
Reply to Referee 1

This manuscript aims to compare performance of ensemble transform Kalman
smoother (ETKS) and ensemble transform particle smoother (ETPS) in non-
linear parameter estimation problem. The authors conducted observing system
simulation experiments and obtained reasonable results. The scope discussed in
this manuscript suits well to Nonlinear Processes in Geophysics. I do not have
any major concerns for the experiments presented in the manuscript. However,
some discussions and descriptions are difficult to follow due to insufficient ex-
planation. Here I list the concerns, which would be beneficial to improve the
manuscript further.

[General Comments]
1. Scientific Significance: The authors addressed that they applied the ETPS
for estimating a large number of uncertain parameters (P2L34). It can be a
good motivation; however I could not understand the scientific significance that
can be achieved by applying the ETPS and ETKS for the large-dimensional
problem. Please address this point clearly in abstract and conclusion.

Reply: The large number of uncertain parameters is of a particular interest
for subsurface reservoir modelling as it allows to parameterise permeability on
the grid. The most reliable methods of MCMC are computationally expensive
and sequential ensemble methods such as ensemble Kalman filers and particle
filters provide with a favourable alternative.

2. Lack of explanations: I could not follow several logics of the manuscript,
therefore, my major comments includes many ”whys” and ”reasons”. Most of
the issues should be solved by adding sufficient explanations.

Reply: we have added more explanations (please see point-by-point answer).

3. Results (Figures): Some figures were discussed insufficiently. It is better
to remove figure(s) if they are not needed.

Reply: we have adopted the revised version accordingly.

4. Methods: The author compared the ETKS and ETPS. I am wondering
the difference between the ETPS used in this study and a nonlinear ensemble
transform filter by Tödter and Ahrens (2015) (Tödter, J., and B. Ahrens, 2015:
A second-order exact ensemble square root filter for nonlinear data assimilation.
Mon. Wea. Rev., 143, 1347–1367).

Reply: The paper by Tödter and Ahrens (2015) addresses an important is-
sue of ensemble Kalman (square root) filter being biased for nonlinear models
and makes a correction for that. The resulting algorithm does not attempt to
estimate the full analysis pdf in contrast to the ETPF.

Also, it is better to compare the localization methodology with local particle
filters (Penny and Miyoshi 2016; Poterjoy 2016). Please add more discussion on
difference from existing methods.
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Penny, S. G. and T. Miyoshi, 2016: A local particle filter for high-dimensional
geophysical systems. Nonlin. Processes Geophys., 23, 391-405. Poterjoy, J.
(2016). A localized particle filter for high-dimensional nonlinear systems. Monthly
Weather Review, 144(1), 59-76.

Reply: The localization methodology considered in this manuscript was par-
ticularly developed for ETPF by S. Reich and C. Cotter (2015). The same holds
for localization for ensemble transform Kalman filter by Hunt at al (2007).
Therefore we keep this comparison. However, we mention Penny and Miyoshi
2016; Poterjoy 2016 in the localization section to give a flavour of an ongoing
research in local particle filters.

[Major Comments]
1. P1L13: Please add reason(s) why ETPS is very sensitive w.r.t. the initial
ensemble.

Reply: ETKF is very robust while ETPF is very sensitive with respect to
the initial ensemble due to a sampling error.

2. P1L15: Please add reason(s) why the localization deteriorated the poste-
rior estimation.

Reply: An issue of an increase in the root mean square error after data
assimilation is performed in ETPF for a high-dimensional test problem is re-
solved by applying distance-based localization, which however deteriorated the
posterior estimation of the first mode by largely increasing the variance, which
is due to a combination of less varying localized weights, not keeping the im-
posed bounds on the modes via the Karhunen-Loeve expansion and the main
variability explained by the first mode.

3. P7L15: Isn’t it possible to apply the localization between variables?
Reply: Localization can be defined for variables that depend on space. Thus

it cannot be applied to geometrical parameters, for example.

4. P8L1: I could not understand the sentence ” is made such that yobs = 48”.
Please rephrase this sentence.

Reply: The true parameter utrue gives h(utrue) = 48.

5. P10L14: Please explain more about reason(s).
Reply: It is interesting to note that ETKF overestimates the tails of the

pdfs while ETPF underestimates them, which indicates that there is not enough
spread in the ensemble.

6. P11L5: Why? Does it relate to the resampling issue discussed later?
Reply: ETPF provides ensemble members that stay within the original

bounds, while ETKF—outside the bounds. Moreover the optimal transport
problem solved by ETPF results in some particles being almost identical. There-
fore ETPF gives smaller spread than ETKF.

2



7. Fig.4, Fig. 8 (b) and (c), : I did not understand why this figure is needed
because they were not discussed.

Reply: In Fig. 4 we plot the true parameters utrue, the mean ¯̄ua and the
spread ¯̄ua ± ūa

std of estimated parameters averaged over 10 simulations.

In Fig. 8 (in the revised version it is Fig. 6) we plot mean, minimum and max-
imum over 10 simulations after data assimilation for the data misfit (a), RMSE
(b), and variance (c). ETPF is shown in blue and ETKF in red. We observe
that ETPF in underdispersive compared to ETKF (c). This is due to the linear
transformation, as it results in some ensemble members being nearly identical.
Misfit (a) given by ETPF is smaller than the one given by ETKF for almost all
simulations at ensemble sizes greater than 150. The RMSE(b) on the contrary
is larger.

8. P15L5, perturbation of ensemble member: In generic PF, the resampling
(or inflation) method is very important to avoid the particle convergence. Could
you explain why you did not need to consider this issue?

Reply: The model is time independent thus the issue of collapse does not
rise here.

9. Fig. 8 (b): I was confused why the ETKS outperforms the ETPS if RMSE
is used for the metric.

Reply: The first 3 modes Z are better estimated by ETPF than by ETKF,
thus the permeability field defined only by those modes gives better resemblance
to the true permeability when approximated by ETPF (please see Fig.13 in the
revised version). ETKF, however, provides a better estimation of higher order
modes, thus ETKF outperforms the ETPF if RMSE is used for the metric tak-
ing into account all modes.

10. Fig. 10: It is helpful to add RMSEs on the figure.
Reply: Agreed, it is added.

11. Table 1: Could you discuss why the optimal radius for the ETKS is
larger than that of the ETPS?

Reply: It was also observed by Cheng and Reich (2015) that the localization
radius for ETKF is larger than for ETPF. This is probably related to more noisy
approximation of the posterior by ETPF than by ETKF.

Y. Chen and S. Reich, Data assimilation: a dynamical system perspective.
Frontiers in Applied Dynamical Systems: Reviews and Tutorials Vol 2, 75-118,
2015

12. P16L15: Please discuss why the localization degrades the posterior
estimation.

Reply: The posterior estimation of the first mode Z1 degraded, while of
others improved. The Kullback-Leibler divergence for the first mode is 0.73
(compare to 0.21 without localization), and for second and third is 0.2 and 0.18,
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correspondently (compare to 0.42 and 0.6 without localization). Variance of the
posteriors is larger when localization is applied for both ETPF and ETKF. The
localized weights given by Eq. 11 vary less than the non-localized weights given
by Eq. 3. Therefore the localized pdf is less noisy than the non-localized. How-
ever, localization applied in the form of the Karhunen-Loeve expansion given
by Eq. 14 does not retain the imposed bounds on the modes Z as we need
to invert a matrix product of eigenvalue and eigenvector matrices to obtain
the modes. By increasing the localization radius to 1.2 we get the Kullback-
Leibler divergence 0.65 for the first mode, and 0.14 and 0.12 for the second and
third, correspondently, thus the posterior approximation improved only slightly.

13. Conclusion: It would be helpful to add findings and limitation further
in this section.

Reply: MCMC methods remain the most reliable methods for estimating
the posterior distributions of uncertain model parameters and states. They,
however, also remain computationally expensive. Ensemble Kalman filters pro-
vide computationally affordable approximations but rely on the assumptions of
Gaussian probabilities. For nonlinear models even if the prior is Gaussian the
posterior is not Gaussian anymore. Particle filtering on the other hand does
not have such an assumption but requires a resampling step, which is usually
stochastic. Ensemble transform particle filter is a particle filtering method that
deterministically resamples the particles based on their importance weights and
covariance maximization among the particles.

ETPF certainly outperforms ETKF for a one parameter nonlinear test case
by giving a better posterior estimation. This conclusion also holds for the
five parameter test case, however demands a substantially larger ensemble size.
Moreover the mean estimations obtained by ETPF are not consistently better
than the ones obtained by ETKF. When the number of uncertain parameters
is large (2500) a decrease of degrees of freedom is essential. This is performed
by localization. At large ensemble sizes ETPF performs as well as ETKF, while
at small ensemble sizes ETKF still outperforms ETPF. Even though localized
ETPF overfits the data less often than non-localized, localization destroys the
property of ETPF to retain the imposed bounds. This results in deterioration
of the first mode posterior approximation. Another approach to improve ETPF
performance is instead of applying localization to use only first modes in the
approximation of log permeabilty as they are better estimated by the method.
An advantage of this approach is that it is fully Bayesian. However, one needs
to know at which mode to make a truncation and this is highly dependent on
the covariance matrix of the log permeability.

Reply to Referee 2

This article presents a comparison between an EnKF and a particle filter
based approaches for parameter estimation in a time independent model. I
think that this comparison is relevant and can provide good insights about the
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performance of these two approaches in the context of parameter estimation.
However I found many aspects that needs further clarification to support the
conclusions made by the authors of this work. Major revisions are required to
the paper.

Major points
- It is not clear if Importance Sampling and particle filters can be treated

as synonyms. From my point of view particle filters can include different ap-
proaches for particle resampling to avoid the collapse of the filter and this is
different from Importance Sampling which in principle does not include the
resampling step.

Reply: Agree. We have changed the text accordingly.

-Page 2, 30 it is stated that particle filters do not update the uncertain pa-
rameters. This is not correct, many particle filters with different resampling
approaches has been developed. These resampling steps introduce changes in
the uncertain parameters so they get closer to the ones that produce the max-
imum observation likelihood, so the parameter ensemble evolves with time. It
is true that the proposed technique performs this in a different way introducing
a deterministic update of the parameter values (while usually resampling tech-
niques in particle filters are stochastic). The difference between the implemented
technique and previous techniques should be more clearly stated.

Reply: Agree. We have changed the text accordingly.

- In this work the implemented techniques are described as smoothers, how-
ever all the experiments performed are time independent. It is not clear for me
what would be the difference between a filter or a smoother if there is no time
involved. Please clarify this point. In the methodology I cannot find a difference
between the filter implementation or the smoother implementation since there
are no time index in the equations.

Reply: Agree, they are filters not smoothers. We have changed the text
accordingly.

-Page 3, near 5: it is stated that ETKS does not employ the correlation in the
estimation of the parameter. Filter equations are solved in the space defined
by the ensemble members, but this implementation is basically equivalent to
other EnKF which relies on the correlation between uncertain parameters and
observed variables. Please clarify this point.

Reply: We have removed this sentence and also an iterative Kalman Smoother
to avoid confusion. Both ETKF and ETPF considered in the paper solve equa-
tions defined in ensemble phase space.

-Page 8, 5 an iterative Kalman Smoother is mentioned here and shown in
Figure 1, but detailed information about this technique is lacking. I suggest
removing this technique since it has not been used in the experiments with the
Darcy flow and also it has not been described in detail in the methodology
section.
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Reply: Agree, removed.

