
Response to reviewer 1

A. Farchi and M. Bocquet

July 24, 2018

We thank Reviewer 1 for insighful comments and suggestions.

1 Specific comments

Comment 1 Do I understand correctly that your observations in the L96 setup are of every variable at every time
step?

Yes, with the L96 model every variable is observed at every time step.

So your discussion on pre-regularisation in some way is a discussion on whether to use model error or not? Per-
haps this could be made more explicit in the main text.

Yes, pre-regularisation is in some way similar to the use of model error. This is already explicit in the text ("using

a stochastic extension of the model").

If observations are of every variable at every time step then it will strongly constrain the posterior pdfs to be Gaus-
sian and may well be influencing the results seen. This is alluded to in the main text but I think it would add insight
to explicitly state this in the discussion in section 5.1 and that it is also addressed through the use of the barotropic
vorticity model (which I understand uses a more sparse observational system in space and time).

Yes, the posterior pdfs are close to Gaussian pdfs, this is already stated in the last paragraph of Sect. 5.1. In

Sects. 6.2 and 9.3, we have followed your suggestion and added a remark.

Comment 2 The paper outlines quite a few different extensions to existing localisation methods. This is stated in the
abstract and introduction and when I read the different algorithm descriptions in detail I could find the paragraph were
the differences were noted. However, in general I wasn’t really left with a strong feeling of where you had introduced
new elements and what benefit they had brought i.e. Section 4.4.4 is entirely new work that has the best result for
L96 for the state domain localisation but this is only remarked on in the final paragraph of the algorithm description
section. If it was possible to include a small summary that highlights the new work and the improvement it brings,
either within an already existing concluding section or as something separate, then I think it is a chance to bring your
work to the fore. It would also explicitly demonstrate how setting individual schemes in to a general context can bring
benefits. This could be split between the state domain localisation and sequential-observation localisation if that was
the more natural division.

The outline of the paper has been slightly modified. We have included, at the end of each theoretical section, a

sub-section called "Summary for the LPF

⇤
algorithms". This sub-section includes highlights where we clarified what

already existed, what is new and what was improved. It includes as well as some discussion about the numerical

complexity and the asymptotic limit of the algorithms (which was demanded by the other Reviewer and the associate

Editor). Thank you for the suggestion, this is a great addition.

2 Technical corrections

L97 A capital N has slipped in to representatioN

Done.

L386 It should be ’in order to preserve part of the spatial structure held in the prior particles’

Done.
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L404 So Er has discontinuities?

Yes, Er
has discontinuities, which is why we had to improve the resampling step. Remember that Er

is the matrix

implicitely defined by step 5 of Alg. 1.

L543 The sentence doesn’t really make grammatical sense.

The sentence has been corrected.

L625 I assume this is ’s’ but it would be good to explicitly state it.

Done. Thank you for the suggestion.
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Response to reviewer 2

A. Farchi and M. Bocquet

July 10, 2018

We thank Dr. Stephen G. Penny (Reviewer 2) for his insighful comments and suggestions.
In this article, we describe and compare many different localised PF methods. Contrary to many articles in

the PF literature, the algorithmic sections are detailed and many explanations are given about potential numerical
choices. The numerical illustrations use several models, not only in one dimension, and an exhaustive exploration of
the algorithm parameters is performed. Please keep in mind that this goes well beyond most studies on the subject.

1 General comments

Comment 1) The relative costs between the methods should be calculated and compared, along with RMSE, in each
section. Some discussion of costs is made in passing, but no quantitative analyses are offered until the end where a
few methods are compared. I suggest extending this to each of the major direct comparisons at the end of the LPFx
and LPFy sections.

The numerical complexity of each method is now discussed in Sects. 4.5.2 and 7.5.2. For the BV model with high
resolution, the computation times are reported in Table 5. For the low-order models however (standard L96, BV with
coarse resolution), we did not to add the "companion plots" suggested by the reviewer for several reasons:

1. The computation time highly depends on many other factors than numerical complexity: implementation, pro-
gramming language, processors architecture... With low-order models, these factors may be very important and
therefore the computation time is often irrelevant.

2. In our configurations, the parameters are not reprensentative of realistic applications: the number of grid points
is very small, the number of particles is very high, and the number of spatial dimensions is limited (to 2 in our
case).

3. This would add approximately a dozen figures to an article which is already long.

In the PF literature, the only article in which we have seen some discussion about complexity and computation
time is the one by Penny and Miyoshi (2016). Finally, we want to highlight the fact that conclusions regarding the
computational cost of a method cannot be based on test series with low-order models. From our experience, the
ranking of an algorithm in computational cost looks very different when using the one-dimensional L96 model or the
two-dimensional BV model with high resolution.

Comment 2) It would be useful to show the results of the EnKF baseline, both in RMSE and computation time.

The EnKF scores were given in the text for the L96 model and shown in Fig. 17 for the BV model. We have added
a new figure (Fig. 4) that shows the score of the EnKF with the L96 model. We have also added horizontal baselines
in most LPF figures (Figs. 8, 13, 14, 15, 16, 18, 20 and 21).

Since the local PF variants are not outperforming the EnKF baseline, the authors should consider some special case
scenarios in which the PF does outperform the EnKF as a motivation for continued development of the local PFs and
to show why local PFs may also have advantages over standard EnKFs.

