
List of Responses 

Responds to the Anonymous Referee #1’s comments: 

Special thanks for your good comments which are very useful for us to improve 

the paper. 

1. Response to comment: Please state the advantages of the both PSO and WSA 

algorithms, and their performance difference in detail, so that readers can know the 

motivation that you combine them to coevolve to solve the CNOP. Please use statistical 

method to demonstrate the better optimization performance of ACPW comparing with 

the PSO and the WSA in perspective of optimization time and accuracy. 

Response: It is really true as Rreview1 suggested that we need to clarify the 

advantages of the both PSO and WSA algorithms and analyze the the better 

optimization performance of ACPW. Therefore we have illustrated this in the Section 

4.1.  

“To evaluate the advantages of the ACPW algorithm, we run the PSO, WSA and ACPW programs 

10 times and then compare the maximum, minimum and mean objective values as well as the RMSE.  

4.1 The advantages of the ACPW algorithm 

Because the statistical analysis results are similar for the two TCs with the two resolutions, we only 

describe the analysis of Fitow at a resolution of 60 km. Table 3 presents the maximum objective value, 

the minimum objective value, the mean objective value and the RMSE of the 10 results.  

Table 3: The analysis results of the PSO, WSA and ACPW methods. 

Algorithm Maximum 

Value 

Minimum 

Value 

Mean Value RMSE 

PSO 1034.192573 724.086002 900.7488578 0.121400896 

WSA 1628.841294 323.7493169 930.9103862 0.431193448 

ACPW 2240.275956 1243.377921 1542.505251 0.216750584 

 

In Table 3, the maximum objective value is gained from the ACPW algorithm, and its mean value 

is also more than the other two algorithms. However, the RMSE of PSO is the smallest, which shows the 

best stability.  

For additional analysis, we draw a box-plot of the 10 results for the PSO, WSA and ACPW 

algorithms, as shown in Fig. 3.  



 

Figure 3: Box-plot of the PSO, WSA and ACPW methods for TC Fitow at 60 km resolution. The red box 

denotes PSO, the green box is for the WSA, and the blue box shows the results of the ACPW algorithm.  

PSO has the narrowest range of values, although the objective values are smaller than the other two 

algorithms. The WSA has the widest range of values, although the objective values are also smaller than 

the ACPW algorithm. The ACPW algorithm has the second-best stability, although it has the best 

objective values. The experiments display the stability of PSO and the exploitation of the WSA. We 

combine the advantages of them and develop the ACPW algorithm to solve CNOPs. The analysis results 

demonstrate that the hybrid strategy and cooperation co-evolution is useful and effective.” 

 

2. Response to comment: There is a great difference at the operation rules of the 

WSA between the standard version given by Rui Tang et al. (2012) and the formula (6) 

of this study, please make explanation or correction. 

Response: We are very sorry about errors in this paper and have corrected them in Page 

5, line 2-9. “  

{
𝑢𝑖

𝑘+1 = 𝑢𝑖
𝑘 + 𝜃 ∙ 𝑟 ∙ 𝑟𝑎𝑛𝑑( )   𝑃𝑟𝑒𝑦

𝑢𝑖
𝑘+1 = 𝑢𝑖

𝑘 + 𝜃 ∙ 𝑠 ∙ 𝑒𝑠𝑐𝑎𝑝𝑒( )           𝐸𝑠𝑐𝑎𝑝𝑒
         (6) 

where the superscript k or k + 1 is also the iterative step, θ is the velocity, r is the local optimizing 

radius, which is smaller than the global constraint radius 𝛿, rand( ) is the random function, whose mean 

value is distributed in [-1,1], escape( ) is the function for calculating a random position, which is 3 times 

larger than r, and s is the step size of the updating individual. 

As described in Eq. (6),the wolf has two behaviours, i.e., prey and escape. The prey behaviour uses the 

first sub-formula, and the second one is for the escape function, which happens in every iteration when 



the condition 𝑝 > 𝑝𝑎 is satisfied, where p is a random number in [0,1], and 𝑝𝑎 is the probability of 

individual escaping from the current position. ” 

  

3. Response to comment: (1) Page 3, line 24, 26: The variants given in the 

propagation operator M should be uniform.  

Response: As Rreview1 suggested that we rewritten this part in Page 3, line 25. 

“𝑈𝑡 = 𝑀t0→t(𝑈0)” 

 

4. Response to comment: (2) Page 5, line 8-9: Please state in detail the rule setting 

adaptive subswarm coefficient a. 

Response: As Rreview1 suggested that we have added the rule setting adaptive 

subswarm coefficient a in Page 5, line13-16.  

“α = {
𝛼 + 0.05 , 𝑖𝑓  𝑡ℎ𝑒 𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒 −  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 <   𝜀 

 
𝛼 − 0.05,                      𝑒𝑙𝑠𝑒

    

In this paper, before we update the individuals, α is calculated, and then we divide the entire initial 

swarm into two subswarms according to the α value, i.e., the number of individuals depending on the 

PSO’s rule is α × 𝑁, and the other number is (1 − α) × 𝑁. We set the initial value of 𝜀 and α to 0.1 

and 0.5, respectively. ” 

5. Response to comment: (3) Page 5, line 17-19: It is better to delete these three 

lines since the description is unnecessary. 

Response: We need to explain about this part. The reason for writing this part is to 

present the performance of our algorithms in this paper under those computer hardware 

environments. If the reader needs to compare with our results, they should have the 

same environments. Hence, we did not delete them.    

 

In addition, we have improved the quality of our manuscript by American Journal 

Experts editing service and tracked the changes using revisions in the manuscript 

‘Revised Manuscript with Track Changes’.   

 

 

 

 

 



List of Responses 

Responds to the Anonymous Referee #2’s comments: 

Special thanks for your good comments which are very useful for us to improve 

the paper. 

 

1. Response to comment: In order to find viable alternatives for using an adjoint, 

the authors test a combination of two other search algorithms, "particle swarm 

optimisation" and "wolf search" on a reduced dimension state space with 50 dimension 

and test their performance against a reference method called "the ADJ method". 

However, it does not become clear, whether this reference method is used to solve the 

same problem, which should give identical results provided that all methods find the 

global minimum. Also, solving a 50-dimensional problem with 200 (resp. 420; see 

swarm size from table 1) model integrations at each solver step in 20 to 30 steps (Fig. 

2) does not look like a dramatic improvement over conventional methods, and no direct 

comparison to those is offered. 

Response: It is really true as Rreview2 suggested that we should give identical 

results provided that all methods find the global minimum. And we run the PSO, WSA 

and ACPW programs 10 times and then compare their results. It is commonly known 

that all intelligent algorithms are stochastic; that is, even when the input is the same in 

different trials, the output may be different. Hence, it hard to obtain the same result. But 

we can use the maximum, minimum and mean objective values as well as the RMSE 

to evaluate the algorithm. Therefore, we have illustrated this in the Section 4.1. 

“To evaluate the advantages of the ACPW algorithm, we run the PSO, WSA and ACPW programs 

10 times and then compare the maximum, minimum and mean objective values as well as the RMSE.  

4.1 The advantages of the ACPW algorithm 

Because the statistical analysis results are similar for the two TCs with the two resolutions, we only 

describe the analysis of Fitow at a resolution of 60 km. Table 3 presents the maximum objective value, 

the minimum objective value, the mean objective value and the RMSE of the 10 results.  

Table 3: The analysis results of the PSO, WSA and ACPW methods. 

Algorithm Maximum 

Value 

Minimum 

Value 

Mean Value RMSE 

PSO 1034.192573 724.086002 900.7488578 0.121400896 

WSA 1628.841294 323.7493169 930.9103862 0.431193448 



ACPW 2240.275956 1243.377921 1542.505251 0.216750584 

 

In Table 3, the maximum objective value is gained from the ACPW algorithm, and its mean value 

is also more than the other two algorithms. However, the RMSE of PSO is the smallest, which shows the 

best stability.  

For additional analysis, we draw a box-plot of the 10 results for the PSO, WSA and ACPW 

algorithms, as shown in Fig. 3.  

 

Figure 3: Box-plot of the PSO, WSA and ACPW methods for TC Fitow at 60 km resolution. The red box 

denotes PSO, the green box is for the WSA, and the blue box shows the results of the ACPW algorithm.  

PSO has the narrowest range of values, although the objective values are smaller than the other two 

algorithms. The WSA has the widest range of values, although the objective values are also smaller than 

the ACPW algorithm. The ACPW algorithm has the second-best stability, although it has the best 

objective values. The experiments display the stability of PSO and the exploitation of the WSA. We 

combine the advantages of them and develop the ACPW algorithm to solve CNOPs. The analysis results 

demonstrate that the hybrid strategy and cooperation co-evolution is useful and effective.” 

 

2. Response to comment: "The ADJ method" is used as a benchmark, but it is 

ambiguously defined and no attempts on parallelisation are made, not even in, the case 

of multiple starting points, which supposedly can be parallelised trivially. Also the 

article leaves the impression that "the ADJ method" is run on the full state space, rather 

than the 50 dimensional PC space. In summary, the comparisons in terms of 

computational performance are not convincing. 

Response: As Rreview2 suggested that we inserted the reference of the ADJ-method in 

L5-6, p.3. “Specific details of the ADJ-method can be found in Zhou (2009).” 