-In Figure 1, d, e and f a Gaussian prior produces a non-Gaussian posterior
using ETKS. Since the EnKF relies on the linear and Gaussian assumption is
it possible to obtain a non-Gaussian posterior from a Gaussian prior?

Reply: ETKF is able to give a non-Gaussian posterior due to the nonlinear-
ity of the map between the uncertain parameters and observations.

-What is the motivation behind the functional introduced to define the ob-
servations in page 9, 15? What is rl which appears in the definition of Ll(P )?

Reply: rl denotes the location of the observation. This form of the observa-
tion functional and parameterization of the uncertain parameters given below
guaranty the continuity of the forward map from the uncertain parameters to
the observations and thus the existence of the posterior distribution as shown
by Iglesias, M. A., Lin, K., and Stuart, A. M.: Well-posed Bayesian geometric
inverse problems arising in subsurface flow, inverse problems, 30, 114 001, 2014.
(This text in added to the revised version.)

-Figure 6 shows the distribution for the first 3 modes of Z. Please clarify how
these modes are obtained.

Reply: For the log permeability we use Karhunen-Loeve expansions of the
form

log(k(x)) = log(5) +

n2∑
i=1

√
λiνi(x)Zi,

where λ and ν(x) are eigenvalues and eigenfunctions of C, respectively, and the
vector Z is of dimension n2 iid from a Gaussian distribution with zero mean
and variance one. Making sure that the eigenvalues are sorted in descending
order Zi ∼ N (0, 1) produces log(k) ∼ N (log(5),C). (This text in added to the
revised version.)

-Figure 8 shows that the RMSE associated with ETKS is always lower than
the RMSE for ETPS, however the first 3 moments of Z are better estimated by
ETPS than for ETKS. Does this mean that ETKS provides a better estimation
of higher order modes?

Reply: The first three moments were averaged over 10 simulations and thus
it was misleading to show and draw conclusions based on that figure. Instead we
now plot a figure that shows an error of first three moments. We observe that
in terms of the estimation of the first three modes ETPF outperforms ETKF.
We explore the estimation based on only those modes further. We use only first
three modes in the Karhunen-Loeve expansion when computing the estimated
log permeability keeping the number of uncertain parameters the same, namely
2500. In Fig. 12 we observe that ETPF outperforms ETKF for large ensemble
sizes independent of an initial sample. Moreover, ETPF is not overfitting the
data anymore since RMSE always decreases after data assimilation except at
small ensemble sizes. In Fig. 13 we show the mean fields for the best and worst

6



initial samples of 104 size. ETPF gives RMSE at the best sample 31.1 and the
worst sample 32.98. By comparing it to 30.51 and 39.2 obtained using the full
Karhunen-Loeve expansions, we observe that the maximum RMSE over simula-
tions decreased substantially, while the minimum RMSE only slightly increased.
ETKF gives RMSE at the best sample 32.27 and the worst sample 33.23. (Com-
pare to 32.48 and 33.9 using the full Karhunen-Loeve expansions). Thus ETKF
slightly decreases both maximum and minimum RMSE over simulations.

-IS and ETKS provide spatially smother solutions than ETPS (Figure 10),
however ETPS seems to provide a better representation of the spatial variability
and patters of the parameter. The explanation provided by the authors is not
convincing for me. IS with a large number of particles should provide a very
good estimation of the parameters (this approach is used as a benchmark by
the authors).

Reply: The spacial variability is indeed a result of sampling error. (This
text in added to the revised version.)

-Also the distribution for the first 3 moments of Z are relatively similar
between ETPS, ETKS and IS (but the spatial variability shown in Figure 10
are very different). This point is very important and I think it should be explored
and discussed in more detail.

Reply: The distributions shown in Figure 6 (Fig. 11 in the revised version)
are different between ETPF, ETKF and IS.

-The authors show that in many cases ETPS improves the fitting to the
observations but degrades the RMSE of the parameter. Can this be due to an
over fitting of the observations?

Reply: It is indeed due to an overfitting of the observations.

-For the experiments including localization, the authors do not show the
spatial distribution of the estimated parameters. This is very important since
using localization can significantly improve the small scale details in the esti-
mated parameter field. This figure should be included in order to better evaluate
the impact of localization.

Reply: New figures: Figure 15 (mean field) and Figure 16 (variance) are
added to the revised version.

-It is also strange that there is almost no improvement between the global
and local implementation of the ETKS algorithm. With such a large number
of variables and for the smaller ensemble sizes a larger positive impact would
be usually expected. The degradation of the ETKS with a small ensemble size
using localization is unexpected. The authors indicate that better localization
approaches should be used but previous studies usually indicates that the impact
of localization is stronger for smaller ensemble sizes. Are other works that shows
this kind of behavior with localization degrading the performance of the filter
for small ensemble sizes?
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Reply: At small ensemble sizes ETKF is less robust than at large ensemble
sizes due to the sampling error and the localization radius was chosen based on
1 simulation and fixed for the remaining 9, which should not have been done.
In the revised version the optimal localization radius was obtained over all 10
simulations. The results are shown in Fig. 12. At small ensemble sizes both
ETKF and ETPF with localization give smaller misfit and RMSE and larger
variance than without localization but ETKF still outperforms ETPF. For large
ensemble sizes ETPF performs now comparably to ETKF. Moreover, for ensem-
ble sizes greater than 150 all simulations result in the RMSE decrease after data
assimilation (not shown).

-Page 16, before 5, it is stated that ”However, IS does not change the param-
eters, only their weights, while ETPS does change the parameters. Therefore
ETPS has an advantage of IS representing the correct posterior but does not
have its disadvantage of resampling lacking”. If the posterior is correct and
tacking into account that there is no time evolution in this context, what would
be the problem with the lacking of resampling in the IS? The results described
in this section also suggest that the solutions provided by IS and ETPS are very
similar given that the initial condition is the same (once again resampling does
not seems to be an issue in this context).

Reply: This sentence is removed.

-Does ETPS with 105 ensemble members produce a smooth field like the one
produced by IS? In other words, the spatial variability that we see in Figure
10 b is produced by sampling errors or is the result of a better estimation
of the parameter field? Results mentioned in the previous comment suggests
that spatial variability is just a result of sampling noise and because of that is
extremely sensitive to the prior ensemble. If we have a ”lucky” prior then we
end up with good results, but if the prior is bad then the result is also bad. In
this sense ETKF seems to be more robust (which is reasonable when we need
to update a large number of parameters with a relatively small ensemble and
when the posterior distribution is not too far from a Gaussian).

Reply: Agree, the spatial variability that we see in Figure 10 b is indeed
produced by sampling errors.

-Conclusions, page 19, 5: It is stated that ETPS better fit the posterior.
However if we look at Figure 6 we found that for 104 particles (which is a
large ensemble for most applications), ETPS fit is very noisy. Can the authors
perform and objective comparison between the posterior provided by IS and the
posterior provided by ETPS and ETKS (for instance using the Kullback-Leibler
divergence or other objective comparison between two distributions).

Reply: In order to perform an objective comparison between the probabil-
ities we compute the Kullback-Leibler divergence of a posterior π obtained by

either ETPF or ETKF and the posterior πIS obtained by IS. ETPF gives the
Kullback-Leibler divergence 0.21, 0.42, and 0.6, while ETKF 0.16, 0.07, and
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0.49 for the modes Z1, Z2, and Z3, respectively. Thus ETKF gives a better
approximation of the true pdf.

-Conclusions: Conclusions are very optimistic with respect to the perfor-
mance of ETPS, however the RMSE of ETKS is always better in the large
parameter space experiments. This suggests that the mean of the posterior is
better estimated by ETKS rather than ETPS. While the mean is usually used
as the best estimator of the parameter value, this should be mentioned in the
conclusions.

Reply: ETPF certainly outperforms ETKF for a one parameter nonlinear
test case by giving a better posterior estimation. This conclusion also holds for
the five parameter test case, however demands a substantially larger ensemble
size. Moreover the mean estimations obtained by ETPF are not consistently
better than the ones obtained by ETKF. When the number of uncertain pa-
rameters is large (2500) a decrease of degrees of freedom is essential. This is
performed by using localization. At large ensemble sizes (greater than 50) ETPF
performs as well as ETKF, while at a small ensemble size of 10 ETKF still out-
performs ETPF. Even though localized ETPF overfits the data less often than
non-localized, localization destroys the property of ETPF to retain the imposed
bounds. This results in deterioration of the first mode posterior approxima-
tion. Another approach to improve ETPF performance is instead of applying
localization to use only first modes in the approximation of log permeabilty as
they are better estimated by the method. An advantage of this approach is
that it is fully Bayesian. However, one needs to know at which mode to make
a truncation and this is highly dependent on the covariance matrix of the log
permeability.

Minor points
Page 12, 5: It is stated that is assumed to be an exponential correlation with
maximum correlation along 3pi/4 ... It is not clear for me the meaning of this
sentence.

Reply: We removed this sentence.

Page 7, 20: It is stated that R0 approximation is used with large ensembles
in the experiments presented in this work, but in the result section it is not
clear if this approximation has been used or not.

Reply: We removed this approximation for consistency.

Figure 10, It would be nice to include grid lines or to include the observation
location in all the panels just to have a reference to compare smaller scale details
in the estimated parameters.

Reply: The observation locations are added to the plots.
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Abstract. Over the years data assimilation methods have been developed to obtain estimations of uncertain model parame-

ters by taking into account a few observations of a model state. However, most of these computationally affordable methods

have assumptions of Gaussianity, e. g. an
:::
The

::::
most

:::::::
reliable

:::::::
methods

::
of

:::::::
MCMC

:::
are

:::::::::::::
computationally

:::::::::
expensive

:::
and

:::::::::
sequential

::::::::
ensemble

:::::::
methods

::::
such

:::
as

::::::::
ensemble

:::::::
Kalman

:::::
filers

:::
and

:::::::
particle

:::::
filters

:::::::
provide

::::
with

::
a
:::::::::
favourable

::::::::::
alternative.

