute values than the true permeability. ETPF gives higher variations of the mean permeability field and is5

in an excellent agreement with the true permeability for a good initial ensemble shown in Fig. 8(b). This means that ETPF is

sensitive to the initial sample is due to the sampling error and that the spatial variability of ETPF is a result of the sampling

error. It should be noted that IS with ensemble size 103 and this good initial ensemble gives the RMSE 30.51 and the same

mean log permeability field as ETPF shown in Fig. 8(b). In Fig. 9 we plot
:::
the variance of the permeability fields obtained with

ensemble size 105 by IS (d), with ensemble size 103 by ETPF (b–e) and ETKF (c–f) . Fig. 9(b–c) is for the smallest RMSE10

and Fig. 9(e–f) is for the largest RMSE. ETKF again provides smoother variance than ETPF
:::
due

::
to

:::::::
smaller

:::::::
sampling

::::::
errors.

In Fig. 10 we show squared error (Za �Z true)2 in blue for ETPF and in red for ETKF for three first
::::::
leading modes Z1 (a),

Z2 (b), and Z3 (c), where solid line is for median and shaded area is for 25 and 75 percentile over 10 simulations. We observe

that in terms of the estimation of the first three
::::
three

::::::
leading

:
modes ETPF outperforms ETKF. In Fig. 11 we plot the posterior

of Z1 (left), Z2 (center), and Z3 (right) obtained by IS with ensemble size 106 and by ETPF (top) and ETKF (bottom) with15

ensemble size 104. The posterior of these modes is roughly approximated by ETPF as shown in Fig. 11 (a)–(c). ETKF provides

a skewed posterior of the modes shown in Fig. 11 (d)–(f), which was also observed in the one parameter nonlinear problem, see

Fig. 1(f). In order to perform an objective comparison between the probabilities we compute the Kullback-Leibler divergence
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Figure 8. Log permeability field : truth with dots representing the observation locations
:
.
::::
Truth

::
is
:::::
shown

::
in
:
(a) ,

:::
and

:
mean obtained

::
by

::
IS

with ensemble size 105 by IS
:
in

:
(d), mean

:
.
::::
Mean

:
obtained with ensemble size 103 by ETPF

::::
shown

::
in
:
(b–e) and by ETKF

::
in (c–f). Mean

:
,

::::
where

:::::
(b–c)

::
are

:
at the smallest RMSE

:::
and (b–c

:::
e–f) and

::
are

:
at the largest RMSE (e–f) over simulations. The corresponding RMSE is given

in brackets.

of a posterior ⇡ obtained by either ETPF or ETKF and the posterior ⇡IS obtained by IS

DKL(⇡
IS k ⇡) =

NbX

i=1

⇡IS(ui) log
⇡IS(ui)

⇡(ui)
,

where Nb = 100 is the number of bins.
::::::::
according

::
to

::::
Eq. (12) ETPF gives the Kullback-Leibler divergence 0.21, 0.42, and 0.6,

while ETKF 0.16, 0.07, and 0.5 for the modes Z1, Z2, and Z3, respectively. Thus ETKF gives a better approximation of

the true pdf. We use only first three
:::::
Since

:::
first

::::::
modes

:::
are

::::
well

:::::::::
estimated

::
by

::::::
ETPF

:::
and

::::
last

:::::
modes

::::
not

::::
(not

::::::
shown),

:::
we

::::
use5
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Figure 9. Variance of log permeability fields: obtained with ensemble size 105 by IS (d), with ensemble size 103 by ETPF (b–e), and ETKF

(c–f). Variance at the smallest RMSE (b–c) and at the largest RMSE (e–f) over simulations.