This is not true, several LPFs do outperfrom the EnKF in the standard configuration for the L96 model (see Fig.
20), which is a première to our knowledge. Besides, the point of this article is not to design LPF algorithms that beat
the EnKF in every configuration, but rather to improve the design of LPFs. Contrary to many studies on the PF,
we have chosen to use the dynamical models in standard configurations, which allows for a fair comparison with the
EnKF.

Following your recommandation, we have added a test series in Appendix C, in a configuration built to make
the EnKF fail. In this configuration, we use the same strongly nonlinear observation operator as Poterjoy (2016).
However, the interpretation of these results is harder, because some legitimate question can be asked:

1. Is this configuration relevant for realistic models?
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2. How good are the score of the LPFs? There is no baseline for comparison (the EnKF does not count since we
are outside the scope of its assumptions).

Comment 3) In general, I find the algorithm names confusing.

The coding system for the LPFs looks complex. But please keep in mind that this system was designed to distinguish
more than 20 different algorithms. Other studies that focus on a limited number of methods could use a much simpler
coding system.

In fact, the coding system follows one simple principle: capital letters refer to the main algorithmic steps and
subscripts are used to differentiate the methods. This is now explained in the caption of Tables 1 and 3.

The first half of the paper uses a complex coding system, while the second half credits the authors who developed
the methods.

We find the criticism unfair, because every time we introduce a new method, we cite the authors that inspired our
work if any. Both LPFx and LPFy algorithms follow the same convention, with different subscripts to refer to differ-
ent methods. For the LPFys, using ’P’ and ’RK’ as subscripts is a way to distinguish the two different propagation
methods and not to credit the author who developed the method. We could have used ’h’ and ’2’ (for ’hybrid’ and
’2nd order’) but obviously this is harder to remember. It serves exactly the same purpose as the subscrits ’e’ and ’s’
(distinction between optimal transport in ensemble space and in state space).

A more consistent and simpler naming convention would be nice from a reader’s point of view, and should be used
throughout.

Following your suggestion, the naming convention has been modified. The new system is consistent and as simple
as it can be given the fact that it is used for more than 20 algorithms. It is explained in details in the caption of
Tables 1 and 3.

In addition, a single table describing every algorithm name, what is does, and what section it can be found in,
would also help to add clarity.

Description tables for the LPFx and LPFy algorithms have been added (Tables 2 and 4). Thank you for the
suggestion; this is a great addition.

From what I can tell, the S(IR)ˆ xSR_a method appears closest to that of Penny and Miyoshi (2016), as it uses
smoothing of weights and adaptive "regularisation jitter" based on the ensemble perturbations, and I think this should
be given proper credit, as one of the few LPF methods offered in the geophysical literature that has a combination of
good performance and low computational cost.

We did cite Penny and Miyoshi (2016) when presenting the smoothing by weights step in Sect. 4.4.1. As shown
by our new results with the high-dimensional BV model, the S(IR)xS

PM

R
c

(new nomenclature), our generalisation of
the LPF of Penny and Miyoshi (2016), does not have a favourable ratio accuracy / computation time.

2 Specific comments

L28 Also cite Kalnay and Yang regarding the "Running-in-Place" method.

We have added a reference to the RIP as an important precursor method. Note however that, contrary to the
MLEF, the 4D-ETKF and the IEnKS, the RIP is not mathematically consistent.

L39 comma after hybridisation

Done.

L43 [fewer] particles

Done.

L60 degree[s] of freedom

Done.
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L63 geophysical system[s]

Done.

L85 I’m assuming y_k:0 is the set of all observations from time t=0 to time t=k, but perhaps you can state that
explicitly.

Yes, this was stated on the same line.

L91 Of course, there are many different goals in data assimilation. This is a typical goal. My immediate reaction
here is that the DA filtering problem consists in estimating pi_k+1|k. This is the goal at least, usually, to make a
prediction. Perhaps you can say - "The DA filtering problem consists in estimating pi_k|k and pi_k+1|k with given
realizations of y_k:0."

The sentence has been changed to reflect the fact that estimating ⇡k|k may not be the only goal of DA.

L97 particle representatio[n]

Done.

L111 What do you mean by "pure ensemble transformations"?

"Pure ensemble transformation" means that this is a transformation that act on the ensemble and that should
ideally not alter the density. This is explained by the following sentence. However, we agree that the term "pure" can
be confusing and we removed it.

L170 I’m not sure I understand why this is remarkable. Could you elaborate?

This is remarkable that in wi
k+1

, the dependance on x

i
k+1

vanishes. We have added a reference to Doucet (2000)
for clarification.

L177 "... to more elaborate algorithms ..."

Done.

L182 "... models [have led] to weight degeneracy..."

Done.

L196 " ... it [might seem] surprising that, although MC method[s] have..."

Done.

L214/217 You switch tenses, first referring to Synder et al. (2008) as a set of authors, and then referring to Snyder
et al. (2008) as a paper. Because "et al." means "and others", I prefer the former and recommend changing L217 to:
"Snyder et al. (2008) [do] not illustrate..."

Done.

L223 "...optimal importance proposal [density]..."

Done.

L227 "... does not [primarily] come from ..."

Done.