As Rreview2 mentioned that the multiple starting points can be paralleled, but the time 

consumption will not be less than using one starting point under the same computer 

hardware environments. When we analyze the efficiency of the ACPW algorithm in 

Section 4.5, the ADJ-method using one initial guess field (starting point) is compared 

with the ACPW algorithm. And the speedup of the ACPW reaches 4.53 and 3.84 for the 

different resolutions.  

“To promote the efficiency of the ACPW algorithm, we parallelize it with MPI technology. The time 

consumption of each case is nearly the same. Hence, we can use one group of experimental results to 

elucidate the efficiency of the ACPW algorithm. Because the ADJ-method cannot be parallelized because 

each input depends on the output of the previous step, its time consumption is not changed. Moreover, 

because this method generally uses 4~8 initial guess fields to obtain the optimal value, we use one and 

four initial first guess fields to determine the CNOPs. The time consumptions of the ADJ-method and 

ACPW algorithm are shown in Table 8. 

Table8: The time consumption of the ADJ-method and ACPW algorithm (unit: minutes). 

Methods 60 km  120 km 

ADJ-method (1)1 79.9 12.4 

ADJ-method (4)1 321.1 49.7 

ACPW 20.8 2.74 

 

1. ADJ-method (1) means using 1 initial guess field and ADJ-method (4) means using 4 initial guess 

fields. 

At 120 km resolution, the time consumptions of the ADJ-method using 1 and 4 initial guess fields are 

12.4 minutes and 49.7 minutes, respectively. At 60 km resolution, the time consumptions are 79.9 

minutes and 321.1 minutes, respectively. Unlike the ADJ-method, the ACPW algorithm can be 

parallelized. When using 22 cores, the ACPW method requires much less time, i.e., 2.74 minutes at 120 

km resolution and 20.8 minutes at 60 km resolution. Obviously, the ACPW has higher efficiency. 

Compared to the ADJ-method (1), the speedup reaches 4.53 and 3.84 for the different resolutions. 

Compared to the ADJ method (4), the speedup reaches 18.14 and 15.44. Although the different initial 

guess fields are calculated in parallel, the time consumption must be more than for the ADJ-method (1); 

the ACPW algorithm is also faster than the ADJ-method. 

” 

In addition, when the ACPW algorithm calculated the objective value, we use the 

nonlinear model on the full state space, only update the individual with the 50 

dimensions. 

3. Response to comment: The experiments with the reduced amplitude CNOPs are 

hard to follow. I had difficulties to understand section 4.3., which is the motivation for 

the verification and forecast experiments. 

Response: For the Section 4.3, we want to investigate the validity of the sensitive 

regions identified using CNOPs, and we have two assumptions: 

 “When adding adaptive observations in sensitive regions, the surrounding environment is idealized, 

and the improvements from adding observations reduces the original errors by a factor of 0.5. 

The obtained CNOPs can be seen as the optimal initial perturbations. Once we reduce them in the 



sensitive regions, the benefits are highest.  

” 

Therefore, we design two groups of idealized experiments. CNOPs are optimal 

initial perturbations having the maximum nonlinear evolutions at the forecast time. 

Under these assumptions, by reducing the CNOPs to W×CNOPs and inserting them 

into the initial states we can investigate how the reductions in the CNOPs influence TC 

forecast skill. 

4. Response to comment: In the presentation of the resulting CNOPs, the surface 

pressure patterns are neither shown nor discussed. No information on the vertical 

structure of the CNOPs is given. Moisture, an important energy source for tropical 

cyclones, is not included in the state vector and no justification for this omission is 

given. The authors do not address the the role of the fixed PC space dimension (and 

basis?) when comparing patterns at different resolutions. No information on how the 

excitation of numerical modes is avoided, both in the computation of the CNOPs and 

when making perturbed forecasts. 

Response:  

As Review2 mentioned that we did not discuss the surface pressure patterns and the 

vertical structure of the CNOPs, because the purpose of this paper is to identify the 

adaptive observation sensitive areas, we follow the study of Dr, Zhou that the total dry 

energy have higher benefits than other strategies (Zhou and Zhang, 2014). Therefore, 

the information of the surface pressure patterns and the vertical structure of the CNOPs 

are contained in the total dry energy. In addition, Dr. Zhou has proved that the sensitive 

regions gained by the dry energy have higher benefits than those obtained from the 

moist energy (Zhou, 2009). In this paper, we only considered the total dry energy. 

For the question that “The authors do not address the role of the fixed PC space 

dimension (and basis?) when comparing patterns at different resolutions”, the numbers 

of PCs in this paper are determined by the many experiments, and the analysis of the 

different numbers are plotted in our previous studies. 

Finally, in this paper, we also use the nonlinear model, but avoid using the adjoint model 

to calculate the gradient.  

5. Response to comment: Many formulations in the abstract and the article are 

confusing on a language level, to name only a few: "...suggest that the use of an ocean 

coupled model needs to be conscious,..." (page 2, line 13), "the mutual affection of 

binary typhoons" (page 2 line 14), "[wolf search] ... takes long consuming time." (page 

4, line 6). Language editing is encouraged. 

Response: As Review2 suggested that we have improved the quality of our 

manuscript by American Journal Experts editing service and tracked the changes using 



revisions in the manuscript ‘Revised Manuscript with Track Changes’.   

 6. Response to comment: What is the update for ui if neither of the two conditions 

is satisfied?  

 Response: We are very sorry about errors in this paper and have corrected them in L2-

9 Page 5. “  

{
𝑢𝑖

𝑘+1 = 𝑢𝑖
𝑘 + 𝜃 ∙ 𝑟 ∙ 𝑟𝑎𝑛𝑑( )   𝑃𝑟𝑒𝑦

𝑢𝑖
𝑘+1 = 𝑢𝑖

𝑘 + 𝜃 ∙ 𝑠 ∙ 𝑒𝑠𝑐𝑎𝑝𝑒( )           𝐸𝑠𝑐𝑎𝑝𝑒
         (6) 

where the superscript k or k + 1 is also the iterative step, θ is the velocity, r is the local optimizing 

radius, which is smaller than the global constraint radius 𝛿, rand( ) is the random function, whose mean 

value is distributed in [-1,1], escape( ) is the function for calculating a random position, which is 3 times 

larger than r, and s is the step size of the updating individual. 

As described in Eq. (6),the wolf has two behaviours, i.e., prey and escape. The prey behaviour uses the 

first sub-formula, and the second one is for the escape function, which happens in every iteration when 

the condition 𝑝 > 𝑝𝑎 is satisfied, where p is a random number in [0,1], and 𝑝𝑎 is the probability of 

individual escaping from the current position. ” 

7. Response to comment: page 8, formula 10: Is this using the same energy norm 

as formula 10? If not, how are the different variables combined?  

Response: formula (10) is used to calculate the similarity between the CNOPs, 

every CNOP has the same components, so we did not use the norm. Actually, the 

formula is for solving the Cosine similarity.  
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 10 

Abstract. In this paper, a novel approach is proposed for solving conditional nonlinear optimal perturbation (CNOP), named 

itperturbations (CNOPs), called the “adaptive cooperation co-evolution of parallel particle swarm optimization and wolf 

(ACPW) search algorithm (ACPW) based on principal component analysis”. Taking Fitow (2013) and Matmo (2014) as two 

tropical cyclone (TC) cases, CNOPCNOPs solved by the ACPW isalgorithm are used to investigate the sensitive regions 

identification ofidentified by TC adaptive observations with the fifth-generation mesoscale model (MM5). Meanwhile, the 60 15 

km and 120 km resolutions are adopted. The adjoint-based method (short for the ADJ-method) is also applied to solve 

CNOPCNOPs, and the result is used as a benchmark. To evaluate the advantages of the ACPW algorithm, we run the PSO, 

WSA and ACPW programs 10 times and then compare the maximum, minimum and mean objective values as well as the 

RMSEs, and the analysis results prove that the hybrid strategy and cooperation co-evolution are useful and effective. To 

validate the validity of ACPW algorithm, the CNOPs obtained from the different methods are compared in terms of the patterns, 20 

energies, similarities and simulated TC tracks with perturbations. (1) The ACPW algorithm can capture similar CNOP patterns 

withas the ADJ-method, and the patterns of TC Fitow are more similar than TC Matmo. (2) When using theAt 120 km 

resolution, similarities between the CNOPs of the ADJ-method and the ACPW algorithm are higher than those using theat 60 

km resolution. (3) Compared to the ADJ-method, although the CNOPs of the ACPW method produce lower energies, they can 

obtain betterhave improved benefits gained from the reduction of the CNOPs, not only inacross the entire domain but also in 25 

the identified sensitive regions identified. (4) The sensitive regions identified by the CNOPs- from the ACPW hasalgorithm 

have the same influence on the improvements of the TC trackstrack forecast skills withas those identified by the CNOPs- from 

the ADJ-method. (5) The ACPW method has a higher efficiency than the ADJ-method. All conclusions prove that the ACPW 

algorithm is a meaningful and effective method for solving CNOPCNOPs and can be used to identify sensitive regions of TC 

adaptive observations. 30 

样式定义: 批注文字: 字体: (默认) Tahoma, 8 磅, 左, 行距: 单倍行
距
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1 Introduction 

Tropical cyclone (TC) iscyclones (TCs) are one of the most frequent and influential natural hazards in the world. An accurate 

forecast of TC will beTCs is conducive to respond to disasters forthe response of the government and people. Thus, it is 

essential to improve TC forecast skills. One effective way is to identify the sensitive regions of TC adaptive observations 

(called TCAOs for short) (Franklin and Demaria, 1992; Bergot, 1999; Aberson, 2003). Once add observations in sensitive 5 

regions- are identified and added to reduce initial errors, better forecast will be expected (Bender et al., 1993; Zhu and Thorpe, 

2006; Froude et al., 2007). Conditional nonlinear optimal perturbation (CNOPperturbations (CNOPs) proposed by Mu and 

Duan (2003) isare a nonlinear extension of the linear singular vector (SV) method, and hashave been applied to study sensitive 

regions identification of TCAOs successfully (Mu and Zhou, 2009; Qin, 2010; Zhou and Mu, 2011, 2012a, 2012b; Zhou and 

Zhang, 2014; Qin and Mu, 2012; Qin et al., 2013; Qin and Mu, 2014; Wang et al., 2010; Wang et al., 2013). 10 

Comparing between the sensitive regions of CNOP-identified from CNOPs and the first SV-those identified through SVs, Qin 

(2010) concludes that the former is more appropriate for TCAOs. Zhou and Mu (2011) use the CNOP method to investigate 

the different verification areas and how to affect the identification of sensitive regions. Then they studyThey also studied the 

influence of the different horizontal resolutions (2012a). Moreover, the different timetimes and regime dependency was also 

is researched (2012b). These research results direct thedirected further research. Zhou and Zhang (2014) propose three schemes 15 

for identifying sensitive regions based on the CNOP method, and recommend that the vertically integrated energy scheme. 

