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Abstract. Particle filtering is a generic weighted ensemble data assimilation method based on sequential importance sampling,

suited for nonlinear and non-Gaussian filtering problems. Unless the number of ensemble members scales exponentially with

the problem size, particle filter (PF) algorithms lead to weight degeneracy. This phenomenon is a consequence of the curse of

dimensionality that prevents one from using PF methods for high-dimensional data assimilation. The use of local analyses to

counteract the curse of dimensionality was suggested early on. However, implementing localisation in the PF is a challenge5

because there is no simple and yet consistent way of gluing locally updated particles together across domains.

In this article, we review the ideas related to localisation and the PF in the geosciences. We introduce a generic and theoretical

classification of local particle filter (LPF) algorithms, with an emphasis on the advantages and drawbacks of each category.

Alongside with the classification, we suggest practical solutions to the difficulties of local particle filtering, that lead to new

implementations and improvements in the design of LPF algorithms.10

The LPF algorithms are systematically tested and compared using twin experiments with the one-dimensional Lorenz 40-

variables model and with a two-dimensional barotropic vorticity model. The results illustrate the advantages of using the

optimal transport theory to design the local analysis. With reasonable ensemble sizes, the best LPF algorithms yield data

assimilation scores comparable to those of typical ensemble Kalman filter algorithms.

Copyright statement.15

1 Introduction

The ensemble Kalman filter (EnKF, Evensen, 1994) and its variants are currently among the most popular data assimilation

(DA) methods. Because EnKF-like methods are simple to implement, they have been successfully developed and applied to

numerous dynamical systems in geophysics such as atmospheric and oceanographic models including in operational conditions

(see for example Houtekamer et al., 2005; Sakov et al., 2012a).20

The EnKF can be viewed as a subclass of sequential Monte Carlo (MC) methods whose analysis step relies on Gaussian

distributions. However, observations to assimilate can have non-Gaussian error distributions, an example being the case of

bounded variables — which are frequent in ocean and land surface modeling or in atmospheric chemistry. Most geophysical
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dynamical models are nonlinear yielding non-Gaussian error distributions (Bocquet et al., 2010). Moreover, recent advances

in numerical modeling enable the use of finer resolutions for the models: small scale processes that can increase nonlinearity25

have then to be resolved.

When the Gaussian assumption is not fulfilled, Kalman filtering is suboptimal. Iterative EnKF methods have been developed

to overcome these limitations, mainly by including variational analysis in the algorithms (Zupanski, 2005; Sakov et al., 2012b;

Bocquet and Sakov, 2014). Yet one cannot bypass the Gaussian representation of the conditional density with these latter

methods. On the other hand, with particle filter (PF) methods (Gordon et al., 1993; Doucet et al., 2001; Arulampalam et al.,30

2002; Chen, 2003; van Leeuwen, 2009; Bocquet et al., 2010), all Gaussian and linear hypotheses have been relaxed, allowing

a fully Bayesian analysis step. That is why the generic PF is a promising method.

Unfortunately, there is no successful application of it to a significantly high-dimensional DA problem. Unless the number

of ensemble members scales exponentially with the problem size, PF methods experience weight degeneracy and lead to poor

estimates of the model state. This phenomenon is a consequence of the curse of dimensionality and is the main obstacle to an35

application of PF algorithms to most DA problems (Silverman, 1986; Kong et al., 1994; Snyder et al., 2008). Nevertheless,

the PF has appealing properties – the method is elegant, simple and fast, and it allows for a Bayesian analysis. Part of the

research on the PF is dedicated to their application to high-dimensional DA with a focus on four topics: importance sampling,

resampling, hybridisation and localisation.

Importance sampling is at the heart of PF methods where the goal is to construct a representation of the posterior density (the40

conditional density) given particles from the prior density using importance weights. The use of a proposal transition density is

a way to reduce the variance of the importance weights, hence allowing the use of less particles. However, importance sampling

with a proposal density can lead to more costly algorithms that are not necessarily free of the curse of dimensionality (Chap. 4

of MacKay, 2003; Snyder et al., 2015). Proposal-density PF methods include the optimal importance particle filter (OIPF,

Doucet et al., 2000), whose exact implementation is only available in simple DA problems (linear observation operator and45

additive Gaussian noise), the implicit particle filter (Chorin and Tu, 2009; Chorin et al., 2010; Morzfeld et al., 2012) which is

an extension of the OIPF for non-trivial DA problems, the equivalent-weights particle filter (EWPF) and its implicit version

(van Leeuwen, 2010; Zhu et al., 2016).

Resampling is the first improvement that was suggested in the bootstrap algorithm (Gordon et al., 1993) to avoid the collapse

of a PF based on sequential importance sampling. Common resampling algorithms include the multinomial resampling and50

the stochastic universal (SU) sampling algorithms. The resampling step allows the algorithm to focus on particles that are

more likely, but, as a drawback, it introduces sampling noise. Worse, it may lead to sample impoverishment hence failing to

avoid the collapse of the PF if the model noise is insufficient (van Leeuwen, 2009; Bocquet et al., 2010). Therefore it is usual

practice to add a regularisation step after the resampling (Musso et al., 2001). Eventually, using ideas from the optimal transport

theory, Reich (2013) designed a resampling algorithm that creates strong bindings between the prior ensemble members and55

the updated ensemble members.

Hybridising PFs with EnKFs seems a promising approach for the application of PF methods to high-dimensional DA, in

which one can hope to take the best of both worlds: robustness of the EnKF and Bayesian analysis of the PF. The balance
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between the EnKF and the PF analysis must be chosen carefully. Hybridisation especially suits the case where the number of

significantly nonlinear degree of freedom is small compared to the others. Examples of assimilation using hybrid filters can60

be found when applied to geophysical low-order models (Chustagulprom et al., 2016) and in Lagrangian DA (Apte and Jones,

2013; Slivinski et al., 2015).

In most geophysical system, distant regions have (almost) independent evolution over short time scales. This idea was used

in the EnKF to implement localisation in the analysis (Houtekamer and Mitchell, 2001; Hamill et al., 2001; Evensen, 2003;

Ott et al., 2004). In a PF context, localisation could be used to counteract the curse of dimensionality. Yet, if localisation of the65

EnKF is simple and leads to efficient algorithms (Hunt et al., 2007), implementing localisation in the PF is a challenge because

there is no trivial way of gluing locally updated particles together across domains (van Leeuwen, 2009). The aim of this paper

is to review and compare recent propositions of local particle filter (LPF) algorithms (Rebeschini and van Handel, 2015; Lee

and Majda, 2016; Penny and Miyoshi, 2016; Poterjoy, 2016; Robert and Künsch, 2017) and to suggest practical solutions to

the difficulties of local particle filtering that lead to improvements in the design of LPF algorithms.70

Section 2 provides some background on DA and particle filtering. Section 3 is dedicated to the curse of dimensionality with

some theoretical elements and illustrations. The challenges of localisation in PF methods are then discussed in Sects. 4 and

7 from two different angles. For both approaches, we propose new implementations of LPF algorithms, which are tested in

Sects. 5, 6 and 8 with twin simulations of low-order models. Several of the LPFs are tested in Sect. 9 with twin simulations of

a higher dimensional model. Elements of conclusion are given in Sect. 10.75

2 Background

2.1 The data assimilation filtering problem

We follow a state vector xk ∈ RNx at discrete times tk,k ∈ N, through independent observations yk ∈ RNy . The evolution is as-

sumed to be driven by a hidden Markov model whose initial distribution is p(x0), whose transition distribution is p(xk+1|xk),

and whose observation distribution is p(yk|xk).80

The model can alternatively be described by

xk+1 =Mk (xk,wk) , (1)

yk =Hk (xk,vk) , (2)

where the random vectors wk and vk follow the transition and observation distributions.

Let πk|k be the analysis (or filtering) density πk|k = p(xk|yk:0), where yk:0 is the set {yl, l = 0 . . .k} and let πk+1|k be the85

prediction (or forecast) density πk+1|k = p(xk+1|yk:0) with π0|−1 coinciding with p(x0) by convention.

The prediction operator Pk is defined by the Chapman–Kolmogorov equation:

Pk
(
πk|k

)
, πk+1|k =

∫
p(xk+1|xk)πk|k dxk, (3)
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and Bayes’ theorem is used to define the correction operator Ck:

Ck+1

(
πk+1|k

)
, πk+1|k+1 =

p(yk+1|xk+1)πk+1|k
p(yk+1|yk:0)

. (4)90

The DA filtering problem consists in estimating πk|k with given realisations of yk:0.

2.2 Particle filtering

The PF is a class of sequential MC methods that produces, from the realisations of yk:0, a set of weighted ensemble members

(or particles)
(
xik,w

i
k

)
, i= 1 . . .Ne. The analysis density πk|k is estimated through the empirical density:

πNe

k|k =
Ne∑

i=1

wik δxi
k
, (5)95

where the weights are normalised so that their sum is 1 and δx is the Dirac distribution centered at x.

Inserting the particle representatioN Eq. (5) in the Chapman–Kolmogorov equation yields

Pk

(
πNe

k|k

)
=

Ne∑

i=1

wik p
(
xk+1|xik

)
. (6)

In order to recover a particle representation, the prediction operator Pk must be followed by a sampling step SNe . In the

bootstrap or sampling importance resampling (SIR) algorithm of Gordon et al. (1993), the sampling is performed as follows:100

xik+1 ∼ p
(
xk+1|xik

)
, (7)

wik+1← wik, (8)

where x∼ p means that x is a realisation of a random vector distributed according to the probability density function (pdf) p.

The empirical density πNe

k+1|k is now an estimator of πk+1|k.

Applying Bayes’ theorem to πNe

k+1|k gives a weight update that follows the principle of importance sampling:105

wik+1← wik+1 p
(
yk+1|xik+1

)
. (9)

The weights are then renormalised so that they sum to 1.

Finally, an optional resampling step RNe is added if needed (see Sect. 2.3). In terms of densities, the PF can be summarised

by the recursion

πNe

k+1|k+1 =RNe ◦Ck+1 ◦SNe ◦Pk
(
πNe

k|k

)
. (10)110

The additional sampling and resampling operators SNe and RNe are pure ensemble transformations that are required to prop-

agate the particle representation of the density. Ideally, they should not alter the densities.

Under reasonable assumptions on the prediction and correction operators and on the sampling and resampling algorithms, it

is possible to show that, in the limit Ne→∞, πNe

k|k converges to πk|k for the weak topology on the set of probability measures
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over RNx . This convergence result is one of the main reasons for the interest of the DA community in PF methods. More details115

about the convergence of PF algorithms can be found in Crisan and Doucet (2002).

Eventually, the focus of this article is on the analysis step, that is the correction and the resampling. Hence, prior or forecast

(respectively posterior, updated or analysis) will refer to quantities before (respectively after) the analysis step.

2.3 Resampling

Without resampling, PF methods are subject to weight degeneracy: after a few assimilation cycles, one particle gets almost all120

the weight. The goal of resampling is to reduce the variance of the weights by reinitialising the ensemble. After this step, the

ensemble is made of Ne equally weighted particles.

In most resampling algorithms, highly probable particles are duplicated while particles with low probability are discarded.

It is desirable that the selection of particles has a low impact on the empirical density πNe

k|k. The most common resampling

algorithms — multinomial resampling, SU sampling, residual resampling and Monte Carlo Metropolis–Hastings algorithm —125

are reviewed by van Leeuwen (2009).

Resampling introduces sampling noise. On the other hand, not resampling means imparting computation time to highly

improbable particles, that have a very low contribution to the empirical analysis density. Therefore, the choice of the resampling

frequency is critical in the design of PF algorithms. Common criteria to decide if a resampling step is needed are based on

measures of the degeneracy: for example the maximum of the weights or the effective ensemble size defined by Kong et al.130

(1994), i.e.

Neff =

(
Ne∑

i=1

(
wik
)2
)−1

∈ [1,Ne] . (11)

The resampling step and the correction step of PF methods can be combined and embedded into the so-called linear ensemble

transform (LET) framework (Bishop et al., 2001; Reich and Cotter, 2015) as follows. Let Ek be the ensemble matrix, that is

the Nx×Ne matrix whose columns are the ensemble members xik. The update of the particles is then given by135

Ek←EkT, (12)

where T is a Ne×Ne transformation matrix whose coefficients are uniquely determined during the resampling step. In the

general LET framework, T has real coefficients and it is subject to the normalisation constraint

Ne∑

i=1

[T]i,j = 1, j = 1 . . .Ne, (13)

such that the updated ensemble members can be interpreted as weighted averages of the prior ensemble members. The trans-140

formation is said to be first-order accurate if it preserves the ensemble mean (Acevedo et al., 2017), i.e. if

Ne∑

j=1

[T]i,j =New
i
k, i= 1 . . .Ne. (14)

5

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2018-15
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 5 March 2018
c© Author(s) 2018. CC BY 4.0 License.



In the classical resampling schemes, the coefficients of T are in {0,1} meaning that the updated particles are copies of the

prior particles. The first-order condition Eq. (14) is then only satisfied on average over realisations of the resampling step. Yet

it is sufficient to ensure the weak convergence of πNe

k|k almost surely in the case of the multinomial resampling (Crisan and145

Doucet, 2002).

If the coefficients of T are positive reals, the transformation can still be understood as a resampling where the updated

particles are composite copies of the prior particles. For example, in the ensemble transform particle filter (ETPF) algorithm

of Reich (2013), the transformation is chosen such that it minimises the expected distance between the prior and the updated

ensembles (seen as realisations of random vectors) among all possible first-order accurate transformations. This leads to a150

minimisation problem typical of the discrete optimal transport theory (Villani, 2009):

min
T∈T

Ne∑

i,j=1

[T]i,j
∥∥∥xik −xjk

∥∥∥
2

, (15)

where T is the set of Ne×Ne transformation matrices satisfying Eqs. (13) and (14). In this way, the correlation between the

prior and the updated ensembles is increased and πNe

k|k still converges toward πk|k for the weak topology. In the following, this

resampling algorithm will be called optimal ensemble coupling.155

2.4 Proposal-density particle filters

Let q (xk+1) be a density whose support is larger than that of p(xk+1|xk) — i.e. q (xk+1)> 0 whenever p(xk+1|xk)> 0. The

Chapman–Kolmogorov Eq. (3) can be written:

πk+1|k =
∫
p(xk+1|xk)
q (xk+1)

q (xk+1)πk|k dxk. (16)

In the importance sampling literature, q is called the proposal density and can be used to perform the sampling step SNe160

described by Eqs. (7) and (8) in a more general way:

xik+1 ∼ q (xk+1) , (17)

wik+1← wik
p
(
xik+1|xik

)

q
(
xik+1

) . (18)

Using the proposal density q can lead to an improvement of the PF method if for example q is easier to sample from than p or

if q includes information about xk or yk+1 in order to reduce the variance of the importance weights.165

The SIR algorithm is recovered with the standard proposal p(xk+1|xk), while the optimal importance proposal p(xk+1|xk,yk+1)

yields the optimal importance sampling importance resampling (OISIR) algorithm (Doucet et al., 2000). Merging the prediction

and correction steps of the OISIR algorithm yields the weight update

wik+1← wik p
(
yk+1|xik

)
. (19)

It is remarkable that this formula does not depend on xk+1. Hence the optimal importance proposal is optimal in the sense170

that it minimises the variance of the weights over realisations of xik+1 — namely 0. Moreover, it can be shown that it also
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minimises the variance of the weights over realisations of the whole trajectory xik+1:0 among proposal densities that depend

on xk and yk+1 (Snyder et al., 2015).