L238 "... [elaborate] models ..."

Done.
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L252 It seems awkward to begin a sentence with a variable name. Perhaps used instead: "The quantity taoˆ 2 would
then be defined using"

The beginning of the sentence has been changed. Thank you for the suggestion.

L266 While I appreciate the implication of calling this a ’discontinuity’, there are some complications in defining a
concept of continuity on a discrete model grid. Some discussion should be made regarding this point.

Indeed, discontinuity here does not refer to the mathematical notion of continuity. Following your suggestion, we
have added some explanation.

L281 Perhaps you could list some of the past examples of this type via citation.

Done.

L285 Again, I suggest citing a few example of this type as well.

Done.

L332 Not within a circle, but within some general local region. A circle is a common choice.

We changed the paragraph. Thank you for helping us clarify this point.

L367 "and decrease[s] exponentially"

Done.

L371 The "size" of the blocks using what measure? Number of grid points?

We clarified this point. Thank you for spotting the imprecision.

L386 I think "hold" should be "held"

Done.

L390-415 I’m not sure if the point was adequately made that neighboring weights can be made arbitrarily smooth
by letting the radius of the taper function (r_s) get large. I.e. as r_s goes to infinity, the global PF solution is recovered.

The asymptotic limit of a LPFx algorithm using smoothing by weights is now discussed in Sect. 4.5.4. When
r ! 1, Er is not necessarily equivalent to the global PF solution (because the resampling is independant at each
grid point). When r ! 1 and r

s

! 1, Es is not necessarily equivalent to the global PF solution (again because the
resampling is performed independantly at each grid point).

In that sense, I’m not sure why the additional alpha smoothing step is made explicit.

We do not understant your concern about making the "alpha smoothing step" (we guess you mean Eq. (32))
explicit.

L543 "only [a] big ensemble"

The sentence has been changed.

L561 "RMSE offers a" to "RMSE offer a"

Done.
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L562 I’m not sure it is settled that the RMSE of the mean is an adequate measure of the PF performance, given that
the distribution may not have the mean and mode equal.

We do not entirely understand the point of this remark. One must keep in mind that PFs are suited to compute
the mean state and not the mode. Besides, in these weakly non-Gaussian configurations, mean and mode should not
be far from each other.

Further, if we are to adopt a PF solution over an EnKF, then we are acknowledging that the primary data assim-
ilation goal is specifically not mean state estimation, but rather estimation of the state distribution.

We do not agree with this remark. Using a PF does not mean that we are not interested in the mean state. And,
again, one must keep in mind that PFs are not suited to "estimat[e] the state distribution". Indeed, with a PF, we
primarily have an estimation of Z

p (x) f (x) dx, (1)

for any test function f , but no estimation of p (x).

L572 "yield[s]"

The sentence has been removed.

L595 I don’t understand what this first sentence means. What does it mean to have more information than the truth?

Indeed there was a typo: one should have read "on average more informations than the observations". Sorry about
that; it has been corrected.

P25-25 It would be nice if Figures 4 and 5 were closer to the referencing text. Perhaps you can make that request
of the editors.

We will ask for this in the editing process.

P25 It appears here that you are using a fixed parameter for the ’regularization jitter’. Have you compared this the
LPF of Penny and Miyoshi (2016) that set this value adaptively based on the analysis ensemble spread?

The discussion on "adaptative" resampling is located in the "coloured noise" section (5.8). In this section, we
developped a method that is an extension of the method by Penny and Miyoshi (2016). We compared our method to
that of Penny and Miyoshi (2016) (not shown in this article) and always found better accuracy with our extension.
We have added a few sentences in section 5.8.2 about this.

L651 I’m confused how the higher RMSEs of the S(IR_SU)ˆ xR algorithm indicates an efficient approach. Could
the authors elaborate.

The S(IR
su

)xR algorithm is the only one that does not use the "adjustment-minimising" property. If it has a higher
RMSE, we believe that it means that the "adjustment-minimising" property is efficient. Following your comment, we
reformulated the statement.

What is the RMSE ratio used in Figure 9? Why does the figure caption say "RMSE" while the y-axis says "RMSE
ratio"?

The RMSE ratio used in Fig. 10 (new numbering) is detailed in the second sentence of the caption "The scores
are displayed in units of the RMSE of ...". The same kind of ratio is used in Figs. 9, 11 and 12.

L675 I need a reminder at this point - E is the set of ensemble members and X is the set of perturbations around
the ensemble mean? Are the xˆ i in (46) the columns of E?

E is the ensemble matrix (defined in Sect. 2), whose columns are the particles xi, which is a very common notation
in ensemble DA. X is indeed the set of (normalised) perturbations around the ensemble mean, as defined two lines
above. Reminders have been added, thank you for the suggestion.
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L697 change "as following" to "as follows"

Done.

How is equation (48) different than (46)? Could you instead just say it is defined as in (46) with a new formulation
for the Gaussian regularization jitter covariance matrix (49)?

Equation (51) is different from Eq. (49) (new numbering) because it uses the local weights wi
n instead of the global

weights wi that do not exist in LPFs. We explained in the text why Eqs. (47) to (49) cannot be used (see the second
paragraph of Sect. 5.8.2)

L702 Am I interpreting these figures correctly in that the new proposed approaches are all mostly making the RMSE
larger relative to the S(IR)ˆ xR (in the small-ensemble size cases of interest)?