Moreover, some researchers analyse the sensitivity of dropwindsonde observations on TC predictions, which is identified by 

can be used in the CNOP method, and conclude that the sensitive regions of CNOP-identified by CNOPs have a positive 

impact on TC track predictions (Qin and Mu, 2012; Qin et al., 2013). In studies of improvement of improving the sensitivity-

CNOP of CNOPs in TC intensity forecastforecasts, Qin and Mu (2014) suggest that the use of an ocean -coupled model needs 20 

to be conscious,considered as well as the better initialization of the TC vortex. Wang et al. (2013) use the CNOP method to 

study the mutual affection of binary typhoons. Previous researchesstudies have provedshown that the CNOP method is a useful 

and meaningful method for the above study the aforementioned phenomena (Zhou et al., 2013; Mu and Zhou, 2015).  

Generally, thereThere are generally two-type types of methods for solving CNOP, onesCNOPs: one based on adjoint models 

(called ADJ-method for short) and onesone without adjoint models. As useful and effective methods for solving CNOPCNOPs 25 

without adjoint models, some modified intelligent algorithms (IAs) based on dimension reduction have been successfully 

proposed and applied to solve CNOPCNOPs in the Zebiak-Cane (ZC) model successfully, such as SAEP: Simulated Annealing 

Based Ensemble Projecting Method (simulated annealing based ensemble projecting method) (Wen et al., 2014), PPSO:  

(principal component analysis) (PCA; Jolliffe, 1986) Based Particle Swarm Optimization)-based particle swarm optimization 

(Mu et al., 2015a), PCGD: Principal Components (principal components-based Great Delugegreat deluge) (Wen et al., 2015a), 30 

RGA: Robust (robust PCA-Based Genetic Algorithmbased genetic algorithm) (Wen et al., 2015b), CTS-SS: Continuous 

(continuous Tabu Search Algorithmsearch algorithm with Sine Mapssine maps and Staged Strategystaged strategy) (Yuan et 

al., 2015), and PCAGA: Principal Component Analysis Based Genetic Algorithm (principal component analysis-based genetic 
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algorithm) (Mu et al., 2015b). Compared to the ADJ-method, these methods all can obtain CNOPs with the similar spatial 

patterns and acceptable objective function values, and several of them have been paralleled with the Message Passing 

Interfacemessage passing interface (MPI) and cost less), reducing the computation time consumption. In the TC adaptive 

observationobservations, such adjoint-free methods are also required urgently, because no havingthe lack of adjoint models 

and solution spaces with too highmany dimensions of solution space have become obstacles offor solving CNOP, 5 

whichCNOPs; this is also thea focal point of such researchthis study. 

Actually, weWe have adopted the PCAGA method to solve CNOPCNOPs for the sensitive regions identification ofidentified 

by TCAOs with the fifth-generation mesoscale model (MM5),) and obtained meaningful results (Zhang et al., 2017). However, 

thewe used a resolution we used isof 120 km, which is the lowest in such research. When using a higher resolution, more 

small-scale information can be achievedpredicted, and more accurate sensitive regions can be expected. It is necessary to use 10 

a higher resolution. Moreover, although the PCAGA method achieves the meaningful results, its performance is not good 

enough. It issufficient because this algorithmit is based on a genetic algorithm, which has a good global searching ability but 

slow convergence rate. In addition, the PCAGA method was not parallelized in the previous study. 

Therefore, in this paper, we propose a novel approach, adaptive cooperation co-evolution of PSO and wolf search algorithm 

(WSA) based on PCA (called ACPW for short),) to solve CNOPCNOPs for the sensitive regions identification ofidentified by 15 

TCAOs. We take two tropical cyclones as study cases, Fitow (2013) and Matmo (2014), and simulate them with the MM5 

model using two different resolutions, 60 km and 120 km. According to the study of Zhou and Zhang (2014), we adopt the 

total dry energy as the objective function. And the CNOPThe CNOPs from the ADJ- method are referred as a benchmark. 

Specific details of the ADJ-method can be found in Zhou (2009). To validate the validity of ACPW method, the CNOPs offrom 

the ACPW method are compared with the benchmark in terms of the patterns, energies, similarities and benefits from the 20 

CNOPs reduced in the entire domain and sensitive regions identified. Further, the CNOPs with different resolutions are also 

are compared onin terms of these aspects. Besides, toTo evaluate the sensitive regions located by the ACPW algorithm, we 

simulate TC tracks with the initial states perturbed by the amended CNOPs in the location of the sensitive regions from those 

two methods. Andthe ACPW algorithm and ADJ-method. Moreover, we design two schemes to amend the CNOPs, in: the 

same points and the equivalent proportional points of grids. In addition, we evaluate the efficiency of the ACPW algorithm. 25 

All experimental results show that the ACPW method is a meaningful and effective method to solve CNOPCNOPs for selecting 

the sensitive regions of TCAOs. 

The organization of the paper is as follows. Section 2 describes the formalized definition of CNOPCNOPs and the ACPW 

method. In section 3, we give the design of the experiments in this study. Section 4 presents the experimental analysis and 

results. Summaries and conclusions are provided in section 5. 30 
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2 Theory and Method  

2.1 CNOPCNOPs  

The mathematical formalism of CNOPCNOPs is described asin Eq. (1). Under the constraint condition ‖𝑢0‖2 ≤ 𝛿, an initial 

perturbation 𝛿𝑢0
∗  of vector 𝑈0 (initial basic state) is called a CNOP, if and only if 

𝐽(𝛿𝑢0
∗) = 𝑚𝑎𝑥

‖𝑢0‖2≤𝛿
𝐽(𝑢𝑁𝑇),           (1) 5 

where 

𝑢𝑁𝑇 = 𝑃𝑀(𝑈0 + 𝛿𝑢0) − 𝑃𝑀(𝑈0),           (2) 

and 𝑃  presentsrepresents a local projection operator, and; the value within the verification region is 1, outside is and 0 

elsewhere. 

𝑈𝑡 = 𝑀t0→t(𝑈0),              (3) 10 

where 𝑀 expresses a nonlinear propagation operator, and 𝑈𝑡 is the development of 𝑈0 at time 𝑡.  

2.2 ACPW method 

In this paper, we propose the ACPW method to solve CNOPCNOPs for identifying sensitive regions of TCAOs. The core of 

this approach is the cooperation co-evolution of two intelligent algorithms: PSO and WSA, and the adaptive number of two 

subswarms. PSO is a classical population -based stochastic optimization technique developed by Eberhart and Kennedy (1995),) 15 

and inspired by social behaviorbehaviours of bird flocking or fish schooling, and; it has been applied to solve CNOP 

successfully and effectively applied to solve CNOPs in the ZC model for studying El Niño-Southern Oscillation (ENSO) 

predictions (Mu et al., 2015a). The WSA is a new bio-inspired heuristic optimization algorithm based on wolf preying 

behaviourbehaviours, which iswas proposed by Rui Tang et al. (2012) and has been applied to study travelingthe travelling 

salesman problem with test functions. Their experiments showshowed that the WSA is an effective global optimizing algorithm, 20 

but needsrequires long consuming timecomputation times.  

We have adopted PSO and the WSA method respectively to solve CNOPCNOPs in the MM5 model, butalthough the results 

from them exhibit slow convergence or premature convergence. Hence, we combine the advantages of these two algorithms. 

We use the WSA to explore in the global space due to its individuals’ independence, and use PSO to digexamine the local 

space for making sureand ensure the convergence of the ACPW. Meanwhile algorithm. Moreover, we design the adaptive 25 

subswarms of PSO and WSA for cooperation co-evolution. The ACPW framework of ACPW is shown in Fig. 1. 

In Fig. 1, the most important part of the ACPW algorithm is inside the dotted box. We divide the entire initial swarm tointo 

two subswarms with the same number of individuals,: one updates individualthe individuals with the PSO’s rule and the other 

one with the WSA’s rule. Then, thesethe two subswarms are adaptively varied along with the convergence state of the ACPW 

algorithm, i.e., when the change ofin the objective function adaptive value is less than a threshold value, the number of 30 

individuals in the subswarm belonging to the WSA will beis increased, and the other subswarm belonging to PSO will decrease 
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theis decreased by an equal number of individuals to keep the same number offor the wholeentire swarm. These improvements 

bring better convergence accuracy and higher evolution velocity, which showis shown in Fig. 2. The more specific analysis is 

discussed in Sectionsection 4.  

