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The authors are concerned with a system where an L84 system is weakly coupled with
a L63 system, applying the recently introduced Wouters-Lucarini (WL) linear response
approach to devise a reduced model for the L84-variables.

The authors show numerically that the reduced system is able to reproduce the mean
and covariance of the resolved L84 variables of the full system. Furthermore they use
the Wasserstein distance to assess the relative merit of a first order and a second
order WL parametrization. They show that the WL parametrization provides a reliable
parametrization in the case when the driving L63 is a fast driver and when it is slow
driver. In particular the latter case is not amenable to classical homogenization theory.
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I recommend publication subject to some minor issues:

1.) page 2: The Mori-Zwanzig formalism does not coarse grain by “adding to the
equations of motion . . .a deterministic, a stochastic and a non-markovian term”. It is a
mere reformulation of the dynamics which consists of (not adds) those three terms.

2.) page 3: between lines 5 and 10; the Wasserstein distance (or any distance mea-
suring how different the two pdfs are is not a measure “how different the attractors
are”. One can construct the same pdf with very different chaotic systems. The authors
could maybe replace “attractor” by “statistical behaviour” (although it does not tell you
anything about temporal behaviour such as correlation functions).

3.) page 6: R in (20) is not defined/used anywhere.

4) page 7: above (25); \mu and \nu are measures nots sets.

5.) A reader would profit, I believe, from more detailed figure captions. Which system
is used (L63 is fast or slow)? What are the parameters?
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This paper explores a scheme for parameterization and tests it on an idealized case.
The paper is interesting and the results are convincing, albeit on the test case the
authors chose. A few points remain unclear in the rationale of the paper and its formu-
lation.

Major points

The introduction presents the motivation of the paper, which is subgrid parameteriza-
tions due to the wide range of scales that occur in the modelling of geophysical fluids.
The introduction focuses on climate models, for which parameterizations essentially
involve convection and clouds, i.e. a range of spatial scales. But the authors focus

C1

on a temporal diversity of scales. I hence have the feeling that they treat a different
problem than the one that is addressed by the works of Palmer et al. on stochastic
parameterizations (of physical processes).

Can the authors provide an illustration (or a discussion) of how their results can be
adapted to the problems of subgridscale parameterizations? (and not “just” the ques-
tion of temporal scales).

The authors do not specify how they integrate the system Eqs. (7-12). I guess they use
a Runge-Kutta scheme. But given the fact that two time scales are active, they must
use an integration time step that is adapted to the fastest one. This problem occurs
when coupling ocean and oceanic models, which bear different CFL conditions. When
they integrate Eq. (7-9) alone and add a noise, they might chose to use a different
time increment. This would be the rationale for parameterization. What is the new time
increment? Please give more details on the experimental settings.

Minor points

p. 2, l. 27: The paper does not seem to deal with subgrid phenomena.

p. 2, l. 34: this paragraph states how you plan to solve a scientific question, but you do
not mention the precise scientific question you want to address. The scientific question
does not seem to that of subgrid scale parameterization.

p. 4, Eqs. (4-5): using lowercase for the Lorenz 63 system makes the reading confus-
ing. The use of upper and lower case for symbols in mathematical works is generally
well defined. I suggest using only uppercase.

Section 3: what are $\Psi$, $D$, $S$ and $M$?

l. 18 says that they “indicate” [. . .], but this is not a definition.

The link between $\Psi_K$ and $x$ (from the Lorenz 63 system) has to be guessed to
understand Eq. (18). Please make things more explicit.
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p. 6, l. 5: what ergodic measure?

Eq. (19): is $\sigma$ related to the $\sigma$ in the Lorenz 63 system? It is not a
standard deviation either. What is it?

Eq. (20): what is $\rho$? Why should the average of $\sigma$ be 0?

I do not understand where Eq. (21) comes from. I do not understand why $h$ is always
0.

Table 1: You use $\sigma$ again, but it obviously means something different!

Interactive comment on Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-
2018-16, 2018.
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We wish to thank the reviewer for the positive review of our paper and for his/her useful
comments.

1-2) We applied the modifications requested.

3) We defined R(t) above the corresponding equation.

4) The sentence has been modified accordingly.

5) We added to all the captions the value of τ , pointing out the case of fast/slow Lorenz
63. We think that further additions would be redundant, since all the other model
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parameters used throughout the paper remain unchanged.
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We wish to thank the reviewer for his/her useful comments, through which we hope to
have improved the paper.

Major points:

1) In this paper we focus on the time scale separation between Lorenz 84 and Lorenz
63 - along with the fact that we can parametrize a slow system with the same approach
used for a fast system, thus proving the extreme flexibility of the scheme presented
here. In a previous paper (Vissio and Lucarini 2018) we treated more explicitly the case
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of parametrizing the effects of the interaction between the large scale, slow variables
of interest with the small, fast scales we want to parametrize. Nevertheless, we have
modified the introduction to better describe our aim.

2) We have added the scheme and the time increment right below Eqs.7-12. The
latter has been set to the standard for Lorenz models (0.005) but, in order to check
that this increment was small enough, we have run tests with timestep=0.001. The
results found conform very well with what reported in the paper, using the larger time
increment 0.005.

Minor points:

1-2) See Major point 1.

3) We have changed the name of Lorenz 63 variables from x to x̃ (similarly for y and
z).