Although the optimal importance proposal has appealing properties, its computation is non-trivial. For the generic model

with Gaussian additive noise described in Appendix A2, when the observation operator H is linear, the optimal importance175

proposal can be computed as a Kalman filter analysis as shown by Doucet et al. (2000). However, in the general case there is

no analytic form and one must resort to more elaborated algorithms (Chorin and Tu, 2009; Chorin et al., 2010; Morzfeld et al.,

2012).

3 The curse of dimensionality

3.1 The weight degeneracy of particle filters180

The PF has been successfully applied to low-dimensional DA problems (Doucet et al., 2000). However, attempts to apply the

SIR algorithm to medium- to high-dimensional geophysical models lead to weight degeneracy (e.g., van Leeuwen, 2003; Zhou

et al., 2006).

Bocquet et al. (2010) reproduce weight degeneracy in low-order models, for example in the Lorenz 1996 (L96, Lorenz and

Emanuel, 1998) model in the standard configuration described in Appendix A3. They illustrate the empirical statistics of the185

maximum of the weights for several values of the system size. When the system size is small, 10 to 20 variables, weights are

balanced and values close to 1 are infrequent. However, when the system size grows — more than 40 variables — weights

rapidly degenerate: values close to 1 become more frequent. Ultimately, the frequency of the maximum of the weights peaks

to 1.

Similar results occur when applying one importance sampling step to the Gaussian linear model described in Appendix A1.190

For this model, we illustrate the empirical statistics of the maximum of the weights in Fig. 1. Snyder et al. (2008) also computed

the required number of particles in order to avoid degeneracy in simulations and found that it scales exponentially with the size

of the problem.

This phenomenon, well known in the PF literature, is often referred to as degeneracy, collapse or impoverishment and is a

symptom of the curse of dimensionality.195

3.2 The equivalent state dimension

At first sight, it seems surprising that, although MC method have a convergence rate independent of the dimension, the curse

of dimensionality applies to PF methods. Yet, the correction step Ck is an importance sampling step between the prior and the

analysis probability densities. The higher the number of observation components Ny , the more singular these densities are to

each other: random particles from the prior density have an exponentially small likelihood according to the analysis density.200

This is the main reason for the blow up of the number of particles required for a non-degenerate scenario (Rebeschini and van

Handel, 2015).
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Figure 1. Empirical statistics of the maximum of the weights for one importance sampling step applied to the Gaussian linear model of

Appendix A1. The model parameters are p= 1, a= 1, h= 1, the ensemble size is Ne = 128 and the system size varies from Nx = 8 (well

balanced case) to Nx = 128 (almost degenerate case).

A quantitative description of the behavior of weights for large values of Ny can be found in Snyder et al. (2008). In this

study, the authors first define:

τ2 = var[ln(p(yk|xk))] , (20)205

with the hypothesis that the observation noise is additive and each of its component is independent and identically distributed

(iid). Then they derive the asymptotic relationship for only one analysis step:

E


 1

max
i
wik


 ∼
Ne→∞

1 +
√

2lnNe
τ

, (21)

where E is the expectation over realisations of the prior ensemble members.

This result means that, in order to avoid the collapse of a PF method, the number of particlesNe must be of order exp
(
τ2/2

)
.210

In simple cases, as the ones considered in the previous sections, τ2 is proportional toNy . The dependence of τ onNx is indirect

in the sense that the derivation of Eq. (21) requiresNx to be asymptotically large. In a sense, one can think of τ2 as an equivalent

state dimension.

Snyder et al. (2008) then illustrate the validity of the asymptotic relationship Eq. (21) using simulations of the Gaussian

linear model of Appendix A1 with a SIR algorithm, for which:215

τ2 =Ny
h2
(
q2 + a2p2

)

r2

(
1 +

3h2

2r2

(
q2 + a2p2

))
. (22)

Snyder et al. (2008) does not illustrate the validity of Eq. (21) in more general cases, mainly because the computation of

τ is non-trivial. The effect of resampling is not investigated either, thought it is clear from simulations that resampling is not
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enough to avoid filter collapse. Finally, the effect of using proposal densities is the subject of another study by Snyder et al.

(2015).220

3.3 Mitigating the collapse using proposals

One objective of using proposal densities in PF methods is to reduce the variance of the importance weights as discussed in

Sect. 2.4. If one uses the optimal importance proposal p(xk+1|xk,yk+1) to sample xk in the prediction and sampling step

SNe ◦Pk, the correction step Ck+1 consists in matching two identical densities, which leads to a weight update Eq. (19) that

does not depend on the realisation of xk+1.225

Yet, the OISIR algorithm still collapses even for low-order models such as the L96 model with 40 variables (Bocquet et al.,

2010). In fact, the curse of dimensionality for any proposal-density PF does not primary come from the correction step Ck, but

from the recursion in the PF and in particular from the fact that the algorithm does not correct the particles at earlier times to

account for new observations (Snyder et al., 2015). This was a key motivation in the development of the guided SIR algorithm

of van Leeuwen (2009), whose ideas were included in the practical implementations of the EWPF algorithm (van Leeuwen,230

2010; Ades and van Leeuwen, 2015) as a relaxation step, with moderate success (Browne, 2016).

Snyder et al. (2015) illustrate the validity of Eq. (21) using simulations of the Gaussian linear model of Appendix A1 with

an OISIR algorithm, for which:

τ2 =Ny
a2p2h2

r2 +h2q2

(
1 +

3a2h2p2

2(r2 +h2q2)

)
, (23)

and they found a good accuracy of Eq. (21) in the limit Ne� exp
(
τ2/2

)
. This shows that the use of the optimal importance235

proposal reduces the number of particles required to avoid the collapse of a PF method. However, ultimately, proposal-density

PFs cannot counteract the curse of dimensionality in this simple model and there is no reason to think that they could in more

elaborated models (see chapter 29 of MacKay, 2003).

In a generic Gaussian linear model, the equivalent state dimension τ2 as in Eqs. (22) and (23) is directly proportional to the

system sizeNx — equal toNy in this case. For more elaborate models, the relationship between τ2 andNx is likely to be more240

complex and may involve the effective number of degrees of freedom in the model.

3.4 Using localisation to avoid collapse

By considering the definition of τ2, Eq. (20), one can see that the curse of dimensionality is a consequence of the fact that

the importance weights are influenced by all components of the observation vector yk. Yet, a particular state variable and

observation can be nearly independent, for example in spatially extended models if they are distant to each other. In this245

situation, the statistical properties of the ensemble at this state variable (i.e. the marginal density) should not evolve during the

analysis step. Yet, this is not the case in PF methods, because of the use of (relatively) low ensemble sizes; even the ensemble

mean can be significantly impacted. A good illustration of this phenomenon can be found in Fig. 2 of Poterjoy (2016). In this

case, the PF overestimates the information available and equivalently underestimates the uncertainty in the analysis density

(Snyder et al., 2008). As a consequence, spurious correlations appear between distant state variables.250
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This would not be the case in a PF algorithm that would be able to perform local analyses, that is when the influence of

each observation is restricted to a spatial neighborhood of its location. τ2 would then be defined using the maximum number

of observations that influence a state variable, which could be kept relatively small even for high-dimensional systems.

In the EnKF literature, this idea is known as domain localisation or local analysis and was introduced to fix the same kind

of issues (Houtekamer and Mitchell, 2001; Hamill et al., 2001; Evensen, 2003; Ott et al., 2004). Technical implementations of255

domain localisation in EnKF methods is as easy as implementing a global analysis and the local analyses can be carried out in

parallel (Hunt et al., 2007). The application of localisation techniques in PF methods is discussed in Snyder et al. (2008); van

Leeuwen (2009); Bocquet et al. (2010) with an emphasis on two major difficulties.

The first issue is that the variation of the weights across local domains irredeemably breaks the structure of the global

particles. There is no trivial way of recovering this global structure, i.e. gluing together the locally updated particles. Global260

particles are required for the prediction and sampling step SNe ◦Pk in all PF algorithms, where the modelMk is applied to

each individual ensemble member.

Secondly, if not carefully constructed, this gluing together could lead to balance problems and sharp gradients in the fields. In

EnKF methods, these issues are mitigated by using smooth functions to taper the influence of the observation components. The

smooth dependency of the analysis ensemble on the observation precision reduces imbalance (Greybush et al., 2011). Yet, in265

most PF algorithms, there is no such smooth dependency. From now on, this issue will be called "imbalance" or "discontinuity"

issue.

3.5 Two types of localisation

From now on, we will assume that our DA problem has a well-defined spatial structure:

– each component of xk, hereafter called state variable or grid point, is attached to a location;270

– each component of yk, hereafter called observation site is attached to a location as well (local observations);

– there is a distance function between locations.

The goal is to be able to define notions such as "the distance between an observation site and a grid point", "the distance

between two grid points" or "the center of a group of grid points". In realistic models, these concepts need to be related to the

underlying physical space.275

In the next sections, we discuss algorithms that address the two issues of local particle filtering (gluing and imbalance) and

lead to implementations of domain localisation in PF methods. We divide the solutions into two categories.

In the first approach, independent analyses are performed for each grid point by using only the observation sites that influence

this point. This leads to algorithms that are easy to define, to implement and to parallelise. However, there is no obvious

relationship between grid points, which could be problematic with respect to the imbalance issue. We will call this approach280

state–domain (and later state–block–domain) localisation.

In the second approach, an analysis is performed for each observation site. When assimilating an observation of a site,

we partition the state space: nearby grid points are updated while distant grid point remain unchanged. In this formalism,

10

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2018-15
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 5 March 2018
c© Author(s) 2018. CC BY 4.0 License.



observation sites need to be assimilated sequentially, which makes the algorithms harder to define and to parallelise but may

mitigate the imbalance issue. We will call this approach sequential–observation localisation.285

4 State–domain localisation for particle filters

From now on, the time subscript k is systematically dropped for clarity and the conditioning with respect to prior quantities is

implicit. The superscript i ∈ {1 . . .Ne} is the member index, the subscript n ∈ {1 . . .Nx} is the grid point index, the subscript

q ∈ {1 . . .Ny} is the observation site index, the subscript b ∈ {1 . . .Nb} is the block index (the concept of block is defined in

Sect. 4.2).290

4.1 Introducing localisation in particle filters

Localisation is generally introduced in PF methods by allowing the analysis weights to depend on the spatial position. In the

(global) PF, the marginal of the analysis density for each grid point n= 1 . . .Nx is

p(xn) =
Ne∑

i=1

wi δxi
n
, (24)

whose localised version is295

p(xn) =
Ne∑

i=1

win δxi
n
. (25)

The weights win depend on the spatial position through the grid point n.

With local analysis weights, the marginals of the analysis density are uncoupled. This is the reason why localisation was

introduced in the first place, but, as a drawback, the full analysis density is not known. The most simple fix is to approximate

the full density as the product of its marginals:300

p(x) =
Nx∏

n=1

Ne∑

i=1

win δxi
n
, (26)

which is a weighted sum of the NNx
e possible combinations between all particles.

In summary, in LPF methods, we keep the generic MC structure described in Sect. 2.2. The prediction and sampling step

is not modified. The correction step is adjusted to allow the analysis density to have the form given by Eq. (26). In particular,

one has to define the local analysis weights win; this point will be discussed in Sect. 4.2.2. Finally, the resampling step, that305

was optional in (global) PF methods, becomes mandatory to reconstitute global particles, which are required for the next

assimilation cycle. Practical algorithms to construct these Ne updated particles will be introduced in Sect. 4.4.
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4.2 Extension to state–block–domain localisation

The principle of localisation in the PF, and in particular Eq. (26), can be included into a more general state–block–domain

(SBD) localisation formalism. The state space is divided into local blocks with the additional constraint that the weights should310

be constant over the blocks. The resampling is then performed independently for each block.

In the block particle filter algorithm of Rebeschini and van Handel (2015), the local weight of a block is computed using the

observation sites that are located inside this block. However, in general nothing prevents one from using the observation sites

inside a local domain potentially different from the block. This is the case in the LPF of Penny and Miyoshi (2016), in which

the local blocks have size 1 grid point while the size of the local domains is controlled by a localisation radius.315

To summarise, LPF algorithms using the SBD localisation formalism, hereafter called LPFx algorithms, are characterised

by

– the geometry of the local (state) blocks over which the weights are constant;

– the local domain of each block, which gathers all observation sites used to compute the local weight;

– the local resampling algorithm.320

Most LPFs (e.g. those described in Rebeschini and van Handel, 2015; Penny and Miyoshi, 2016; Lee and Majda, 2016) in

the literature can be seen to adopt this SBD formalism.

4.2.1 The local blocks

Using parallelepipedic local blocks is a standard geometric choice (Rebeschini and van Handel, 2015; Penny and Miyoshi,

2016). It is easy to conceive and to implement and it offers a potentially interesting degree of freedom: the block shape. Using325

bigger blocks decreases the proportion of block boundaries and hence the bias in the local analyses. On the other hand, it also

means less freedom to counteract the curse of dimensionality.

In the clustered particle filter algorithms of Lee and Majda (2016), the blocks are centered around the observation sites. The

potential gains of this method are unclear. Moreover, when the observation sites are regularly distributed over the space —

which is the case in the numerical examples of Sects. 5 and 6 — there is no difference with the standard method.330

4.2.2 The local domains

In the analyses of local EnKF methods, the general idea of localisation is that the analysis at one grid point is computed by

using only the observation sites that lie inside a circle centered in this grid point. The radius of this circle is a free parameter

often called the localisation radius. The same principle can be applied to the SBD localisation formalism: the local domain of

a block will be a circle whose center coincides with that of the block and whose radius will be a free parameter.335

The terminology adopted here (circle, radius...) fits two-dimensional spatial spaces. Yet, most geophysical models have a

three-dimensional spatial structure, with typical uneven vertical scales usually much shorter than horizontal scales. For these

models, the geometry of the local domains should be adapted accordingly.
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Increasing the localisation radius allows one to take more observation sites into account hence reducing the bias in the local

analysis. It is also a means to reduce the spatial inhomogeneity by making the weights smoother in space.340

The smoothness of the local weights is an important property. Indeed, spatial discontinuities in the weights can lead to spatial

discontinuities in the updated particles. Still picking ideas from the local EnKF methods, the smoothness of the weights can

be improved by tapering the influence of an observation site with respect to its distance to the block center as follows. For the

(global) PF, assuming that the observation sites are independent, the unnormalised weights are computed according to

wi =
Ny∏

q=1

p
(
yq|xi

)
. (27)345

Following Poterjoy (2016), it becomes for a LPF:

wib =
Ny∏

q=1

{
α+G

(
dq,b
r

)(
p
(
yq|xi

)
−α

)}
, (28)

where α is a constant that should be of the same order as maxp(y|x), dq,b is the distance between the observation site q and

the center of block b, r is the localisation radius and G is the taper function: G(0) = 1 and G(x) = 0 if x is larger than 1, with

a smooth transition. A popular choice for G is the Gaspari–Cohn function (Gaspari and Cohn, 1999). If the observation error350

is an iid Gaussian additive noise with variance σ2, one can use an alternative formula for wib directly inspired from local EnKF

methods:

lnwib =− 1
2σ2

Ny∑

q=1

G

(
dq,b
r

)(
yq −Hq

(
xi
))2

. (29)

Equations (28) and (29) differ. Still they are equivalent in the asymptotic limit r→ 0 and σ→∞.