The process of solving CNOPCNOPs with the ACPW algorithm is described as follows: 

1) Randomly generate an initial swarm with 𝑁 individuals. An individual 𝑢𝑖 needs to satisfy the boundary constraint in the 5 

terms of Eq. (4). Once 𝑢𝑖 goes out ofbeyond the boundary, it must, thus, be pulled back, i.e., 

𝑢𝑖 = {
𝑢𝑖        ‖𝑢𝑖‖ ≤ 𝛿

𝛿

‖𝑢𝑖‖
× 𝑢𝑖   ‖𝑢𝑖‖ > 𝛿

 𝑖 = 1, ⋯ , 𝑁         (4) 

2) Divide the wholeentire initial swarm tointo two subswarms with an adaptive coefficient α. One subswarm updates 

individualindividuals with the PSO’s rule and the other one with the WSA’s rule. 

3) Parallelly calculateCalculate the adaptive value of the objective function in parallel, i.e.., 𝐽(𝑢𝑖) in Eq. (1).  10 

4) Update individuals by PSO (Eq. (5)) or the WSA (Eq. (6)).  

{
𝑣𝑖

𝑘+1 = 𝜔𝑣𝑖
𝑘 + 𝑐1𝛼(𝑜𝑖

𝑘 − 𝑢𝑖
𝑘) + 𝑐2𝛽(𝑜𝑔

𝑘 − 𝑢𝑖
𝑘)

𝑢𝑖
𝑘+1 = 𝑢𝑖

𝑘 + 𝛾𝑣𝑖
𝑘+1                     

         (5) 

where, the superscript k or k + 1 is the iterative step, 𝑣𝑖
𝑘+1 is the velocity of the individual 𝑢𝑖

𝑘  and calculated by the first 

subformula., 𝜔  is the inertia coefficient, 𝑐1  and 𝑐2  are the learning factors, 𝛼  and 𝛽  are the random numbers uniformly 

distributing on the interval from 0 to 1., 𝑜𝑖
𝑘 is the local optimum and, 𝑜𝑔

𝑘 is the global optimum in the k𝑡ℎ iteration., 𝛾 is the 15 

restraint factor to control the speed., and 𝑢𝑖
𝑘+1 is the updated individual withbased on PSO.  

There are two ways for updating individualindividuals in the WSA, i.e., prey and escape, which represent the functions of 

searching in a local region and escaping from a local optimum.:    

{
𝑢𝑖

𝑘+1 = 𝑢𝑖
𝑘 + 𝜃 ∙ 𝑟 ∙ 𝑟𝑎𝑛𝑑( )   𝑃𝑟𝑒𝑦

𝑢𝑖
𝑘+1 = 𝑢𝑖

𝑘 + 𝜃 ∙ 𝑠 ∙ 𝑒𝑠𝑐𝑎𝑝𝑒( )           𝐸𝑠𝑐𝑎𝑝𝑒
      (6) 

{
𝑢𝑖

𝑘+1 = 𝑢𝑖
𝑘 + 𝜃 ∙ 𝑟 ∙ 𝑟𝑎𝑛𝑑( )   𝑃𝑟𝑒𝑦

𝑢𝑖
𝑘+1 = 𝑢𝑖

𝑘 + 𝜃 ∙ 𝑠 ∙ 𝑒𝑠𝑐𝑎𝑝𝑒( )           𝐸𝑠𝑐𝑎𝑝𝑒
         (6) 20 

where the superscript k or k + 1 is also the iterative step, θ is the velocity, r is the local optimizing radius, which is smaller 

than the global constraint radius 𝛿., rand( ) is the random function, whose mean value is distributed in [-1,1].], escape ( ) is 

the function offor calculating a random position, which is larger 3 times larger than r., and s is the step size of the updating 

individual. 

As the description of described in Eq. (6), the wolf has two behaviours:, i.e., prey and escape. The prey behaviour uses the 25 

first sub-formula, and the second one is for the escape function, which will happens in every iteration, when the condition 𝑝 >

𝑝𝑎 is satisfied, where  p is a random number in [0,1], and 𝑝𝑎 is the probability of individual escaping from the current position.  
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5) Judge whether the change ofin the adaptive value of the objective function is smaller than ε. If yes, set a new value to the 

adaptive subswarm coefficient α. If not, continue running the process. The detail ofdetailed updating procedure for α is 

descripted in the following.as follows: 

α = {
𝛼 + 0.05, 𝑖𝑓  𝑡ℎ𝑒 𝑏𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒 −  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 <   𝜀 

 
𝛼 − 0.05,                                                                               𝑒𝑙𝑠𝑒

      (7) 

In this paper, before we update the individuals, the α is calculated first, and then we divide the entire initial swarm tointo two 5 

subswarms according to the α value, i.e.., the number of individuals dependsdepending on the PSO’s rule is α × 𝑁, and the 

other number is (1 − α) × 𝑁. We set the initial value of 𝜀 and α asto 0.1, and 0.5, respectively.   

6) Judge whether the termination condition is satisfied. If yes, terminate the iteration. Otherwise, go to step 2.  

All of above processes are based on the dimension reduction withwithin PCA, whose procedure has been described in the 

study of Mu et al. (2015a). After many experiments, the parameters of the ACPW arealgorithm can be set, as shown in Table. 10 

1. 

Although the parameters are more than for each single algorithm, but most of them still isretain the same empirical value of 

each algorithm, which need and do not to adjust.require adjustments. The reason offor using a different number of individuals 

is that the memory of internal storage we used ismemory was not enoughsufficient when using more than 200 individuals and , 

resulting in premature termination of the ACPW will be interruptedalgorithm. 15 

3 Experiments Design 

All the experiments are run on a Lenove Thinkserver RD430 with two Intel Xeon E5-2450 2.10 GHz CPUs, 32 logical cores 

and 132G RAM. And the operating system is CentOS 6.5. All the codes are written in FORTRAN language and compiled by 

PGI Compiler 10.2.  

3.1 The model and Data 20 

In this paper, we adopt the MM5 model to study the sensitive region identification of TCAOs, and the corresponding adjoint 

system of the MM5 model (Zou et al., 1997) is used to obtain the benchmark. And theThe ERA interim daily analysis data 

(1º×1º1°×1°) (Dee et al., 2011) from the European Center for Medium range Weather Forecasts (ECMWF) are used to generate 

the initial conditions and boundary conditions. The physical parameterization scheme is constructedschemes are defined as 

follows: dry convective adjustment, the high-resolution planetary boundary layer scheme, grid -resolved large-scale 25 

precipitation and the Kuo cumulus parameterization scheme. 

We also utiliseutilize the best TC track data (Ying et al., 2014) from the China Meteorological Administration - Shanghai 

Typhoon Institute (CMA-SHTI) as TC tracks observed for evaluating the simulation TC tracks of the MM5 model. 

带格式的: 字体: 10 磅
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3.2 Typhoons synop to Fitow (2013) and Matmo (2014) 

TCTCs Fitow (2013) and TC Matom (2014) are taken as the study cases and introduced below. Fitow iswas the 23st23rd TC 

in 2013, and developsdeveloped to the east of the Philippines on 29 September 29 and strikes, striking China at Fuding in 

Fujian province OnProvince on 6 October 6. Matom iswas the 10th named typhoon in 2014, and it happensformed on 17 July 

17 and landsmade landfall in Taiwan on 22 July 22. For these two cases, 24- h control forecasts are set as background fields 5 

which integratebased on integration from 0000 UTC 5 Oct 2013 to 0000 UTC 6 Oct 2013 (TC Fitow) and from 1800 UTC 21 

Jul 2014 to 1800 UTC 22Jul22 Jul 2014 (TC Matom). After the 24h24 h period, TC Fitow has thehad a maximum sustained 

wind of 162 kilometres per hour and, whereas TC Matmo hashad a maximum wind speed of 151.2 kilometres per hour. In 

addition, the forecasts arewere executed at the 60 km and 120 km resolutions with 11 vertical levels, and the model domain 

coverscovered 55×55, and 21×26 grids, respectively. 10 

The simulated TC tracks offrom the MM5 model for these two cases are acceptable, as has been shown in our previous study 

(Zhang et al. 2017). The following work will baseanalysis is based on those simulations. 

3.3 Experimental setup 

Depending on the conclusion that a little change ofBecause slight changes in the verification areasarea never hurts the results 

(Zhou and Mu, 2011), we design the verification areas as rectangles covering the potential typhoon tracks at the forecast time. 15 

The initial perturbation sample δu0 is composed of the perturbed zonal wind u0
′ , meridional wind v0

′ , temperature T0
′  and 

surface pressure ps0
′ . Each component can be represented as a  a m × n × l matrix., where m × n is the distribution of the 

horizontal grid, and l denotes the number of vertical levels. In order toTo extract features for reducing the dimensions ofand 

solving CNOPCNOPs, the m × n × l matrix is reshaped to a k × 1 vector, herewhere k = m × n × l × S (S is the number of 

the components). Assuming we have R vectors to represent the features of the solution space, we recombine the R vectors to 20 

a k × R matrix, and use PCA to capture the feature space with lower dimensions. Then, the CNOP is solved in the feature 

space until we obtain the global CNOP, which will be projected to the original solution space. When using the ACPW algorithm 

to solve CNOPCNOPs, its initial inputs are produced by the random way in the feature space, and the CNOP has the largest 

nonlinear evolution at prediction time, i.e.., the largest adaptive value of the objective function in Eq. (9). The objective 

function is measured by the total dry energy, (Zhou and Zhang, 2014) because Dr. Zhou has proved that the sensitive regions 25 

gained by the dry energy hadhave higher benefits than those obtained from the moisturemoist energy (Zhou, 2009). 