4-5) We have specified the meaning of Ψ under Eqs.13-14 and that D, S and M are
defined by Eqs.18-22.

6) We have written the value of the two couplings at the beginning of Section 3.1.

7) We are referring to the ergodic measure of x̃ (added in the paper).

8) σ is a stochastic noise, we have clarified this right after Eq.19. In order to avoid
confusion, we changed the notation to ω.

9) The reviewer is right, we have explained that, e.g., ρo,x indicate the expectation
average with the respect to the measure of the Lorenz 63 system.

10) As written at the beginning of Section 3, the derivation and main results concerning
the paramerization scheme is reported in Wouters and Lucarini (2012, 2013, 2016) and
further explained in Demaeyer and Vannitsem (2017). Our aim here is just to recap the
main findings in order to apply the formulas to the model.

C2



11) σ in Table 1 is the standard deviation, as specified in the caption. We have now
changed notation in the other two cases (Lorenz 63 parameter, now s, and stochastic
noise, now ω) and clarified in the text and in the table that the statistics are computed
over the ensemble of realisations.

Interactive comment on Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-
2018-16, 2018.
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Changes in manuscript

• New title, to highlight the importance of Wasserstein distance in our paper.

• Rewrite of several sentences to improve the exposition.

• More detailed figure captions.

• More definitions for parameters and variables used.

• New symbols for parameters with the same name.

• Rewrite of parts of the introduction to expose the focus of our paper on time scale

separation instead of subgrid scale.

• More details on time scheme used.

• Partial rewrite of the Lorenz 84 forced by Lorenz 63 subsection.

• Better exposition of Wouters-Lucarini approach, marking as vector the quantities in

Eqs.13-22.

• New final sentence.
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Abstract. Constructing accurate, flexible, and efficient parametrizations is one of the great challenges in the numerical mod-

elling of geophysical fluids. We consider here the simple yet paradigmatic case of a Lorenz 84 model forced by a Lorenz

63 model and derive a parametrization using a recently developed statistical mechanical methodology based on the Ruelle

response theory. We derive an expression for the deterministic and the stochastic component of the parametrization and we

show that the approach allows for dealing seamlessly with the case of the Lorenz 63 being a fast as well as a slow forcing5

compared to the characteristic time scales of the Lorenz 84 model. We test our results using both standard metrics based on

the moments of the variables of interest as well as Wasserstein distance between the projected measure of the original system

on the Lorenz 84 model variables and the measure of the parametrized one. By testing our methods on reduced phase spaces

obtained by projection, we find support to the idea that comparisons based on the Wasserstein distance might be of relevance

in many applications despite the curse of dimensionality.10

1 Introduction

The climate is a forced and dissipative system featuring variability on a large range of spatial and temporal scales, as a result

of many complex and coupled dynamical processes inside it (Peixoto and Oort, 1992; Lucarini et al., 2014a; Ghil, 2015).

Numerical models are able to resolve explicitly only a relatively small range of such scales. In particular, it is crucial to derive

efficient and accurate ways to surrogate the effect of dynamical processes occurring on the small spatial and temporal scales15

that are not explicitly resolved (e.g. because of excessive computational or storage costs) by the model. The operation of

constructing so-called parametrizations is key to the development of geophysical fluid dynamical models and stimulates the

investigation of the fundamental laws defining the multiscale properties of the coupled atmosphere-ocean dynamics (Uboldi

and Trevisan, 2015; Vannitsem and Lucarini, 2016). Traditionally, the development of parametrizations boiled down to deriving

deterministic empirical laws able to describe the effect of the small scale dynamical processes. More recently, it has become20

apparent the need to include stochastic terms able to provide a theoretically more coherent representation of such effects and,

at practical level, an improved skill (Palmer and Williams, 2008; Franzke et al., 2015; Berner et al., 2017).
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A first way to derive or at least justify the need for stochastic parametrizations comes from homogenization theory (Pavliotis

and Stuart, 2008), which leads to constructing an approximate representation of the impact of the fast scales on the slow

variables as the sum of two terms, a mean field term and a white noise term. Such an approach suffers from the fact that one

has to take the rather nonphysical hypothesis that an infinite time scale separation exists between the fast and the slow scale. As

the climate is a multiscale system, such a methodology is a bit problematic to adopt. Yet, this point of view has been crucial in5

the development of methods aimed at deriving reduced order models for system of geophysical interest (see, e.g., Majda et al.

(1999, 2001, 2003); Franzke et al. (2005)).

Mori et al. (1974) and Zwanzig (1960, 1961) analyzed, in the context of statistical mechanics, the related problem of studying

how one can project out the effect of a group of variables, with the goal of constructing effective evolution equations for a

subset of variables of interest. They reformulated the dynamics of such variables expressing them as a sum of three terms, a10

deterministic term, a stochastic forcing and a memory term. The memory term defines a non-markovian contribution where the

past states of the variables of interest enter the evolution equation. In the limit of infinite time scale separation such last term

tends to zero, whilst the random forcing approaches the form of a (in general, multiplicative) white noise.