4.2.3 Algorithm summary355

Algorithm 1 describes the analysis step for a generic LPFx. The algorithm parameters are: the ensemble size Ne, the geometry

of the blocks and the localisation radius r used to compute the local weights with Eq. (28) or (29). Nb is the number of blocks

and E|b is the restriction of the ensemble matrix E to state block b (i.e. the rows of E corresponding to state variables that are

located within block b). E|b is a Nx/Nb×Ne matrix.

An illustration of the definition of local blocks and domains is displayed in Fig. 2.360

4.3 Beating the curse-of-dimensionality

The feasibility of PF methods using SBD localisation is discussed by Rebeschini and van Handel (2015) through the example

of their block particle filter algorithm. In this algorithm, the distinction between local domains and local blocks does not exist.

The influence of each observation site is not tapered and the resampling is performed independently for each block, regardless

of the boundaries between blocks.365
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Algorithm 1 Analysis step for a generic LPFx

Require: Prior (forecast) ensemble xi, i= 1 . . .Ne

1: for b= 1 to Nb do

2: Compute the local weights wib using Eq. (28) or (29)

3: Resample the local ensemble E|b with weights wib as Er
|b

4: end for

5: Concatenate the locally resampled ensembles Er
|b as Er

6: Update the ensemble: E←Er

7: return Updated (analysis) ensemble xi, i= 1 . . .Ne.

block

center

grid points

domain

observations

Figure 2. Example of geometry in the SBD localisation formalism for a two-dimensional space. The focus is on the block in the middle

which gathers 12 grid points. The local domain is circumscribed by a circle around the block center with potential observation sites outside

the local block.

The main mathematical result is that, under reasonable hypotheses, the error on the analysis density for this LPF can be

bounded by the sum of a bias and a variance term. The bias term is related to the block boundaries and decrease exponentially

with the diameter of the blocks. It is due to the fact that the correction is not Bayesian any more since only a subset of

observation sites is used to update each block. The exponential decrease is a demonstration of the decay of correlations

property. The variance term is common to all MC methods and scales with exp(K)/
√
Ne, where K is the size of the blocks370

— in fact the size of the domain but here they are the same — and not the space dimension any more. This implies that LPF

algorithms can indeed beat the curse of dimensionality.
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top

particle i

particle j

bottom

composite particle i / j

discontinuity

Figure 3. Example of concatenation of particle i on the left and particle j on the right. Top: the prior particles i and j. Bottom: the composite

particle, concatenation of i and j. In this situation, a large and artificial discontinuity appears at the boundary.

4.4 The local resampling

Resampling from the analysis density given by Eq. (26) does not cause any theoretical or technical issue. One just needs

to apply any resampling algorithm (e.g. those described in Sect. 2.3) locally to each block using the local weights. Global375

particles are then obtained by concatenating the locally resampled particles. By doing so, adjacent blocks are fully uncoupled

— this is the same remark as when we constructed the analysis density Eq. (26) from its marginals Eq. (25). Once again, this

is beneficial, since uncoupling is what counteracts the curse of dimensionality.

On the other hand, blind concatenation is likely to lead to artificial discontinuities in the updated particles, regardless of

the spatial smoothness of the analysis weights. More precisely, we want to build composite particles, that is when the i-th380

updated particle is the concatenation of the j-th particle on one block and the k-th particle on an adjacent block with j 6= k

— as shown by Fig. 3. There is no guarantee that the j-th and the k-th local particles are close and that their concatenation

will represent a physical state. Pathological situations can be easily conceived in the case of a multimodal underlying density:

artificial composite particles mixing more than one mode are likely to be formed.

In order to minimise artificial discontinuities, the analysis weights must be spatially smooth, as mentioned in Sect. 4.2.2.385

Moreover, the resampling scheme must have some "regularity", in order to preserve part of the spatial structure hold in the

prior particles. This is a challenge due to the stochastic nature of the resampling algorithms; potential solutions are presented

hereafter.

15

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2018-15
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 5 March 2018
c© Author(s) 2018. CC BY 4.0 License.



4.4.1 Applying a smoothing by weights

A first solution is to smooth out the potential discontinuities by averaging in space the locally resampled ensemble as follows.390

This method was introduced by Penny and Miyoshi (2016) in their LPF and called smoothing by weights.

For each state block b, let Er
b be the matrix of the ensemble computed by applying the resampling method to the global

ensemble weighted by the local weights wib. Er
b is a Nx×Ne matrix different from the Nx/Nb×Ne matrix Er

|b implicitly

defined by step 3 of Algorithm 1. We then define the smoothed ensemble matrix Es by

[Es]in =

Nb∑
b=1

G
(
dn,b

rs

)
[Er
b]
i
n

Nb∑
b=1

G
(
dn,b

rs

) , (30)395

where dn,b is the distance between grid point n and the center of block b, rs is the smoothing radius, a free parameter potentially

different from r and G is a taper function, potentially different from the one used to compute the local weights.

For example, consider the SU sampling algorithm as the resampling method, and let φb be the resampling map at block b,

i.e. the map computed with the local weights wib such that φb(i) is the index of the i-th resampled particle. E being the prior

ensemble matrix, Eq. (30) becomes400

[Es]in =

Nb∑
b=1

G
(
dn,b

rs

)
[E]φb(i)

n

Nb∑
b=1

G
(
dn,b

rs

) . (31)

Finally, the ensemble is updated as

E← αsEs + (1−αs)Er, (32)

where Er be the resampled ensemble matrix implicitly defined by step 5 of Algorithm 1, αs is the smoothing strength, a free

parameter in [0,1] that controls the intensity of the smoothing. αs = 0 means that no smoothing is performed and αs = 1 means405

that the analysis ensemble is totally replaced by the smoothed ensemble.

Algorithm 2 describes the analysis step for a generic LPFx with smoothing by weights. The original LPF of Penny and

Miyoshi (2016) can be recovered if:

– blocks have size 1 grid point (hence there is no distinction between grid points and blocks);

– the local weights are computed using Eq. (29);410

– G is a top hat function;

– the resampling method is the SU sampling algorithm;

– rs is set to be equal to r;
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– αs is set to 0.5.

The method described here is an extension of this algorithm.415

The smoothing by weights step is an ad-hoc fix to reduce afterwards the artificial discontinuities introduced in the local

resampling. Its necessity hints that there is room for improvement in the design of the local resampling algorithms.

Algorithm 2 Analysis step for a generic LPFx with smoothing by weights

Require: Prior ensemble xi, i= 1 . . .Ne

1: for b= 1 to Nb do

2: Compute the local weights wib using Eq. (28) or (29)

3: Resample the local ensemble E|b with weights wib as Er
|b

4: Resample the global ensemble E with weights wib as Er
b

5: end for

6: Concatenate the locally resampled ensembles Er
|b as Er

7: Compute the smoothed ensemble matrix using Eq. (30)

8: Update the ensemble using Eq. (32)

9: return Updated ensemble xi, i= 1 . . .Ne.

4.4.2 Refining the sampling algorithms

A sampling algorithm is said to be balanced if, for i= 1 . . .Ne the number of copies of the i-th particle does not differ by more

than one unity from wiNe. For example, this is the case of the SU sampling but not the multinomial resampling algorithm.420

In general, the order of the resampled particles does not matter. Hence, once the updated particles have been selected, one

can reorder the particle indices to maximise the number of indexes i ∈ {1 . . .Ne} such that the i-th updated particle is a copy

of the i-th original particle. If this property is satisfied, we say that the resampling algorithm is adjustment-minimising. The

SU sampling and the multinomial resampling algorithms can be simply modified to yield adjustment-minimising resampling

algorithms.425

In the naive local ensemble Kalman particle filter algorithm of Robert and Künsch (2017), the problem of artificial disconti-

nuities is taken care in the following way:

– the resampling algorithm is balanced;

– the same random number(s) is (are) used over all blocks;

– the resampling algorithm is adjustment-minimising.430

Using the same random number(s) for the resampling of all blocks cancels a stochastic source of artificial spatial discontinuities.

Choosing balanced and adjustment-minimising resampling algorithms is an attempt to include some continuity in the map

{local weights} 7→ {locally updated particles} by minimising the occurrences of composite particles.

17

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2018-15
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 5 March 2018
c© Author(s) 2018. CC BY 4.0 License.



However, these properties cannot eliminate all sources of artificial discontinuity. Indeed, ultimately composite particles will

be built — if not then localisation would not be necessary — and there is no mechanism to reduce the potential discontinuities435

in them.

4.4.3 Using optimal transport in ensemble space

As mentioned in Sect. 2.3, using the optimal transport (OT) theory to design a resampling algorithm was first investigated in

the ETPF algorithm of Reich (2013).

Applying the optimal ensemble coupling to the SBD localisation frameworks results in a local LET resampling method,440

whose local transformation at each block Tb solves the discrete OT problem

min
Tb∈Tb

Ne∑

i,j=1

[Tb]
i,j
ci,jb , (33)

where Tb is the set ofNe×Ne transformations satisfying the normalisation constraint Eq. (13) and the local first-order accuracy

constraint

Ne∑

j=1

[Tb]
i,j =New

i
b, i= 1 . . .Ne. (34)445

In the ETPF, the coefficients ci,j were chosen as the squared L2 distance between the whole particles i and j as in Eq. (15).

Since we perform a local resampling step, it seems more appropriate to use a local criterion, such as

ci,jb =
Nx∑

n=1

(
xin−xjn

)2
G

(
dn,b
rd

)
, (35)

where dn,b is the distance between the grid point n and the center block b, rd is a the distance radius, another free parameter

and G is a taper function, potentially different from the one used to compute the local weights.450

To summarise, Algorithm 3 describes the analysis step for a generic LPFx that uses optimal ensemble coupling as local

resampling algorithm.

Note that localisation was first included in the ETPF algorithm by Chustagulprom et al. (2016), in a similar way as the SBD

localisation formalism. However, the focus of Chustagulprom et al. (2016) was to include the ETPF algorithm in a hybridisation

context. They use the local weights defined by Eq. (29), but they only consider blocks of size 1 grid point and local coefficients455

given by

ci,jn =
(
xin−xjn

)2
. (36)

On the other hand, in this study we are interested in the optimal ensemble coupling for its continuity properties.

On each local block, the linear transformation establishes a strong connection between the prior and the updated ensembles.

Moreover, there is no stochastic variation of the coupling at each block. This means that the spatial coherence can be (at least460

partially) transferred from the prior to the updated ensemble.
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Algorithm 3 Analysis step for a generic LPFx using optimal ensemble coupling for the local resampling

Require: Prior ensemble xi, i= 1 . . .Ne

1: for b= 1 to Nb do

2: Compute the local weights wib using Eq. (28) or (29)

3: Compute the local coefficients ci,jb with Eq. (35)

4: Solve the minimisation problem Eq. (33) for Tb

5: Transform local ensemble: Et
|b←E|bTb

6: end for

7: Concatenate the locally transformed ensemble Et
|b as Et

8: Update the ensemble as E←Et

9: return Updated ensemble xi, i= 1 . . .Ne

Using optimal ensemble coupling for the resampling step in a LPFx algorithm is computationally more expensive than the

traditional SU sampling algorithm since it requires to solve one optimisation problem for each local block. The discrete OT

problem Eq. (33) to solve is a particular case of the minimum-cost flow problem and can be solved quite efficiently using the

network simplex algorithm with complexity of order N3
e (Pele and Werman, 2009). Moreover, the computation of the local465

block transformations can be carried out in parallel. For realistic DA applications, the number of particles should be small — no

more than 100 or 200 — hence the additional computational cost of solving the discrete OT problem should not be prohibitive.

4.4.4 Using optimal transport in state space

In Sect. 4.4.3, the discrete OT theory was used to compute a linear transformation between the prior and the updated ensembles.

Following these ideas, we would like to use OT directly in state space. In more than one dimension, the OT problem is highly470

non-trivial and numerically very costly (Villani, 2009). Therefore, we will restrict ourselves to the case where blocks have size

1 grid point. Hence there is no distinction between blocks and grid points.

At each grid point n, we define the prior (marginal) pdf pf
n as the empirical density of the unweighted prior ensemble and

the analysis pdf pa
n as the empirical density of the prior ensemble weighted by the analysis weights. We seek the map Tn that

solves the following OT problem:475

min
T∈T f→a

n

∫
|xn−T (xn)|2 dx, (37)

where T f→a
n is the set of maps T that transport pf

n into pa
n:

pf
n = pa

n ◦T · Jac(T ) , (38)

with Jac(T ) being the absolute value of the determinant of the Jacobian matrix of T .

In one dimension, this transport map is also known as the anamorphosis from pf
n to pa

n and its computation is immediate:480

Tn = (can)−1 ◦ cfn, (39)

19

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2018-15
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 5 March 2018
c© Author(s) 2018. CC BY 4.0 License.



where cfn and can are the cumulative density function (cdf) of pf
n and pa

n respectively. In practice, Tn maps the prior ensemble to

an ensemble whose empirical density is pa
n. Therefore the images of the prior ensemble members by Tn are suitable candidates

for updated ensemble members.

The computation of Tn using Eq. (39) requires a continuous representation for the empirical densities pf
n and pa

n. An appeal-485

ing approach to obtain the continuous representation is to use the kernel density estimation (KDE) theory (Silverman, 1986;

Musso et al., 2001). In this context, the prior density can be written

pf
n (xn) = αf

n

Ne∑

i=1

K

(
xn−xin
hσf

n

)
, (40)

while the updated density is

pa
n (xn) = αa

n

Ne∑

i=1

winK

(
xn−xin
hσa

n

)
. (41)490

K is the regularisation kernel, h is the bandwidth, a free parameter, σf
n and σa

n are the empirical standard deviation of respec-

tively the unweighted ensemble
{
xin, i= 1 . . .Ne

}
and the weighted ensemble

{(
xin,w

i
n

)
, i= 1 . . .Ne

}
and αf

n and αa
n are

normalisation constants.

According to the KDE theory, when the underlying distribution is Gaussian, the optimal pattern for K is the Epanechnikov

kernel (quadratic functions). Yet, there is no reason to think that this will also be the case for the prior density. Besides, the495

Epanechnikov kernel, having a finite support, generally leads to a poor representation of the distribution tails and it is a potential

source of indetermination in the definition of the cdfs. That is why it is more common to use a Gaussian kernel forK. However,

in this case, the computational cost associated to the cdf of the kernel (the error function) becomes significant. Hence, as an

alternative, we choose to use the Student’s t-distribution with two degrees of freedom. It looks close to a Gaussian, it has heavy

tails and its cdf is fast to compute. It was also shown to be a better representation of the prior density than a Gaussian in an500

EnKF context (Bocquet et al., 2015).

To summarise, Algorithm 4 describes the analysis step for a generic LPFx that uses anamorphosis as local resampling

algorithm.

The local resampling algorithm using anamorphosis is, together with the algorithm using optimal ensemble coupling, a

deterministic transformation. This means that potentially large artificial discontinuities due to different random realisations505

over the grid points are avoided. As explained by Poterjoy (2016), in such algorithm the updated ensemble members have the

same quantiles as the prior ensemble members. The quantile property should be to some extent regular in space — for example

if the space discretisation is fine enough — and this kind of regularity is transferred in the updated ensemble.