::::
only

::::
three

::::::
leading

:
modes in the Karhunen-Loeve expansion given by Eq. (14) when computing the estimated log permeability

keeping the number of uncertain parameters the same, namely 2500. In Fig. 12(a) we observe that ETPF outperforms ETKF

for large ensemble sizes independent of an initial sample. Moreover, ETPF is not overfitting the data anymore since RMSE

always decreases after data assimilation except at small ensemble sizes shown in Fig. 12(b). In Fig. 13 we show the mean

fields for the best and worst initial samples of 104 size. ETPF gives RMSE at the best sample 31.1 and the worst sample 32.98.5

By comparing it to 30.51 and 39.2 obtained using the full Karhunen-Loeve expansions, we observe that the maximum RMSE

over simulations decreased substantially, while the minimum RMSE only slightly increased. ETKF gives RMSE at the best

sample 32.27 and the worst sample 33.23. (Compare to 32.48 and 33.9 using the full Karhunen-Loeve expansions). Thus ETKF
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Figure 10. Squared error between the true and the mean estimated modes for Z1 (a), Z2 (b), and Z3 (c) w.r.t ensemble size. ETPF is shown

in blue and ETKF in red with solid lines for median and shaded area for 25 and 75 percentile over 10 simulations. IS with ensemble size 105

is in black.

Table 1.
::::::
Optimal

:::::::::
localization

:::::
radius

:::
for

:::::
LETPF

:::
and

::::::
LETKF

::
at
:::::::
different

:::::::
ensemble

::::
sizes

:::
M.

::
M

::
10

: :::
110

:::
210

::
. . .

: :::
910

::::::
LETPF

::
0.2

: :::
0.6

:::
0.6

::
. . .

: ::
0.6

::::::
LETKF

::
0.2

: :::
1.2

:::
1.2

::
. . .

: ::
1.2

slightly decreases both maximum and minimum RMSE over simulations.
:::::
ETPF

::
is

::::
more

:::::::
affected

:::
by

::::::::
sampling

:::::
noise

::
at

:::::
small

:::::
scales,

:::
so

:::::
using

:
a
::::::::
truncated

::::::::::::
representation

::
of

:::
the

:::::
fields

:::::::::::
significantly

::::::::
improves

:::
the

:::::
results

:::
for

::::::
ETPS.

::::::
ETKF

::
is

:::::::
filtering

:::
out

:::
the

::::
small

::::::
scales

:::
that

:::
are

:::
not

::::::::
observed

:::
and

::::
thus

::
is

:::
less

:::::::
affected

:::
by

:::
the

:::::::::
truncation.

Next we employ localization for both ETPF and ETKF
:::::
apply

::::::
LETPF

::::
and

::::::
LETKF. The optimal localization radius

:::::::
between

:::
0.2

:::
and

:::
1.2 was obtained in terms of the smallest RMSE and shown in Table 1. Optimal localization radius for ETPS and ETKS5

at different ensemble sizes M. M 10 110 210 . . . 910ETPS 0.4 0.6 0.6 . . . 0.6ETKS 0.6 1.2 1.2 . . . 1.2It should be noted that

smaller localization radius for ETPF than for ETKF
::::::
LETPF

::::
than

:::
for

::::::
LETKF

:
was also observed by Cheng and Reich (2015)

for Lorenz 96 model and it is probably related to more noisy approximation of the posterior by ETPF than by ETKF
::::::
LETPF

:::
than

:::
by

:::::::
LETKF. In Fig. 14 we plot misfit, RMSE and variance.

18



-2 -1 0 1

Z1

0

0.5

1

1.5

2

2.5

E
T

P
F

104 (0.21)

(a)

-2 -1 0 1

Z2

0

0.5

1

1.5

2

2.5

E
T

P
F

104 (0.42)

(b)

-3 -2 -1 0 1

Z3

0

0.5

1

1.5

2

2.5

E
T

P
F

104 (0.6)

(c)

-2 -1 0 1

Z1

0

0.5

1

1.5

2

2.5

E
T

K
F

104 (0.16)

(d)

-2 -1 0 1

Z2

0

0.5

1

1.5

2

2.5

E
T

K
F

104 (0.07)

(e)

-3 -2 -1 0 1

Z3

0

0.5

1

1.5

2

2.5

E
T

K
F

104 (0.49)

(f)

Figure 11. The posterior probability density function of parameters Z1 (left), Z2 (center), and Z3 (right). The posterior obtained by IS with

ensemble size 106 is plotted as a black line and the true parameter as a black cross. The posterior of ETPF is shown at the top and the

posterior of ETKF at the bottom. Both ETPF and ETKF used 104 ensemble members. The Kullback-Leibler divergence is in brackets.