The triad of terms - deterministic, stochastic and non-markovian - was also found by Wouters and Lucarini (2012), who

proposed a method (we refer to it in what follows as WL parametrization) for constructing parametrizations based on the15

Ruelle response theory (Ruelle, 1998, 2009). They interpreted the coupling between the variables of interest and those one

wants to parametrize as a weak perturbation of the otherwise unperturbed dynamics of the two groups of variables. A useful

feature of this approach is that it can be applied on a wide variety systems that do not feature a clear-cut separation of scales. The

parametrizations obtained along these lines match the result of the perturbative expansion of the projection operator introduced

by Mori and Zwanzig for describing the effective dynamics of the variables of interest (Wouters and Lucarini, 2013, 2016).20

Another quality of the WL paramerization is that it is not tailored to optimise the representation of the statistics of some

specific statistical property, but rather approximates coherently well all observables of the system of interest. This method has

already been successfully tested in simple to intermediate complexity multiscale models by Wouters et al. (2016); Demaeyer

and Vannitsem (2017); Vissio and Lucarini (2018).

Conceptually similar results have been found through bottom up, data driven approaches, by Kravtsov et al. (2005); Chekroun25

et al. (2015a, b); Kondrashov et al. (2015). Specifically, Kravtsov et al. (2005) constructed effective models from climatic time

series through an extension to the non linear case of the multilevel linear regressive method, while Kondrashov et al. (2015)

showed how non-markovian data-driven parametrizations emerge naturally when we consider partial observations from a large-

dimensional system.

Even when a parametrization is efficient enough to represent unresolved phenomena with the desired precision, problems30

arise when it comes to dealing with scale adaptivity. Re-tuning the parametrization to a new set of parameters of the model

usually means running again long simulations, adding further computational costs. For this reason the development of a scale

adaptive parametrization is considered to be a central task in geosciences (Arakawa et al., 2011; Park, 2014; Sakradzija et al.,

2016). In a previous paper, the authors demonstrated the scale adaptivity of the WL approach by testing it in a mildly modified

version of the Lorenz 96 model (Lorenz, 1996). A further degree of flexibility of this approach has been explored in another35
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recent publication (Lucarini and Wouters, 2017), who provided explicit formulas for modifying the parametrization when the

parameters controlling the dynamics of the full system are altered.

In this paper, we wish to apply the WL parametrization to a simple dynamical system introduced by Bódai et al. (2011)

and constructed by coupling the Lorenz 84 (Lorenz, 1984) model with the Lorenz 63 (Lorenz, 1963) model. In what follows,

we want to parametrize the dynamical effect of the variables corresponding to the Lorenz 63 on the variables corresponding5

to the Lorenz 84 system, changing time scale separation to switch the roles of slow and fast scale systems between the two

models, which evolve on the same grid-scale (no subgrid phenomenon involved). We wish to extend what studied in Vissio

and Lucarini (2018) by focusing on doing a systematic comparison of the properties of the projected measure of the original

coupled system on the subspace spanned by the variables of the Lorenz 84 model with the actual measure of the parametrized

model. In particular, we will study the Wasserstein distance (Villani, 2009) between the coarse-grained estimates of the two 3-10

dimensional invariant measures. Additionally, we will look at the Wasserstein distance of the measures obtained by projecting

on two of the three variables of interest, which allows for a comprehensive evaluation of how different the one-time statistical

properties of the two systems are. The Wasserstein distance has been proposed by Ghil (2015) as a tool for studying the climate

variability and response to forcings, and applied by Robin et al. (2017) in a simplified setting.

In Section 2 we describe thoroughly the individual models and the full coupled model, while in Section 3 we briefly review15

Wouters-Lucarini’s parametrization and its application to the Lorenz 84-Lorenz 63 coupled model. Section 4 is dedicated to

discussing the Wasserstein distance and in particular a) whether it is efficient in summarizing the quality of the parametrization,

b) how sensitive our analysis is to the coarse-graining of the phase space, and c) whether useful conclusions can be drawn by

looking at the problem in a projected space of two variables only. Section 5 provides the main results of our analysis. In the

last Section we draw our conclusions and propose future investigations.20

2 Models

2.1 Lorenz 84

The Lorenz 84 model (Lorenz, 1984) provides an extremely simplified representation of the large scale atmospheric circulation:

dX

dt
=−Y 2−Z2− aX + aF0, (1)

dY

dt
=XY − bXZ −Y +G, (2)25

dZ

dt
=XZ + bXY −Z. (3)

where the variable X describes the intensity of the westerlies, while the variables Y and Z correspond to the two phases of the

planetary waves responsible for the meridional heat transport. Thus, Eq.(1) describes the evolution of the westerlies, subject to

the external forcing F0, dampened both by the linear term −aX and by nonlinear interaction with the eddies −Y 2 and −Z2.

This interaction amplifies the eddies through the terms XY and XZ in Eqs.(2)-(3). Furthermore, the eddies are affected by30

the westerlies through the terms −bXZ and bXY . The constant b regulates the relative time scale between diplacements and
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amplifications. In Eqs.(2)-(3) we can, as in Eq.(1), see a linear dissipation, whilst the symmetry between the two equations is

broken by the external forcing G.