Your interpretation is correct. This is discussed in the last paragraph of Sect. 5.8.

L740 The smoothing appears to have significant benefits. Are there any strategies for how this could be applied if an
exhaustive optimization of the parameters is not possible (e.g. for a large system)?

As shown by Fig. 12, ↵
s

= 1 is optimal in this configuration for the L96 model. We have checked that this is the
case in most situations where we used the smoothing (in particular with the BV model). However, we could not find
an obvious relationship between the optimally tuned values of r and r

s

. Besides, one should keep in mind that, in the
"small-ensemble size cases of interest", the benefits of the smoothing are far less impressive than the benefits of OT
(this can be seen in Fig. 16).

L742 Do you have the baseline RMSE values for the EnKF?

See the new Fig. 4. We have also added a baseline to Fig. 13.

L743 "From these results, we conclude that the smoothing by weights step [of Penny and Miyoshi (2016)] is an effi-
cient way of [reducing] the artificial discontinuities [that were] introduced when concatenating the locally updated parti-
cles, especially when combined with the coloured noise regularisation jitter method." I should note that the S(IR)xR_a
method appears closest to that presented by Penny and Miyoshi (2016), since their inflation is adaptive and using the
terminology here is a regularization jitter scaled by the ensemble anomalies.

Please keep in mind that the work of Penny and Miyoshi (2016) has been cited in Sect. 4.4.1 (where we introduced
the method in the first place) and that the S(IR)xS

PM

R
c

algorithm tested in this section is not the LPF of Penny
and Miyoshi (2016) but an improvement thereof, which includes: a more general framework that can be applied to
different types of resampling, a tapering function, a smoothing radius and a smoothing strength parameters, coloured
noise regularisation.

The other corrections ("reducing" and "that were") have been done.

L771 The results look very nice with the OT approach. Do you have an analysis of the relative costs of each of the
methods as a function of system size, observation count, and ensemble size?

This is detailed in the new section 4.5.2.

L794 "local LET algorithm" Is that redundant? Perhaps just say "LET algorithm"

"LET" means linear ensemble transform (introduced in Sect. 2.3 with appropriate citations).

L804 I think it would be appropriate at this point to provide a companion plot that shows the relative cost for each
method as well.

Please, see the discussion about general comment 1).

L809 Perhaps you should put the EnKF baseline on the plot as well.

See the new Fig. 4. We have also added a baseline to Fig. 16.
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L816 "dynamic[s]"

Done.

L828 "The ETKF requires at least Ne = 12 ensemble members to avoid divergence." This would imply that the
number of positive and neutral Lyapunov exponents of the system is 11.

You are right.

L835 It may not hurt to repeat the definition of each algorithm here.

We now refer to the algorithms’ list in the (new) Table 2. Thank you for the suggestion.

L923 "The SO formalism is elegant." This seems a strange characterization given that the next few sentences de-
scribe legitimate problems with the approach.

We wanted to emphasis that the formalism developed in Sects. 7.2.1 and 7.2.2 looks elegant. The next few
sentences raise issues that appear when combining the SO formalism with the PF. These issues are not specific to the
SO formalism. Following your commment, we mitigated this remark.

L940 I suggest either staying consistent with the rest of the paper and defining the section using the algorithm name
adopted in the paper - LPFˆ y - S(IRP_P )ˆ yR, or renaming the rest of the algorithms in the paper based on the
authors that introduced them.

The nomenclature for the algorithms has been changed to follow your suggestions (please, see the discussion about
general comment 3)). Thank you for spotting the inconsistency in the naming of the subsections. We corrected this
point.

L968 The terms ’ensemble member’ and ’particle’ are synonymous - they differentiate the same concept developed
in two different fields. The term ensemble does not imply a 2 moment method, so the naming convention shouldn’t be
used for the purpose stated here.

We now refer to this algorithm as "the second order propagation algorithm".

You are right, the terms "ensemble member" and "particle" designate the same concept but they are used in
different contexts. The term "particle" is often used with Bayesian method (or at least with methods based on
importance sampling) while the term "ensemble member" is often used with Kalman filters. The naming convention
is therefore already commonly being used to distinguish between Bayesian / non-Bayesian methods.

L970 "one first need[s] to"

Done.

L971 This computation is expensive for large systems. Is this computed in ensemble space or model space?

We stated in Sect. 7.4.3 that only submatrices of ⌃ need to be computed. Therefore this computation is not that
expensive for large systems.

How to implement Eq. (65) is beyond the scope of this article. For our numerical experiments, we computed it in
state space. Note that because of the schur product, there is no obvious formula for ⌃ in ensemble space.

L1009 "any distance that need[s] to be computed relative[] to the observation site..."

Done.

Table 2 The nomenclature table is somewhat helpful, but I’d prefer a full table showing each method for which results
are presented, with a description of the method, and the section where it can be found in the text.

The caption of this table has now more details, such that it is more explicit. Following your recommendations, we
have added new tables (Table 2 and 4). Thanks, this is a great addition.
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L1013 If the block computing is required to make the algorithms computationally scalable to large systems, then these
are the results that should be reported.