::::::::
However,

:
En-

semble Kalman Filter
:::
has

:::
an

:::::::::
assumption

:::
of

::::::::::
Gaussianity. Ensemble Transform Particle Filter does not have the assumption5

of Gaussianity
:::
this

::::::::::
assumption and has proven to be highly beneficial for an initial condition estimation and a small number

of parameter estimation in chaotic dynamical systems with non-Gaussian distributions. In this paper we employ Ensemble

Transform Particle Smoother (ETPS
:::::
Filter

::::::
(ETPF) and Ensemble Transform Kalman Smoother (ETKS

:::::
Filter

::::::
(ETKF) for pa-

rameter estimation in nonlinear problems with 1, 5, and 2500 uncertain parameters and compare them to importance sampling

(IS).
:::
The

:::::
large

:::::::
number

::
of

::::::::
uncertain

::::::::::
parameters

::
is

::
of

::
a
::::::::
particular

:::::::
interest

:::
for

:::::::::
subsurface

::::::::
reservoir

::::::::
modelling

:::
as

::
it

:::::
allows

:::
to10

::::::::::
parameterise

:::::::::::
permeability

::
on

:::
the

:::::
grid. We prove that the updated parameters obtained by ETPS

::::
ETPF

:
lie within the range of

an initial ensemble, which is not the case for ETKS
:::::
ETKF. We examine the performance of ETPS and ETKS

:::::
ETPF

:::
and

::::::
ETKF

in a twin experiment setup, where observations of pressure are synthetically created based on the know values of parame-

ters. The numerical experiments demonstrate that the ETKS provides good estimations of the mean parameters but not of the

posterior distributions and as the ensemble size increases the posterior does not improve. ETPS provides good approximations15

:::
For

:::::
small

:::::::
number

::
of

::::::::
uncertain

:::::::::
parameters

:::
(1

:::
and

:::
5)

:::::
ETPF

::::::::
performs

::::::::::
comparably

::
to

::::::
ETKF

::
in

:::::
terms

:::
of

:::
the

:::::
mean

:::::::::
estimation

:::
and

::::::::::
outperforms

::
in

:::::
terms

:
of the posterior and

::::::::
estimation

:
as the ensemble size increasesthe posterior converges to the posterior

obtained by IS with a large ensemble. ETKS is very robust while ETPS is very sensitive .
::::
For

::::
large

:::::::
number

:::
of

::::::::
uncertain

:::::::::
parameters

::::::
(2500)

:::::
ETKF

::
is
::::::

robust
:
with respect to the initial ensemble

::::
while

::::::
ETPF

::
is

:::::::
sensitive

::::
due

::
to

::
a

::::::::
sampling

::::
error. An

issue of an increase in the root mean square error after data assimilation is performed in ETPS
:::::
ETPF for a high-dimensional20

test problem is resolved by applying distance-based localization, which however deteriorated the posterior estimation .
::
of

:::
the

:::
first

:::::
mode

:::
by

::::::
largely

:::::::::
increasing

:::
the

::::::::
variance,

::::::
which

::
is

:::
due

::
to

::
a
:::::::::::
combination

::
of

::::
less

::::::
varying

::::::::
localized

::::::::
weights,

:::
not

:::::::
keeping

::
the

::::::::
imposed

::::::
bounds

:::
on

:::
the

:::::
modes

:::
via

:::
the

::::::::::::::
Karhunen-Loeve

:::::::::
expansion

:::
and

:::
the

:::::
main

:::::::::
variability

::::::::
explained

:::
by

:::
the

:::
first

::::::
mode.

::
A

:::::::
possible

::::::
remedy

::
is

::::::
instead

::
of
::::::::

applying
::::::::::
localization

::
to

:::
use

::::
only

::::
first

::::::
modes

:::
that

:::
are

::::
well

:::::::::
estimated

::
by

::::::
ETPF.

::::
This

::::::::
approach

::
is

::::
fully

::::::::
Bayesian

:::
but

:::::::
demands

::
a

:::::::::
knowledge

::
at

:::::
which

:::::
mode

::
to

::::::::
truncate.25
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1 Introduction

An accurate estimation of subsurface geological properties like permeability, porosity etc. is essential for many fields specially

where such predictions can have large economic or environmental impact, for instance prediction of oil or gas reservoir loca-

tions. Knowing the geological parameters a so-called forward model is solved for the model state and a prediction can be made.

The subsurface reservoirs, however, are buried thousands of feet below the earth surface and exhibit a highly heterogeneous5

structure, which makes it difficult to obtain their geological parameters. Usually a prior information about the parameters is

given, which still needs to be corrected by observations of pressure and production rates. These observations are, however,

known only at well locations that are often hundreds of meter apart and corrupted by errors. This gives instead of a well-

posed forward problem an ill-posed inverse problem of estimating uncertain parameters, since many possible combinations of

parameters can result in equally good matches to the observations.10

Different inverse problem approaches for groundwater and petroleum reservoir modelling, generally termed as history

matching, have been developed over the past years, e.g. Oliver et al. (1997) implemented Markov chain Monte Carlo methods

with different perturbations and tested it on a 2-D reservoir model; Reynolds et al. (1996) obtained reservoir parameters esti-

mations using Gauss-Newton method; Vefring et al. (2006) used Levenberg–Marquardt method to characterize reservoir pore

pressure and permeability. A review of history matching developments is written by Oliver and Chen (2011).15

For reservoir models the term data assimilation and history matching are used interchangeably, as the goal of data assim-

ilation is the same as that of history matching, where observations are used to improve a solution of a model. Ensemble

data assimilation methods such as Ensemble Kalman filters (Evensen, 2009) have been originally developed in meteorol-

ogy and oceanography for the state estimation. Now it is one of the frequently employed approaches for parameter estima-

tion in subsurface flow models as well (e.g. Oliver et al., 2008). The model state is augmented with uncertain parameters20

and the correlations between uncertain parameters and predicted data are used to correct the parameters together with the

state. The simultaneous update of the model state and parameters, however, results in a unbalanced (unphysical) model state.

Therefore Evensen (2000) introduced an ensemble smoother, where only uncertain parameters are estimated and the model

state is computed by solving the forward model with corrected parameters. A detailed review of ensemble Kalman filter de-

velopments in reservoir engineering is written by Aanonsen et al. (2009). An ensemble Kalman filter efficiently approximates25

a true posterior distribution if the distribution is not far from Gaussian, as it corrects only the mean and the variance. For

nonlinear models with multimodal distributions, however, an ensemble Kalman filter fails to correctly estimate the posterior,

as shown by Dovera and Della Rossa (2011).

Particle filtering (Doucet et al., 2001), also known as Importance Sampling (IS) , is quite promising for such models as it

does not have any assumptions of Gaussianity. It is also an ensemble based method in which the probability density function is30

represented by a number of particles (also called samplesor ensemble members). One particle
:::::::
samples.

::::
One

::::::
sample corresponds

to one configuration of uncertain model parameters. The forward model is solved for each particle
::::::
sample and predicted data is

computed. The weight is assigned to particles
::::::
samples

:
based on the observations of the true physical system and the predicted

data.
:::
The

::::::::
drawback

:::
of

::
IS

::
is
::::
that

::
it

::::
does

:::
not

:::::::
update

:::
the

::::::::
uncertain

:::::::::
parameters

::::
but

::::
only

::::
their

:::::::
weight.

:::::::::
Therefore

:
a
::::::

family
:::

of

2



::::::
particle

:::::
filters

::::::::::::::::::::
(Doucet et al., 2001) has

:::::
been

::::::::
developed

::::::
where

::
IS

::
is
::::::::
supplied

::::
with

:::::::::
resampling

::::
and

:
a
::::::
sample

::
is
::::::
called

:::::::
particle.

A significant work for parameter estimation using particle filtering has been done in hydrology. Moradkhani et al. (2005)

used it to estimate model parameters and state posterior distributions for a rainfall-runoff model. Weerts and El Serafy (2006)

compared an ensemble Kalman filter and a particle filter with different resampling strategies for a rainfall-runoff forecast and

obtained that as the number of particles increases the particle filter outperforms the ensemble Kalman filter. Guingla et al.5

(2012) employed particle filtering to correct the soil moisture and to estimate hydraulic parameters.

Particle filtering
:::
The

::::::::::
resampling

::
in

::::::
particle

:::::::
filtering

::
is, however, does not update the uncertain parameters only their weight.

Ensemble transform particle filter
::::::::
stochastic.

:::::::::
Ensemble

:::::::::
Transform

::::::
Particle

:::::
Filter

::::::
(ETPF)

:
developed by Reich and Cotter (2015)

is a particle filtering method that
::::::::::::::
deterministically resamples the particles based on their weights and covariance maximization

among the particles. Therefore it has an IS advantage of predicting the correct posterior but does not have its disadvantage10

of resampling lacking. Ensemble transform particle filter has
::::
ETPF

::::
has been used for initial condition estimations and for

parameter estimations in chaotic dynamical systems with a small number of uncertain parameters (Lorenz 63 model). It has

not been applied, however, in subsurface reservoir modelling for estimating a large number of uncertain parameters. In this

paper we employ it for estimating uncertain parameters in subsurface reservoir modelling. We call it ensemble transform

particle smoother (ETPS) in analogy with ensemble smoothers, where the model state is computed from the forward model15

with corrected model parameters. ETPS does not use correlations between predicted data and uncertain parameters. On the

one hand, the correlations should improve the estimation but on the other hand, it is not always clear how to compute them.

:::::
ETPF

:::::::
provides

:::
the

:::::::::
equations

:::
that

::::
are

:::::
solved

:::
in

:::
the

:::::
space

::::::
defined

:::
by

:::
the

:::::::::
ensemble

::::::::
members.

:::::::::
Therefore

:::
for

::::::::::
comparison

:::
we

::::::
employ Ensemble Transform Kalman Smoother (ETKS

::::
Filter

::::::
(ETKF) developed by Bishop et al. (2001) also does not employ

the correlations in its estimation. It
:::
that

::::
also transforms the state from the model space to the ensemble space, minimises the20

uncertainty in the ensemble space and transforms the estimation back to the model space.

In this paper we investigate the performance of ETPS and ETKS
::::
ETPF

::::
and

::::::
ETKF for parameter estimation in nonlinear

problems and compare them to IS with a large ensemble. This paper is organized as follows: in the section 2 we describe IS,

ETPS, and ETKS
:::::
ETPF,

:::
and

::::::
ETKF for parameter estimation. We apply these methods in Sect. 3 to a one parameter nonlinear

test case, where the posterior can be computed analytically, and in Sect. 4 to a single-phase Darcy flow, where the number of25

parameters is 5 and 2500. In Sect. 5 we draw the conclusions.

2 Data assimilation methods

We implement an ensemble transform Kalman smoother
::::
filter and an ensemble transform particle smoother

::::
filter

:
for estimating

parameters of subsurface flow. Both of these methods are based on Bayesian framework. Assume we have an ensemble of M

model parameters {um}Mm=1, then according to this framework, the posterior distribution, which is the probability distribution30

π(um|yobs) of the model parameters um given a set of observations yobs, can be estimated by the pointwise multiplication of

the prior probability distribution π(um) of the model parameters um and the conditional probability distribution π(yobs|um)

3



of the observations given the model parameters, which is also referred as the likelihood function,

π(um|yobs) =
π(yobs|um)π(um)

π(yobs)
.

The denominator π(yobs) represents the marginal of observations and can be expressed as:

π(yobs) =

M∑
m=1

π(yobs,um) =

M∑
m=1

π(yobs|um)π(um),

which shows that π(yobs) is just a normalisation factor.5

2.1 Ensemble Transform Kalman Smoother
::::
Filter

We employ an ensemble Kalman smoother based on a transformation of an ensemble from the model phase space to the

ensemble space—the ensemble transform Kalman smoother Bishop et al. (2001).

Assume we have an ensemble of M initial model parameters {ub
m}Mm=1, where b refers to a background (prior) ensemble,

which are sampled from a chosen prior probability density function, then the ensemble Kalman estimate (or analysis) {ua
m}Mm=110

is given by:

ua
m =

M∑
l=1

diag
(
slm + ql−

1

M

)
ub
l , m= 1, . . . ,M,

where diag is a diagonal matrix, slm is the (l,m) entry of a matrix S

S =

[
I +

1

M − 1
(Ab)T R−1Ab

]−1/2
, (1)

and ql is the l-th entry of a column q15

q =
1

M − 1
1M −S2(Ab)T R−1(ȳb−yobs).