There exists 

The following is defined: 

f(i, j) =  ∫ ET(i, j, σ)
1

0
dσ ,            (8) 

where ET(i, j, σ) denotes the total dry energy of the CNOP at the MM5 grid point (i, j, σ). 30 

Corresponding to formula (1) and (2), we have 

带格式的: 字体颜色: 蓝色

带格式的: 字体颜色: 蓝色

带格式的: 字体颜色: 蓝色

带格式的: 字体颜色: 蓝色

带格式的: 字体颜色: 蓝色

带格式的: 英语(英国)

带格式的: 英语(英国)

带格式的: 英语(英国)

带格式的: 英语(英国)

带格式的: 英语(英国)

带格式的: 英语(英国)

带格式的: 英语(英国)

带格式的: 英语(英国)

带格式的: 英语(英国)

带格式的: 英语(英国)



8 

 

(uNT) =
1

D
∫ ∫ [ut

′2 + vt
′2 +

cp

Tr
Tt

′2 + RaTr (
pst

′

pr
)

2

]
1

0D
dσdD,        (9) 

where ut
′, vt

′, Tt
′, pst

′and pst
′
 are the components of uNT, which is the nonlinear development of the perturbed U0 (i.e.., U0 +

δu0) from the initial time t0  to the prediction time t., and σ is the vertical coordinate. And Table. 2 illustrates the other 

reference parameters. 

For the convenience of optimization, solving CNOPCNOPs can be transformed to a minimum problem, as follows: 5 

J(δu0
∗ ) = min

‖u0‖2≤δ
( −

1

D
∫ ∫ [ut

′2 + vt
′2 +

cp

Tr
Tt

′2 + RaTr (
pst

′

pr
)

2

]
1

0D
dσdD）,.      (10) 

To facilitate understanding, all symbols are listed in Table 2, and their meanings are also explained. 

4. Experimental Results and Analysis 

To evaluate the advantages of the ACPW algorithm, we run the programs of PSO, WSA and ACPW forprograms 10 times, 

and then compare the max, minmaximum, minimum and mean objective values, and as well as the RMSE of them.  10 

4.1 The advantages of the ACPW algorithm 

AsBecause the statistical analysis results are similar for the two TCs with the two resolutions, we only describe the analysis of 

the Fitow with theat a resolution of 60 km. Table. 3 presents the maxmaximum objective value, the minimminimum objective 

value, the mean objective value and the RMSE of the 10 results.  

In the Table. 3, the maxmaximum objective value is gained from the ACPW algorithm, and its mean value is also more than 15 

the other two algorithms. ButHowever, the RMSE of PSO is the smallest, which shows the best stability.  

ToFor additional analysis, we draw the Boxa box-plot of the 10 results offor the PSO, WSA and ACPW algorithms, as shown 

in Fig. 3. 

In Fig.3, we can find that the  PSO has the narrowest value range, but of values, although the objective values are smaller than 

the other two algorithms. The WSA has the widest value range, but of values, although the objective values are also are smaller 20 

than the ACPW algorithm. The ACPW algorithm has the second -best stability, butalthough it has the best objective values. 

The experiments display the stability of the PSO, and the exploitation of the WSA. We combine the advantages of them, and 

develop the ACPW algorithm to solve the CNOPCNOPs. The analysis results provedemonstrate that the hybrid strategy and 

cooperation co-evolution is useful and effective strategies.  

4.2 CNOP patterns 25 

To validate the validity of ACPW algorithm for solving CNOPCNOPs and to identify the sensitive regions, we compare 

CNOPs-the ADJ-method and CNOPs-the ACPW onalgorithm results in terms of the CNOP patterns, energies, similarities, 

benefits from reduction of the CNOPs, and simulated TC tracks with perturbations. 
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In this subsection, we compare the CNOPs obtained from the ADJ-method and the ACPW onalgorithm in terms of the patterns 

of temperature and wind. Experimental results show that TC Fitow has more similar CNOP patterns than TC Matmo. The 

CNOP patterns are described in Fig. 4.  

To theAt 120 km resolution for TC Fitow (Fig. 4a, b), thesethe two methods have almostnearly the same major warm locations 

and similar cold partsregions, while the wind vectors have opposite directions. The ADJ-method catchescaptures the CNOP 5 

with two major locations. The red (warm) one distributes atis distributed to the west of the initial cyclone (called IC for short), 

and the green (cold) one distributes atis distributed to the north of the IC. The ACPW algorithm also captures the CNOP with 

two main locations. The warm one distributes atis distributed to the west, and the cold one locatesis located at the northwest 

of the IC. In this subsection, the spatial orientation is all relative to the position of the IC. Therefore, in the following 

partdiscussion, we explain the spatial orientation in the figures without repeating the IC.   10 

For TC Fitow with thea 60 km resolution (Fig. 4c, d), the CNOP spatial distribution ofbased on the ACPW algorithm is very 

similar to the ADJ-method’s. At results. In the northwest inof the verification area, the two CNOPs have two similar major 

parts, one warm area and one cold area. The difference between these two patterns is that, the ADJ-method has another major 

warm area locating atlocated in the northwest and, while the ACPW hasmethod produces another major warm area locating 

atin the east. Besides, theThe distribution of the secondary parts hasexhibits only a slight difference. 15 

For the same method with the different resolutionresolutions (Fig. 4a, c and Fig. 4b, d), the CNOP patterns have similar major 

distributions atin the northwest, but withalthough within a different region. The reason is that when using a higher resolution, 

more small-scaled things will phenomena can be resolved (Zhou and Mu, 2012a). 

For TC Matmo with thea 120 km resolution (Fig. 5a, b), the ADJ-method and ACPW algorithm obtain CNOPs with different 

spatial patterns in terms of temperature and wind. The ADJ-method has two major parts, with the warm one locating atlocated 20 

in the west and the cold one distributing at in the east. The ACPW has algorithm results in two main parts distributing 

atdistributed in the northeast with one warm area near to the IC and a cold one far from the IC. For TC Matmo with thea 60 

km resolution (Fig. 5c, d), in the verification area, thesethe two CNOP patterns have similar spatial distributions, with two 

warm areas locatinglocated at nearly the same positions almost. But. However, the parts outside of the verification area are 

distributed in the different positions. Besideslocations. Moreover, the CNOP of the ADJ-method has more regular distributions 25 

than the ACPW’s. distributions. For the same method with the different resolution (Fig. 5a, c and Fig. 5b, d), the CNOP 

patterns cover similar rough areas but with different ranges and details.  

Based on the above analysis aboutregarding the patterns of temperature and wind, we can conclude that, when using the a 

resolution of 60 km resolution, the CNOPs of ADJ-methodpredicted by the ADJmethod and ACPW algorithm have more 

similar major patterns than those with the predicted at a resolution of 120 km. In addition, the ACPW algorithm can obtain 30 

CNOPs with more similar patterns in TC Fitow than in TC Matmo. 

 

Vertically integrated energies of the CNOPs for TC Fitow are displayed in Fig. 6. Compared to the ADJ-method, when using 

the at 120 km resolution, the CNOPCNOPs of the ACPW hasmethod have much lower energy and variousdiffering positions, 
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but. However, when using 60 kma resolution, it can get of 60 km, similar energies and positions. Besides are obtained. 

Moreover, the energy of CNOPthe CNOPs obtained from the ACPW algorithm has a larger range in the centercentre. 

Vertically integrated energies of the CNOPs for TC Matmo are displayed in Fig. 7. Compared with the ADJ-method, when 

using the at 120 km resolution, the CNOPCNOPs of the ACPW hasalgorithm have a lower energy and covers largecover larger 

areas, but. However, when using the 60 kma resolution of 60 km, although itsthe energy is still lower, butthe positions are 5 

getting closermore similar. 

4.2 Similarities 

When we evaluate the CNOPs, in addition to characteristicthe characteristics and distributions of the CNOP patterns, 

consideration should also be given to numerical similarities and to the benefits fromof the CNOPs. Therefore, we calculate the 

similarity between CNOP-the CNOPs determined from the ADJ-method and CNOP-the ACPW, algorithm and use X and Y 10 

to represent them in the formula (10). 

Sxy =
〈X,Y〉

√〈X,X〉√〈Y,Y〉
,             (10) 

The results showare shown in Table. 4. The similarity values can reflect the similarities among the CNOP patterns of CNOPs 

(Fig. 4 and Fig. 5). 

In Table. 4, for TC Fitow, the similarity with theat 120 km is -0.83, andwhereas that with the 60 kma resolution of 60 km is 15 

0.43. For TC Matmo, the similarity with theat 120 km is 0.42, whereas that with a resolution is 0.42, and that with the  of 60 

km resolution is 0.37. The negative sign representsindicates that partsportions of the CNOPs offrom these two methods have 

opposite wind vector directions, which showedis shown in Fig. 4. We also find that when using a higher resolution, the 

similarity is lower. The reason for this finding is that although the major patterns of thosethe CNOPs are similar, the other 

secondary parts of them are different,differ and they cover larger areas. Actually, whenWhen using a higher resolution, we can 20 

achieve more small-scale information, and the identification of sensitive regions identification will bebecomes more accurate. 