This is only a discussion about algorithmic possibilities. The block computation is a way to reduce the computation
requirements of LPFys. It should not be required to make the algorithms computationally scalable to large systems.

L1073 "size Ne grows[,] the RMSE decreases"

Done.

L1075 Again, I suggest showing the LETKF baseline RMSEs, as well as the computational costs of each method.

The RMSE values for the LETKF are in the dedicated figures. We have also added a baseline to Figs. 20 and 21.
For the computational cost, please see the discussion about general comment 1).

L1019 "few but [dis]similar LPF algorithms"

Done.

Figure 21 The better of the white noise and colored noise jitter should be used for each method.

For very small ensemble sizes, the white noise jitter yields lower RMSEs in most test series so far. This is why we
used it in this high-dimensional test series.

I have to state again that there should be another case presented in which the LETKF fails and the S()R methods
produce superior results.

Please see the discussion about general comment 2).

I very much like the promise of the LPFˆ x OT methods. However, I’d like to see the S(IR)ˆ xSR_a method of
Penny and Miyoshi (2016) presented, which should give a nice balance between parallelizable computational costs and
accuracy as measured by RMSE - which was the primary goal of the algorithm.

We originally did not select the S(IR)xS
PM

R
c

for this high-dimensional test series for these reasons:

1. Given the results for the BV model in the coarse resolution configuration, with very small ensemble sizes this
algorithm is outperformed by the algorithms using OT resampling.

2. This algorithm is slower than the other algorithm, because in two dimensions, computing the smoothing by
weights is numerically expensive.

3. Optimal tuning parameters for this method are harder to find (both because there are more parameters and
because the simulations are long).

Following your recommendation, we performed the simulation and reported the results in Fig. 22 and Table 5.
The ration accuracy / computation time is not in favor of this method.

Finally, please keep in mind that the S(IR)xS
PM

R
c

algorithm tested here is not the LPF of Penny and Miyoshi
(2016) but our improvement thereof, which includes: a more general framework that can be applied to different
types of resampling, a tapering function, a smoothing radius and a smoothing strength parameters, coloured noise
regularisation.
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Abstract. Particle filtering is a generic weighted ensemble
data assimilation method based on sequential importance
sampling, suited for nonlinear and non-Gaussian filtering
problems. Unless the number of ensemble members scales
exponentially with the problem size, particle filter (PF) al-5

gorithms lead toexperience weight degeneracy. This phe-
nomenon is a consequencemanifestation of the curse of di-
mensionality that prevents one from usingthe use of PF meth-
ods for high-dimensional data assimilation. The use of local
analyses to counteract the curse of dimensionality was sug-10

gested early onin the development of PF algorithms. How-
ever, implementing localisation in the PF is a challenge be-
cause there is no simple and yet consistent way of gluing
together locally updated particles together across domains.

In this article, we review the ideas related to localisation15

and the PF in the geosciences. We introduce a generic and
theoretical classification of local particle filter (LPF) algo-
rithms, with an emphasis on the advantages and drawbacks
of each category. Alongside with the classification, we sug-
gest practical solutions to the difficulties of local particle fil-20

tering, that lead to new implementations and improvements
in the design of LPF algorithms.

The LPF algorithms are systematically tested and com-
pared using twin experiments with the one-dimensional
Lorenz 40-variables model and with a two-dimensional25

barotropic vorticity model. The results illustrate the advan-
tages of using the optimal transport theory to design the local
analysis. With reasonable ensemble sizes, the best LPF algo-
rithms yield data assimilation scores comparable to those of
typical ensemble Kalman filter algorithms even for a mildly30

nonlinear system.

Copyright statement.

1 Introduction

The ensemble Kalman filter (EnKF, Evensen, 1994) and its
variants are currently among the most popular data assimila-35

tion (DA) methods. Because EnKF-like methods are simple
to implement, they have been successfully developed and ap-
plied to numerous dynamical systems in geophysics such as
atmospheric and oceanographic models including in opera-
tional conditions (see for example Houtekamer et al., 2005;40

Sakov et al., 2012a).
The EnKF can be viewed as a subclass of sequential Monte

Carlo (MC) methods whose analysis step relies on Gaus-
sian distributions. However, observations to assimilate can
have non-Gaussian error distributions, an example being the45

case of bounded variables — which are frequent in ocean
and land surface modeling or in atmospheric chemistry. Most
geophysical dynamical models are nonlinear yielding non-
Gaussian error distributions (Bocquet et al., 2010). More-
over, recent advances in numerical modeling enable the use50

of finer resolutions for the models: small scale processes that
can increase nonlinearity have then to be resolved.

When the Gaussian assumption is not fulfilled, Kalman
filtering is suboptimal. Iterative EnKFensemble Kalman fil-
ter and smoother methods have been developed to overcome55

these limitations, mainly by including variational analysis in
the algorithms (Zupanski, 2005; Sakov et al., 2012b; Bocquet
and Sakov, 2014), or through heuristic iterations (Kalnay and
Yang, 2010). Yet one cannot bypass the Gaussian represen-
tation of the conditional density with these latter methods.60

On the other hand, with particle filter (PF) methods (Gordon
et al., 1993; Doucet et al., 2001; Arulampalam et al., 2002;
Chen, 2003; van Leeuwen, 2009; Bocquet et al., 2010), all
Gaussian and linear hypotheses have been relaxed, allowing
a fully Bayesian analysis step. That is why the generic PF is65

a promising method.