Here I is an identity matrix of size M×M , 1M is a vector of size M with all ones, ȳb is the mean of the predicted data defined

by

ȳb =
1

M

M∑
m=1

yb
m,

Ab is the background ensemble anomalies of the predicted data defined as20

Ab =
[
(yb

1− ȳb) (yb
2− ȳb) . . . (yb

M − ȳb)
]
,

and R is the measurement error covariance. To ensure that the anomalies of analysis remain zero centered we check whether

Aa1 = AbS1 = 0, given S1 = 1
::::::::::::::::::
Aa1M = AbS1M = 0,

:::::
given

::::::::::
S1M = 1M and Ab1M = 0. The model parameters ub

m and the

predicted data yb
m are related by yb

m = h(ub
m), where h is a nonlinear function and here we assume that the function h is

known.25
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2.2 Ensemble Transform Particle Smoother
:::::
Filter

In particle filtering we represent the probability distribution function using ensemble members (also called particles) as in

ensemble Kalman filter. We start by assigning prior (background) weights {wb
m}Mm=1 to M particles and then compute new

(analysis) weights {wa
m}Mm=1 using the Bayes’ formula and observations yobs

wa
m =

π(yobs|ub
m)wb

m

π(yobs)
. (2)5

It is important to note that particle filters do not change the parameters u, they only modify the weight of the particles.

Therefore a sophisticated perturbation needs to be implemented for parameter estimation. Instead particle filtering has been

modified using a coupling methodology which resulted in an ensemble transform particle filter Reich and Cotter (2015). Since

at the data assimilation step we update only the parameters and not the states, with analogy to ensemble smoothers we will call

this method ensemble transform particle smoother (ETPS).10

We assume that initially all particles have equal weight, thus wb
m = 1/M for m= 1, . . . ,M , and that the likelihood is Gaus-

sian with error covariance matrix R, then from Eq. (2) wa
m is given by

wa
m =

exp
[
− 1

2 (yb
m−yobs)

T R−1(yb
m−yobs)

]∑M
j=1 exp

[
− 1

2 (yb
j −yobs)T R−1(yb

j −yobs)
] , m= 1, . . . ,M. (3)

In a well-known Importance Sampling (IS)data assimilation method, which will be used in this paper as a "ground" truth, these

weights define the posterior pdf. The mean parameter for IS is then15

ūa =

M∑
m=1

ub
mw

a
m.

ETPS
:
It
::
is
::::::::
important

::
to
::::
note

::::
that

::
IS

::::
does

:::
not

:::::
change

:::
the

::::::::::
parameters

::
u,

:
it
::::
only

::::::::
modifies

:::
the

::::::
weight

::
of

:::
the

:::::::
particles

:::::::::
(samples).

::::::::
Therefore

:
a
::::::::::
resampling

:::::
needs

::
to

::
be

:::::::::::
implemented

::
for

:::::::::
parameter

:::::::::
estimation,

::::::
which

:
is
::::::
usually

:::::::::
stochastic.

:::::::
Instead

::::::
particle

:::::::
filtering

:::
has

::::
been

:::::::
modified

:::::
using

:
a
:::::::::::
deterministic

:::::::
coupling

:::::::::::
methodology

::::::
which

::::::
resulted

::
in

:::
an

::::::::
ensemble

::::::::
transform

::::::
particle

::::
filter

::
of

:::::::::::::::::::::
Reich and Cotter (2015).

:::::
ETPF looks for a coupling between two discrete random variablesB1 andB2 so as to convert the ensemble members belonging20

to the random variable B2 with probability distribution π(B2 = ub
m) = wa

m to the random variable B1 with uniform probabil-

ity distribution π(B1 = ub
m) = 1/M . The coupling between these two random variables is an M ×M matrix T whose entries

should satisfy

tmj ≥ 0, m,j = 1, . . . ,M, (4)
M∑

m=1

tmj =
1

M
, j = 1, . . . ,M, (5)25

M∑
j=1

tmj = wa
m, m= 1, . . . ,M. (6)

An optimal coupling matrix T∗ with elements t∗mj minimizes the squared Euclidean distance

J(tmj) =

M∑
m,j=1

tmj ||ub
m−ub

j ||2 (7)
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and the analysis model parameters are obtained by the linear transformation

ua
j =M

M∑
m=1

t∗mju
b
m, j = 1, . . . ,M. (8)

Then the mean parameter for ETPS
:::::
ETPF is

ūa =

M∑
m=1

ua
m

1

M
.

We use FastEMD algorithm of Pele and Werman (2009) to solve the linear transport problem and get the optimal transport5

matrix.

Remark: An important property of ETPS is to retain the
:::::
ETPF

::
is

::::::::::
preservation

:::
of imposed interval bounds of

::
on ensemble

members. Consider an ensemble of parameters {ub
m}Mm=1 given by

ub
m = (abm bbm cbm)T , m= 1, . . . ,M,

where we assume all the parameters {abm}Mm=1, {bbm}Mm=1 and {cbm}Mm=1 are bounded between 0 and 1. Therefore, the following10

inequalities hold:

0< amin ≤ abm ≤ amax < 1, m= 1, . . . ,M,

0< bmin ≤ bbm ≤ bmax < 1, m= 1, . . . ,M,

0< cmin ≤ cbm ≤ cmax < 1, m= 1, . . . ,M.

Now we assume two discrete random variables B1 and B2 have probability distributions given by15

π(B1 = ub
m) = 1/M, π(B2 = ub

m) = wa
m,

with wa
m ≥ 0, m= 1, . . . ,M and

∑M
m=1w

a
m = 1. As ETPS

::::
ETPF

:
looks for a matrix T∗ which defines coupling between these

two probability distributions, each entry of this coupling matrix satisfies the conditions given by Eq. (4)–(6). These conditions

assure that each entry of the coupling matrix will be non-negative and less than 1. Since the analysis given by Eq. (8) is

ua
m =


ab1(Mt∗1m) + ab2(Mt∗2m) + · · ·+ abM (Mt∗Mm)

bb1(Mt∗1m) + bb2(Mt∗2m) + · · ·+ bbM (Mt∗Mm)

cb1(Mt∗1m) + cb2(Mt∗2m) + · · ·+ cbM (Mt∗Mm)

 , m= 1, . . . ,M,20

these conditions lead to

0< amin ≤ aam ≤ amax < 1, m= 1, . . . ,M,

0< bmin ≤ bam ≤ bmax < 1, m= 1, . . . ,M,

0< cmin ≤ cam ≤ cmax < 1, m= 1, . . . ,M.

Thus the coupling matrix bounds the analysis ensemble members to be in the desired range. This is not observed in ETKS25

:::::
ETKF

:
as the matrix S given by Eq. (1) does not impose any of the non-equality and equality constraints, so it results in values

outside the bound.
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2.3 Localization

All variations of ensemble Kalman filter and particle filter are limited by the ensemble size. Since, even if the dimension of the

problem is just up to a few thousands, a large ensemble size will make each run of the model computationally very expensive.

This limit of a small ensemble size introduces a sampling error. To deal with this issue localization for ETKS
:::::
ETKF

:
was

introduced by Hunt et al. (2007) . We use a distance based localization method. More advanced methods such as wavelet-based5

approaches of Chen and Oliver (2012b) are outside the scope of this paper.
:::
and

:::
for

::::::
ETPF

::
by

:::::::::::::::::::::
Reich and Cotter (2015).

:::::
More

:::::
recent

:::::::::
approaches

::
to
:::::::
particle

::::
filter

::::::::::
localization

::::::
include

::::::::::::::::::::::::::
Penny and Miyoshi (2016) and

:::::::::::::
Poterjoy (2016)

For the local update of a model parameter um(Xi) at a grid point Xi, we introduce a diagonal matrix Ĉi ∈RNy×Ny in the

observation space with an element

(Ĉi)ll = ρ

(
||Xi− rl||

rloc

)
, (9)10

where i= 1, . . . ,n2, l = 1, . . . ,Ny , n2 is the number of model parameters, Ny is the dimension of the observation space, rl

denotes the location of the observation, rloc is a localisation radius and ρ(·) is a taper function, such as Gaspari-Cohn function

Gaspari and Cohn (1999)

ρ(r) =


1− 5

3r
2 + 5

8r
3 + 1

2r
4− 1

4r
5, 0≤ r ≤ 1,

− 2
3r
−1 + 4− 5r+ 5

3r
2 + 5

8r
3− 1

2r
4 + 1

12r
5, 1≤ r ≤ 2,

0, 2≤ r.

Then the estimated model parameter at the location Xi is15

ua
m(Xi) =

M∑
l=1

diag
(
slm(Xi) + ql(Xi)−

1

M

)
ub
l (Xi), m= 1, . . . ,M, (10)

where diag is a diagonal matrix, slm(Xi) is the (l,m) entry of the localized transformation matrix S(Xi)

S(Xi) =

[
I +

1

M − 1
(Ab)T (ĈiR−1)Ab

]−1/2
and ql(Xi) is the l-th entry of the localized column q(Xi)

q(Xi) =
1

M − 1
1M −S(Xi)

2(Ab)T R−1(ȳb−yobs).20

Localization at ETPS introduced by Reich and Cotter (2015)
::
of

:::::
ETPF modifies the likelihood and thus the weights given by

Eq. (3) are computed locally at each grid Xi

wa
m(Xi) =

exp
[
− 1

2 (yb
m−yobs)

T (ĈiR−1)(yb
m−yobs)

]
∑M

j=1 exp
[
− 1

2 (yb
j −yobs)T (ĈiR−1)(yb

j −yobs)
] , m= 1, . . . ,M, (11)
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where Ĉi is the diagonal matrix given by Eq. (9). Then the estimated model parameter ua
j (Xi) at the grid Xi is given by

ua
j (Xi) =M

M∑
m=1

t∗mju(Xi)
b
m, j = 1, . . . ,M,

where t∗mj is an element of an optimal coupling matrix T∗ which minimizes the squared Euclidean distance at the grid point

Xi

J(tmj) =

M∑
m,j=1

tmj [u
b
m(Xi)−ubj(Xi)]

2, (12)5

which reduces the localized ETPS
:::::
ETPF to a univariate transport problem. It should be noted that localization can be applied

only for grid-dependent parameters.

Remark: A so-calledR0 approximation of Reich and Cotter (2015) consists of computing the weights according to Eq. instead

of Eq. but solving the optimization problem for each grid (or each parameter) defined by Eq. separately. TheR0 approximation

has an advantage of being a solution of a parallel and computationaly less expensive univariate transport problem. For parameter10

estimation of independent parameters as the ensemble size increases theR0 approximation defined by Eq. converges to the full

approximation defined by Eq. since the sampling noise reduces (not shown). Therefore for computing the posterior distributions

with large ensembles we use the R0 approximation.

3 One parameter nonlinear problem

First we consider a one parameter nonlinear problem from Chen and Oliver (2013). The prior distribution is Gaussian distribu-15

tion with mean 4 and variance 1. An observation of a function

h(u) =
7

12
u3− 7

2
u2 + 8u

is made such that yobs = 48. Observation
:::
The

::::::::
nonlinear

:::::::
forward

:::::
model

::
is

:

h(u) =
7

12
u3− 7

2
u2 + 8u.

:::::::::::::::::::::

:::
The

::::
true

:::::::::
parameter

:::::
utrue

:::::
gives

::::::::::::
h(utrue) = 48

:::
and

::::
the

::::::::::
observation

:
error is drawn from a Gaussian distribution with zero20

mean and variance 16. In Fig. 1 we plot the posterior probability density functions estimated by ETPS
:::::
ETPF

:
(top), ETKS

(middle
:::::
ETKF

:::::::
(bottom) with ensemble sizes 102 (left), 103 (center), and 104 (right). The prior distribution is shown in red and

the posterior estimated by IS with ensemble size 105 is shown in black. We can see that ETPS provides with
::::
ETPF

::::::::
provides

better approximation of the true probability density function. We have also implemented ensemble Kalman Smoother with

perturbed observations (SEnKS) developed by Burgers et al. (1998), that is used in an iterative ensemble Kalman smoother25

called multiple data assimilation of Emerick and Reynolds (2013). The posterior probability density function obtained by

SEnKS is shown at the bottom of Fig. 1. The posterior is less skewed than the one provided by ETKS but otherwise is still

8
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Figure 1. Probability density functions for the one parameter nonlinear problem. Top: ETPS
::::
ETPF, middle: ETKS, bottom: SEnKS

::::
ETKF.