AsRegarding the analysis of the CNOP patterns, we assuredly get obtain more similar major patterns when using the for a 

resolution of 60 km resolution than using the 120 km resolution, but . However, compared with the other different parts, the 

similar parts are very small. However, the The decreased similarities decreased willdo not affect identifying the sensitive 

regions, because the adaptive observationobservations only focusesfocus on the points with bigger influencelarger influences, 25 

which will be proved indemonstrated subsection 4.4 of this section..  

We also compare the energy for 24 hours of nonlinear developmentsdevelopment under the initial states perturbed by different 

CNOPs, i.e.., 𝐽(𝑀(𝑈0 + 𝛿𝑢0
∗)). The results are shown in Table. 5. 

Results show that all All CNOPs obtained using the ACPW produce lower energies than the those of the ADJ-method, but. 

However, when reducing the CNOPs to W×CNOPs in the entire domain and reducing the CNOPs toby a factor of 0.5 time in 30 

the sensitive regions identified, the ACPW can obtain algorithm has better benefitsresults, which will be discussed in following 

subsection. 
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4.3 Benefits from Reduction ofReducing the CNOPs 

In this subsection, we design two groups of idealized experiments to investigate the validity of the sensitive regions identified 

byusing CNOPs, based on twothe following assumptions that:  

When adding adaptive observations in sensitive regions identified, the surrounding environment around is idealized, and the 

improvements offrom adding observations added are reducingreduces the original errors to by a factor of 0.5 times. 5 

The obtained CNOPs achieved by us can be seen as the optimal initial perturbations. Once we reduce them in the sensitive 

regions, the benefits earned will be the bestare highest.  

Under the abovethese assumptions, by reducing the CNOPs to W×CNOPs and inserting them tointo the initial states we can 

investigate how the reductions ofin the CNOPs how to influence TC forecast skills. Besidesskill. Moreover, reducing the 

values of CNOPs to by a factor of 0.5 time in the identified sensitive regions identified by vertically integrated the energies 10 

can be used investigate that addinghow the addition of adaptive observations in the sensitive regions how tocan impact on TC 

forecast skillsskill. 

 First, as CNOPbecause CNOPs can be seen as the optimal initial perturbations in the TCAOs, we reduce CNOPthe CNOPs 

to W×CNOP, where W is a coefficient in (0, 1), and insert CNOP-the reduced CNOPs into the initial state withand allow for 

24- h of evolution of the nonlinear model of the MM5 model, then. Then, we calculate the forecast error withusing formula 15 

(11) to gain determine the benefits from suchof the reductions. Second, we determine the sensitive regions withvia vertically 

integrated energies using two schemes: the same points of energies in the different resolutions, and the equivalent percentage 

of points offrom the different grids. Then, we reduce the CNOPs toby a factor of 0.5 time only in the sensitive regions and 

insert CNOPs-the amended toCNOPs into the initial states with. The model is run for 24- h evolution of the nonlinear model.. 

The experimental results are denoteddescribed below. 20 

4.3.1 Reducing CNOP to W×CNOPs in the entire domain 

In this part, we explore the forecast improvement extents of reducing the CNOPs to W×CNOPs in the entire domain 

We explore the forecast improvements induced by reducing the CNOPs to W×CNOPs for the entire domain. The scheme is 

inserting CNOP-approach requires using the reduced intoCNOPs in the initial state withfor a 24-h evolution of the nonlinear 

modelsimulation of the MM5 model. The prediction error is computed by the formula (11): 25 

J1(uNT) = ‖PM(U0 + δu0) − PM(U0)‖2,          (11) 

Wherewhere the definitions of uNT, P, M and U0 are the same with thoseas in Eq. (1), (2) and (3). 

And theThe prediction error after reducing CNOP in the CNOPs for the entire domain is computed by the formula (12): 

J2(uNT) = ‖PM(U0 + Wδu0) − PM(U0)‖2 ,‖PM(U0 + Wδu0) − PM(U0)‖2,      

   (12) 30 

where W is the weighting coefficient, and itwhich is set asto 0.25, 0.5 or 0.75 for decreasing error. And theThe benefit from 

such reductions is calculated by the formula (13): 
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J1(uNT)−J2(uNT)

J1(uNT)
,.             (13) 

Obviously, theThe prediction benefit is increasing when W gets increases for decreasing W. Fig. 8 and Fig. 9 also show that 

the ACPW algorithm can obtain CNOPs with better benefits offrom reducing the CNOPs to W×CNOPs infor the entire domain 

than the ADJ-method, except for thewhen W is 0.25 for TC Fitow with the 60 km at a resolution. The reason of 60 km. This 

is thatbecause the ACPW algorithm optimizes in a low-dimensional feature space fromdue to the PCA, and focuses on more 5 

effective points in the entire domain, which has positive effects on improving the forecast.  

4.3.2 Reducing CNOP tothe CNOPs by a factor of 0.5 time in the sensitive regions 

In this part, weWe explore the forecast improvement extent which gained from caused by reducing the CNOPs to by a factor 

of 0.5 time in the sensitive regions. We determine the sensitive regions withbased on vertically integrated energies using two 

schemes: the 20 biggest points of with the highest energy inat the different resolution,resolutions and the 1/100 points of the 10 

different grids, which is 30 points in theat 60 km resolution (55×55) and 6 points in theat 120 km resolution (21×26). The 

sensitive regions with the 20 biggest points of having the highest energy are denoted in Fig. 10 and Fig. 11. 

In Fig. 9 and Fig. 10, we can see that when the equivalent points areapproach is adopted, a biggerlarger scope is covered with 

the 120 km resolution than with the 60 km resolution. When using the 20 points from the ADJ-method and ACPW as the 

sensitive regionsalgorithm and reducing the CNOPs to by a factor of 0.5 time in these points, the benefits are displayed in 15 

Table. 6. 

In Table. 6, for TC Fitow, compared to the ADJ-method, i.e.., 5.93% in theat 120 km resolution and 3% in theat 60 km 

resolution, the ACPW algorithm obtains a higher benefit (8.05%) in the for a resolution of 120 km resolution, and a lower 

benefit (-0.84%) in the ) for a resolution of 60 km resolution.. Here, -0.84% means thethat a reduction of CNOP cannot obtain 

ain the CNOPs results in no benefit, but and narrows the quality of the initial state. For TC Matmo, the ACPW algorithm 20 

achieves a much higher benefit (20.48%) than the ADJ-method’s (6.12%) in theat 60 km resolution, while a lower benefit 

(16.26%) than the ADJ-method’s (20.90%) in theat 120 km resolution. In addition, when using the same number of energy 

points, the benefits in theusing 120 km resolution are almost higher thannearly as high as those in thefor 60 km resolution, 

except for the benefit of ACPW in thealgorithm at 60 km resolution for TC Matmo. 

The sensitive regions with the 1/100 points offrom the different grids are denoted in Fig. 12 and Fig. 13. 25 

Fig. 12 and Fig. 13 showsshow that when using the different resolutions, the sensitive regions identified by the same method 

are different. And theThe sensitive regions identified by the ACPW algorithm are more dispersive than those identified by the 

ADJ-method, which is attributed to randomness of the intelligent algorithms. Table. 7 shows the benefits gained from reducing 

the CNOPs toby a factor of 0.5 time in the sensitive regions identified by the ADJ-method and ACPW algorithm with different 

points in the different resolutions. 30 

InAccording to Table. 7, for TC Fitow, the ACPW algorithm achieves a 4.23% benefit, which is higher than the ADJ-method 

(3.9%) in theat 60 km resolution, and a lower benefit 0.01% than the ADJ-method (1.72%) in theat 120 km resolution. For TC 
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Matmo, the ACPW algorithm also has a higher benefit (9.75%) and a lower benefit (6.86%) than the ADJ-method (1.21% and 

13.24%%, respectively).  

Combined with Table. 6 and Table. 7, we can conclude that the sensitive regions cover biggera larger scope, and higher benefits 

will beare obtained. When using the same proportion of grids with the different resolutions, the sensitive regions under the 

higher resolutions willresolution achieve the higher benefits. These results also provedemonstrate that the CNOPs obtained 5 

from the ACPW algorithm can identify sensitive regions with higher benefits in theat 60 km resolution. 

4.4 Simulated TC Tracks 

ToWe further investigate the validity of the sensitive regions identified by CNOP further, we compare the CNOPs using a 

comparison of simulated TC tracks ofpredicted by the MM5 model for each case withby inserting the CNOPs or W×CNOPs 

into the initial states, and; we also simulate the TC tracks withby inserting CNOPs-amended CNOPs in the different sensitive 10 

regions (20 or 30 points). AsBecause 120 km is the lowest resolution in suchthis research, and the tracks cannot be drawn 

under this resolution in our study, we only analyse the simulated TC tracks with theat 60 km resolution. To demonstrate clearly, 

weWe draw two tracks in a subfigure, which are the observed TC track from the CMA-SHTI and the simulated TC track from 

the MM5 model with overlaying; the different perturbations are overlayed onto the same initial states. According to the 

experimental results, when overlaying the CNOPs or amended CNOPs onto the same initial states, although the CNOPs are 15 

obtained from the different methods, the simulated tracks are the same. Therefore, we only exhibitdiscuss one group of figures 

for each case. The results are presented in Fig. 14 and Fig. 15. 