2 A. Farchi and M. Bocquet: Comparison of local particle filters and new implementations

Unfortunately, there is no successful application of it to a
significantly high-dimensional DA problem. Unless the num-
ber of ensemble members scales exponentially with the prob-
lem size, PF methods experience weight degeneracy and lead70

toyield poor estimates of the model state. This phenomenon
is a consequencesymptom of the curse of dimensionality and
is the main obstacle to an application of PF algorithms to
most DA problems (Silverman, 1986; Kong et al., 1994; Sny-
der et al., 2008). Nevertheless, the PF has appealing proper-75

ties – the method is elegant, simple and fast, and it allows
for a Bayesian analysis. Part of the research on the PF is
dedicated to their application to high-dimensional DA with
a focus on four topics: importance sampling, resampling,
hybridisationhybridisation, and localisation.80

Importance sampling is at the heart of PF methods where
the goal is to construct a representationa sample of the poste-
rior density (the conditional density) given particles from the
prior density using importance weights. The use of a proposal
transition density is a way to reduce the variance of the im-85

portance weights, hence allowing the use of lessfewer parti-
cles. However, importance sampling with a proposal density
can lead to more costly algorithms that are not necessarily
freerid of the curse of dimensionality (Chap. 4 of MacKay,
2003; Snyder et al., 2015). Proposal-density PF methods in-90

clude the optimal importance particle filter (OIPF, Doucet
et al., 2000), whose exact implementation is only available
in simple DA problems (linear observation operator and ad-
ditive Gaussian noise), the implicit particle filter (Chorin and
Tu, 2009; Chorin et al., 2010; Morzfeld et al., 2012) which is95

an extension of the OIPF for non-trivial DA problems using
smoothing, the equivalent-weights particle filter (EWPF) and
its implicit version (van Leeuwen, 2010; Zhu et al., 2016).

Resampling is the first improvement that was suggested
in the bootstrap algorithm (Gordon et al., 1993) to avoid the100

collapse of a PF based on sequential importance sampling.
Common resampling algorithms include the multinomial re-
sampling and the stochastic universal (SU) sampling algo-
rithms. The resampling step allows the algorithm to focus
on particles that are more likely, but, as a drawback, it in-105

troduces sampling noise. Worse, it may lead to sample im-
poverishment hence failing to avoid the collapse of the PF
if the model noise is insufficient (van Leeuwen, 2009; Boc-
quet et al., 2010). Therefore it is usual practice to add a reg-
ularisation step after the resampling (Musso et al., 2001).110

Eventually, usingUsing ideas from the optimal transport the-
ory, Reich (2013) designed a resampling algorithm that cre-
ates strong bindings between the prior ensemble members
and the updated ensemble members.

Hybridising PFs with EnKFs seems a promising approach115

for the application of PF methods to high-dimensional DA,
in which one can hope to take the best of both worlds: robust-
ness of the EnKF and Bayesian analysis of the PF. The bal-
ance between the EnKF and the PF analysis must be chosen
carefully. Hybridisation especially suits the case where the120

number of significantly nonlinear degreedegrees of freedom

is small compared to the others. Examples of assimilation
using hybrid filters can be found when applied Hybrid fil-
ters have been applied for example to geophysical low-order
models (Chustagulprom et al., 2016) and inand to Lagrangian125

DA (Apte and Jones, 2013; Slivinski et al., 2015).
In most geophysical systemsystems, distant regions have

(almost) independent evolution over short time scales. This
idea was used in the EnKF to implement localisation in
the analysis (Houtekamer and Mitchell, 2001; Hamill et al.,130

2001; Evensen, 2003; Ott et al., 2004). In a PF context, local-
isation could be used to counteract the curse of dimension-
ality. Yet, if localisation of the EnKF is simple and leads to
efficient algorithms (Hunt et al., 2007), implementing locali-
sation in the PF is a challenge because there is no trivial way135

of gluing together locally updated particles together across
domains (van Leeuwen, 2009). The aim of this paper is to
review and compare recent propositions of local particle fil-
ter (LPF) algorithms (Rebeschini and van Handel, 2015; Lee
and Majda, 2016; Penny and Miyoshi, 2016; Poterjoy, 2016;140

Robert and Künsch, 2017) and to suggest practical solutions
to the difficulties of local particle filtering that lead to im-
provements in the design of LPF algorithms.

Section 2 provides some background on DA and parti-
cle filtering. Section 3 is dedicated to the curse of dimen-145

sionality with some theoretical elements and illustrations.
The challenges of localisation in PF methods are then dis-
cussed in Sects. 4 and 7 from two different angles. For both
approaches, we propose new implementations of LPF algo-
rithms, which are tested in Sects. 5, 6 and 8 with twin simu-150

lations of low-order models. Several of the LPFs are tested in
Sect. 9 with twin simulations of a higher dimensional model.
Elements of conclusionConclusions are given in Sect. 10.