Left: ensemble size 102, center: ensemble size 103, right: ensemble size 104. Prior is in red. True pdf obtained by IS with ensemble size 105

is in black.

not a good approximation of the true pdf. We will not use SEnKS for parameter estimation as it does not provide substantially

different results than ETKS and both ETKS and ETPS are based on a transformation, while SEnKS is not,
:::::
while

::::::
ETKF

::::
gives

::
a

::::::
skewed

::::::::
posterior.

::
It

:::::
should

:::
be

:::::
noted

:::
that

::::::
ETKF

:
is
::::
able

::
to

::::
give

:
a
::::::::::::
non-Gaussian

:::::::
(though

::::::
wrong)

:::::::
posterior

::::
due

::
to

:::
the

::::::::::
nonlinearity

::
of

:::
the

::::
map

:::::::
between

:::
the

::::::::
uncertain

:::::::::
parameters

:::
and

:::::::::::
observations.

4 Single-phase Darcy flow5

We consider a steady-state single-phase Darcy flow model defined over an aquifer of two-dimensional physical domain D =

[0,1]× [0,1], which is given by,

−∇ · (k(x,y)∇P (x,y)) = f(x,y), (x,y) ∈D

P (x,y) = 0, (x,y) ∈ ∂D

where ∇= (∂/∂x ∂/∂y)T , · denotes the dot product, P (x,y) the pressure, k(x,y) the permeability, f(x,y) the source term,10

which we assume to be 2π2cos(πx)cos(πy), and ∂D the boundary of domain D. The forward problem of this second order

elliptical equation is to find the solution of pressure P (x,y) for given f(x,y) and k(x,y). We, however, are interested in finding

permeability given noisy observations of pressure at a few locations.
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We perform numerical experiments with synthetic observations, where instead of a measuring device a model is used to

obtain observations. We implement a cell-centered finite difference method to discretize the domain D into n×n grid cells Xi

of size ∆x2 and solve the forward model with the true parameters. Then the synthetic observations are obtained by

yobs = L(P) + η,

where
::::
with an element of L(P) is

:::::
being a linear functional of pressure, namely5

Ll(P) =
1

2πσ2

n2∑
i=1

exp
(
−||Xi− rl||2

2σ2

)
Pi∆x

2, l ∈ 1, . . . ,Ny

where n= 50, σ = 0.01,
::
rl:::::::

denotes
:::
the

:::::::
location

::
of

::::
the

:::::::::
observation

:
and Ny = 16, which is the number of observations. The

observation locations are spread uniformly across the domain D and η denotes the observation noise drawn from a normal

distribution with zero mean and standard deviation of 0.09.
::::
This

::::
form

::
of

:::
the

::::::::::
observation

::::::::
functional

::::
and

::::::::::::::
parameterization

::
of

:::
the

:::::::
uncertain

::::::::::
parameters

::::
given

::::::
below

:::::::
guaranty

:::
the

:::::::::
continuity

::
of

:::
the

::::::
forward

::::
map

::::
from

:::
the

::::::::
uncertain

:::::::::
parameters

::
to
:::
the

:::::::::::
observations10

:::
and

::::
thus

:::
the

::::::::
existence

::
of

:::
the

:::::::
posterior

::::::::::
distribution

::
as

::::::
shown

::
by

::::::::::::::::::
Iglesias et al. (2014).

4.1 Five parameter nonlinear problem

For our first numerical experiment with Darcy flow, we consider a low-dimensional problem where the permeability field is

defined by mere 5 parameters similarly to Iglesias et al. (2014). We assume that the entire domain D = [0,1]× [0,1] is divided

into two subdomains D1 and D2 as shown in Fig. 2. Each subdomain of D represents a layer and is assumed to have a15

permeability function k(X), where an element of X is defined by Xi for i= 1, . . . ,n2. The thickness of a layer on both sides a

and b, correspondingly, defines the slope of the interface and a parameter c defines a vertical fault. The layer moves up or down

depending on c < 0 or c > 0, respectively, and its location is assumed to be fixed at x= 0.5.

Further, for this test case we assume piecewise constant permeability within each of the subdomains, hence k(X) is given by

k(X) = k1δD1
(X) + k2δD2

(X),20

where k1 and k2 represent permeability of the subdomainD1 andD2, respectively, and δ is Dirac function. Then the parameters

defining the permeability field for this configuration are

u = (a b c log(k1) log(k2))T .

We assume that the true parameters are atrue = 0.6, btrue = 0.3, ctrue =−0.15, ktrue
1 = 12 and ktrue

2 = 5. These parameters are

used to create synthetic observations. Figure 2 shows the true permeability with dots representing the observation locations.25

Next, we assume that the five uncertain parameters are drawn from a uniform distribution over a specified interval, namely

a,b∼ U [0,1], c∼ U [−0.5,0.5], k1 ∼ U [10,15] and k2 ∼ U [4,7].

As it was pointed out in Sect. 2.2, ETPS
:::::
ETPF updates the parameters within the original range of an initial ensemble, while

ETKS
:::::
ETKF does not. Therefore a change of variables has to be performed for ETKS

:::::
ETKF

:
so that the updated parameters

10
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Figure 2. True permeability of the 5 parameter nonlinear problem with dots representing the observation locations.

are physically viable. In order to be consistent we perform the change of variables for ETPS
:::::
ETPF

:
as well. As the domain D is

[0,1]× [0,1], the parameters a and b should lie within the interval [0,1]. To enforce this constraint we substitute a according to

a′ = log
(

a

1− a

)
, a′ ∈R

and similarly b is substituted by b′. Thus the uncertain parameters are now u′ = (a′ b′ c log(k1) log(k2))T .

In Fig. 3 we plot probability density functions for parameters a (a)–(d), c (e)–(h) and log(k2) (i)–(l), as the parameters b and5

log(k1) show similar results. The posterior obtained by IS with ensemble size 106 is plotted as a black line and the true value of

parameters is plotted as a black line with crosses. The posterior of ETPS
::::
ETPF

:
is shown at the top and the posterior of ETKS

:::::
ETKF at the bottom. ETPS and ETKS

::::
ETPF

::::
and

:::::
ETKF

:
used 103 (odd columns) and 104 (even columns) ensemble members. It

is interesting to note that ETKS
:::::
ETKF

:
overestimates the tails of the pdfs while ETPS underestimates them

::::
ETPF

:::::::::::::
underestimates

:::::
them,

::::::
which

::::::::
indicates

:::
that

:::::
there

:
is
:::
not

:::::::
enough

::::::
spread

::
in

:::
the

::::::::
ensemble. While for the parameter c pdf shown in Fig. 3(h) this is10

an advantage of ETKS
:::::
ETKF, for the parameter log(k2) pdf shown in Fig. 3(l) it is most certainly a disadvantage. ETKS

:::::
ETKF

optimises for the mean (and variance), which is better approximated by ETKS than by ETPS
:::::
ETKF

::::
than

:::
by

:::::
ETPF, as seen in

Fig. 4(e). However this comes at a price of incorrect posterior shown in Fig. 3(k–l).

In order to avoid any bias due to an initial ensemble we perform 10 simulations based on a random draw of an initial

ensemble from the same prior distributions. We conduct the numerical experiments for ensemble sizes varying from 10 to 10315

with an increment of 50. In figure
:::
Fig. 4 we plot the true parameters utrue, the mean ¯̄ua and the spread ¯̄ua± ūa

std of estimated

parameters averaged over 10 simulations

¯̄uai =
1

10

10∑
r=1

ūa,ri , ūastd =
1

10

10∑
r=1

√√√√ 1

M − 1

M∑
m=1

(ua,ri,m− ū
a,r
i )2, where ūa,ri =

1

M

M∑
m=1

ua,ri,m, r = 1, . . . ,10,

M is ensemble size, i= 1, . . . ,5 is parameter index, and the superscript a is for the analysis. We observe that both data

assimilation methods perform comparably in terms of mean estimation. The spread from ETPS ishowever
:::::
ETPF

::
is,

::::::::
however,20

smaller than from ETKS
:::::
ETKF for each parameter.

::::
ETPF

::::::::
provides

::::::::
ensemble

::::::::
members

:::
that

::::
stay

::::::
within

:::
the

:::::::
original

:::::::
bounds,

::::
while

::::::::::::::
ETKF—outside

:::
the

::::::
bounds.

:

11
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Figure 3. Probability density functions for the parameters a (a)–(d), c (e)–(h), and log(k2) (i)–(l). The posterior obtained by IS with ensemble

size 106 is plotted as a black line and the true values of parameters are plotted as black crosses. The posterior of ETPS
::::
ETPF is shown at

the top and the posterior of ETKS
::::
ETKF

:
at the bottom. ETPS

::::
ETPF and ETKS

::::
ETKF

:
used 103 (odd columns) and 104 (even columns)

ensemble members.

We compute an average of the relative error over all parameters

REa,r =
1

5

5∑
i=1

|ūa,ri −utruei |
|utruei |

, r = 1, . . . ,10,

and the data misfit

misfita,r = (ȳa,r −yobs)
TR−1(ȳa,r −yobs), r = 1, . . . ,10 (13)

after data assimilation. The same metrics are computed before data assimilation and denoted by a superscript b. In Fig. 5(a)–(b)5

we plot (misfita,r −misfitb,r) and (REa,r −REb,r), respectively, for each simulation r as a function of ensemble size. ETPS

:::::
ETPF is shown in blue and ETKS

:::::
ETKF in red. Black line is at zero level. Positive values of the differences mean an increase

of either data mismatch or relative error after data assimilation. We observe a data misfit decrease for both ETPS and ETKS

:::::
ETPF

:::
and

::::::
ETKF

:
except at an ensemble size 10. RE does not always decrease for ETPS

:::::
ETPF: for some simulations ETPS

:::::
ETPF is at zero level or slightly above it, while for ETKS

:::::
ETKF

:
the sole exception is at an ensemble size 10.10

4.2 High-dimensional nonlinear problem

Next, we consider a high-dimensional problem where the dimension of the uncertain parameter is n2 = 2500. The domainD is

now not divided into subdomains. However, unlike in the previous test case here we implement a spatially varying permeability

field. We assume the log permeability is generated by a random draw from a Gaussian distribution N (log(5),C). Here 5 is an

n2 vector with all 5. C is assumed to be an exponential correlation with maximum correlation along 3π/4, an element of C is15

::::
being

:

Ci,j = exp(−3(|hi,j |/v)), i, j = 1, . . . ,n2.

12
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Figure 4. ¯̄ua and ¯̄ua± ūa
std w.r.t ensemble size: (a) for the parameter a, (b) for b, (c) for c, (d) for log(k1), (e) for log(k2). ETPS

::::
ETPF

:
is

shown in blue, ETKS
::::
ETKF

:
in red and the true parameters are in black.