2.2 Lorenz 63

The Lorenz 63 model is probably the most iconic chaotic dynamical system (Saltzman, 1962; Lorenz, 1963; Ott, 1993) and was

developed through a severe truncation of the partial differential equations describing the Rayleigh-Benard problem (see e.g.5

Hilborn (2000) for a complete, yet simple, derivation of the model) and describe the evolution of three modes corresponding

to large scale motions and temperature modulations in the Rayleigh-Bénard problem. The three equations are:

dx̃

dt
= s(ỹ− x̃), (4)

dỹ

dt
= ρx̃− ỹ− x̃z̃, (5)

dz̃

dt
=−βz̃+ x̃ỹ, (6)10

where x̃, ỹ and z̃ are proportional, respectively, to the intensity of the convective motions, to the difference between temper-

atures of upward and downward fluid flows and to the difference of the temperature in the center of a convective cell with

respect to a linear profile (since Eqs.(5)-(6) derive from thermal diffusion equation). The constants s, ρ and β are constants

which depend on kinematic viscosity, thermal conductivity, depth of the fluid, gravity acceleration, thermal expansion coeffi-

cient; specifically, s is also known as the Prandtl Number.15

2.3 Coupled model

The full model used in this paper, proposed by Bódai et al. (2011), is constructed by coupling the two low-order models

introduced before as follows. The Lorenz 63 system acts as a forcing for the Lorenz 84 system, which represents the dynamics

of interest. The dynamics of the two systems has a time scale separation given by the factor τ and can be written as follows:

dX

dt
=−Y 2−Z2− aX + a(F0 +hx), (7)20

dY

dt
=XY − bXZ −Y +G, (8)

dZ

dt
=XZ + bXY −Z, (9)

dx̃

dt
= τs(ỹ− x̃), (10)

dỹ

dt
= τ(ρx̃− ỹ− x̃z̃), (11)

dz̃

dt
= τ(−βz̃+ x̃ỹ). (12)25

It is important to underline that the coupling between the Lorenz 84 and the Lorenz 63 is uni-directional: the latter model

affects the former and, acts as an external forcing, with no feedback acting the other way around.
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In what follows, we choose fairly classical values for the parameters: a= 0.25, b= 4, s= 10, ρ= 28, β = 8/3; the two

forcings are set as F0 = 8 (corresponding to the so-called winter conditions) and G= 1. The parameter h is a modulation

coefficient that defines the coupling strength and we choose h= 0.25 in order to provide a stochastic forcing between two and

four orders of magnitude smaller (on average) than the tendencies of the X variable (see below).

The parameter τ defines the ratio between the internal time scale of the two systems: in case of τ > 1, the Lorenz 63 provides a5

forcing that is typically on time scales shorter than those of the system of interest; while if τ < 1 the forcings can be interpreted

as a modulating factor of the dynamics of the Lorenz 84 model. In the first case, in particular, we can interpret the Lorenz 63 as

being the cause of the forcing exerted by convective motions in the synoptic scale dynamics described by the Lorenz 84 model.

The numerical integration scheme used is a Runge-Kutta 4 with a time step of 0.005 (Bódai et al., 2011).

Henceforth, we will refer to the standard Lorenz 84 as uncoupled model, whilst the Lorenz 84 subject to the coupling with10

the Lorenz 63 will be called coupled model.

3 Wouters Lucarini’s parametrization

Wouters and Lucarini (2012, 2013, 2016) presented a top-down method suitable for constructing parametrizations for chaotic

dynamical systems in the form:

dK

dt
= FK(K) + εΨK(K,J), (13)15

dJ

dt
= FJ(J) + εΨJ(K,J), (14)

where the K = (X,Y,Z) is the vector of the variables we are interested in and the J = (x̃, ỹ, z̃) is the vector of the variables

we want to parametrize. The coefficient ε controls the strength of the couplings, i.e. ΨK(K,J) and ΨJ(K,J).

The parametrization is obtained assuming the chaotic reference and applying Ruelle response theory (Ruelle, 1998, 2009);

the effect of the coupling in Eq.(13) is approximated, up to the second order in ε, by three terms: the first order consists in a20

deterministic term, while the second order includes a stochastic forcing and a non-markovian term. The general form of the

parametrization (e.g. Vissio and Lucarini (2018)) is:

dK

dt
= FK(K) + εD(K) + εS{K}+ ε2M{K}, (15)

where D, S and M indicate, respectively, deterministic, stochastic and memory term and are defined below in Eqs.(18)-(22).

Note that the projection on the variables of interest of invariant measure of the full system given in Eqs.(13)-(14) and the25

invariant measure of the system give in Eq.(15) are the same up to second order in the coupling parameter ε, as discussed in

Wouters and Lucarini (2013); Vissio and Lucarini (2018). A useful outcome of the linear response theory involved consists

in the equations needed to calculate the three terms: since the couplings are seen as perturbation of an otherwise unperturbed

5



system, those terms must be calculated considering the statistical properties of the unperturbed equations

dK

dt
= FK(K), (16)

dJ

dt
= FJ(J). (17)

The numerical integration of Eqs.(16)-(17) may allow to use less computational resources with respect to Eqs.(13)-(14),

particularly in the case of multiscale systems.5

3.1 Constructing the parametrization

The coupling strength ε, shown in Eqs.(13)-(14) and in Eq.(15), assumes the value ε= ah, while the couplings are, with respect

to the vector (X,Y,Z) in Lorenz 84 phase space, ΨK(K,J) = ΨK(J) = (x̃,0,0) and ΨJ(K,J) = ΨJ(K) = (0,0,0). Note

that this is a case of independent coupling - i.e. a coupling that depends only on the variable of the other equation -, for which

the application of the methodology is simpler than the dependent coupling case (Wouters and Lucarini, 2012).10

The deterministic term D in Eq.(15) is a measure of the average impact of the coupling on the K dynamics and can be

written as:

D(K) = ρ0,J(ΨK(J)) = lim
T→∞

1

T

T∫
0

ΨK(J)dτ = ρ0,J((x̃),0,0) = lim
T→∞

1

T

T∫
0

(x̃(τ),0,0)dτ = (D,0,0), (18)

where ρ0,x(A) (x = K,J) is the expectation value of A computed according to the invariant measure given by the uncoupled

dynamics of the x̃ variables and we have used ergodic averaging. We have used the expression of the coupling given in Eq.(7)15

and we have computed the ensemble average as time average on the ergodic measure of x̃. Since the measure of Lorenz 63 is

symmetric for x̃→−x̃, one could think of choosing D(K) = (0,0,0). Nevertheless, this is the limit for a run of infinite time

length, while in a numerical simulation we must choose a finite number of steps - in our case 146000, ten years in Lorenz

models. Therefore, it seems appropriate to calculate D using the time series given by the uncoupled Lorenz 63 and Eq.(18), as

we do for the second order of the parametrization, see below.20

Since the coupling shown in Eq.(7) depends only on one of the variables (in this case the x̃) of the system we want to

parametrize, the stochastic term can be written as

S{K}= (ω(t),0,0), (19)

where the properties of ω(t), a stochastic noise, are defined by its correlation R(t) and its time average 〈ω(t)〉:

R(t) = 〈(ω(0),0,0),(ω(t),0,0)〉= ρ0,J((ΨK(J)−D(K))(ΨK(f
t
(J))−D(K))),

= ρ0,J(((x̃(0),0,0)− (D,0,0))((x̃(t),0,0)− (D,0,0))),

〈ω(t)〉= 0. (20)25

As discussed in Wouters and Lucarini (2012, 2013); Vissio and Lucarini (2018), for more complex couplings the stochastic

terms assumes the form of a multiplicative noise. We have used the software package ARFIT (Neumaier and Schneider, 2001;

Schneider and Neumaier, 2001) to construct time series of noise with the desired properties defined by Eq.(20).
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The last term in Eq.(15) is the non-markovian contribution to the parametrization and can be written as follows:

M{K}=

∞∫
0

h(t2,K(t− t2))dt2, (21)

where

h(t2,K) = ΨJ(K)ρ0,J(∂JΨK(f
t2(J))) = (0,0,0) · ρ0,J(∂J(x̃(f t2(x̃,0,0)),0,0)). (22)

As discussed in Section 2.3, the evolution of the variables of the Lorenz 63 model - see Eqs.(10)-(12) - are independent of the5

state of the variables corresponding to the Lorenz 84 model. As a result, the first factor on the r.h.s. of Eq.(22) vanishes, so that

the parametrization we derive is fully markovian.

After the implementation of Wouters-Lucarini’s procedure, Eq.(7) will be parametrized as

dX

dt
=−Y 2−Z2− aX + a[F0 +h(D+S)]; (23)

Eq.(23), together with Eqs.(8)-(9), will be henceforth indicated as the system constructed with second order parametrization,10

whilst the same equations without the stochastic term (therefore comprehending the first order, deterministic term only), namely

dX

dt
=−Y 2−Z2− aX + a[F0 +hD], (24)

will be called first order parametrization.

4 Wasserstein Distance15

We wish to assess how well a parametrization allows to reproduce the statistical properties of the full coupled system. At this

regard, it seems relevant to quantify to what extent the projected invariant measure of the full coupled model on the variables

of interest differs from the invariant measures of the surrogate models containing the parametrization. In order to evaluate

how much such measures differ, we resort to considering their Wasserstein distance (Villani, 2009). Such a distance quantifies

the minimum "effort" in morphing one measure into the other, and was originally introduced by Monge (1781), somewhat20

unsurprisingly, to study problems of military relevance, and later improved by Kantorovich (1942).

Starting from two distinct spatial distribution of points, described by the measures µ and ν, we can define the optimal trans-

port cost (Villani, 2009) as the minimum cost to move the set of points corresponding to µ into the set of points corresponding

to ν:

C(µ,ν) = inf
π∈Π(µ,ν)

∫
c(x,y)dπ(x,y), (25)25

where c(x,y) is the cost for transporting one unit of mass from x to y and Π(µ,ν) is the set of all joint probability measures

whose marginals are µ and ν. The function C(µ,ν) in Eq.(25) is called Kantorovich-Rubinstein distance. In the rest of the

7



paper, we will consider the Wasserstein distance of order 2:

W2(µ,ν) =

{
inf

π∈Π(µ,ν)

∫
[d(x,y)]2dπ(x,y)

} 1
2

. (26)

We can define the Wasserstein distance also in the case of two discrete distributions

µ=

n∑
i=1

µiδxi
, (27)

ν =

n∑
i=1

νiδyi , (28)5

where xi and yi represent the location of the different points, which mass is given, respectively, by µi and νi. Recalling the

definition of Euclidean distance

d(µ,ν) =

[
n∑
i=1

(xi− yi)2

] 1
2

, (29)

we can construct the order 2 Wasserstein distance for discrete distributions as follows:

W2(µ,ν) =

inf
γij

∑
i,j

γij [d(xi,yj)]
2


1
2

. (30)10

where γij is the fraction of mass transported from xi to xj .

This latter definition of Wasserstein distance has already been proven effective (Robin et al., 2017) for providing a quanti-

tative measurement of the difference between the snapshot attractors of the Lorenz 84 system in the instance of summer and

winter forcings.