2 Background

2.1 The data assimilation filtering problem155

We follow a state vector x
k

2 RN

x at discrete times t

k

,k 2
N, through independent observationsobservation vectors
y

k

2 RN

y . The evolution is assumed to be driven by a hid-
den Markov model whose initial distribution is p(x0), whose
transition distribution is p(x

k+1|xk

), and whose observation160

distribution is p(y
k

|x
k

).
The model can alternatively be described by

x

k+1 =M
k

(x

k

,w

k

) , (1)
y

k

=H
k

(x

k

,v

k

) , (2)

where the random vectors w

k

and v

k

follow the transition165

and observation distributions.
The components of the state vector x

k

are called state

variables or simply variables and the components of the ob-
servation vector y

k

are called observations.
Let ⇡

k|k be the analysis (or filtering) density ⇡

k|k =170

p(x

k

|y
k:0), where y

k:0 is the set {y
l

, l = 0 . . .k} and let
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⇡

k+1|k be the prediction (or forecast) density ⇡

k+1|k =

p(x

k+1|yk:0) with ⇡0|�1 coinciding with p(x0) by conven-
tion.

The prediction operator P

k

is defined by the Chapman–175

Kolmogorov equation:

P

k

�

⇡

k|k
�

, ⇡

k+1|k =

Z

p(x

k+1|xk

)⇡

k|k dxk

, (3)

and Bayes’ theorem is used to define the correction operator
C

k

:

C

k+1

�

⇡

k+1|k
�

, ⇡

k+1|k+1 =
p(y

k+1|xk+1)⇡
k+1|k

p(y

k+1|yk:0)
. (4)180

The DA filtering problemIn this article, we consider the
DA filtering problem that consists in estimating ⇡

k|k with
given realisations of y

k:0.

2.2 Particle filtering

The PF is a class of sequential MC methods that produces,185

from the realisations of y

k:0, a set of weighted ensemble
members (or particles)

�

x

i

k

,w

i

k

�

, i= 1 . . .Ne. The analysis
density ⇡

k|k is estimated through the empirical density:

⇡

Ne

k|k =

Ne
X

i=1

w

i

k

�

x

i

k

, (5)

where the weights are normalised so that their sum is 1 and190

�

x

is the Dirac distribution centered at x.
Inserting the particle representatioNrepresentation Eq. (5)

in the Chapman–Kolmogorov equation yields

P

k

⇣

⇡

Ne

k|k
⌘

=

Ne
X

i=1

w

i

k

p

�

x

k+1|xi

k

�

. (6)

In order to recover a particle representation, the prediction195

operator P

k

must be followed by a sampling step S

Ne . In
the bootstrap or sampling importance resampling (SIR) al-
gorithm of Gordon et al. (1993), the sampling is performed
as follows:

x

i

k+1 ⇠ p

�

x

k+1|xi

k

�

, (7)200

w

i

k+1 w

i

k

, (8)

where x⇠ p means that x is a realisation of a random vec-
tor distributed according to the probability density function
(pdf) p. The empirical density ⇡Ne

k+1|k is now an estimator of
⇡

k+1|k.205

Applying Bayes’ theorem to ⇡Ne

k+1|k gives a weight update
that follows the principle of importance sampling:

w

i

k+1 w

i

k+1 p
�

y

k+1|xi

k+1

�

. (9)

The weights are then renormalised so that they sum to 1.

Finally, an optional resampling step R

Ne is added if210

needed (see Sect. 2.3). In terms of densities, the PF can be
summarised by the recursion

⇡

Ne

k+1|k+1 =R

Ne �C
k+1 �SNe �P

k

⇣

⇡

Ne

k|k
⌘

. (10)

The additional sampling and resampling operators S

Ne and
R

Ne are pure ensemble transformations that are required to215

propagate the particle representation of the density. Ideally,
they should not alter the densities.

Under reasonable assumptions on the prediction and cor-
rection operators and on the sampling and resampling algo-
rithms, it is possible to show that, in the limit Ne!1, ⇡Ne

k|k220

converges to ⇡
k|k for the weak topology on the set of prob-

ability measures over RN

x . This convergence result is one
of the main reasons for the interest of the DA community in
PF methods. More details about the convergence of PF algo-
rithms can be found in Crisan and Doucet (2002).225

Eventually, the focus of this article is on the analysis step,
that is the correction and the resampling. Hence, prior or
forecast (respectively posterior, updated or analysis) will re-
fer to quantities before (respectively after) the analysis step.

2.3 Resampling230

Without resampling, PF methods are subject to weight de-
generacy: after a few assimilation cycles, one particle gets
almost all the weight. The goal of resampling is to reduce the
variance of the weights by reinitialising the ensemble. Af-
ter this step, the ensemble is made of Ne equally weighted235

particles.
In most resampling algorithms, highly probable particles

are selected and duplicated while particles with low prob-
ability are discarded. It is desirable that the selection of
particles has a low impact on the empirical density ⇡

Ne

k|k.240

The most common resampling algorithms — multinomial
resampling, SU sampling, residual resampling and Monte
Carlo Metropolis–Hastings algorithm — are reviewed by van
Leeuwen (2009).

Resampling introduces sampling noise. On the other hand,245

not resampling means imparting computationcomputational
time to highly improbable particles, that have a very low
contribution to the empirical analysis density. Therefore, the
choice of the resampling frequency is critical in the design
of PF algorithms. Common criteria to decide if a resampling250

step is needed are based on measures of the degeneracy: for
example the maximum of the weights or the effective ensem-
ble size defined by Kong et al. (1994), i.e.