At small ensemble sizes both ETKF and ETPF with localization
::::::
LETKF

::::
and

::::::
LETPF

:
give smaller misfitand RMSE and

:
,

::::::
smaller

::::::
RMSE

:::
but larger variance than without localization but ETKF still outperforms

:::::
ETKF

:::
and

:
ETPF. For large ensemble

sizes ETPF performs now comparably to ETKF(by increasing the localization radius to
:::::::::
ensembles

::::::
LETKF

::::::::
performs

::::::
worse

:::
than

::::::
ETKF,

::::::
which

::
is
::::
due

::
to

:::
the

::::::::
imposed

:::::
range

:::
on

::::::::::
localization

::::::
radius,

:::::::
meaning

::::
that

:
1.2 we do not see an improvement in

ETKF)
:
is

:::
not

:::::::
optimal.

::::::::::
Comparing

::
the

:::::::::::
performance

::
of

:::::::
LETPF

::
to

::::::::
(L)ETKF

::
we

:::::::
observe

:::
that

::
at
:::::
small

::::::::
ensemble

:::::
sizes

::::::
LETKF

::::
still5

::::::::::
outperforms

:::::
ETPF

:::
but

::
at

::::
large

::::::::
ensemble

:::::
sizes

::::::
LETPF

::::::::
performs

::::
now

::::::::::
comparably

::
to

:::::
ETKF. Moreover, localized ETPF

::::::
LETPF

overfits the data less often than non-localized
:::::
ETPF: 40% agains

:::::
against

:
90% for ensemble size 10 and 0% agains

::::::
against

non-zero% for ensemble sizes greater than 150 (not shown).

In Fig. 15–16 we plot mean and variance of the log permeability field at ensemble size 103 for ETPF (b)–(e) and ETKF

(c)–(f) with localization at the smallest RMSE (b)–(c) and largest RMSE (e)–(f) over simulations, which are 32.29 and 34.0810

for ETPF and 32.92 and 34.09 for ETKF, respectively. We observe that localization decreases the sampling noise and the spatial

variability of the mean field obtained by ETPF at ensemble size 103 resembles IS at ensemble size 105. The variance obtained

by ETPF with localization shown in Fig. 16(b–e) has also improved.
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Figure 12. Using only three first
:::::
leading

:
modes in the KL expansion. Panel (a): RMSE after data assimilation w.r.t ensemble size with

mean, minimum and maximum over 10 simulations for ETPF shown in blue and ETKF in red. Panel (b): % of simulations that result in

(RMSEa �RMSEb)> 0 for ETPF.

The posterior estimation of the first
::::::
leading mode Z1, however, degraded, while of Z2 and Z3 improved. The Kullback-

Leibler divergence for the first
:::::
leading

:
mode is 0.73 (compare to 0.21 without localization), and for second and third is 0.2

and 0.18, correspondently
:::::::::::::
correspondingly

:
(compare to 0.42 and 0.6 without localization). Variance of the posteriors is larger

when localization is applied for both ETPF and ETKF
::::::
methods. The localized weights given by Eq. (10) vary less than the

non-localized weights given by Eq. (3). Therefore the localized pdf is less noisy than the non-localized. However, localization5

applied in the form of the Karhunen-Loeve expansion given by Eq. (14) does not retain the imposed bounds on the modes Z
as we need to invert a matrix product of eigenvalue and eigenvector matrices to obtain the modes. By increasing

::::::::
Moreover

:::::
unlike

::::::
ETKF,

::::::
LETPF

::::
does

:::
not

::::::::
converge

::
to

:::::
ETPF

::
as

:
the localization radius to 1.2 we get the Kullback-Leibler divergence 0.64

for the first mode, and 0.13 and 0.11 for the second and third, correspondently, thus the posterior approximation improves only

slightly.
::::
goes

::
to

::::::
infinity

:::
due

::
to

:::
the

::::::::
transport

:::::::
problem

:::::
being

::::::::
univariate

:::
for

:::::::
LETPF

:::
and

::::::::::
multivariate

:::
for

:::::
ETPF.