Here hi,j is the distance between two spatial locations and v is the correlation range which is taken to be 0.5. As the covariance

matrix is symmetric, we factorize it in upper and lower triangular matrices using Cholesky decomposition and denote the upper

triangular matrix by G. Next, we generate a
:::
For

:::
the

:::
log

:::::::::::
permeability

:::
we

:::
use

::::::::::::::
Karhunen-Loeve

:::::::::
expansions

::
of

:::
the

:::::
form

log(kj) = log(5) +

n2∑
i=1

√
λiνi,jZi, for j = 1, . . . ,n2

:::::::::::::::::::::::::::::::::::::::::::::

(14)

:::::
where

::
λ

:::
and

::
ν
:::
are

::::::::::
eigenvalues

:::
and

:::::::::::::
eigenfunctions

::
of

:::
C,

::::::::::
respectively,

::::
and

:::
the vector Z

::
is of dimension n2

::
iid

:
from a Gaus-5

sian distribution with zero mean and variance one, and create a permeability field log(k(X)) across the domain D according

to Oliver et al. (2008):

log(k) = log(5)+GTZ,

:
.
::::::
Making

::::
sure

:::
that

:::
the

::::::::::
eigenvalues

:::
are

:::::
sorted

::
in

:::::::::
descending

:::::
order

:::::::::::
Zi ∼N (0,1)

::::::::
produces

:::::::::::::::::::
log(k)∼N (log(5),C).

:
The uncertain

parameter is u = ZT . Thus the dimension of the uncertain parameter is
:::
thus

::::::
u = Z

::::
with

:::
the

:::::::::
dimension n2 = 2500.10
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Figure 5. misfita,r−misfitb,r (a) and REa,r−REb,r (b) w.r.t ensemble size. ETPS
::::
ETPF

:
is shown in blue, ETKS

:::::
ETKF in red and the zero

level in black. A circle is for one simulation.

In Fig. 11 we plot the posterior pdf of first three modes Z1 (left), Z2 (center), and Z3 (right) obtained by IS with ensemble

size 106 and by ETPS (top) and ETKS (bottom) with ensemble size 104. The posterior of these modes is roughly approximated

by ETPS as shown in Fig. 11(a)–(c). This means that an ensemble size 104 is not sufficient for ETPS to correctly estimate

the posterior, when the total number of modes is large (2500). ETKS provides a skewed posterior of the modes shown in

Fig. 11(d)–(f), which was also observed in the one parameter nonlinear problem, see Fig. 1(f). tThe posterior probability5

density function of parameters Z1 (left), Z2 (center), and Z3 (right). The posterior obtained by IS with ensemble size 106 is

plotted as a black line and the true parameter as a black cross. The posterior of ETPS is shown at the top and the posterior of

ETKS at the bottom. Both ETPS and ETKS used 104 ensemble members.

We perform 10 different simulations based on a random draw of an initial ensemble from the prior distribution. We conduct

the numerical experiments for ensemble sizes varying from 10 to 103 with an increment of 50. In Fig. 4 we plot mean and10

spread for Z1 (a), Z2 (b), and Z3 (c) averaged over 10 simulations in blue for ETPS and in red for ETKS. The true variables
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Figure 6. Mean, minimum and maximum over 10 simulations after data assimilation for the data misfit (a), RMSE (b), and variance (c).

ETPS
::::
ETPF is shown in blue and ETKS

:::::
ETKF in red.

are shown in black. We observe that in terms of the mean estimation of the first three modes ETPS outperforms ETKS. The

spread provided by ETPS is smaller than the one provided by ETKS, as in the previous test cases. tMean and spread for Z1 (a),

Z2 (b), and Z3 (c) w.r.t ensemble size. ETPS is shown in blue, ETKS in red and the true parameters are in black.

We compute the root mean square error (RMSE) of the log permeability field

RMSEr,a =

√
1

n2
(Za,r −Z true)T C(Za,r −Z true)

√(
log(ka,r

)− log(ktrue)
)T (

log(ka,r
)− log(ktrue)

)
::::::::::::::::::::::::::::::::::::::::::

, r = 1, . . . ,10,5

and variance

variancer,a =
1

M − 1

M∑
m=1

(
(Zlog(

::::
ka,r
m

)− log(
:::

ka,r
)

)T

C
(

log
::

(Z
:
ka,r
m

)− log(
:::

ka,r
)

)
, r = 1, . . . ,10.

We also compute the data misfit for each simulation after data assimilation by Eq. (13). In Fig. 6 we plot mean, minimum

and maximum over 10 simulations after data assimilation for the data misfit (left), RMSE (center), and variance (right). ETPS

:::::
ETPF is shown in blue and ETKS

:::::
ETKF

:
in red. We observe that ETPS in

:::::
ETPF

::
is underdispersive compared to ETKS. This10

is due to the linear transformation, as it results in some ensemble members being nearly identical. Therefore a perturbation

of ensemble members is needed, which could be performed based on random walk. This is, however, out of the scope of this

paper.
:::::
ETKF

::
as

:::::::
particle

:::::
filters

:::
are

:::::
highly

:::::::::::
degenerative

::::::::
compared

::
to
:::::::
Kalman

::::::
filters. Misfit given by ETPS

:::::
ETPF is smaller than

the one given by ETKS
:::::
ETKF

:
for almost all simulations at ensemble sizes greater than 150. The RMSE on the contrary is

larger. In Fig. 7(a)–(b) we plot (misfita,r −misfitb,r) and (REa,r −REb,r)
:::::::::::::::::::
(RMSEa,r −RMSEb,r), respectively, as a function15

of ensemble size for a simulation r = 1, . . . ,10. The superscript b is for the metrics before data assimilation and the superscript

a is for the metrics after data assimilation. ETKS
:::::
ETKF

:
always provides a decrease in both the data misfit and RMSE except

at ensemble size 10. ETPS
:::::
ETPF gives a decrease in the data misfit though an increase in RMSE

:
,
:::::
which

::::::::
indicates

:::
that

::::::
ETPF

:::::::
overfittes

:::
the

::::
data. However, as the ensemble size increases this happens less often as can be seen in Fig. 7(c), where we plot

15
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Figure 7. misfita,r −misfitb,r (a) and REa,r −REb,r
:::::::::::::::

RMSEa,r −RMSEb,r
:

(b) w.r.t ensemble size. ETPS
:::::
ETPF is shown in blue, ETKS

:::::
ETKF

:
in red and zero level in black. One circle is for one simulation. For ETPS

::::
ETPF % of simulations that result in (RMSEa−RMSEb) > 0

and a linear fit as a function of ensemble size are shown in (c).

for ETPS
:::::
ETPF a percentage of simulations that result in (RMSEa−RMSEb)> 0 and a linear fit as a function of ensemble

size.

In Fig. 8 we plot log permeability fields. In Fig. 8(a) the true permeability is shown with dots representing the observation

locations, and in Fig. 8(d) the mean permeability field obtained by IS with ensemble size 105. The RMSE provided by IS

is 32.62. In Fig. 8(b–e) and Fig. 8(c–f) we display mean permeability fields obtained with ensemble size 103 by ETPS and5

ETKS
:::::
ETPF

:::
and

::::::
ETKF, respectively. In Fig. 8(b–c) we plot the mean log permeabilities for the smallest RMSE over simula-

tions, which is 30.51 for ETPS
::::
ETPF

:
and 32.48 for ETKS

:::::
ETKF. In Fig. 8(d–e) we plot the mean log permeabilities for the

largest RMSE over simulations, which is 39.2 for ETPS and 33.9 for ETKS
:::::
ETPF

:::
and

:::::
33.87

:::
for

:::::
ETKF. We observe that ETKS

:::::
ETKF

:
as well as IS provide smooth mean permeability fields that have smaller absolute values than the true permeability.

ETPS
:::::
ETPF gives higher variations of the mean permeability field and

:
is
:
in an excellent agreement with the true permeability10

for a good initial ensemble shown in Fig. 8(b). However, it remains unclear how to choose a good initial ensemble
:::
This

::::::
means

:::
that

:::::
ETPF

::
is

:::::::
sensitive

::
to
:::
the

::::::
initial

::::::
sample

:
is
::::
due

::
to

:::
the

::::::::
sampling

::::
error

:::
and

::::
that

:::
the

::::::
spatial

::::::::
variability

::
of

::::::
ETPF

:
is
::
a
:::::
result

::
of

:::
the

:::::::
sampling

:::::
error. It should be noted that IS with ensemble size 103 and this good initial ensemble gives the RMSE 30.51 and the

same mean log permeability field as ETPS
:::::
ETPF shown in Fig. 8(b). However, IS does not change the parameters, only their

weights, while ETPS does change the parameters. Therefore ETPS has an advantage of IS representing the correct posterior15

but does not have its disadvantage of resampling lacking.

In Fig. 9 we plot variance of the permeability fields obtained with ensemble size 105 by IS (d), with ensemble size 103 by

ETPS
:::::
ETPF (b–e) and ETKS

:::::
ETKF (c–f) . ETPS (b) and ETKS

::::
Fig.

:::::
9(b–c)

::
is

:::
for

:::
the

:::::::
smallest

::::::
RMSE

:::
and

::::
Fig.

:::::
9(e–f)

::
is

:::
for

:::
the

:::::
largest

:::::::
RMSE.

:::::
ETKF

:::::
again

:::::::
provides

::::::::
smoother

::::::::
variance

::::
than

:::::
ETPF.

:

16



0 1
0

1
Truth

(a)

0 1
0

1
ETPF (30.51)

(b)

0 1
0

1
ETKF (32.48)

(c)

0 1
0

1
IS (32.62)

(d)

0 1
0

1
ETPF (39.2)

(e)

0 1
0

1
ETKF (33.87)

(f)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 8.
:::
Log

::::::::::
permeability

::::
field:

::::
truth

:::
with

::::
dots

:::::::::
representing

:::
the

::::::::
observation

:::::::
locations

:::
(a),

:::::
mean

::::::
obtained

::::
with

:::::::
ensemble

:::
size

:::
105

:::
by

::
IS

:::
(d),

::::
mean

:::::::
obtained

:::
with

:::::::
ensemble

::::
size

:::
103

::
by

:::::
ETPF

::::
(b–e)

:::
and

::
by

:::::
ETKF

:::::
(c–f).

::::
Mean

::
at

:::
the

::::::
smallest

:::::
RMSE

:::::
(b–c)

:::
and

::
at

::
the

:::::
largest

::::::
RMSE

::::
(e–f)

:::
over

:::::::::
simulations.

::::
The

::::::::::
corresponding

::::::
RMSE

:
is
:::::
given

::
in

::::::
brackets.

::
In

:::
Fig.

:::
10

::
we

:::::
show

:::::::
squared

::::
error

:::::::::::
(Za−Z true)2

::
in

::::
blue

:::
for

:::::
ETPF

:::
and

::
in

:::
red

:::
for

:::::
ETKF

:::
for

::::
three

::::
first

::::::
modes

::
Z1:::

(a),
:::
Z2:::

(b),
::::
and

::
Z3:

(c)are for the smallest RMSE,
:
,
:::::
where

::::
solid

::::
line

::
is

:::
for

::::::
median

:::
and

::::::
shaded

::::
area

::
is

:::
for

::
25

:
and ETPS (e)

::
75

::::::::
percentile

::::
over

:::
10

::::::::::
simulations.

:::
We

::::::
observe

::::
that

::
in

:::::
terms

::
of

:::
the

:::::::::
estimation

::
of

:::
the

:::
first

:::::
three

:::::
modes

:::::
ETPF

:::::::::::
outperforms

:::::
ETKF.