When defining the prior and the corrected densities with Eqs. (40) and (41), we introduce some regularisation whose magni-

tude is controlled through the bandwidth parameter h. Regularisation is necessary to obtain continuous pdfs. Yet, it introduces510

an additional bias in the analysis step. Typical values of h should be around 1, with larger ensemble sizes Ne requiring smaller

values for h. More generally, regularisation is widely used in PF algorithms as a fix to avoid (or at least limit the impact of)

weight degeneracy, though its implementation (see Sect. 5.2) is usually different from the method used in this section.
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Algorithm 4 Analysis step for a generic LPFx using anamorphosis for the local resampling

Require: Prior ensemble xi, i= 1 . . .Ne

1: for n= 1 to Nx do

2: Compute the local weights win using Eq. (28) or (29)

3: Compute the empirical standard deviations σf
n and σa

n

4: Compute cfn and can by integrating Eqs. (40) and (41)

5: for i= 1 to Ne do

6: Compute pi = cfn
(
xin

)
7: Solve can

(
xin

)
= pi for the updated local particle xin

8: end for

9: end for

10: return Updated ensemble xi, i= 1 . . .Ne.

The refinements of the resampling algorithms suggested in Sect. 4.4.2 were designed to minimise the number of artificial

discontinuities in the local resampling step. The goal of the smoothing by weights step is to reduce the impact of the disconti-515

nuities after they have been introduced. On the other hand, the local resampling algorithms based on OT are designed to reduce

the discontinuities themselves. The main difference between the algorithm based on optimal ensemble coupling and the one

based on anamorphosis is that the first one is formulated in the ensemble space whereas the second one is formulated in the

state space. That is to say in the first case we build an ensemble transformation Tb whereas in the second case we build a state

transformation Tn.520

Due to computational considerations, the optimisation problem Eq. (37) was only considered in one dimension. Hence,

contrary to the local resampling algorithm based on optimal ensemble coupling, the one based on anamorphosis is purely

one-dimensional and can only be used with blocks of size 1 grid point.

The design of the resampling algorithm based on anamorphosis has been inspired from the kernel density distribution

mapping (KDDM) step of the LPF algorithm of Poterjoy (2016) which will be introduced in Sect. 7.3. However, the use of OT525

has different purposes. In our algorithm, we use the anamorphosis transformation to sample particles from the analysis density,

whereas the KDDM step of Poterjoy (2016) is designed to correct the posterior particles — they have already been transformed

— with consistent high-order statistical moments.

4.4.5 Parameter choice and asymptotic limit

The localisation radius r controls the impact of the curse of dimensionality. Therefore, relevant values for r should be relatively530

small — smaller than what would be required for an EnKF using domain localisation for example — to avoid experiencing

immediate weight degeneracy. For realistic models with two or more spatial dimensions, the number of potential observation

sites in the local domain grows as r2 or more. Therefore, optimal values for the localisation radius should be really small,
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maybe too small for the method to follow the truth trajectory. If this is the case, then localisation alone would not be enough to

make the PF operational.535

For a local EnKF algorithm, gathering grid points into local state blocks is an approximation that reduces the numerical cost

of the analysis steps by reducing the number of local analyses to perform. For a LPFx algorithm, the local analyses should

in general be much faster because there is no matrix inversion to perform. In this case, using bigger state blocks is a way to

decrease the proportion of block borders, which are potential spots for artificial discontinuities. However, increasing the size of

the local state blocks reduces the number of degrees of freedom to counteract the curse of dimensionality. It also introduces an540

additional bias in the local weight update, Eq. (28) or (29), since the local weights are computed relatively to the block centers.

This issue was identified by Rebeschini and van Handel (2015) as a source of spatial inhomogeneity of the error. In any case,

the local state blocks should be small — no more than a few grid points — only big ensemble could benefit from the use of

larger state blocks.

The analysis step of LPFxs using the multinomial resampling or the SU sampling as resampling algorithm is equivalent to545

a PF analysis step in the asymptotic limit r→∞ if the same random number(s) is (are) used for the resampling of all state

blocks or if there is only one state block. The analysis step of LPFxs using optimal ensemble coupling is equivalent to the ETPF

analysis step in the asymptotic limit r→∞ and rd→∞ for the localisation and the distance radius, respectively. Finally, even

in the asymptotic limit h→ 0 and r→∞, we could not find a proof that the analysis step of LPFxs using anamorphosis is

asymptotically unbiased.550

5 Numerical illustration of LPFx algorithms with the Lorenz-96 model

5.1 Model specifications

In this section, we illustrate the performance of LPFxs with twin simulations of the L96 model in the standard (mildly nonlinear)

configuration described in Appendix A3. For this series of experiments, as for all experiments in this paper, the synthetic truth

is computed without model error. This is usually a stringent constraint for the PF methods for which accounting for model555

error is a means for regularisation. But on the other hand it allows for a fair comparison with the EnKF and it overcomes the

issue of defining a realistic model noise.

The distance between the truth and the analysis is measured with the average analysis root mean square error, hereafter

simply called the RMSE. To ensure the convergence of the statistical indicators, the runs are at least 5× 104∆t long with an

additional 103∆t spin-up period. An advantage of using PF methods is that it should asymptotically yield sharp though reliable560

ensembles, properties which cannot a priori be entirely reflected in the RMSE. However, not only does the RMSE offers a clear

ranking of the algorithms but it is an indicator that measures the adequacy to the primary goal of data assimilation, i.e. mean

state estimation. Moreover, for a sufficiently cycled DA problem, it seems likely that good RMSE scores can only be achieved

with ensembles of good quality in the light of most other indicators. Nonetheless, in addition to the RMSE, rank histograms

meant to assess the quality of the ensembles are computed and reported in Appendix C for a selection of experiments.565
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For the localisation, we assume that the grid points are positioned on an axis with a regular spacing of 1 unit and periodic

boundary conditions consistent with the system size. Therefore, the local domain centered on grid point n is {n−brc, . . . ,n+ brc},
where brc is the integer part of the localisation radius and the Nb local blocks consist of Nx/Nb consecutive grid points.

This filtering problem has been widely used to asses the performance of DA algorithms. In this configuration, nonlinearities

in the model are rather weak and representative of synoptic scale meteorology and the error distributions are close to Gaussians.570

A typical EnKF implementation (e.g. the ensemble transform Kalman filter, ETKF in short) with an ensemble of 20 members

does not require localisation and yield an RMSE around 0.18−0.19. With optimally tuned localisation and a ensemble of only

10 members the mean RMSE is around 0.20.

5.2 Perfect model and regularisation

The application of PF algorithms to this chaotic model without error leads to a fast collapse. Even with stochastic models that575

account for some model error, PF algorithms experience weight degeneracy when the model noise is too low. Therefore, PF

practitioners commonly include some additional jitter to mitigate the collapse (e.g. Pham, 2001). As described by Musso et al.

(2001), jitter can be added in two different ways.

5.2.1 Pre-regularisation

Firstly, the prediction and sampling step, Eq. (7), can be performed using a stochastic extension of the model:580

xik+1−M
(
xik
)

= wk ∼N
(
0, q2I

)
, (42)

whereM is the model associated to the integration scheme of the ordinary differential equations (ODEs) and q is a tunable

parameter. This jitter is meant to compensate for the deterministic nature of the given model. In this case, the truth could be

seen as a trajectory of the perturbed model Eq. (42) with a realisation of the noise that is identically zero. In the literature, this

method is called pre–regularisation (Le Gland et al., 1998) because the jitter is added before the correction step.585

5.2.2 Post-regularisation

Secondly, a regularisation step can be added after a full analysis cycle:

xik+1← xik+1 + u, u∼N
(
0,s2I

)
, (43)

where s is a tunable parameter. As opposed to the first method, it can be seen as a jitter before integration: the noise is

integrated by the model before the next analysis step, while smoothing potential unrealistic discontinuities. Somehow this590

method is similar to ensemble inflation in EnKF algorithms that is meant to compensate for the finite size Ne of the ensemble.

It is called post–regularisation (Musso and Oudjane, 1998; Oudjane and Musso, 1999) because the jitter is added after the

correction step.
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5.2.3 Standard S(IR)xR algorithm

With optimally tuned jitter for the standard L96 model, the bootstrap PF algorithm requires about 200 particles to give on595

average more informations than the truth.1 With 103 particles, the RMSE is around 0.6 and with 104 it is around 0.4.

We define the standard S(IR)xR algorithm — sampling, importance, resampling, regularisation, the x exponent meaning that

steps in parentheses are performed locally on each state block — as the LPFx algorithm (see Algorithm 1) with the following

characteristics:

– grid points are gathered into Nb blocks of Nx/Nb connected grid points;600

– jitter is added after the integration using Eq. (42) with a standard deviation controlled by q;

– the local weights are computed using the Gaussian tapering of observation site influence given by Eq. (29), where G is

the piecewise rational function of Gaspari and Cohn (1999);

– the local resampling is performed independently for each block with the adjustment-minimising SU sampling algorithm;

– jitter is added at the end of each assimilation cycle using Eq. (43) with a standard deviation controlled by s.605

The standard deviation of the jitter after integration (q) and before integration (s) shall be called "integration jitter" and "regu-

larisation jitter", respectively. The S(IR)xR algorithm has five parameters: (Ne,Nb, r,q,s). All algorithms tested in this section

are variants of this standard algorithm and are named S(I∗∗)x∗R∗ with the conventions detailed in Table 1.

5.3 Tuning the localisation radius

We first check that, in this configuration, localisation is working by testing the S(IR)xR algorithm with Nb = 40 blocks of size610

1 grid point. We takeNe = 10 particles, q = 0 (perfect model) and several values for the regularisation jitter s. The evolution of

the RMSE as a function of the localisation radius r is shown in Fig. 4. With SBD localisation, the LPF yields an RMSE around

0.45 in a regime where the bootstrap PF algorithm is degenerate. The compromise between bias (small values of r, too much

information is dropped) and variance (large values of r, the weights are degenerate) reaches an optimum around r = 3 grid

points. As expected, the local domains are very small (5 observation sites) to efficiently counteract the curse of dimensionality.615

5.4 Tuning the jitter

To evaluate the efficiency of the jitter, we experiment with the S(IR)xR algorithm with Ne = 10 particles, Nb = 40 blocks of

size 1 grid point and a localisation radius r = 3 grid points. The evolution of the RMSE as a function of the integration jitter q

is shown in Fig. 5 and as a function of the regularisation jitter s in Fig. 6.

From these results, we can identify two regimes:620

1We have proven in this case that the RMSE, when computed between the observations yk and truth xk , has an expected value of 0.98.
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Table 1. Nomenclature conventions for the S(αβ)xγδ algorithms.

α Local importance weights

I0 Eq. (28)

I Eq. (29)

β Local resampling algorithm

RSU SU sampling algorithm

Rd adjustment-minimising SU sampling algorithm with

the same random numbers over all blocks

R adjustment-minimising SU sampling algorithm

Te optimal transport in ensemble space

Ts optimal transport in state space

γ Smoothing-by-weights

S enabled

– disabled

δ Regularisation method (see Sect. 5.8)

R white noise method

Ra coloured noise method

– with low regularisation jitter (s < 0.15), the filter stability is ensured by the integration jitter, with optimal values around

q = 1.25;

– with low integration jitter (q < 0.5), the stability is ensured by the regularisation jitter, with optimal values around

s= 0.26.

As expected, adding jitter before integration yields significantly better results. This indicates that the model integration indeed625

smoothes the jitter out and removes artificial discontinuities for the correction step. We observed the same tendency for most

LPFs tested in this study.

In the rest of this section, we take zero integration jitter (q = 0) and the localisation radius r and the regularisation jitter s

are systematically tuned to yield the lowest RMSE score.

5.5 Increasing the size of the local blocks630

To illustrate the influence of the size of the local blocks, we compare the RMSEs obtained by the S(IR)xR algorithm with

various fixed number of blocks Nb. The evolution of the RMSE as a function of the ensemble size Ne is shown in Fig. 7. For

25

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2018-15
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 5 March 2018
c© Author(s) 2018. CC BY 4.0 License.



1 2 3 4 5 6

Localisation radius r

0.46

0.48

0.50

0.52

R
M

S
E

,
L

9
6

m
o
d
e
l

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

s

Figure 4. RMSE as a function of the localisation radius r for the S(IR)xR algorithm with Ne = 10 particles, Nb = 40 blocks of size 1 grid

point and no integration jitter (q = 0). For each r, several values for the regularisation jitter s are tested as shown by the color scale.
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Figure 5. RMSE as a function of the integration jitter q for the S(IR)xR algorithm with Ne = 10 particles, Nb = 40 blocks of size 1 grid

point and a localisation radius r = 3 grid points. For each q, several values for the regularisation jitter s are tested as shown by the color

scale.

small ensemble sizes, using larger blocks is inefficient, because of the need for degrees of freedom to counteract the curse of

dimensionality. Only very big ensembles benefit from the use of large blocks as a consequence of the reduction of proportion

of block boundaries, potential spots for artificial discontinuities.635

26

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2018-15
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 5 March 2018
c© Author(s) 2018. CC BY 4.0 License.



0.0 0.1 0.2 0.3 0.4

Regularisation jitter s

0.46

0.48

0.50

0.52

R
M

S
E

,
L

9
6

m
o
d
e
l

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

q

Figure 6. RMSE as a function of the regularisation jitter s for the S(IR)xR algorithm with Ne = 10 particles, Nb = 40 blocks of size 1 grid

point and a localisation radius r = 3 grid points. For each s, several values for the integration jitter q are tested as shown by the color scale.
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Figure 7. RMSE as a function of the ensemble size Ne for the S(IR)xR algorithm with respectively Nb = 40,20,10 blocks of size 1,2,4

grid points.

From now on, unless specified otherwise, we systematically test our algorithms with Nb = 40, 20 and 10 blocks of respec-

tively 1, 2, 4 grid points and we keep the best RMSE score.
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Figure 8. RMSE as a function of the ensemble size Ne for the S(IR)xR and the S(I0R)xR algorithms with respectively Nb = 40,10 blocks

of size 1,4 grid points. The scores are displayed in units of the RMSE of the S(IR)xR algorithm with Nb = 40 blocks of size 1 grid point.

5.6 Choice of the local weights

To illustrate the influence of the definition of the local weights, we compare the RMSEs of the S(IR)xR and the S(I0R)xR

algorithms. These two variants only differ by their definition of the local importance weights: the S(IR)xR algorithm uses the640

Gaussian tapering of observations influence defined by Eq. (29) while the S(I0R)xR algorithm uses the non-Gaussian tapering

given by Eq. (28).

Figure 8 shows the evolution of the RMSE as a function of the ensemble size Ne. The Gaussian version of the definition of

the weights always yields better results. This is probably a consequence of the approximate Gaussianity of this configuration.

In the following, we always use Eq. (29) to define the local weights.645

5.7 Refining the stochastic universal sampling

Here, the sampling algorithms proposed in Sect. 4.4.2 are tested. To do this we compare, the RMSEs of the S(IR)xR algorithms

with those of:

– the S(IRd)xR algorithm, for which the same random numbers are used for the resampling of each block;

– the S(IRSU)xR algorithm, which uses the SU sampling algorithm without the adjustment-minimising property.650

Figure 9 shows the evolution of the RMSE as a function of the ensemble size Ne. The higher RMSEs of the S(IRSU)xR

algorithm, especially for large ensembles, show that the adjustment-minimising property is indeed an efficient way of reducing

the number of artificial discontinuities introduced during the resampling step.

However, using the same random number for the resampling of each block does not produce significantly lower RMSEs.