:
10

5 Conclusions

MCMC methods remain the most reliable methods for estimating the posterior distributions of uncertain model parameters and

states. They, however, also remain computationally expensive. Ensemble Kalman filters provide computationally affordable

approximations but rely on the assumptions of Gaussian probabilities. For nonlinear models even if the prior is Gaussian the

posterior is not Gaussian anymore. Particle filtering on the other hand does not have such an assumption but requires a resam-15
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Figure 13. Same as figure 8, but using only three first
:::::
leading

:
modes in the KL expansion.

pling step, which is usually stochastic. Ensemble transform particle filter is a particle filtering method that deterministically

resamples the particles based on their importance weights and covariance maximization among the particles.

ETPF certainly outperforms ETKF for a one parameter nonlinear test case by giving a better posterior estimation. This

conclusion also holds for
:::
For

:
the five parameter test case, however demands a substantially larger ensemble size. Moreover the

mean estimations obtained by ETPF are not consistently better than the ones obtained by ETKF .
:::
and

:::
the

::::::
spread

::
is

:::::::
smaller.5

:::
The

:::::::::::::::
Kullback-Leibler

:::::::::
divergence

::::
from

::::::
ETKF

::
is

:::::::
smaller

::::
than

::::
from

:::::
ETPF

:::
for

:::
all

::::::::::
parameters.

:
When the number of uncertain

parameters is large (2500) a decrease of degrees of freedom is essential. This is performed by localization. At large ensemble

sizes ETPF performs as well as ETKF, while at small ensemble sizes ETKF still outperforms ETPF. Even though localized

ETPF overfits the data less often than non-localized, localization destroys the property of ETPF to retain the imposed bounds.
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Figure 14. Same as figure 6
::::
Mean

::::
over

::
10

:::::::::
simulations

::::
after

::::
data

:::::::::
assimilation

:::
for

::
the

::::
data

:::::
misfit

::
(a), but with localization

:::::
RMSE

::::
(b),

:::
and

::::::
variance

::
(c).

::::::
LETPF

:
is
:::::
shown

::
in
::::
solid

::::
blue

:::
and

::::::
LETKF

::
in

::::
solid

:::
red.

:::::
ETPF

:
is
:::::
shown

::
in

::::::
dashed

:::
blue

:::
and

:::::
ETKF

::
in

:::::
dashed

::::
red.

This results in deterioration of the first
::::::
leading mode posterior approximation. Another approach to improve ETPF performance

is instead of applying localization to use only first
::::::
leading

:
modes in the approximation of log permeabilty

::::::::::
permeability as they

are better estimated by the method. An advantage of this approach is that it is fully Bayesian. However, one needs to know at

which mode to make a truncation and this is highly dependent on the covariance matrix of the log permeability.
:

:::
We

::::::
believe

::::
that

:::::
ETPF

::
is

::::::::
promising

:::
for

:::
the

:::::::
inverse

:::::::::
modelling.

::::::::
However,

:::::
more

:::::::::
theoretical

::::::
studies

::::
have

::
to
:::
be

:::::::::
performed

:::
for5

:::::
ETPF

:::::
before

::
it
::
is

:::::::::
considered

:::
for

:::::::
realistic

:::::::::::
applications.

::::::::
Plausible

:::::
issues

::::::
related

::
to
:::::::

realistic
::::::::::

application
:::
are

::::::::
numerous

::::::::
accurate

:::::::::::
observations,

::::::::::::::
time-dependency

::
of

::
an

:::::::::
underlined

::::::
model,

::::
and

::::
flow

:::::
being

::::::::::
multiphase,

::
for

::::::::
example.
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Figure 15. Same as figure 8, but with localization.
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