Fig. 14 demonstrates the simulated TC tracks of the MM5 withby inserting CNOPthe CNOPs or W×CNOP into the initial state 

for TC Fitow and; the four subfigures are the same. The reason is that the deviations between the simulated TC track and the 

observed TC track isare very small,; it is not easy to make improvements. Hence, when inserting different CNOPs into the 20 

identical initial states to simulate TC tracks, thea change is not evident. BesidesMoreover, the resolution we used is thewas 60 

km, which is not high enough to show more details about changing tracks.  

Fig. 15 demonstrates the simulated TC tracks offrom the MM5 withmodel by inserting CNOPthe CNOPs or W×CNOP into 

the initial state for TC Matmo. SubfigureSubfigures (a) and (b) are the same, and from (b) to (d), the simulated positions after 

24 hours are getting closer to the observed positions. It illustratesThese results illustrate that when the CNOPs 25 

achievedobtained by the ACPW algorithm and ADJ-method being seenare used as the optimal initial perturbations, reducing 

the CNOPs havehas a positive effectseffect on the forecast skillsskill of the simulated tracks. And that also provesMoreover, 

the ACPW algorithm is a meaningful and effective method for solving the approximate CNOPCNOPs of the ADJ-method. 

We also simulate TC tracks withby inserting the amended CNOPs, which are reduced toby a factor of 0.5 timein only in the 

sensitive regions. And weWe use 20 and 30 points as the sensitive regions to study such difference how to affectthe number 30 

of points affects the forecast skills. And theskill. The results are shown in Fig. 16 and Fig. 17.   

In Fig. 16 and Fig. 17, the simulated TC tracks are the same, for not only the different methodmethods but also the different 

sensitive regions. We can conclude that the ACPW algorithm, an adjoint-free method, is a meaningful and effective method 



14 

 

for solving the approximate CNOPCNOPs of the ADJ-method. According to these results, we can also conclude that using 20 

or 30 points as the sensitive regions, results in the same improvements are achievedimprovement in the TC tracks in terms of 

forecast skills, so that we can useskill. Thus, fewer points can be used in the real adaptive observations to reduce costs. 

4.5 The efficiency of the ACPW algorithm 

To promote the efficiency of the ACPW algorithm, we parallelparallelize it with MPI technology. The time consumption of 5 

each case is nearly the same almost. Hence, we can use one group of experimental results to elucidate the efficiency of the 

ACPW. Since algorithm. Because the ADJ-method cannot be parallelized because of its each input dependingdepends on the 

output of the previous step, its time consumption is not changed. And asMoreover, because this method generally uses 4~8 

initial guess fields to obtain the optimal value, we use one and four initial first guess fields to achieve CNOP.determine the 

CNOPs. The time consumptionconsumptions of the ADJ-method and ACPW isalgorithm are shown in Table. 8. 10 

1. ADJ-method (1) means using 1 initial guess field, and ADJ-method (14) means using 4 initial guess fields. 

When using theAt 120 km resolution, the time consumptionconsumptions of the ADJ-method using 1 and 4 initial guess fields 

isare 12.4 minutes, and 49.7 minutes, respectively. And when using theAt 60 km resolution, the time consumption 

isconsumptions are 79.9 minutes, and 321.1 minutes, respectively. Unlike the ADJ-method, the ACPW has been paralleled, 

and whenalgorithm can be parallelized. When using 22 cores, the ACPW costsmethod requires much less time, i.e., 2.74 15 

minutes for theat 120 km resolution and 20.8 minutes for theat 60 km resolution. Obviously, the ACPW has higher efficiency 

when using the different resolutions.. Compared to the ADJ-method (1), the speedup reaches 4.53 and 3.84 for the different 

resolutions. Compared to the ADJ- method (4), the speedup reaches 18.14 and 15.44. Although the different initial guess fields 

are calculated in parallel, the time consumption must be more than for the ADJ-method (1); the ACPW algorithm is also faster 

than the ADJ-method. 20 

5 Summaries and Conclusions 

In this study, we present a novel approach, adaptive cooperation co-evolution of paralleled PSO and WSA (ACPW), to solve 

CNOP. And the CNOPCNOPs. The CNOPs based on the ACPW isalgorithm are applied to study sensitive regionsregion 

identification ofin TCAOs in the MM5 model, without using thean adjoint model. We study two TC cases, Fitow (2013) and 

Matmo (2014), with 60 km and 120 km resolutions. The objective function is set as the total dry energy, which is the based on 25 

24 hours nonlinear development of -hour simulations starting with initial perturbations at the prediction time within the 

verification area. We also calculate CNOPCNOPs with the ADJ-method and the result is seen; these results are used as a 

benchmark.  To validate the validity of ACPW algorithm, the CNOPs obtained from the different methods are compared in 

terms of the patterns, energies, similarities, benefits of reduction of CNOPs and simulated TC tracks with perturbationsthe 

CNOPs and simulated TC tracks with perturbations. To evaluate the advantages of the ACPW algorithm, we run the PSO, 30 
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WSA and ACPW programs 10 times and compare the maximum, minimum and mean objective values as well as the RMSE; 

the analysis results demonstrate that the hybrid strategy and cooperation co-evolution are useful and effective. 

 According to all of the experiments, we can getthe following five conclusions as followsare obtained: 

(1) Compared with the ADJ-method, the ACPW algorithm can obtain CNOPs with more similar patterns of temperature and 

wind for TC Fitow than those for TC Matmo.  5 

(2) When using theAt 120 km resolution, the similarities ofin the CNOPs achieved by the ADJ-method and the ACPW 

algorithm are higher than those using theat 60 km. The reason is that although the major patterns of thosethe CNOPs are similar, 

the other parts of them are different, which differ and cover larger areas. Actually, when usingAt a higher resolution, we can 

achieveresolve more small-scale information and. Moreover, sensitive regionsregion identification will bebecomes more 

accurate. AsRegarding the analysis of CNOP patterns, we assuredly get more similar major patterns when using the are 10 

obtained at 60 km resolution than using the 120 km resolution, but, although the similar parts are very small compared with 

the other differentdiffering parts. However, the decreased similarities willdo not affect identifying sensitive regions, because 

the adaptive observationobservations only focusesfocus on the points with biggera larger influence.   

(3) Under the assumptions that whenWhen adding adaptive observations in the sensitive regions identified, the environments 

around for a surrounding environment that is idealized, and the improvements of observations added are reducing the original 15 

errors to are reduced by a factor of 0.5 time;; the CNOPs achieved by us can be seen as the optimal initial perturbations, once 

we reduce them. Once they are reduced in the sensitive regions, the benefits earned will be the best.are highest. We design two 

groups of idealized experiments to investigate the validity of the sensitive regions identified by the CNOPs for TC trackstrack 

forecast skillsskill: reducing CNOPs to W×CNOPs and reducing the values of CNOPs toby a factor of 0.5 time in the sensitive 

regions identified using the vertically integrated energies. The experimental results show that the CNOPs of the ACPW 20 

algorithm produce lower energies than the ADJ-method, but can obtain better benefits when reducing the CNOPs in the above 

two ways. 

(4) The ACPW algorithm can gain the effective CNOPsbe effect for identifying the sensitive regions, which have the same 

influencesinfluence on the forecast improvements of the simulated TC tracks with the ADJ-method. We compare the different 

forecast improvements of the TC tracks earned from the different reduced perturbations reduced, including reducing the 25 

CNOPs to W×CNOPs infor the entire domain and reducing the CNOPs toby a factor of 0.5 time in the sensitive regions. The 

experimental results all support our conclusions. 

(5) The ACPW algorithm has a higher efficiency than the ADJ-method. Compared to the ADJ- method using 1 initial guess 

field, the speedup reaches 4.53 for theat 120 km resolution and 3.84 for theat 60 km resolution. Compared to the ADJ-method 

using 4 initial guess fields, the speedup reaches 18.14 and 15.44, respectively. 30 

All of the conclusions provedemonstrate that the ACPW algorithm is a meaningful and effective method for solving 

approximate CNOP inCNOPs and identifying sensitive regions of TCAOs. In addition, as we reduce the dimensions with PCA, 

the CNOPs obtained by us will lose some energiesenergy. Compared to the CNOPs- form the ADJ-method, the CNOPs- from 

the ACPW algorithm are all are local CNOPs. But inHowever, for the ACPW algorithm, they are the global CNOPs. 
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SinceBecause PCA makes our optimization focusingfocus on more effective points with higher energies, that the ACPW 

algorithm can achieve the CNOPs bringing thewith better benefits and the same influence on the improvements of theon TC 

trackstrack forecast skillsskill.  

We are restricted to computation sources for the time being, which. We are also limitslimited by the parallelization of the 

ACPW algorithm. We will improve the computation conditions, and use the parallel ACPW algorithm to solve CNOPCNOPs 5 

in the weather research forecast (WRF) model with a finer grid and higher resolutionsresolution. In addition, we will apply 

this- type of method to solve CNOPCNOPs in the community earth system model (CESM) model, which does not have an 

adjoint model. 
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Figure 1: The framework of ACPW method.:  
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Figure 2: Convergence of the PSO, WSA and ACPW methods. PSO is denoted as the black line with squares, the WSA is shown as 

the red line with circles, and the ACPW algorithm is represented as the blue line with triangles. 