This method is insufficient to reduce the number of artificial discontinuities introduced when concatenating the locally updated655

particles. This is probably a consequence of the fact that the SU sampling algorithm only uses one random number to compute
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Figure 9. RMSE as a function of the ensemble size Ne for the S(IR)xR, the S(IRd)xR and the the S(IRSU)xR algorithms with respectively

Nb = 40,10 blocks of size 1,4 grid points. The scores are displayed in units of the RMSE of the S(IR)xR algorithm with Nb = 40 blocks of

size 1 grid point.

the resampling map. It is also a hint at the probably low influence of the specific realisation of this random number on long-term

statistical properties.

In the following, when using the SU sampling algorithm, we always choose its adjustment-minimising form but we do not

enforce the same random numbers over different blocks.660

5.8 Colourising the regularisation

According to Eqs. (42) and (43), the regularisation jitters are white noises. In realistic models, different state variables may

take their values in disjoint intervals (e.g., the temperature takes values around 300 K and the wind speed can take its values

between −10 and 10 m s−1) which makes these jittering methods inadequate.

It is hence a common procedure in ensemble DA to scale the regularisation jitter with statistical properties of the ensemble.665

In a (global) PF context, practitioners often "colourise" the Gaussian regularisation jitter with the empirical covariances of

the ensemble as described by Musso et al. (2001). The regularisation jitter being added after the resampling step, in order to

mitigate the effect of resampling noise, the jitter is scaled with the weighted ensemble before resampling.

More precisely, the regularisation jitter has zero mean and Nx×Nx covariance matrix given by

[Σ]n,m =
ĥ

1−
Ne∑
i=1

(wi)2

Ne∑

i=1

wi
(
xin−xn

)(
xim−xm

)
, (44)670

where ĥ is the bandwidth, a free parameter, and xn is the ensemble mean at state variable n:

xn =
1
Ne

Ne∑

i=1

xin. (45)
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In practice, the Nx×Ne anomaly matrix is defined by

[X]n,i =

√√√√√√
ĥwi

1−
Ne∑
i=1

(wi)2

(
xin−xn

)
, (46)

and the regularisation is added as675

E←E + XZ, (47)

with Z being a Ne×Ne random matrix whose coefficients are distributed according to a normal law such that XZ is a

sample from the Gaussian distribution with zero mean and covariance matrix Σ. In this case, the regularisation fits in the LET

framework with a random transformation matrix.

Colourisation could as well be added to the integration jitter. However in this case, scaling the noise with the ensemble is less680

justified than for the regularisation jitter. Indeed, the integration noise is inherent to the perturbed model that is used to evolve

each ensemble member independently. Hence PF practitioners often take a time–independent Gaussian integration noise whose

covariance matrix does not depend on the ensemble but includes some off-diagonal terms based on the distance between state

variables (e.g., Ades and van Leeuwen, 2015). However, as we mentioned in Sect. 5.4, we do not use integration jitter for the

rest of this section.685

The 40 variables of the L96 model in its standard configuration are statistically homogeneous with short-range correlations.

This is the main reason of the efficiency of the white noise jitter in the S(IR)xR algorithm and its variants tested so far. We still

want to investigate the potential gains of using colored jitters in LPFxs.

In the analysis step of LPFxs, there is a unique weight for each state variable n, therefore it is not possible to compute the

covariance of the regularisation jitter with Eq. (44). We propose two different ways of circumventing this obstacle.690

A first approach could be to scale the regularisation with the locally resampled ensemble, since in this case all weights are

equal. However, this approach systematically leads to higher RMSEs for the S(IR)xR algorithm (not shown here). This can be

potentially explained by two factors. Firstly the resampling could introduce noise in the computation of the anomaly matrix

X. Secondly, the fact that the resampling is performed independently for each block perturbs the propagation of multivariate

properties (such as sample covariance) over different blocks.695

In a second approach, the anomaly matrix X is defined by the weighted ensemble before resampling, i.e. using the local

weights, as following:

[X]n,i =

√√√√√√
ĥwin

1−
Ne∑
i=1

(win)2

(
xin−xn

)
. (48)

In this case, the Gaussian regularisation jitter has covariance matrix:

[Σ]n,m =
Ne∑

i=1

ĥ
√
winw

i
m

(
xin−xn

)(
xim−xm

)
√(

1−
Ne∑
i=1

(win)2

)(
1−

Ne∑
i=1

(wim)2

) , (49)700
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Figure 10. RMSE as a function of the ensemble size Ne for the S(IR)xR and the S(IR)xRa algorithms with respectively Nb = 40,10 blocks

of size 1,4 grid points. The scores are displayed in units of the RMSE of the S(IR)xR algorithm with Nb = 40 blocks of size 1 grid point.

which is an extension of Eq. (44).

We then experiment with the S(IR)xRa algorithm, in which the regularisation jitter is colourised as described by Eqs. (47)

and (48). In this algorithm, the parameter s (regularisation jitter standard deviation) is replaced by the bandwidth parameter

ĥ, hereafter simply called regularisation jitter. The evolution of the RMSE as a function of ĥ for the S(IR)xRa algorithm (not

shown here) is very similar to the evolution of the RMSE as a function of s for the S(IR)xR algorithm. In the following, when705

using the coloured regularisation jitter method, ĥ is systematically tuned to yield the lowest RMSE score.

Figure 10 shows the evolution of the RMSE as a function of the ensemble size Ne for the S(IR)xR and the S(IR)xRa

algorithms. These two variants only differ by the regularisation method. The S(IR)xR algorithm uses white regularisation jitter

while the S(IR)xRa algorithm uses coloured regularisation jitter. For small ensembles, the S(IR)xRa algorithm yields higher

RMSEs, but for big ensembles, the RMSEs are slightly better when the regularisation jitter is colourised. Depending on the710

block size, the transition between both regimes happens around Ne = 32 to 64 particles. The higher RMSEs of the S(IR)xRa

algorithm for small ensembles may have two potential explanations. Firstly, even if the L96 model in its standard configuration

is characterised by short-range correlations, the covariance matrix Σ is a high-dimensional object that is poorly represented

with a weighted ensemble. Secondly, despite the relative Gaussianity of this configuration, the analysis distribution for small

ensemble may be too different from a Gaussian for the coloured regularisation jitter method to yield better results.715

5.9 Applying a smoothing by weights

In this section, we look for the potential benefits of adding a smoothing by weights step as presented in Sect. 4.4.1, by testing

the S(IR)xSR and the S(IR)xSRa algorithms. These algorithms only differ from the S(IR)xR and the S(IR)xRa algorithms by

the fact that they add a smoothing by weights step as specified in Algorithm 2.

Alongside with the smoothing by weights step come two additional tuning parameters: the smoothing strength αs and the720

smoothing radius rs. We first investigate the influence of theses parameters. Figure 11 shows the evolution of the RMSE as a
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Figure 11. RMSE as a function of the smoothing radius rs for the S(IR)xSR algorithms with Ne = 16 particles and Nb = 40 blocks of size

1 grid point for several values of the smoothing strength αs. The scores are displayed in units of the RMSE of the S(IR)xR algorithm with

Ne = 16 particles and Nb = 40 blocks of size 1 grid point.

function of the smoothing radius rs for the S(IR)xSR with Ne = 10 particles, Nb = 40 blocks of size 1 grid point for several

values of the smoothing strength αs. As before, the localisation radius r and the regularisation jitter s are optimally tuned.

At a fixed smoothing strength αs > 0, starting from rs = 1 grid point (no smoothing), the RMSE decreases when rs increases.

It reaches a minimum and then increases again. In this example, the optimal smoothing radius rs was found between 5 and 6725

grid points for a smoothing strength αs = 1, with corresponding optimal localisation radius r between 2 and 3 grid points and

optimal regularisation jitter s around 0.45 (not shown here). For comparison, the optimal tuning parameters for the S(IR)xR

algorithm in the same configuration were r between 4 and 5 grid points and s around 0.2.

Based on extensive tests of the S(IR)xSR and the S(IR)xSRa algorithms with Ne ranging from 8 to 128 particles, we found

that:730

– in general αs = 1 is optimal, or at least only slightly suboptimal;

– optimal values for r and s are larger with the smoothing by weights step than without;

– optimal values for r and rs are not related and must be tuned separately.

In the following, when using the smoothing by weights, we take αs = 1 and rs is tuned to yield the lowest RMSE score

— alongside with the tuning of the localisation radius r and the regularisation jitter s or ĥ. Figure 12 shows the evolution of735

the RMSE as a function of the ensemble size Ne for the S(IR)xSR and the S(IR)xSRa algorithms. The S(IR)xSR algorithm

yields systematically lower RMSEs than the standard S(IR)xR. However, as the ensemble size Ne grows, the gain in RMSE

score becomes very small. WithNe = 512 particles, there is almost no difference between both scores. In this case, the optimal

smoothing radius rs is around 5 grid points, much smaller than the optimal localisation radius r around 15 grid points, such

that the smoothing by weights step does not modify much the analysis ensemble. The S(IR)xSRa algorithm also yields lower740
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Figure 12. RMSE as a function of the ensemble size Ne for S(IR)xR, the S(IR)xRa, the S(IR)xSR and the S(IR)xSR algorithms.

RMSEs than the S(IR)xRa algorithm. Yet, in this case, the gain in RMSE is still significant for large ensembles and with

Ne = 512 particles, the RMSEs are even comparable to those of the EnKF.

From these results, we conclude that the smoothing by weights step is an efficient way of reduce afterwards the artificial

discontinuities introduced when concatenating the locally updated particles, especially when combined with the coloured noise

regularisation jitter method.745

5.10 Using optimal transport in ensemble space

In this section, we evaluate the efficiency of using the optimal transport in ensemble space as a way to reduce the artificial

discontinuities of the local resampling step by experimenting the S(ITe)xR and the S(ITe)xRa algorithms. These algorithms

only differ from the S(IR)xR and the S(IR)xRa algorithms by the fact that they use optimal ensemble coupling for the local

resampling as described by Algorithm 3.750

For each block, the local linear transformation is computed by solving the minimisation problem Eq. (33), which can be

seen as a particular case of the minimum–cost flow problem. Therefore, we chose to compute its numerical solution with the

graph library LEMON (Dezső et al., 2011). As described in Sect.4.4.3, this method is characterised by an additional tuning

parameter: the distance radius rd. We investigated the influence of the parameters Nb and rd by performing extensive tests of

the S(ITe)xR and the S(ITe)xRa algorithms with Ne ranging from 8 to 128 particles (not shown here) and draw the following755

conclusions.

Optimal values for the distance radius rd were found to be much smaller than the localisation radius, most of the time even

smaller than 2 grid points. Using rd = 1 grid point yields RMSEs that are only very slightly suboptimal. In this case, the local
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Figure 13. RMSE as a function of the ensemble size Ne for the S(IR)xR, the S(IR)xRa, the S(ITe)xR and the S(ITe)xRa algorithms.

coefficients ci,jb computed by Eq. (35) are equal to those defined by Eq. (36). Moreover, in all situations we found that using

Nb = 20 blocks of size 2 grid points systematically yields higher RMSEs than using Nb = 40 blocks of size 1 grid point.760

In the following, when using the optimal ensemble coupling algorithm, we take rd = 1 grid point and Nb = 40 blocks of

size 1 grid point. Figure 13 shows the evolution of the RMSE as a function of the ensemble size Ne for the S(ITe)xR and

the S(ITeR)xRa algorithms. Using optimal ensemble coupling for the local resampling step always yields significantly lower

RMSEs than using the SU sampling algorithm. Yet in this case, using the coloured noise regularisation jitter method does not

improve the RMSEs for very large ensembles.765

We also performed extensive tests with Ne ranging from 8 to 128 particles on the S(ITe)xSR and the S(ITe)xSRa algorithms

in which the optimal ensemble coupling resampling method is combined with the smoothing by weights method (not shown

here). Our implementations of these algorithms are numerically more costly. For small ensembles (Ne ≤ 32 particles), we

obtained RMSEs barely smaller than those obtained with the S(ITe)xR and the S(ITe)xRa algorithms. With larger ensembles,

we could not find a configuration where using the smoothing by weights yields better RMSEs.770

The facts that neither the use of larger blocks, nor the smoothing by weights does significantly improve the RMSE score

when using optimal ensemble coupling indicate that this local resampling method is indeed an efficient way of reducing the

artificial discontinuities inherent to the concatenation of the locally updated particles.

5.11 Using continuous optimal transport

In this section, we test the efficiency of using the optimal transport in state space as a way to reduce the artificial discontinuities775

of the local resampling step by experimenting the S(ITs)xR and the S(ITs)xRa algorithms. These algorithms only differ from
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the S(IR)xR and the S(IR)xRa algorithms by the fact that they use anamorphosis for the local resampling as described by

Algorithm 4.

As mentioned in Sect. 4.4.4, the local resampling algorithm based on anamorphosis uses blocks of size 1 grid point. Hence,

when using the S(ITs)xR and the S(ITs)xRa algorithms, we take Nb = 40 blocks of size 1 grid point. The definition of the780

state transformation map T is based on the prior and corrected densities given by Eqs. (40) and (41) using the Student’s t-

distribution with two degrees of freedom for the regularisation kernel K. It is characterised by an additional tuning parameter:

h, hereafter called regularisation bandwidth — different from the regularisation jitter ĥ. We investigated the influence of the

regularisation bandwidth h by performing extensive tests of the S(ITs)xR and the S(ITs)xRa algorithms with Ne ranging from

8 to 128 particles (not shown here). For small ensembles (Ne ≤ 16 particles), optimal values for h were found between 2 and785

3, the RMSE score obtained with h= 1 being very slightly suboptimal. For larger ensembles, we did not find any significant

difference between h= 1 and larger values.

In the following, when using the anamorphosis resampling algorithm, we take the standard value h= 1. Figure 14 shows the

evolution of the RMSE as a function of the ensemble size Ne for the S(ITs)xR and the S(ITs)xRa algorithms. These algorithms

yield RMSEs even lower than the algorithms using optimal ensemble coupling. However in this case, using the coloured noise790

regularisation jitter method always yields significantly higher RMSEs than using the white noise regularisation method. It is

probably a consequence of the fact that some coloured regularisation is already introduced in the nonlinear transformation

process through the kernel representation of the densities with Eqs. (40) and (41). It may also be a consequence of the fact that

the algorithms using anamorphosis for the local resampling step cannot be written as a local LET algorithm, contrary to the

algorithms using the SU sampling or the optimal ensemble coupling algorithms.795

We also performed extensive tests with Ne ranging from 8 to 128 particles on the S(ITs)xSR algorithm, in which the

anamorphosis resampling method is combined with the smoothing by weights method (not shown here). As for the S(ITe)xSR

and the S(ITe)xSRa algorithms, our implementation is significantly numerically more costly and we found that adding the

smoothing by weights step only yields minor RMSE improvements.

These latter remarks, alongside with significantly lower RMSE for the S(ITs)xR algorithm than for the S(IR)xR indicate that800

the local resampling method based on anamorphosis is, as well as the method based on optimal ensemble coupling, an efficient

way of reducing the artificial discontinuities inherent to the concatenation of the locally updated particles.

5.12 Summary

As a summary, Fig. 15 shows the evolution of the RMSE as a function of the ensemble size Ne for the main LPFxs tested in

this section. For small ensembles (Ne ≤ 32 particles), the algorithms using OT-based resampling methods clearly yield lower805

RMSEs than the other algorithms. For large ensemble (Ne ≥ 128 particles), combining the smoothing by weights with the

coloured noise regularisation jitter methods yields equally good scores as the algorithms using OT. For Ne = 512 particles

(the largest ensemble size tested in this study), the best RMSE scores obtained with LPFxs become comparable to those of the

EnKF.
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Figure 14. RMSE as a function of the ensemble size Ne for the S(IR)xR, the S(IR)xRa, the S(ITs)xR and the S(ITs)xRa algorithms.
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Figure 15. RMSE as a function of the ensemble size Ne for the main LPFxs tested in this section.