Hereby we propose to further assess the reliability of WL stochastic parametrization by studying the Wasserstein distance15

between the projected invariant measure of the original system on the first three variables (X,Y,Z) and the invariant measures

obtained using the surrogate dynamics corresponding to the first and second order parametrization. Nevertheless, since the

numerical computations for optimal transport through linear programming theory are not cheap, a new approach is required. In

order to accomplish it, we perform a standard Ulam discretization (Ulam, 1964; Tantet et al., 2018) of the measure supported

on the attractor. By coarse-graining on a set of cubes with constant sides across the phase space. We will discuss below the20

impact of changing the sides of such cubes.

The coordinates of the cubes will then be equal to the location xi, while the corresponding densities of the points are used

to define γij ; finally, we exclude from the subsequent calculation all the grid boxes containing no points at all.

Our calculations are performed using a modified version of the software for Matlab written by Gabriel Peyré and made available

at http://www.numerical-tours.com/matlab/optimaltransp_1_linprog/, conveniently modified to include the subdivision of the25

phase space in cubes and the assignment of corresponding density to those cubes.

8
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5 Parametrizing the Coupling with the Lorenz 63 Model

In this section we show the results corresponding to the case τ = 5. Therefore, Lorenz 84 and Lorenz 63 are seen as, respec-

tively, the slow and the fast dynamical systems.

5.1 Qualitative Analysis

We first provide a qualitative overview of the performance of the parametrization by investigating a few Poincaré sections,5

which provide a convenient and widely used method to visualize the dynamics of a system in a two-dimensional plot (Eckmann

and Ruelle, 1985; Ott, 1993); typically, the plane chosen for the section of Lorenz 84 is Z = 0. Fig.1a) shows the Poincaré

section at Z = 0 of the variables X , Y of the coupled model given in Eqs.(7)-(12). Panels b) of the same figure shows the

Poincaré section of the Lorenz 84 model obtained by removing the coupling with the Lorenz 63 model. Finally, Panels c) and

d) show the Poincaré sections of the modified Lorenz 84 models obtained by adding the first and second order parametrization,10

respectively. Visual inspection suggests that the second order parametrization does a good job in reproducing the properties of

the full coupled model.

Metaphorically, our parametrization aims at describing as accurately as possible the impact of "convection" on the "west-

erlies". It is insightful to look at how it affects the properties of the two variables - X and Y - that are not directly impacted

by it. This amounts to looking at the impact of the parametrization of "convection" on the "large scale planetary waves" and,15

consequently, on the "large scale heat transport". Therefore, we look into X = constant Poincaré section, in order to highlight

the properties of Y and Z. The four panels in Fig.2 are structured as in Fig.1 and depict the Poncaré section of X = 1. Also in

this case the second order parametrization provides a far better match to the coupled model, featuring a remarkable ability in

the reproducing the main features of the pattern of points.

In order to provide further qualitative evidence of our results, in four panels of Fig.3 we show the trajectories in the phase20

space of the X , Y , and Z variables for the four considered models. For the sake of clarity, the plots are created using just

5 years (365 time units). In the case of the coupled model the attractor spans over more extreme values of the variables and

the second order parametrization successfully imitates this feature, while the simple deterministic correction, once again, is

completely inadequate.

5.2 Evaluation of the Performance of the Parametrization25

Further to the qualitative inspection, we provide here quantitative comparisons to support our study. All the remaining simula-

tions in this section are run for 100 years (7300 time units) with a time step of 0.005; thus, each attractor is constructed with

1460000 points. We have tested that the results presented below are virtually unchanged when considering a smaller time step

of 0.001.

We first look into the probability densities (PDFs) of the variables X , Y and Z, which describe, loosely speaking, our30

climate. Fig.4 shows the PDF of the X variable, for the four considered models. As expected, the second order parametrization

allows for reconstructing with great accuracy the statistics of the coupled model. The bimodality of the uncoupled Lorenz 84

9
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Figure 1. Poincaré section in Z = 0 of a) coupled model; b) uncoupled model; c) 1st order parametrization; d) 2nd order parametrization.

Case τ = 5, the Lorenz 63 model acts as a fast forcing on the Lorenz 84 model.
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Figure 2. Poincaré section in X = 1 of a) coupled model; b) uncoupled model; c) 1st order parametrization; d) 2nd order parametrization.

Case τ = 5, the Lorenz 63 model acts as a fast forcing on the Lorenz 84 model.
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Figure 3. 3D view of the attractor of a) coupled model; b) uncoupled model; c) 1st order parametrization; d) 2nd order parametrization. Case

τ = 5, the Lorenz 63 model acts as a fast forcing on the Lorenz 84 model.
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Figure 4. Probability density of the X variable. Case τ = 5, the Lorenz 63 model acts as a fast forcing on the Lorenz 84 model.

model is reproduced by the model featuring the first order parametrization, while the second order model predicts accurately

the unimodal distribution shown by the coupled model. The PDFs for Y and Z variables are shown in Figs.5-6, respectively.