::
In

::::
Fig.

::
11

:::
we

::::
plot

:::
the

:::::::
posterior

::
of

:::
Z1:::::

(left),
:::
Z2 :::::::

(center),
:::
and

:::
Z3::::::

(right)
:::::::
obtained

::
by

::
IS

::::
with

::::::::
ensemble

::::
size

:::
106

::::
and

::
by

:::::
ETPF

:::::
(top)

:::
and

:::::
ETKF

::::::::
(bottom)

::::
with

::::::::
ensemble

:::
size

::::
104.

::::
The

::::::::
posterior

::
of

:::::
these

::::::
modes

::
is

::::::
roughly

::::::::::::
approximated

:::
by

:::::
ETPF

::
as

::::::
shown

::
in

::::
Fig.

:::
11

::::::
(a)–(c).

::::::
ETKF5

:::::::
provides

:
a
:::::::
skewed

::::::::
posterior

::
of

:::
the

::::::
modes

::::::
shown

::
in

:::
Fig.

:::
11

::::::
(d)–(f),

::::::
which

::::
was

:::
also

::::::::
observed

::
in
:::

the
::::

one
:::::::::
parameter

::::::::
nonlinear

:::::::
problem,

:::
see

::::
Fig.

::::
1(f).

::
In

::::
order

::
to
:::::::
perform

:::
an

:::::::
objective

::::::::::
comparison

:::::::
between

:::
the

:::::::::::
probabilities

::
we

::::::::
compute

:::
the

::::::::::::::
Kullback-Leibler
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::::::::::
permeability

:::::
fields:

::::::
obtained

::::
with

:::::::
ensemble

:::
size

::::
105

::
by

::
IS

:::
(d),

::::
with

:::::::
ensemble

:::
size

:::
103

::
by

:::::
ETPF

:::::
(b–e),

:::
and

:::::
ETKF

::::
(c–f).

:::::::
Variance

:
at
:::
the

::::::
smallest

::::::
RMSE

::::
(b–c)

:::
and

::
at

::
the

::::::
largest

:::::
RMSE

::::
(e–f)

::::
over

:::::::::
simulations.

:::::::::
divergence

::
of

:
a
::::::::
posterior

::
π

:::::::
obtained

::
by

:::::
either

::::::
ETPF

::
or

:::::
ETKF

::::
and

:::
the

:::::::
posterior

:::
πIS

::::::::
obtained

::
by

::
IS

:

DKL(πIS ‖ π) =

Nb∑
i=1

πIS(ui) log
πIS(ui)

π(ui)
,

::::::::::::::::::::::::::::::::

:::::
where

::::::::
Nb = 100

::
is
:::

the
:::::::

number
:::
of

::::
bins.

:::::
ETPF

:::::
gives

:::
the

:::::::::::::::
Kullback-Leibler

:::::::::
divergence

:::::
0.21,

::::
0.42,

::::
and

:::
0.6,

:::::
while

::::::
ETKF

:::::
0.16,

::::
0.07,

:::
and

::::
0.5

:::
for

:::
the

:::::
modes

::::
Z1,

:::
Z2,

::::
and

:::
Z3,

:::::::::::
respectively.

::::
Thus

::::::
ETKF

:::::
gives

:
a
::::::
better

::::::::::::
approximation

::
of

:::
the

::::
true

::::
pdf.

::
We

::::
use

::::
only

:::
first

:::::
three

::::::
modes

::
in

:::
the

::::::::::::::
Karhunen-Loeve

:::::::::
expansion

:::::
given

:::
by

:::
Eq.

::::
(14)

:::::
when

:::::::::
computing

:::
the

:::::::::
estimated

:::
log

:::::::::::
permeability5

::::::
keeping

:::
the

:::::::
number

::
of

::::::::
uncertain

::::::::::
parameters

:::
the

:::::
same,

::::::
namely

:::::
2500.

:::
In

:::
Fig.

:::::
12(a)

:::
we

:::::::
observe

::::
that

:::::
ETPF

::::::::::
outperforms

::::::
ETKF

::
for

:::::
large

::::::::
ensemble

:::::
sizes

::::::::::
independent

::
of

:::
an

:::::
initial

:::::::
sample.

:::::::::
Moreover,

:::::
ETPF

::
is
:::
not

:::::::::
overfitting

:::
the

::::
data

::::::::
anymore

:::::
since

::::::
RMSE
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Figure 10.
::::::
Squared

::::
error

:::::::
between

::
the

:::
true

:::
and

:::
the

::::
mean

::::::::
estimated

:::::
modes

:::
for

::
Z1:::

(a),
:::
Z2 :::

(b),
:::
and

::
Z3:::

(c)
:::
w.r.t

::::::::
ensemble

:::
size.

:::::
ETPF

::
is

:::::
shown

:
in
::::
blue

:::
and

:::::
ETKF

::
in

::
red

::::
with

::::
solid

::::
lines

::
for

::::::
median

:::
and

::::::
shaded

:::
area

::
for

:::
25

:::
and

::
75

::::::::
percentile

:::
over

::
10

:::::::::
simulations.

:::
IS

:::
with

:::::::
ensemble

::::
size

:::
105

:
is
::
in

:::::
black.

Table 1. Optimal localization radius for ETPS and ETKS at different ensemble sizes M.

M 10 110 210 . . . 910

ETPS 0.2
::
0.4

:
0.6 0.8

::
0.6

:
. . . 0.8

:::
0.6

ETKS 0.2
::
0.6

:
1.2 1.2 . . . 1.2

::::::
always

::::::::
decreases

::::
after

::::
data

:::::::::::
assimilation

:::::
except

:::
at

:::::
small

::::::::
ensemble

::::
sizes

::::::
shown

::
in
::::

Fig.
::::::

12(b).
::
In

::::
Fig.

:::
13

:::
we

:::::
show

:::
the

:::::
mean

::::
fields

:::
for

:::
the

::::
best

:::
and

:::::
worst

:::::
initial

:::::::
samples

::
of

::::
104

::::
size.

:::::
ETPF

::::
gives

::::::
RMSE

::
at

:::
the

::::
best

::::::
sample

::::
31.1

:::
and

:::
the

:::::
worst

::::::
sample

::::::
32.98.

::
By

:::::::::
comparing

::
it
::
to

:::::
30.51

:
and ETKS (f) are for the largest RMSE over simulations. ETKS again provides smoother variance

than ETPS.
:::
39.2

::::::::
obtained

:::::
using

:::
the

:::
full

::::::::::::::
Karhunen-Loeve

::::::::::
expansions,

:::
we

:::::::
observe

:::
that

:::
the

:::::::::
maximum

::::::
RMSE

::::
over

::::::::::
simulations

::::::::
decreased

:::::::::::
substantially,

:::::
while

:::
the

::::::::
minimum

::::::
RMSE

:::::
only

::::::
slightly

:::::::::
increased.

:::::
ETKF

:::::
gives

::::::
RMSE

::
at

:::
the

::::
best

::::::
sample

:::::
32.27

::::
and5

::
the

:::::
worst

::::::
sample

::::::
33.23.

::::::::
(Compare

::
to

:::::
32.48

:::
and

::::
33.9

:::::
using

:::
the

:::
full

::::::::::::::
Karhunen-Loeve

::::::::::
expansions).

:::::
Thus

:::::
ETKF

:::::::
slightly

::::::::
decreases

::::
both

::::::::
maximum

::::
and

::::::::
minimum

::::::
RMSE

::::
over

::::::::::
simulations.

Next we employ localization for both ETPS and ETKS. Optimal localization radius
::::
ETPF

::::
and

:::::
ETKF.

::::
The

::::::
optimal

::::::::::
localization

:::::
radius

::::
was

:::::::
obtained

:
in terms of the smallest RMSE was obtained for one simulation (

:::
and

:
shown in Table 1) and fixed for

the remaining 9 simulations.
:
It
::::::
should

:::
be

:::::
noted

:::
that

:::::::
smaller

::::::::::
localization

:::::
radius

:::
for

::::::
ETPF

::::
than

:::
for

:::::
ETKF

::::
was

::::
also

::::::::
observed10
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Figure 11.
:::
The

:::::::
posterior

::::::::
probability

::::::
density

::::::
function

::
of

:::::::::
parameters

::
Z1:::::

(left),
::
Z2:::::::

(center),
:::
and

:::
Z3 :::::

(right).
:::
The

:::::::
posterior

:::::::
obtained

::
by

::
IS

::::
with

:::::::
ensemble

:::
size

::::
106

:
is
::::::

plotted
::
as

::
a

::::
black

:::
line

::::
and

::
the

::::
true

::::::::
parameter

::
as

:
a
:::::
black

:::::
cross.

:::
The

:::::::
posterior

::
of

:::::
ETPF

::
is

:::::
shown

::
at

:::
the

:::
top

:::
and

:::
the

::::::
posterior

::
of
:::::
ETKF

::
at

:::
the

::::::
bottom.

::::
Both

::::
ETPF

:::
and

:::::
ETKF

::::
used

:::
104

:::::::
ensemble

::::::::
members.

:::
The

:::::::::::::
Kullback-Leibler

::::::::
divergence

::
is

::
in

:::::::
brackets.

::
by

::::::::::::::::::::::
Chen and Reich (2015) for

::::::
Lorenz

:::
96

::::::
model

:::
and

::
it
::
is
::::::::

probably
::::::
related

:::
to

::::
more

:::::
noisy

:::::::::::::
approximation

::
of

:::
the

::::::::
posterior

:::
by

:::::
ETPF

::::
than

::
by

::::::
ETKF.

:
In Fig. ??(a–c) we plot change in

::
14

:::
we

:::
plot

:
misfit, RMSE and the percentage of simulations for which

RMSE of ETPS increased after data assimilation, respectively. ETKS with localization gives an equivalent performance as

without localization at
::::::::
variance.

::
At

:::::
small

::::::::
ensemble

:::::
sizes

::::
both

::::::
ETKF

:::
and

::::::
ETPF

::::
with

::::::::::
localization

::::
give

::::::
smaller

::::::
misfit

:::
and

::::::
RMSE

::::
and

:::::
larger

::::::::
variance

::::
than5

::::::
without

::::::::::
localization

:::
but

::::::
ETKF

::::
still

:::::::::::
outperforms

:::::
ETPF.

::::
For

:
large ensemble sizes , which is to be expected as the optimal

localization radius is large. For the small ensemble sizeM = 10 ETKS with localization performs worse than without localization.

This could be related to a need of more advanced losalization methods based on wavelets rather than on distance, see Chen and Oliver (2012b).

ETPS on the other hand highly improved when localization was applied: for ensemble
::::
ETPF

::::::::
performs

::::
now

::::::::::
comparably

:::
to

:::::
ETKF

:::
(by

:::::::::
increasing

:::
the

:::::::::
localization

::::::
radius

::
to

:::
1.2

::
we

:::
do

:::
not

:::
see

::
an

:::::::::::
improvement

::
in

:::::::
ETKF).

:::::::::
Moreover,

:::::::
localized

:::::
ETPF

:::::::
overfits10

::
the

::::
data

::::
less

:::::
often

::::
than

::::::::::::
non-localized:

::::
40%

::::::
agains

::::
90%

:::
for

:::::::::
ensemble

:::
size

:::
10

::::
and

:::
0%

::::::
agains

:::::::::
non-zero%

:::
for

::::::::
ensemble

:
sizes

greater than 300 all simulations result in the RMSE decrease after data assimilation. The RMSE decreased and the variance

increased for all ensemble sizes as
:::
150

::::
(not

:::::::
shown).
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Figure 12. Log permeability field: truth with dots representing
::::
Using

::::
only

::::
three

:::
first

:::::
modes

::
in

:
the observation locations

::
KL

::::::::
expansion.