As a complement to this RMSE test series, rank histograms for several LPFs are computed, reported and discussed in810

Appendix C.
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6 Numerical illustration of the LPFx algorithms with a barotropic vorticity model

6.1 Model specifications

In this section, we illustrate the performance of LPFxs with twin simulations of the barotropic vorticity (BV) model in the coarse

resolution (CR) configuration described in Appendix A4.1. Using this configuration yields a DA problem of size Nx = 1024815

and Ny = 256. As mentioned in Appendix A4.1, the spatial resolution is enough to capture the dynamic of a few vortices and

the model integration is not too expensive, such that we can perform extensive tests with small to moderate ensemble sizes.

As with the L96 model, the distance between the truth and the analysis is measured with the average analysis RMSE. The

runs are 9×103∆t long with an additional 103∆t spin-up period, more than enough to ensure the convergence of the statistical

indicators.820

For the localisation, we use the underlying physical space with the Euclidean distance. The geometry of the local blocks and

domain are constructed as described by Fig. 2. Specifically, local blocks are rectangles and local domains are disks, with the

difference that the doubly periodic boundary conditions are taken into account.

6.2 Scores for the EnKF and the PF

As a reference, we first compute the RMSEs of the EnKF with this model. Figure 16 shows the evolution of the RMSE as825

a function of the ensemble size Ne for the (global) ETKF and the local ETKF (LETKF). For each value of Ne, the inflation

parameter and the localisation radius (only for the LETKF) are optimally tuned to yield the lowest RMSE.

The ETKF requires at least Ne = 12 ensemble members to avoid divergence. The best RMSEs are approximately 20 times

smaller than the observation standard deviation (0.3). Even with only Ne = 8 ensemble members, the LETKF yields RMSEs

at least 10 times smaller than the observation standard deviation, showing that in this case localisation is working as expected.830

With Ne ≤ 1024 particles, we could not find a set of tuning parameters with which the bootstrap filter or the ETPF yield

RMSEs significantly lower than 1.

6.3 Scores for the LPFx algorithms

In this section, we test the LPFxs withNe ranging from 8 to 128 particles. For clarity, the naming conventions of the algorithms

are the same as in Sect. 5.835

For each ensemble size Ne we use similar parameter tuning methods as for the L96 model as follows.

– We take zero integration jitter: q = 0.

– The localisation radius r is systematically tuned to yield the lowest RMSE score.

– The regularisation jitter s (or ĥ when using the coloured noise regularisation jitter method) is systematically tuned as

well.840

37

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2018-15
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 5 March 2018
c© Author(s) 2018. CC BY 4.0 License.



8 9 10 11 12 13 14 15 16

Ensemble size Ne

0.05

0.10

1.00

2.00

3.00

4.00

N
o
rm

a
l.

R
M

S
E

,
B

V
–
C

R
m

o
d
e
l

ETKF

LETKF

Figure 16. RMSE as a function of the ensemble size Ne for the ETKF and the LETKF. The scores are displayed in units of the observation

standard deviation σ.

– For the algorithms using the SU sampling algorithm (i.e. the S(IR)x ∗ ∗ variants) we test four values for the number of

local blocks Nb, and we keep the best RMSE score:

– 1024 blocks of shape 1× 1 grid point;

– 256 blocks of shape 2× 2 grid points;

– 64 blocks of shape 4× 4 grid points;845

– 16 blocks of shape 8× 8 grid points.

– For the algorithms using optimal ensemble coupling or anamorphosis (i.e. the S(IT∗)x∗ variants) we only test blocks of

shape 1× 1 grid point.

– When using the smoothing by weights method, we take the smoothing strength αs = 1 and the smoothing radius rs is

optimally tuned to yield the lowest RMSE score.850

– When using the optimal ensemble coupling for the local resampling step, the distance radius rd is optimally tuned to

yield the lowest RMSE score.

– When using the anamorphosis for the local resampling step, we take the regularisation bandwidth h= 1.

Figure 17 shows the evolution of the RMSE as a function of the ensemble size Ne for the main LPFxs. Most of the conclu-

sions drawn with the L96 model remain true with the BV model. The best RMSE scores are obtained with algorithms using855

OT-based resampling methods. Combining the smoothing by weights with the coloured noise regularisation jitter methods

yields almost equally good scores as the algorithms using OT. Yet, some differences can be pointed out.
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Figure 17. RMSE as a function of the ensemble size Ne for the main LPFxs. The scores are displayed in units of the observation standard

deviation σ.

With such a large model, we expected the coloured noise regularisation jitter method to be much more effective than the

white noise method because the colourisation reduces the potential spatial discontinuities of the jitter. We observe indeed that

the S(IR)xRa and the S(IR)xSRa algorithms yield significantly lower RMSEs than the S(IR)xR and the S(IR)xSR algorithms.860

Yet, the S(ITe)xRa and the S(ITs)xRa algorithms are clearly outperformed by both the S(ITe)xR and the S(ITs)xR algorithms

in terms of RMSEs. This hints at the fact that there is room for improvement in the design of regularisation jitter methods for

PF algorithms.

Due to relatively high computation times, we restricted our study to reasonable ensemble sizes, Ne ≤ 128 particles. In this

configuration, the RMSE scores of LPFxs are not yet comparable with those of the EnKF (shown in Fig. 16).865

Finally, it should be noted that for the S(ITe)xR and the S(ITe)xRa algorithms with Ne ≥ 32 particles, optimal values for the

distance radius rd were found between 3 and 6 grid points (not shown here) contrary to the results obtained with the L96 model,

for which rd = 1 grid point could be considered optimal. More generally for all LPFxs, the optimal values for the localisation

radius r (not shown here) are significantly larger for the BV model than for the L96 model.

7 Sequential–observation localisation for particle filters870

In the SBD localisation formalism, each block of grid points is updated using the local domain of observation sites that

should influence these grid points. In the sequential–observation (SO) localisation formalism, we use a different approach.

39

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2018-15
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 5 March 2018
c© Author(s) 2018. CC BY 4.0 License.



Observations sites are assimilated sequentially and assimilating one observation site should only update nearby grid points.

LPF algorithms using the SO localisation formalism will be called LPFy algorithms.

In this section, we set q ∈ {1 . . .Ny} and we describe how the site yq should be assimilated. In Sect. 7.1, we introduce the875

state space partitioning. The resulting decompositions of the conditional density are discussed in Sect. 7.2. Finally, practical

algorithms using these principles are derived in Sects. 7.3 and 7.4.

These algorithms are designed to assimilate one observation site at a time. Hence, a full assimilation cycle requires Ny se-

quential iterations of these algorithms, during which the ensemble is gradually updated: the updated ensemble after assimilating

site yq will be the prior ensemble to assimilate site yq+1.880

7.1 Partitioning the state space

Following Robert and Künsch (2017) the state space RNx is divided into three regions:

1. the first region U covers all grid points that directly influence yq — ifH is linear, it is all columns ofH that have non-zero

entries on row q;

2. the second region V gathers all grid points that are deemed correlated to those in U ;885

3. the third region W contains all remaining grid points.

The meaning of "correlated" is to be understood as a prior hypothesis, where we define a valid tapering matrix C that

represents the decay of correlations. Non-zero elements of C should be located near the main diagonal and reflect the intensity

of the correlation. A popular choice for C is the one obtained using the Gaspari–Cohn function:

[C]m,n =G

(
dm,n
r

)
, (50)890

where dm,n is the distance between grid points m and n and r is the localisation radius, a free parameter similar to the

localisation radius defined in the SBD localisation formalism (see Sect. 4.2.2).

The UVW partition of the state space is an extension of the original LG partition introduced by Bengtsson et al. (2003) in

which U and V are gathered into one region L, the local domain of yq , and W is called G (for global). Figure 18 illustrates

this UVW partition. We emphasise that both the LG and the UVW state partitions depends on the observation site yq . They are895

fundamentally different from the state block decomposition of Sect. 4.2.1 and therefore they shall simply be called "partition"

to avoid confusion.

7.2 The conditional density

For any region A of the physical space, let xA be the restriction of vector x to A, i.e. the state variables of x that are located

within A.900
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Figure 18. Example of the UVW partition for a two-dimensional space. The observation site yq lies in the middle. The local parts U and

V are circumscribed by the thick green and blue circles and respectively contain 1 and 20 grid points. The global region W contains all

remaining grid points. In the case of the LG partition, the local region L gathers all 21 grid points in U and V .

7.2.1 With the LG partition

Without loss of generality, the conditional density is decomposed into:

p(x|yq) = p(xL,xG|yq) = p(xL|xG,yq)p(xG|yq) . (51)

In a localisation context, it seems reasonable to assume that xG and yq are independent, that is:

p(xG|yq) = p(xG) , (52)905

and the conditional pdf of the L region can be written:

p(xL|xG,yq) =
p(yq|xG,xL)p(xG,xL)

p(xG,yq)
,

=
p(yq|xL)p(xG,xL)

p(xG,yq)
. (53)

This yields an assimilation method for yq described by Algorithm 5.
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Algorithm 5 Single analysis step for a generic LPFy algorithm using the LG partition

Require: Prior ensemble xi, i= 1 . . .Ne and observation site yq

1: Build the LG partition as described in Sect. 7.1

2: for i= 1 to Ne do

3: Do not update xiG

4: Update xiL conditionally to yq and xiG as stated by Eq. (53)

5: end for

6: return Updated ensemble xi, i= 1 . . .Ne

7.2.2 With the UV W partition910

With the UVW partition, the conditional density is factored as

p(x|yq) = p(xU ,xV ,xW |yq) ,

=
p(xU ,xV ,xW ,yq)

p(yq)
,

=
p(yq|x)p(xV |xU ,xW )p(xU ,xW )

p(yq)
,

=
p(yq|xU )p(xV |xU ,xW )p(xU ,xW )

p(yq)
. (54)915

If one assumes that the U and W regions are not only uncorrelated but also independent, then one can make the additional

factorisation:

p(xU ,xW ) = p(xU )p(xW ) . (55)

Finally, the conditional density is

p(x|yq) = p(xU |yq)p(xV |xU ,xW )p(xW ) . (56)920

The assimilation method for yq is now described by Algorithm 6.

7.2.3 The partition and the particle filter

The SO formalism is elegant. The resulting assimilation schemes avoid the discontinuity issue inherent to the SBD formalism

by using conditional updates of the ensemble.

However, this kind of update seems hopeless in a pure PF context. Indeed the factors p(xG,xL) and p(xV |xU ,xW ) in925

Eqs. (53) and (54) will be non-zero only if the updated particles are copies of the prior particles, which spoils the entire

purpose of localising the assimilation. Hence potential solutions need to make approximations of the conditional density.
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Algorithm 6 Single analysis step for a generic LPFy algorithm using the UVW partition

Require: Prior ensemble xi, i= 1 . . .Ne and observation site yq

1: Build the UVW partition as described in Sect. 7.1

2: for i= 1 to Ne do

3: Do not update xiW

4: Update xiU conditionally to yq

5: Update xiV conditionally to xiW and (the updated) xiU as stated by Eq. (54)

6: end for

7: return Updated ensemble xi, i= 1 . . .Ne

7.2.4 The multivariate rank histogram filter

Similar principles were used to design the multivariate rank histogram filter (MRHF) of Metref et al. (2014), with the main

difference that the state space is entirely partitioned as follows. Assuming that yq only depends on x1, the conditional density930

can be written:

p(x|y) = p(x1|y)p(x2|x1) . . .p(xn+1|xn, . . . ,x1) . . . (57)

In the MRHF analysis, the state variables are updated sequentially according to the conditional density p(xn+1|xn, . . . ,x1).

Zero factors in p(xn+1|xn, . . . ,x1) are avoided by using a kernel representation for the conditioning on xn, . . . ,x1, in a similar

way as in Eqs. (40) and (41) with top hat functions for the regularisation kernelK. The resulting one-dimensional density along935

xn+1 is represented using histograms and the ensemble members are transformed using the same anamorphosis procedure as

the one described in Sect. 4.4.4.

The MRHF could be used as a potential implementation of the SO localisation formalism. However, assimilating one obser-

vation site requires the computation of Nx different anamorphosis transformations.

7.3 Poterjoy’s local particle filter940

The LPF algorithm of Poterjoy (2016) (hereafter Poterjoy’s LPF) is a hybrid scheme that mixes a (global) PF update and the

prior in order to implement the UVW localisation formalism as described in this section.

7.3.1 Step 1: particle filter resampling

The global unnormalised importance weights are given by

wi = p
(
yq|xi

)
. (58)945

Using theses weights, we compute a resampling map φ, using for example the SU sampling algorithm.
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7.3.2 Step 2: update and propagation

The resampling map φ is used to update the ensemble at the observation site (i.e. in the U region) and the update is propagated

to all grid points n as

xin = xn +ωa
n

(
xφ(i)
n −xn

)
+ωf

n

(
xin−xn

)
, (59)950

where xn is the ensemble mean at grid point n, ωa is the weight of the PF update and ωf is the weight of the prior. If the

resampling algorithm is adjustment-minimising, the number of updates that need to be propagated is minimal. Finally, the ω∗

(either ωf or ωa) weights are chosen such that the updated ensemble yields correct order-1 and order-2 statistics.

At the observation site ωa = 1 and ωf = 0, such that the update on the U region is the PF update and is Bayesian. Far

from the observation site, ωa = 0 and ωf = 1, such that there is no update on the W region. Hence, the i-th updated particle955

is a composite particle between the i-th prior particle (in W ) and the hypothetical i-th updated particle (in U ) that would be

obtained with a PF update. In between (in V ) discontinuities are avoided by using a smooth transition for the ω∗ weights.

Poterjoy’s LPF is summarised by Algorithm 7.

The formulas for the ω∗ weights are summarised in Appendix B. Their detailed derivation can be found in Poterjoy (2016),

where ωa and ωf are called r1 and r2. Poterjoy (2016) included in his algorithm a weight inflation parameter that can be ignored960

to understand how the algorithm works. Moreover, the Ny sequential assimilations are followed by an optional KDDM step.

As explained in Sect. 4.4.4, we found the KDDM step to be better suited for the local resampling step of LPFx algorithms.

Therefore, we did not include it in our presentation of Poterjoy’s LPF.

Algorithm 7 Single analysis step for Poterjoy’s LPF

Require: Prior ensemble xi, i= 1 . . .Ne and observation site yq

1: Compute the analysis weights using Eq. (58)

2: Compute the resampling map φ

3: for n= 1 to Nx do

4: Compute the weights ωf
n and ωa

n

5: for i= 1 to Ne do

6: Update xin using Eq. (59)

7: end for

8: end for

9: return Updated ensemble xi, i= 1 . . .Ne

7.4 An algorithm inspired from the EnKPF

The EnKPF is a Gaussian mixture hybrid ensemble filter designed by Robert and Künsch (2017), in which the update is965

propagated from the observation site to all grid points using order-2 moments. The same ideas can be used to yield a LPF
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algorithm, hereafter called LEFRK, implementing the UVW localisation formalism as follows. The terminology "LEF" for

local ensemble filter is favored over "LPF" to emphasise the order-2 truncation inherent to this algorithm.