Also here, where the external forcing does not destroy the bimodality of the distributions found in the uncoupled case, WL

parametrization leads to a very good approximation of the properties of the coupled model. In particular, the tails of the

distributions are represented with a high level of precision, making possible to seemingly reproduce with good accuracy the5

extreme values of the variables. This is a matter worth investigating in a separate study. Note that, since the WL parametrization

is constructed to have skill for all observables, it is not so surprising that it can perform well also far away from the bulk of the

statistics, see discussion in Lucarini et al. (2014b).
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Figure 5. Probability density of the Y variable. Case τ = 5, the Lorenz 63 model acts as a fast forcing on the Lorenz 84 model.

Aside from the analysis of the PDF, a further statistical investigation can be provided by looking into the numerical results

provided by first moments of the variables and their uncertainty, which is computed as the standard deviation derived from the

analysis of an ensemble of runs. We have performed just ten runs, but our results are very robust. The results for the statistics

of the first two moments are reported in Table 1: all the quantities inspected clearly show that the second order parametrization

allows for reproducing very accurately the moments statistics of the coupled model.5

If the considered PDFs depart strongly from uni-modality, the analysis of the first moments can be of little utility, and it

becomes hard to have a thorough understanding of the statistics by adopting this point of view. As discussed above, we wish to

supplement this simple analysis with a more robust evaluation of the performance of the parametrizations by taking into account

the Wasserstein distance. A first issue to deal with in order compute the Wasserstein distance consists in carefully choosing
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Figure 6. Probability density of the Z variable. Case τ = 5, the Lorenz 63 model acts as a fast forcing on the Lorenz 84 model.

the number of cubes used for the Ulam projection. Fig.7a shows the Wasserstein distance between the invariant measure

of the coupled model projected on the XY Z space and the invariant measure of the uncoupled Lorenz and of the models

obtained using the first and second order parametrization. We find that for all choices of the coarse-graining the measure

of the model with the second order parametrization is, by far, the closest to the projected measure of the coupled model.

Instead, the deterministic parametrization provides a negligible improvement with respect to the trivial case of considering5

the uncoupled model, as expected given the discussion following Eq.(18). What shown here gives a quantitative evaluation

of the improved performance resulting from adding a stochastic parametrization. The second piece of information is that the

estimated Wasserstein distance has only a weak dependence on the degree of the coarse-graining and seems to approach its

15



Table 1. Expectation values for the ensemble average of the first two moments of the variables X , Y , and Z. The uncertainty is indicated

as standard deviation (std) over the ensemble of realizations. with the corresponding standard deviations σ. All the values are multiplied by

102. Case τ = 5, Lorenz 63 as fast scale model.

Observables Uncoupled model (×102) 1st order parametrization (×102) 2nd order parametrization (×102) Coupled model (×102)

X ±σX 101.5± 0.4 101.3± 0.5 97.2± 0.3 97.1± 0.3

Y ±σY 6.1± 0.8 6.5± 1.2 13.7± 0.7 13.9± 0.4

Z ±σZ 27.0± 0.2 26.9± 0.3 31.0± 0.2 31.3± 0.5

var(X)±σvar(X) 34.9± 0.8 35.2± 1.0 43.6± 0.7 43.5± 0.3

var(Y )±σvar(Y ) 84.4± 0.1 84.4± 0.1 82.8± 0.4 82.6± 0.3

var(Z)±σvar(Z) 82.6± 0.1 82.6± 0.2 81.5± 0.3 81.4± 0.3

cov(XY )±σcov(XY ) −5.4± 0.8 −5.7± 1.1 −11.1± 0.6 −11.2± 0.3

cov(XZ)±σcov(XZ) −3.7± 0.1 −3.4± 0.2 −8.0± 0.2 −8.3± 0.4

cov(Y Z)±σcov(Y Z) −7.7± 0.2 −7.7± 0.4 −1.6± 0.4 −1.3± 0.2

asymptotic value for the finest (yet still pretty coarse) Ulam partitions considered here. This is encouraging as the findings one

can obtain at low resolution seem to be already very meaningful and useful.

A well-known problem of Ulam’s method is the fact that it can hardly be adapted to high dimensional spaces - this is

the so-called curse of dimensionality. Additionally, evaluating the Wasserstein distance in high dimensions becomes itself

computationally extremely challenging. In order to partially address these problems we repeat the analysis shown in Fig.7a)5

for the measures projected on theXY ,XZ and Y Z planes, thus constructing the so-called sliced Wasserstein distances. Results

are reported in panels b), c), and d) of Fig.7, respectively. We find that, unsurprisingly, the distance of the projected measure is

strictly lower than the distance in the full phase space, ceteris paribus. What is more interesting is that all the observations we

made for Fig.7a) apply for the other panels. Therefore, it seems reasonable to argue that studying the Wasserstein distance for

projected spaces might provide useful information also on the full system.10

In order to extend the scope of our study we have repeated the analysis described above for the case τ = 1
6 . Such a choice

implies that the model responsible for the forcing has a internal time scale which is larger than the one of the model of interest.

We remark that the WL parametrization, as discussed in (Vissio and Lucarini, 2018), is not based on any assumption of time

scale separation between the variables of interest and the variables we want to parametrize. We report below only the main

results for the sake of conciseness.15

Figures 8a)-d) show the Poincaré sections in Z = 0 for all the considered models. In the case of the coupled system, most of

the fine structure one finds in the uncoupled model is lost, and we basically have a cloud of points with weaker features than

what shown in Figure 1 for τ = 5. Nonetheless, also in this case the model with the second order parametrization reproduces

(visually) quite well what shown in Panel a), and, in particular, shows matching regions where the density of the points is

higher.20

16



1 2 3 4 5 6 7 8 9 10 11

Number of cubes per side

0

0.2

0.4

0.6

0.8

1

1.2

W
as

se
rs

te
in

 D
is

ta
nc

e 
fr

om
 c

ou
pl

ed
 m

od
el

 a
ttr

ac
to

r

Uncoupled model
1st order param.
2nd order param.