 

Figure 3:  The Box-plot of the PSO, WSA and ACPW methods for TC Fitow with the 60kmat 60 km resolution. The red box 5 

denotes the PSO, the green box is for the WSA, and the blue box shows the results of the ACPW algorithm.  
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Figure 4: CNOP patterns at σ=0.7 for TC Fitow. The shaded parts represent the temperature (units: K)), and the vectors describe 

the wind (units: m s-1). The squares drawindicate the verification areas, and the initial cyclone positions are shown onby ⊕. (a) and 

(b) denote the CNOP patterns withat 120 km resolution offor the ADJ-method and ACPW algorithm, respectively; (c) and (d) 

represent the CNOP patterns withat 60 km resolution offor the ADJ-method and ACPW algorithm, respectively. 5 
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Figure 5: As in Fig. 3 except for tropical storm Matmo. The shaded parts represent the temperature (units: K) and the vectors 

describe the wind (units: m s-1). The squares draw the verification areas and the initial cyclone positions are shown on⊕. (a) and 
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(b) denote the CNOP patterns with 

 

Figure 5: As in Fig. 3 except for tropical storm Matmo.  

120 km resolution of ADJ-method and ACPW, respectively; (c) and (d) represent the CNOP patterns with 60 km resolution of ADJ-

method and ACPW, respectively. 5 
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Figure 6: Same asAs in Fig. 3, but except that the shaded parts represent the vertically integrated energies (units: J kg-1). 

 

Figure 7: Same asAs in Fig. 4, but except that the shaded parts represent the vertically integrated energies (units: J kg-1)). 
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Figure 8: Benefits (percent, %) gained from reducing the CNOPs to W×CNOPs achieved byfor the ADJ-method and ACPW 

inalgorithm across the entire domain for TC Fitow (2013). The x-coordinate is the W coefficient values. And, and the y-coordinate 

denotes the benefits (percent, %) derived from the two methods. The ADJ-method is describedpresented as the black line with 

squares, and the ACPW result is the red line with circles. 5 

 

Figure 9: Benefits (percent, %) gained fromby reducing the CNOPs to W×CNOPs identified byfor the ADJ-method and ACPW 

inalgorithm across the entire domain for TC Matmo (2014). The x-coordinate is the W coefficient values. And, and the y-coordinate 

denotes the benefits (percent, %) derived from the two methods. The ADJ-method is describedpresented as the black line with 

squares, and the ACPW result is the red line with circles. 10 
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Figure 10: Sensitive regions identified by the CNOPs with 20 points for TC Fitow. The squares drawindicate the verification areas, 

and the initial cyclone positions are shown onas ⊕. (a) and (b) denote the CNOP patterns withat 120 km resolution offor the ADJ-

method and ACPW algorithm, respectively; (c) and (d) represent the CNOP patterns withat 60 km resolution offor the ADJ-method 

and ACPW algorithm, respectively. 5 
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Figure 11: Sensitive regions identified by the CNOPs with 20 points for TC Matmo. The squares drawindicate the verification areas, 

and the initial cyclone positions are shown onas ⊕. (a) and (b) denote the CNOP patterns withat 120 km resolution offor the ADJ-

method and ACPW algorithm, respectively; (c) and (d) represent the CNOP patterns withat 60 km resolution offor the ADJ-method 

and ACPW algorithm, respectively. 5 
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Figure 12: Sensitive regions identified by the CNOPs with 6 points inat 120 km resolution and 30 points inat 60 km resolution for 

TC Fitow. The squares drawindicate the verification areas, and the initial cyclone positions are shown onas ⊕. (a) and (b) denote 

the CNOP patterns withat 120 km resolution offor the ADJ-method and ACPW algorithm, respectively; (c) and (d) represent the 

CNOP patterns withat 60 km resolution offor the ADJ-method and ACPW algorithm, respectively. 

 5 

Figure 13: Sensitive regions identified by the CNOPs with 6 points inat 120 km resolution and 30 points inat 60 km resolution for 

TC Fitow. The squares drawindicate the verification areas, and the initial cyclone positions are shown onas ⊕. (a) and (b) denote 

the CNOP patterns withat 120 km resolution offor the ADJ-method and ACPW algorithm, respectively; (c) and (d) represent the 

CNOP patterns withat 60 km resolution offor the ADJ-method and ACPW algorithm, respectively. 
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Figure 14: Simulated TC tracks offrom MM5 withby inserting CNOPthe CNOPs or W×CNOP into the initial state in the entire 

domain for TC Fitow. Solid circles represent the observed TC tracks offrom the CMA, and the hollow circles show the simulated 

TC tracks offrom the MM5 model. (a), (b), (c) and (d) denote the CNOP, 0.75×CNOP, 0.5×CNOP and 0.25×CNOP results, 

respectively.  5 
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Figure 15: Simulated TC tracks offrom MM5 withby inserting CNOPthe CNOPs or W×CNOP into the initial state in the entire 

domain for TC Matmo. Solid circles represent observed TC tracks of CMA, and hollow circles show the simulated TC tracks of the 

MM5 model. (a), (b), (c) and (d) denote CNOP, 0.75×CNOP, 0.5×CNOP and 0.25×CNOP, respectively. 
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Figure 16: Simulated TC tracks offrom MM5 withby inserting the amended CNOPs, which are reduced toby a factor of 0.5 time, in 

only in the sensitive regions, into the initial state for TC Fitow. Solid circles represent the observed TC tracks offrom the CMA, and 

the hollow circles show the simulated TC tracks offrom the MM5 model. (a), (b), (c) and (d) denote the ADJ-method with 20 points, 

ADJ-method with 30 points, ACPW algorithm with 20 points and ACPW algorithm with 30 points, respectively.  5 
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Figure 17: Simulated TC tracks offrom MM5 withby inserting the amended CNOPs, which are reduced toby a factor of 0.5 time, in 

only in the sensitive regions, into the initial state for TC Matmo. Solid circles represent observed TC tracks of CMA, and hollow 

circles show the simulated TC tracks of the MM5 model. (a), (b), (c) and (d) denote ADJ-method with 20 points, ADJ-method with 

30 points, ACPW with 20 points and 30 points, respectively.  5 

Table 1: The parameters of ACPW. 

Name Meaning Value 

n Number of principle components 50 

N Number of individuals 

420 with 120kmat 

120 km 

200 with 60kmat 

60 km 

a Adaptive coefficient Initial: 0.5 

ω Inertia coefficient 0.8 

c1 Self-awareness to track the historically optimal position 2.05 
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c2 
Social-awareness of the particle swarm to track the globally 

optimal position 
2.05 

ϒ Restraint factor to control the speed 0.729 

θ Velocity of individual moving 0.5 

r Local optimizing radius 
8×δ/original 

dimensions 

s Step size of updating individual 0.6 

pa Probability of individual escaping from current position 0.3 

Total_Step The number of iterations 50 

Table 2: The meanings of all symbols. 

Symbols Values/ components Meanings 

δu0 u0
′ , v0

′ , T0
′ , ps0

′ , Initial perturbation 

uNT ut
′, vt

′, Tt
′, pst

′ 
Nonlinear evolution of 

perturbed U0 at time t 

D Values rely on cases Verification area 

σ (0, 1] Vertical coordinate 

cp 1005.7 J kg−1 K−1 
Specific heat at  

constant pressure 

Ra 287.04 J kg−1K1 K−1 Gas constant of dry air 

Tr 270K270 K Constant parameter 

pr 1000hPa1000 hPa Constant parameter 

Table 3: theThe analysis results of the PSO, WSA and ACPW methods. 

Algorithm MaxMaximum 

Value 

MinMinimum 

Value 

Mean Value RMSE 

PSO 1034.192573 724.086002 900.7488578 0.121400896 

WSA 1628.841294 323.7493169 930.9103862 0.431193448 

ACPW 2240.275956 1243.377921 1542.505251 0.216750584 

Table 4: The similarities of CNOPs gained from ACPW and ADJ-method. 

Table 4:  

ACPW&/ADJ-method 120km120 km 60km60 km 
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Fitow -0.83 0.43 

Matmo 0.42 0.37 

Table 5: The ratios of energy for 24-h nonlinear evolutions with evolution by inserting the CNOPs-gained by from the ACPW 

algorithm and ADJ-method into the initial states. 

ACPW/ADJ-method 120 km120km 60km60 km 

Fitow 94.1% 85.1% 

Matmo 87.3% 70.2% 

Table 6: Benefits (percent, %) gained from reducing the CNOPs toby a factor of 0.5 time in the sensitive regions identified by the 

ADJ-method and ACPW algorithm with 20 points. 

Cases Methods 60km60 km 120km120 km 

Fitow ADJ-method 3% 5.93% 

 ACPW -0.84% 8.05% 

Matmo ADJ-method 6.12% 20.90% 

 ACPW 20.48% 16.26% 

Table 7: Benefits (percent, %) gained from reducing the CNOPs toby a factor of 0.5 time in the sensitive regions identified by the 5 
ADJ-method and ACPW algorithm with 6 in 120kmpoints at 120 km resolution and 30 points in 60kmat 60 km resolution. 

Cases Methods 60km60 km (30 points) 120km120 km (6 points) 

Fitow ADJ-method 3.9 1.72% 

 ACPW 4.23% 0.01% 

Matmo ADJ-method 1.21% 13.24% 

 ACPW 9.75% 6.86% 

Table8: The time consumption of the ADJ-method and ACPW algorithm (unit: minutes). 

Methods 60km60 km  120km120 

km 

ADJ-method (1)1 79.9 12.4 

ADJ-method (4)1 321.1 49.7 

ACPW 20.8 2.74 
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