7.4.1 Preliminary: the covariance matrix

Since the update is propagated using order-2 moments, one first need to compute the covariance matrix of the prior ensemble:970

Σf = cov(x) . (60)

In a localisation context, it seems reasonable to use a tapered representation of the covariance, in such a way that the covariance

matrix Σ of use will be

Σ = C ◦Σf , (61)

where C is the valid tapering matrix mentioned in section 7.1 and ◦ means the Schur product for matrices.975

7.4.2 Step 1: update in the U region

Each ensemble member is weighted by the global unnormalised importance weights Eq. (58). Using these weights, we resample

the ensemble in the U region and compute the update ∆xiU . For this resampling step, any resampling algorithm can be used:

– an adjustment-minimising resampling algorithm can be used to minimise the number of updates ∆xiU that need to be

propagated;980

– the resampling algorithms based on OT in ensemble space or in state space, as derived in Sects. 4.4.3 and 4.4.4 can be

used; as in the LPFx methods we expect them to create strong correlations between the prior and the updated ensembles.

7.4.3 Step 2: propagate the update to the V region

For each particle i, the update of V , ∆xiV depends on the update on U , ∆xiU through the linear regression:

∆xiV = ΣV UΣ−1
U ∆xiU , (62)985

where ΣV U and ΣU are submatrices of Σ. The full derivation of Eq. (62) is available in Robert and Künsch (2017). Note that

Σ is a Nx×Nx matrix but only the submatrices ΣV U and ΣU need to be computed.

Finally, the LEFRK algorithm is summarised by Algorithm 8 in a generic context, with any resampling algorithm.

7.5 Pros and cons of the LPFy algorithms

Both algorithms derived in this section include some spatial smoothness in the construction of the updated particles. In Poter-990

joy’s LPF, the smoothness comes from the definition of the ω∗ weights, whereas in the LEFRK algorithm, it is a consequence of

the use of correlations to propagate the update. Thus, we expect the discontinuity issues to be less critical with both algorithms

than with LPFxs, which is why the partition was introduced in the first place.
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Algorithm 8 Single analysis step for a generic LEFRK algorithm

Require: Prior ensemble xi, i= 1 . . .Ne, observation site yq

1: Build the UVW partition as described in Sect. 7.1

2: Compute the prior covariance submatrices ΣV U and ΣU

3: Compute the analysis weights using Eq. (58)

4: Resample the ensemble on region U

5: Compute the associated updates ∆xiU , i= 1 . . .Ne

6: for i= 1 to Ne do

7: Compute the update ∆xiV using Eq. (62)

8: Apply the update ∆xiV on region V

9: end for

10: return Updated ensemble xi, i= 1 . . .Ne

However, the LPFys are by construction non parallel: observation sites are assimilated sequentially. This issue was discussed

by Robert and Künsch (2017): some level of parallelisation could be introduced in the algorithms, but only between observation995

sites for which the domains U and V are disjoint. That is to say, one can assimilate in parallel several observation sites as long

as their domain of influence (in which an update is needed) do not overlap. This would require a preliminary geometric step

to determine in which order observation sites are to be assimilated. This step would need to be performed again whenever the

localisation radius r is changed. Moreover, when r is large enough, all U and V domains may overlap, and parallelisation is

not possible.1000

The analysis step of Poterjoy’s LPF is equivalent to a PF analysis step in the asymptotic limit r→∞. This is not the case

for the LEFRK algorithm. Indeed, using order-2 moments to propagate the update introduces bias in the analysis. On the other

hand, order-2 methods are in general less sensitive to the curse of dimensionality. Therefore, we expect the LEFRK algorithm

to be able to handle larger values for the localisation radius r than the LPFxs.

7.6 Gathering observation sites into blocks1005

The LPFys can be extended to the case where observation sites are compounded into small blocks as follows:

– the unnormalised importance weights Eq. (58) are modified such that they account for all observation sites inside the

block;

– any distance that needed to be computed relatively to the observation site yq (for example for the ω∗ weights for Poter-

joy’s LPF) is now computed relatively to the block center;1010

– in the LEFRK algorithm, the UVW partition is modified: the U region now covers all grid points that directly influence

all observation sites inside the block.
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Table 2. Nomenclature conventions for the S(IαPβ)yγ algorithms

α Local resampling algorithm

R adjustment-minimising SU sampling algorithm

Te optimal transport in ensemble space

Ts optimal transport in state space

β Propagation method

P Poterjoy’s LPF (Algorithm 7)

RK LEFRK propagation (Algorithm 8)

γ Regularisation method

R white noise method

Ra coloured noise method

Gathering observation sites into blocks reduces the number of sequential assimilations fromNy to the number of observation

sites blocks, hence reducing the computation time per cycle. However, it introduces an additional bias in the analysis. Therefore,

we do not use this method in the numerical examples of Sects. 8 and 9.1015

8 Numerical illustration of the LPFy algorithms

8.1 Experimental setup

In this section, we illustrate the performance of the LPFys using twin simulations of the L96 and the BV models. The model

specifications for this test series are the same as for the LPFx test series: the L96 model is used in the standard configuration

described in Appendix A3 and the BV model is used in the CR configuration described in Appendix A4.1. In a manner1020

consistent with Sects. 5 and 6, the LPFy algorithms are named S(I∗P∗)yR∗ — sampling, importance, resampling, propagation,

regularisation, the y exponent meaning that steps in parentheses are performed locally for each observation site — with the

conventions detailed in Table 2.

8.1.1 Regularisation jitter

For the same reasons as with LPFxs, jittering the LPFys is necessary not to experience a fast collapse. As we eventually did for1025

the LPFxs, the model is not perturbed (no integration jitter) and regularisation noise is added at the end of each assimilation

cycle, either using the white noise method described by Eq. (43) or using the coloured noise method described in Sect. 5.8.

With this latter method, the local weights required for the computation of the covariance matrix of the regularisation noise are

computed with Eq. (29).

47

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2018-15
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 5 March 2018
c© Author(s) 2018. CC BY 4.0 License.



8.1.2 The S(IRPP)yR algorithm and its variant1030

With the regularisation method described in Sect. 8.1.1, the S(IRPP)yR has 3 parameters:

– the ensemble size Ne;

– the localisation radius r used to compute the ω∗ weights (step 4 of Algorithm 7) as defined by Eqs. (B1) to (B4);

– the standard deviation s of the regularisation jitter, hereafter simply called "regularisation jitter" to be consistent with

LPFxs.1035

For each value of the ensemble size Ne, the localisation radius r and the regularisation jitter s are systematically tuned to yield

the lowest RMSE score.

As mentioned in Sect. 7.3.2, the original algorithm designed by Poterjoy (2016) included another tuning parameter, the

weights inflation, which serves the same purpose as the regularisation jitter. Based on extensive tests in the L96 model with 8

to 128 particles, we found that using weights inflation instead of regularisation jitter always yields higher RMSEs. Therefore,1040

we did not include weight inflation in the S(IRPP)yR algorithm.

In the S(IRPP)yRa algorithm, the regularisation jitter parameter s is replaced by ĥ according to the coloured noise regulari-

sation jitter method. The parameter tuning method is unchanged.

8.1.3 The S(IRPRK)yR algorithm and its variants

With the regularisation method described in Sect. 8.1.1, the S(IRPRK)yR has 3 parameters:1045

– the ensemble size Ne;

– the localisation radius r used to define the valid tapering matrix C required for the computation of the prior covariance

submatrices (step 2 of Algorithm 8) as defined by Eq. (61);

– the regularisation jitter s.

For each value of the ensemble size Ne, the localisation radius r and the regularisation jitter s are systematically tuned to yield1050

the lowest RMSE score.

When using optimal ensemble coupling for the local resampling (step 4 of Algorithm 8), the local minimisation coefficients

are computed using Eq. (35). This gives an additional tuning parameter, the distance radius rd, which is also systematically

tuned to yield the lowest RMSE score. When using anamorphosis for the local resampling step, the cdfs of the variables in the

region U are computed in the same way as for LPFx algorithms, with a regularisation bandwidth h= 1. Finally, when using1055

the coloured noise regularisation jitter method, the parameter s is replaced by ĥ and the tuning method stays the same.

8.2 RMSE scores for the L96 model

The evolution of the RMSE as a function of the ensemble size Ne for the main LPFys with the L96 model is shown in Fig. 19.

The RMSEs obtained with the S(IRPP)yR algorithm are comparable to those obtained with the S(IR)xR algorithm. When
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Figure 19. RMSE as a function of the ensemble size Ne for the main LPFys.

using the LEFRK propagation method, the RMSEs are, as expected, significantly lower. Thanks to the order-2 truncation,1060

the algorithms are less sensitive to the curse of dimensionality than LPFxs: optimal values of the localisation radius r are

significantly larger and less regularisation jitter s is required. As for the LPFxs, combining the LEFRK propagation with

OT-based resampling methods (optimal ensemble coupling or anamorphosis) yields important gains in RMSE scores as a

consequence of the minimisation of the update in the region U that needs to be propagated to the region V . With a reasonable

number of particles (e.g. 64 for the S(ITsPRK)yR algorithm), the scores are even lower than those obtained with the reference1065

EnKF implementation. Finally, we observe that using the coloured noise regularisation jitter method improves the RMSEs

for large ensembles when the local resampling step is performed with the SU sampling algorithm, in a similar way as for

the LPFxs. However when the local resampling step is performed with optimal ensemble coupling or with anamorphosis, the

coloured noise regularisation jitter method barely improves the RMSEs.

8.3 RMSE scores for the BV model1070

The evolution of the RMSE as a function of the ensemble size Ne for the main LPFys with the BV model is shown in Fig. 20.

Most of the conclusions drawn with the L96 model remain true with the BV model. However in this case, as the ensemble

size Ne grows the RMSE decreases significantly more slowly for the S(IRPP)yR and the S(IRPP)yRa algorithms than for the

other algorithms. Finally, with an ensemble size Ne ≥ 64 particles, the S(ITsPRK)yR and the S(ITsPRK)yRa algorithms yield

RMSEs almost equivalent to those of the reference LETKF implementation.1075
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Figure 20. RMSE as a function of the ensemble size Ne for the main LPFys. The scores are displayed in units of the observation standard

deviation σ.

9 Numerical illustration with a high-dimensional barotropic vorticity model

9.1 Experimental setup

In this section, we illustrate the performance of a selection of LPFxs and LPFys using twin simulations of the BV model in

the high resolution (HR) configuration described in Appendix A4.2. Using this configuration yields a higher dimensional DA

problem (Nx = 65536 and Ny = 4096) for which the analysis step is too costly to perform exhaustive tests. Therefore in this1080

section, we take Ne = 32 ensemble members and we monitor the time evolution of the analysis RMSE during 501 assimilation

steps.

As with the CR configuration, all geometrical considerations (local blocks and domains,UVW partition...) use the Euclidean

distance of the underlying physical space.

9.2 Algorithm specifications1085

For this test series, the selection of algorithms is listed in Table 3. Approximate optimal values for the tuning parameters are

found using several twin experiments with a few hundred assimilation cycles (not shown here). Each algorithm uses the same

initial ensemble obtained as follows:

xi0 = x0 + 0.5×u + ui, i= 1 . . .Ne, (63)
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with u and the ui are random vectors whose coefficients are distributed according to a normal law. Such an ensemble is not1090

very close to the truth (in terms of RMSE) and its spread is large enough to reflect the lack of initial information.

9.3 RMSE time series

Figure 21 shows the evolution of the instantaneous analysis RMSE for the selected algorithms. Approximate optimal values for

the tuning parameters, alongside with average analysis RMSE computed over the final 300 assimilation steps and wall-clock

computation times are reported in Table 3. In terms of RMSE scores, the ranking of the methods is unchanged and most of the1095

conclusions for this test series are the same as with the CR configuration.

Thanks to the widespread observation network, the LETKF algorithm can efficiently reconstruct a good approximation of

the true state. As expected with this high-dimensional DA problem, the algorithms using an order-2 truncation (LETKF and

S(I∗PRK)yR algorithms) are more robust. Optimal values of the localisation radius are qualitatively large, which allows for a

better reconstruction of the system dynamics.1100

For the S(IR)xR and the S(IRPP)xR algorithms, the optimal localisation radius r needs to be very small to counteract the

curse of dimensionality. With such small values for r, the local domain of each grid point contains only 4 to 13 observation

sites. This is empirically barely enough to reconstruct the true state with an RMSE score lower than the observation standard

deviation σ. As usual, using OT-based local resampling methods yields significantly lower RMSEs. The RMSEs of the S(ITs)xR

algorithm, though not as good as those of the LETKF algorithm, show that the true state is reconstructed with an acceptable1105

accuracy. The RMSEs of the S(ITsPRK)yR and the LETKF algorithms are almost comparable. Depending on the algorithm,

the conditioning to the initial ensemble more or less quickly vanishes.

Without parallelisation, we observe that the Nx local analyses of the LPFxs are faster than both the Nx local analyses of the

LETKF and the Ny sequential assimilations of the LPFys (Poterjoy’s LPF and the LEFRK algorithm). The LEFRK algorithm

is slower because of the linear algebra involved in the propagation method. Poterjoy’s algorithm is slower because of the1110

computation of the ω∗ weights. The LETKF is slower because of the matrices inversion in the ensemble space. The difference

between the LPFxs and the LPFys is even more visible on our 24-core platform. The LPFys are not parallel, that is why they

are more than 70 times slower than the LPFxs.

10 Conclusions

The curse of dimensionality is a rather well-understood phenomenon in the statistical literature and it is the reason for the1115

failure of the application of PF methods to high-dimensional DA problems. We have recalled the main results related to weight

degeneracy of PFs, and why the use of localisation can be used as a fix. Yet, implementing localisation in PF analysis raises

two major issues: the gluing of locally updated particles and potential physical imbalance in the particles. Adequate solutions

to these issues are not obvious, witness the few but unsimilar LPF algorithms developed in the geophysical literature. In this

article, we have reviewed the ideas related to localisation and particle filtering. Moreover, we have proposed a theoretical1120

classification of LPFs into two categories.
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Table 3. Characteristics of the algorithms tested with the BV model in the HR configuration (Fig. 21). The LPFxs use zero integration jitter

(q = 0) andNb =Nx blocks of size 1 grid point. The LPFys also use zero integration jitter (q = 0). For the LETKF, the optimal multiplicative

inflation is reported in the regularisation jitter column. The average RMSE is computed over the final 300 assimilation steps and given in

units of the observation standard deviation σ. The wall-clock computation time is the average time spent per analysis step. The simulations

are performed on a single core of a double Intel Xeon E5-2680 platform (for a total of 24 cores). For comparison, the average time spent

per forecast (∆t= 0.5) for the 32-member ensemble is 0.94 s. The ∗ asterisk indicates that the local analyses can be carried out in parallel,

allowing a theoretical gain in computation time of up to a factor 65536. For these algorithms, the wall-clock computation time of the average

time spent per analysis step for the parallelised runs on this 24-core platform, as well as the acceleration factor, are reported in the last

column.

Algorithm Loc. radius r Reg. jitter s Other parameters Average RMSE 1-core wall-clock 24-core wall-clock

[in units of L] [in units of σ] time [in s] time [in s]

S(IRPP)yR 0.03 0.70 — 0.90 122.18 —

S(IR)xR 0.02 0.55 — 0.78 7.58∗ 0.54 (×14.04)

S(IRPRK)yR 0.07 0.25 — 0.46 52.97 —

S(ITs)xR 0.08 0.11 h= 3 0.33 13.94∗ 0.86 (×16.21)

S(ITsPRK)yR 0.20 0.01 h= 1 0.13 64.79 —

LETKF 0.35 1.04 — 0.10 103.90∗ 5.09 (×20.41)
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Figure 21. Instantaneous analysis RMSE for the selection of algorithms detailed in Table 3. The scores are displayed in units of the observa-

tion standard deviation σ.