:::::
Panel

(a), mean obtained with :
::::::
RMSE

:::
after

::::
data

:::::::::
assimilation

::::
w.r.t ensemble size 105 by IS (d), mean obtained with ensemble size 103 by ETPS

(b–e)
:::::
mean,

:::::::
minimum

:
and by ETKS (c–f)

:::::::
maximum

::::
over

::
10

:::::::::
simulations

:::
for

:::::
ETPF

:::::
shown

::
in

:::
blue

::::
and

:::::
ETKF

::
in

:::
red. Mean at the smallest

RMSE
::::
Panel

:
(b–c

:
b)and at the largest RMSE (e–f) over

:
:
::
%

:
of
:

simulations
::
that

:::::
result

::
in

::::::::::::::::::
(RMSEa−RMSEb) > 0

:::
for

::::
ETPF.

::
In

:::
Fig.

::::::
15–16

:::
we

::::
plot

:::::
mean

:::
and

::::::::
variance

::
of

:::
the

:::
log

:::::::::::
permeability

::::
field

::
at
:::::::::

ensemble
:::
size

::::
103

:::
for

:::::
ETPF

:::::::
(b)–(e)

:::
and

::::::
ETKF

:::::
(c)–(f)

::::
with

::::::::::
localization

::
at

:::
the

:::::::
smallest

::::::
RMSE

::::::
(b)–(c)

::::
and

::::::
largest

::::::
RMSE

:::::
(e)–(f)

::::
over

:::::::::::
simulations,

:::::
which

:::
are

:::::
32.29

::::
and

:::::
34.08

::
for

::::::
ETPF

:::
and

::::::
32.92

:::
and

:::::
34.09

::::
for

::::::
ETKF,

::::::::::
respectively.

::::
We

:::::::
observe

:::
that

::::::::::
localization

:::::::::
decreases

:::
the

::::::::
sampling

:::::
noise

::::
and

:::
the

:::::
spatial

:::::::::
variability

::
of

:::
the

:::::
mean

::::
field

::::::::
obtained

::
by

::::::
ETPF

::
at

::::::::
ensemble

:::
size

::::
103

:::::::::
resembles

::
IS

::
at

::::::::
ensemble

::::
size

::::
105.

:::
The

::::::::
variance

:::::::
obtained

::
by

:::::
ETPF

:::::
with

:::::::::
localization

:
shown in Fig. 14(b–c) compared to Fig. 6(b–c). The posterior estimations

::::::
16(b–e)

:::
has

::::
also5

::::::::
improved.

:

:::
The

::::::::
posterior

:::::::::
estimation

:::
of

:::
the

::::
first

:::::
mode

::::
Z1, however, degraded: the pdf shown in Fig. ??(a–c)with ensemble size

104 resembles the posterior obtained by ETKS shown in Fig. 11(d–e).Therefore on the one hand localization improved the

RMSE behaviour for all simulations but on the other hand it deteriorated the posterior estimation.The increase in RMSE after

data assimilation without localization could be related to a substantial adjustment of
:
,
:::::
while

::
of

:::
Z2::::

and
:::
Z3:::::::::

improved.
::::
The10

::::::::::::::
Kullback-Leibler

:::::::::
divergence

:::
for

:::
the

::::
first

:::::
mode

:
is
::::
0.73

:::::::::
(compare

::
to

::::
0.21

::::::
without

::::::::::::
localization),

:::
and

:::
for

::::::
second

:::
and

:::::
third

::
is

:::
0.2

:::
and

::::
0.18,

::::::::::::::
correspondently

::::::::
(compare

::
to

::::
0.42

:::
and

:::
0.6

:::::::
without

::::::::::
localization).

::::::::
Variance

::
of

:::
the

::::::::
posteriors

::
is

:::::
larger

:::::
when

::::::::::
localization

:
is
:::::::
applied

::
for

:::::
both

:::::
ETPF

:::
and

::::::
ETKF.

:::
The

::::::::
localized

:::::::
weights

:::::
given

::
by

:::
Eq.

:
(11)

:::
vary

::::
less

:::
than

:::
the

::::::::::::
non-localized

::::::
weights

:::::
given

:::
by

:::
Eq. (3)

:
.
::::::::
Therefore

:
the uncertain parameters. A possible solution to this problem is an iterative approach to data assimilation as it

has been done for ensemble Kalman smoothers (e.g Chen and Oliver, 2013; Emerick and Reynolds, 2013; Bocquet and Sakov, 2014) and15

will be a subject of our future study
:::::::
localized

::::
pdf

:
is
::::
less

:::::
noisy

:::
than

:::
the

::::::::::::
non-localized.

::::::::
However,

::::::::::
localization

::::::
applied

::
in
:::
the

:::::
form

::
of

:::
the

::::::::::::::
Karhunen-Loeve

::::::::
expansion

:::::
given

::
by

::::
Eq. (14)

::::
does

:::
not

:::::
retain

::
the

::::::::
imposed

::::::
bounds

::
on

:::
the

::::::
modes

::
Z

::
as

:::
we

::::
need

::
to

:::::
invert

::
a
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Figure 13. Variance of log permeability fields: obtained with ensemble size 105 by IS (d)
::::
Same

::
as
:::::

figure
::
8, with ensemble size 103 by

ETPS (b–e), and ETKS (c–f). Variance at
::
but

::::
using

::::
only

::::
three

::::
first

:::::
modes

::
in the smallest RMSE (b–c) and at the largest RMSE (e–f) over

simulations
:::
KL

:::::::
expansion.

:::::
matrix

:::::::
product

::
of

:::::::::
eigenvalue

:::
and

::::::::::
eigenvector

:::::::
matrices

::
to
::::::
obtain

:::
the

::::::
modes.

:::
By

:::::::::
increasing

:::
the

:::::::::
localization

::::::
radius

::
to

:::
1.2

:::
we

:::
get

::
the

:::::::::::::::
Kullback-Leibler

:::::::::
divergence

::::
0.64

:::
for

:::
the

:::
first

::::::
mode,

:::
and

::::
0.13

::::
and

::::
0.11

:::
for

:::
the

::::::
second

:::
and

:::::
third,

::::::::::::::
correspondently,

::::
thus

:::
the

:::::::
posterior

::::::::::::
approximation

::::::::
improves

::::
only

:::::::
slightly.

5 Conclusions

MCMC methods remain the most reliable methods for estimating the posterior distributions of uncertain model parameters and5

states. They, however, also remain computationally expensive. Ensemble Kalman filters (or smoothers) provide computation-
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Figure 14. Same as figure 7
:
6, but with localization.
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Figure 15. Same as figure 6
:
8, but with localization.
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Figure 16. The posterior probability density function of parameters Z1 (a)
::::
Same

::
as
:::::
figure

:
9, Z2 (b), and Z3 (c). The posterior obtained by

IS
::
but

:
with ensemble size 106 is plotted as a black line and the true parameter as a black cross. The posterior of ETPS with localizationused

104 ensemble members.

ally affordable approximations but rely on the assumptions of Gaussian probabilities. For nonlinear models even if the prior is

Gaussian the posterior is not Gaussian anymore. Particle filtering (or importance sampling) on the other hand does not have

such an assumption but requires a resampling step, which is a challenge for parameter estimation
:::::
usually

:::::::::
stochastic. Ensemble

transform particle filter (or smoother) is a particle filtering method that
::::::::::::::
deterministically

:
resamples the particles (samples)

based on their importance weights and covariance maximization among the particles. Therefore it has an importance sampling5

advantage of predicting the correct posterior but does not have its disadvantage of resampling lacking.

In this paper, we have shown that ETPS outperforms ETKS for the posterior estimations in both low- and high-dimensional

nonlinear problems. Moreover as the ensemble size increases the posterior of ETPS converges to the posterior of IS with a

large ensemble, while the posterior of ETKS remains unchanged. However, in the high-dimensional problem of
::::
ETPF

::::::::
certainly

::::::::::
outperforms

:::::
ETKF

:::
for

:
a
:::
one

:::::::::
parameter

::::::::
nonlinear

:::
test

::::
case

::
by

::::::
giving

:
a
:::::
better

:::::::
posterior

::::::::::
estimation.

::::
This

:::::::::
conclusion

:::
also

:::::
holds

:::
for10
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::
the

::::
five

:::::::::
parameter

:::
test

::::
case,

::::::::
however

:::::::
demands

::
a
:::::::::::
substantially

:::::
larger

::::::::
ensemble

::::
size.

:::::::::
Moreover

:::
the

:::::
mean

:::::::::
estimations

::::::::
obtained

::
by

:::::
ETPF

::::
are

:::
not

::::::::::
consistently

::::::
better

::::
than

:::
the

:::::
ones

:::::::
obtained

:::
by

::::::
ETKF.

::::::
When

:::
the

:::::::
number

::
of

::::::::
uncertain

::::::::::
parameters

::
is

:::::
large

:
(2500uncertain parameters for some simulations ETPS gives an increase in the RMSE after data assimilation. This issue

is resolved once distance-based localization is applied, which however deteriorated the posterior estimation
:
)
::
a
:::::::
decrease

:::
of

::::::
degrees

::
of

::::::::
freedom

:
is
::::::::

essential.
:::::

This
::
is

::::::::
performed

:::
by

::::::::::
localization.

:::
At

:::::
large

::::::::
ensemble

::::
sizes

:::::
ETPF

::::::::
performs

:::
as

::::
well

::
as

::::::
ETKF,5

::::
while

:::
at

:::::
small

::::::::
ensemble

::::
sizes

::::::
ETKF

::::
still

::::::::::
outperforms

::::::
ETPF.

:::::
Even

::::::
though

::::::::
localized

:::::
ETPF

:::::::
overfits

:::
the

::::
data

::::
less

:::::
often

::::
than

:::::::::::
non-localized,

::::::::::
localization

:::::::
destroys

:::
the

:::::::
property

:::
of

:::::
ETPF

::
to

:::::
retain

:::
the

:::::::
imposed

:::::::
bounds.

::::
This

:::::
results

::
in
:::::::::::
deterioration

::
of

:::
the

::::
first

::::
mode

::::::::
posterior

:::::::::::::
approximation.

:::::::
Another

:::::::
approach

::
to
::::::::
improve

:::::
ETPF

::::::::::
performance

::
is

::::::
instead

::
of

::::::::
applying

::::::::::
localization

::
to

:::
use

::::
only

:::
first

::::::
modes

::
in

:::
the

::::::::::::
approximation

::
of

:::
log

::::::::::
permeabilty

::
as

::::
they

:::
are

:::::
better

::::::::
estimated

:::
by

:::
the

:::::::
method.

:::
An

::::::::
advantage

:::
of

:::
this

::::::::
approach

:
is
::::
that

::
it

::
is

::::
fully

::::::::
Bayesian.

::::::::
However,

::::
one

:::::
needs

::
to

:::::
know

::
at

::::::
which

:::::
mode

::
to

:::::
make

:
a
:::::::::
truncation

:::
and

::::
this

::
is

:::::
highly

:::::::::
dependent

:::
on10

::
the

::::::::::
covariance

:::::
matrix

::
of

:::
the

:::
log

:::::::::::
permeability.
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