(a)

1 2 3 4 5 6 7 8 9 10 11

Number of cubes per side

0

0.2

0.4

0.6

0.8

1

1.2

W
as

se
rs

te
in

 D
is

ta
nc

e 
fr

om
 c

ou
pl

ed
 m

od
el

 a
ttr

ac
to

r

Uncoupled model
1st order param.
2nd order param.

(b)

1 2 3 4 5 6 7 8 9 10 11

Number of cubes per side

0

0.2

0.4

0.6

0.8

1

1.2

W
as

se
rs

te
in

 D
is

ta
nc

e 
fr

om
 c

ou
pl

ed
 m

od
el

 a
ttr

ac
to

r

Uncoupled model
1st order param.
2nd order param.

(c)

1 2 3 4 5 6 7 8 9 10 11

Number of cubes per side

0

0.2

0.4

0.6

0.8

1

1.2

W
as

se
rs

te
in

 D
is

ta
nc

e 
fr

om
 c

ou
pl

ed
 m

od
el

 a
ttr

ac
to

r

Uncoupled model
1st order param.
2nd order param.

(d)

Figure 7. Wasserstein distances from the coupled model with respect to number of cubes per side: a) 3D case; b) Projection on XY plane;

c) Projection on XZ plane; d) Projection on Y Z plane. Case τ = 5, the Lorenz 63 model acts as a fast forcing on the Lorenz 84 model.
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Figure 8. Poincaré section in Z = 0 of a) coupled model; b) uncoupled model; c) 1st order parametrization; d) 2nd order parametrization.

Case τ = 1
6

, the Lorenz 63 model acts as a slow forcing on the Lorenz 84 model.
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Figure 9. Wasserstein distances from the coupled model with respect to number of cubes per side: a) 3D case; b) Projection on XY plane;

c) Projection on XZ plane; d) Projection on Y Z plane. Case τ = 1
6

, the Lorenz 63 model acts as a slow forcing on the Lorenz 84 model.

The analysis performed considering the Wasserstein distance between the measures is shown in Fig.9. Without going into

details, one finds that the same considerations we made for τ = 5 are still valid for τ = 1
6 regarding the performance of the

parametrization schemes and the role of coarse graining. Additionally, we observe that, for each choice of coarse-graining, the

distance between the measure of the parametrized models and the actual projected measure of the coupled model is larger for

τ = 1
6 , thus indicating the parametrization procedure performs worse in this case. This fits with the intuition one can have by5

checking out how well Panels b)-d) reproduce Panel a) in Fig. 8 versus the case of Fig. 1.
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6 Conclusions

Developing parametrizations able to surrogate efficiently and accurately the dynamics of unresolved degrees of freedom is a

central task in many areas of science, and especially in geosciences. There is no obvious protocol in testing parametrizations

for complex systems, because one is bound to look only at specific observables of interests. This procedure is not error-free,

because optimizing a parametrization against one or more observables might lead to unfortunate effects on other aspects of the5

system and worsen, in some other aspects, its performance.

In this paper we have addressed the problem of constructing a parametrization for a simple yet meaningful two-scale system,

and then testing its performance in a possibly comprehensive way. We have considered a simple six-dimensional system

constructed by coupling a Lorenz 84 system and a Lorenz 63 system, with the latter acting as forcing to the former, and the

former being the subsystem of interest. We have included a parameter controlling the time scale separation of the two system10

and a parameter controlling the intensity of the coupling. We have built a first order and a second order parametrization able

to surrogate the effects of the coupling using the scale-adaptive WL method. The second order scheme includes a stochastic

term, which has proved to be essential for radically improving the quality of the parametrization with respect to the purely

determinic case (first order parametrization), as already visually shown by looking at suitable Poincaré sections.

We show here that, in agreement of what shown in previous papers, the WL-approach provides an accurate and flexible15

framework for constructing parametrizations. Nonetheless, the main novelty of this paper lies in our use of the Wasserstein

distance as a comprehensive tool for measuring how different the invariant measures ("the climates") of the uncoupled Lorenz

84 model, and of its two version with deterministic and stochastic parametrizations are from the projection of the measure of

the coupled model on the variables of the Lorenz 84 model. We discover that the Wasserstein distance provides a robust tool

for assessing the quality of the parametrization, and, quite encouragingly, meaningful results can be obtained when considering20

very coarse grained representation of the phase space. A well-known issues of using a methodology like the Wasserstein

distance is the so-called curse of dimensionality: the procedure itself becomes unfeasible when the system has a number of

degree of freedom above few units. We have addressed (partially) this issue by looking at the Wasserstein distance of the

projected measures on the three two-dimensional spaces spanned by two of the three variables of the Lorenz 84 model. We find

that the properties of the Wasserstein distance in the reduced spaces follow closely those found in the full space. We maintain25

that diagnostics based on the Wasserstein distance in suitably defined reduced phase spaces should become standard in the

analysis of the performance of parametrizations and in intercomparing models of any level of complexity.
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