With the LPFx methods, the analysis is localised by allowing the analysis weights to vary over the state variables. We have

shown that this leads to an analysis pdf from which only the marginals are known. The local resampling step is mandatory
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to reconstruct global particles, that are obtained as the concatenation of locally updated particles. The quality of the updated

ensemble directly depends on the regularity of the local resampling. This is related to the potential discontinuities in the1125

concatenated particles. Therefore we have presented practical methods to improve the design of this local resampling step by

reducing the discontinuities.

In the LPFy methods, localisation is introduced more generally in the conditional density for one observation site by the

means of a state partition. The goal of the partition is to build a framework for local particle filtering without the discontinuity

issues inherent to LPFxs. However, this framework is irreconcilable with algorithms based on pure "importance, resampling"1130

methods. We have shown how two hybrid methods could yet be used as an implementation of this framework. Besides, we

have emphasised the fact that with these methods, observation sites are by construction assimilated sequentially, which is a

great disadvantage when the number of observation sites in the DA problem is high.

With localisation, a bias is introduced in the LPF analyses. We have shown that, depending on the localisation parametrisa-

tion, some methods can yield an analysis step equivalent to that of global PF methods which are known to be asymptotically1135

Bayesian.

We have implemented and systematically tested the LPF algorithms with twin simulations of the L96 model and the BV

model. A few observations could be made from these experiments. With these models, implementing localisation is simple and

works as expected: the LPFs yield acceptable RMSE scores even with small ensembles, in regimes where global PF algorithms

are degenerate. Despite the fact that it was explicitly designed to avoid discontinuity issues, there is no clear advantage of using1140

Poterjoy’s LPF over the S(IR)xR algorithm. In particular, with the BV model, the scores of the S(IR)xR algorithm are slightly

better than those of Poterjoy’s LPF at a lower computational cost. As expected, using the LEFRK propagation method yields

the most efficient DA method in terms of RMSE scores. This is a consequence of the fact that order-2 truncated methods are

in general less sensitive to the curse of dimensionality. We have shown that using OT-based local resampling methods always

yields important gains in RMSE scores. For the LPFxs, it is a consequence of the minimisation of the discontinuities introduced1145

in the local resampling step. For the LPFys, it is a consequence of the minimisation of the update at the observation site that

needs to be propagated to nearby grid points.

Finally, the successful application of the LPFs to DA problems with a perfect model is largely due to the use of regularisation

jitter. Using regularisation jitter introduces an additional bias in the analysis alongside with an extra tuning parameter. For

our numerical experiments, we have introduced two jittering methods: either using regularisation noise with fixed statistical1150

properties (white noise) or by scaling the noise with the ensemble anomalies (coloured noise). We have discussed the relative

performance of each method and concluded that there is room for improvement in the design of regularisation jitter methods

for PFs. Ideally, the methods should be adaptative but this point is beyond the scope of this article. The conclusions could have

been different when applying the LPFs to DA problems with stochastic models. However, the definition of a realistic model

noise is non-trivial. Besides, the magnitude of such a model noise may be too small for the LPFs to perform well. That is why1155

the use of regularisation jitter can be justified even with stochastic models.
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Appendix A: Numerical models

A1 The Gaussian linear model1160

The Gaussian linear model is the simplest model with size Nx whose prior distribution is

x0 ∼N
(
0,p2I

)
, (A1)

whose transition distribution is

xk+1− axk = wk ∼N
(
0, q2I

)
, (A2)

and whose observation distribution is1165

yk −hxk = vk ∼N
(
0, r2I

)
, (A3)

where N (v,Σ) is the normal distribution with mean v and covariance matrix Σ.

A2 Generic model with Gaussian additive noise

The Gaussian linear model can be generalised to include nonlinearity in the modelM and in the observation operator H. In

this case, the transition distribution is:1170

xk+1−M(xk) = wk ∼N (0,Q) , (A4)

and the observation distribution is:

yk −H (xk) = vk ∼N (0,R) , (A5)

where Q and R are the covariance matrices of the additive model and observation errors.

A3 The Lorenz 1996 model1175

The Lorenz 1996 model (Lorenz and Emanuel, 1998) is a low-order one-dimensional discrete chaotic model whose evolution

is given by the following set of ODEs:

dxn
dt

= (xn+1−xn−2)xn−1−xn +F, n= 1 . . .Nx (A6)

where the indices are to be understood with periodic boundary conditions: x−1 = xNx−1, x0 = xNx
, x1 = xNx+1 and where

the system size Nx can take arbitrary values. These ODEs are integrated using a fourth-order Runge–Kutta method with a time1180

step of 0.05 time unit.
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In the standard configuration, Nx = 40 and F = 8. The observations are given by

yk = xk + vk, vk ∼N (0,I) , (A7)

and the time interval between consecutive observations is ∆t= 0.05 time unit, which represents 6 h of real time.

A4 The barotropic vorticity model1185

The barotropic vorticity model describes the evolution of the vorticity field of a two-dimensional incompressible homogeneous

fluid in the x1−x2 plan. The time evolution of the unknown vorticity field q is governed by the scalar equation

∂q

∂t
+ J(ψ,q) =−ξq+ ν∆q+F, (A8)

and q is related to the stream function ψ through

∆ψ = q. (A9)1190

In these equations, J(ψ,q) is the advection of the vorticity by the stream, defined as

J(ψ,q) =
∂ψ

∂x1

∂q

∂x2
− ∂ψ

∂x2

∂q

∂x1
, (A10)

ξ ∈ R+ is the friction coefficient, ν ∈ R+ is the diffusion coefficient and F is the forcing term, that may depend on x1, x2 and

t. The system is characterised by homogeneous two-dimensional turbulence. The friction extracts energy at large scale, the

diffusion dissipates vorticity at small scale and the forcing injects energy in the system. The number of degrees of freedom in1195

this model can be roughly considered to be proportional to the number of vertices (Snyder, 2012, personal communication).

The equations are solved with P 2 grid points regularly distributed over the simulation domain [0,L]2 with doubly periodic

boundary conditions. Our time integration method is based on a semi-Lagrangian solver with a constant time step δt as follows.

1. At time t, solve Eq. (A9) for ψ.

2. At time t, compute the advection velocity with order-2 centered finite differences of the field ψ.1200

3. The advection of q during t and t+ δt is computed by applying a semi-Lagrangian method to the left-hand side of

Eq. (A8). The solver cannot be more precise than order-1 in time, since the value of ψ is not updated during this

step. Therefore, our semi-Lagrangian solver uses the order-1 forward Euler time integration method. The interpolation

method used is the cubic convolution interpolation algorithm, which yields an order-3 precision with respect to the spatial

discretisation. In this step, the right-hand side of Eq. (A8) is ignored.1205

4. Integrate q from t to t+ δt by solving Eq. (A8) with an implicit order-1 time integration scheme, in which the advection

term is the one computed in the previous step.

For the numerical experiments of this study, the spatial discretisation is fine enough such that the spatial interpolation error in

the semi-Lagrangian step is negligible when compared to the time integration error. As a consequence, the overall integration

method is order-1 in time. For the DA experiments with this model, we define and use two configurations.1210
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A4.1 Coarse resolution configuration

The coarse resolution configuration is based on the following set of physical parameters:

L= 1, (A11)

ξ = 1× 10−2, (A12)

ν = 5× 10−5; (A13)1215

the deterministic forcing is given by

F (x1,x2) = 0.25sin(4πx1)sin(4πx2) , (A14)

and the space-time discretisation is

δt= 0.1, (A15)

δx=
L

P
=

1
32
, (A16)1220

which yields Nx = (δx/L)2 = 1024. The space discretisation is enough to allow a reasonable description of a few (typically

five to ten) vortices inside the domain. The time discretisation is empirically enough to ensure the stability of the integration

method and allows a fast computation of the trajectory. The physical parameters are chosen to yield a proper time evolution of

the vorticity q.

The initial true vorticity field for the DA twin experiments is the vorticity obtained after a run of 100 time units starting from1225

a random, spatially correlated field. The system is partially observed on a regular square mesh with one observation site every

2 grid points in each direction, i.e. Ny = 256 observation sites for Nx = 1024 state variables. At every cycle k, the observation

at site (q1, q2) ∈ {1 . . .P/2}2 is given by

yq1,q2 = x2q1−1,2q2−1 + vq1,q2 , (A17)

vq1,q2 ∼N
(
0,σ2

)
, (A18)1230

with σ = 0.3, about one tenth of the typical vorticity variability. The time interval between consecutive observations is ∆t= 0.5

time unit, which was chosen to match approximately the model autocorrelation of 0.967 of the L96 in the standard configura-

tion.

We have checked that the vorticity flow remains stationary over the total simulation time of our DA twin experiments chosen

to be 1× 104∆t. Due to the forcing F , the flow remains uniformally and stationarily turbulent during the whole simulation.1235

Compared to other experiments with the barotropic vorticity model (e.g. van Leeuwen and Ades, 2013; Ades and van Leeuwen,

2015; Browne, 2016), ∆t is smaller and σ is bigger, but the number of vertices is approximately the same with much fewer

details.
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A4.2 High resolution configuration

For the high resolution configuration, the physical parameters are1240

L= 1, (A19)

ξ = 5× 10−5, (A20)

ν = 1× 10−6; (A21)

the deterministic forcing is given by

F (x1,x2) = 0.75sin(12πx1)sin(12πx2) , (A22)1245

and the space-time discretisation is

δt= 0.1, (A23)

δx=
L

P
=

1
256

, (A24)

which yieldsNx = (δx/L)2 = 65536. Compared to the coarse resolution configuration, this set of parameters yields a vorticity

field with more vertices (typically several dozens). The associated DA problem has therefore many more apparent or effective1250

degrees of freedom. The initial true vorticity field for the DA twin experiments is the vorticity obtained after a run of 100 time

units starting from a random, spatially correlated field. The system is partially observed on a regular square mesh with one

observation site every 4 grid points in each direction, i.e.Ny = 4096 observation sites forNx = 65536 state variables. At every

cycle k, the observation at site (q1, q2) ∈ {1 . . .P/2}2 is given by

yq1,q2 = x2q1−1,2q2−1 + vq1,q2 , (A25)1255

vq1,q2 ∼N
(
0,σ2

)
, (A26)

and we keep the values ∆t= 0.5 time units and σ = 0.3 from the coarse resolution configuration. We have checked that the

vorticity flow remains stationary over the total simulation time of our DA twin experiments chosen to be 500∆t. Due to the

forcing F , the flow remains uniformally and stationarily turbulent during the whole simulation.

57

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2018-15
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 5 March 2018
c© Author(s) 2018. CC BY 4.0 License.



Appendix B: Update formulae of Poterjoy’s LPF1260

Following Poterjoy (2016), we derived the following formulas for the ω∗ weights required in the propagation step of Poterjoy’s

LPF described in Sect. 7.3.2:

W =
Ne∑

i=1

wi =
Ne∑

i=1

p
(
yq|xi

)
, (B1)

cn =
αNe

(
1−G

(
dq,n

r

))

WG
(
dq,n

r

) , (B2)

ωa
n =

√√√√√
σ2
n

1
Ne−1

Ne∑
i=1

{
x
φ(i)
n −xn + cn (xin−xn)

}2
, (B3)1265

ωf
n = cnω

a
n, (B4)

where W and cn are ancillary variables, α is the constant used for the computation of the local weights (see Eq. (28)), G is

the tapering function, dq,n is the distance between observation site q and grid point n, r is the localisation radius, xn is the

mean and σn the standard deviation of the weighted ensemble
{(
xin,w

i
)
, i= 1 . . .Ne

}
. The particles are then updated using

Eq. (59).1270

In Poterjoy (2016), the pdfs are implicitly normalised, such that the constant α is 1. Therefore, our update Eqs. (B1) to (B4)

are equivalent to the update Eqs. (A10), (A11), (A5) and (A3) derived by Poterjoy (2016). Note that there is a typing mistake

such that one update equation in Algorithm 1 of Poterjoy (2016) is incorrect (last equation on page 66).

Appendix C: Rank histograms for the L96 model

As a complement to the RMSE test series, we compute rank histograms of the ensembles (Anderson, 1996; Hamill, 2001). For1275

this experiment, the DA problem is the same as the one in Sects. 5 and 8: the L96 model is used in its standard configuration.

Several algorithms are selected with characteristics detailed in Table C1. The histograms are obtained separately for each

state variable by computing the rank of the truth in the unperturbed analysis ensemble (i.e. the analysis ensemble before the

regularisation step for the LPFs). To ensure the convergence of the statistical indicators, the runs are 105∆t long with a 103∆t

spin-up period. The mean histograms (averaged over the state variables) are reported in Fig. C1.1280

The histogram of the EnKF is quite flat in the middle, its edges reflect a small over dispersion. The histogram of the tuned

S(IR)xR algorithm is characterised by a large hump, showing that the ensemble is over dispersive. At the same time, the high

frequencies at the edges show that the algorithm yields a poor representation of the distribution tails (as most PF methods).

The over dispersion of the ensemble is a consequence of the fact that the parameters have been tuned to yield the best RMSE

score, regardless of the flatness of the rank histogram. With a different set of parameter, the untuned S(IR)xR algorithm yields1285

a rank histogram much flatter. In this case, the regularisation jitter is lower (which explains the fact that the ensemble is less

over dispersive) and the localisation radius smaller (to avoid the filter divergence). Of course, the RMSE score for the untuned
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Table C1. Rank histograms computed with the L96 model in the standard configuration (see Appendix C). All LPFs use zero integration

jitter (q = 0). The localisation radii are given in number of grid points. For the ETKF, the optimal multiplicative inflation is reported in the

regularisation jitter column. The ∗ asterisk in the RMSE column indicates that the algorithm parameters have been tuned to yield the lowest

RMSE score. The first column indicates the corresponding panel in Fig. C1.

Panel Algorithm Ens. size Ne Loc. radius r Reg. jitter s Other parameters RMSE

(a) ETKF 20 ∞ 1.02 — 0.188∗

(b) S(IR)xR 128 8 10.0× 10−2 Nb = 10 0.289∗

(c) S(ITs)xR 128 20 4.5× 10−2 h= 1 0.215∗

(d) S(ITsPRK)yR 128 80 1.0× 10−2 h= 1 0.180∗

(e) S(IR)xR 128 5 8.0× 10−2 Nb = 40 0.500

(f) S(ITs)xR 128 10 3.0× 10−2 h= 1 0.228

S(IR)xR algorithm is higher than for its tuned version. Similar conclusions can be found with the histograms of the tuned and

untuned S(ITs)xR algorithm. Note that in this case the histograms are significantly flatter than with the S(IR)xR algorithm.

Finally, the histogram of the (tuned) S(ITsPRK)yR is remarkably flat.1290

In summary, the rank histograms of the LPFs are in general rather flat. The ensemble are more or less over dispersive, this is

a consequence of the use of regularisation jitter, necessary to avoid the filter divergence. As most PF methods, the LPFs yield

a poor representation of the distribution tails.
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Figure C1. Rank histograms for the selection of algorithms detailed in Table C1. The frequency is normalised by Ne + 1 (the number of

bins).
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