Ne↵ =

 

Ne
X

i=1

�

w

i

k

�2

!�1

2 [1,Ne] . (11)

The resampling step and the correction stepcorrection and255

resampling steps of PF methods can be combined and em-
bedded into the so-called linear ensemble transform (LET)
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framework (Bishop et al., 2001; Reich and Cotter, 2015) as
follows. Let E

k

be the ensemble matrix, that is the N

x

⇥Ne

matrix whose columns are the ensemble members x

i

k

. The260

update of the particles is then given by

E
k

 E
k

T, (12)

where T is a Ne⇥Ne transformation matrix whose coeffi-
cients are uniquely determined during the resampling step.
In the general LET framework, T has real coefficients and it265

is subject to the normalisation constraint

Ne
X

i=1

[T]

i,j

= 1, j = 1 . . .Ne, (13)

such that the updated ensemble members can be interpreted
as weighted averages of the prior ensemble members. The
transformation is said to be first-order accurate if it preserves270

the ensemble mean (Acevedo et al., 2017), i.e. if

Ne
X

j=1

[T]

i,j

=New
i

k

, i= 1 . . .Ne. (14)

In the classical"select and duplicate" resampling schemes,
the coefficients of T are in {0,1} meaning that the updated
particles are copies of the prior particles. The first-order con-275

dition Eq. (14) is then only satisfied on average over realisa-
tions of the resampling step. Yet it is sufficient to ensure the
weak convergence of ⇡Ne

k|k almost surely in the case of the
multinomial resampling (Crisan and Doucet, 2002).

If the coefficients of T are positive reals, the transforma-280

tion can still be understood as a resampling where the up-
dated particles are composite copies of the prior particles.
For example, in the ensemble transform particle filter (ETPF)
algorithm of Reich (2013), the transformation is chosen such
that it minimises the expected distance between the prior and285

the updated ensembles (seen as realisations of random vec-
tors) among all possible first-order accurate transformations.
This leads to a minimisation problem typical of the discrete
optimal transport theory (Villani, 2009):

min

T2T

Ne
X

i,j=1

[T]

i,j

�

�

�

x

i

k

�x

j

k

�

�

�

2
, (15)290

where T is the set of Ne⇥Ne transformation matrices satis-
fying Eqs. (13) and (14). In this way, the correlation between
the prior and the updated ensembles is increased and ⇡

Ne

k|k
still converges toward ⇡

k|k for the weak topology. In the fol-
lowing, this resampling algorithm will be called optimal en-295

semble coupling.

2.4 Proposal-density particle filters

Let q (x
k+1) be a density whose support is larger than that of

p(x

k+1|xk

) — i.e. q (x
k+1)> 0 whenever p(x

k+1|xk

)>

0. The Chapman–Kolmogorov Eq. (3) can be written:300

⇡

k+1|k =

Z

p(x

k+1|xk

)

q (x

k+1)
q (x

k+1)⇡
k|k dxk

. (16)

In the importance sampling literature, q is called the proposal

density and can be used to perform the sampling step S

Ne

described by Eqs. (7) and (8) in a more general way:

x

i

k+1 ⇠ q (x

k+1) , (17)305

w

i

k+1 w

i

k

p

�

x

i

k+1|xi

k

�

q

�

x

i

k+1

�

. (18)

Using the proposal density q can lead to an improvement of
the PF method if for example q is easier to sample from than
p or if q includes information about x

k

or y
k+1 in order to

reduce the variance of the importance weights.310

The SIR algorithm is recovered with the standard pro-
posal p(x

k+1|xk

), while the optimal importance proposal
p(x

k+1|xk

,y

k+1) yields the optimal importance sampling
importance resampling (OISIR) algorithm (Doucet et al.,
2000). Merging the prediction and correction steps of the315

OISIR algorithm yields the weight update

w

i

k+1 w

i

k

p

�

y

k+1|xi

k

�

. (19)

It is remarkable that this formula does not depend on x

k+1

(Doucet et al., 2000). Hence the optimal importance pro-
posal is optimal in the sense that it minimises the variance320

of the weights over realisations of xi

k+1 — namely 0. More-
over, it can be shown that it also minimises the variance of
the weights over realisations of the whole trajectory x

i

k+1:0
among proposal densities that depend on x

k

and y

k+1 (Sny-
der et al., 2015).325

Although the optimal importance proposal has appealing
properties, its computation is non-trivial. For the generic
model with Gaussian additive noise described in Ap-
pendix A2, when the observation operator H is linear, the
optimal importance proposal can be computed as a Kalman330

filter analysis as shown by Doucet et al. (2000). However, in
the general case there is no analytic form and one must re-
sort to more elaboratedelaborate algorithms (Chorin and Tu,
2009; Chorin et al., 2010; Morzfeld et al., 2012).

3 The curse of dimensionality335

3.1 The weight degeneracy of particle filters

The PF has been successfully applied to low-dimensional
DA problems (Doucet et al., 2000). However, attempts to ap-
ply the SIR algorithm to medium- to high-dimensional geo-
physical models leadhave led to weight degeneracy (e.g., van340

Leeuwen, 2003; Zhou et al., 2006).
Bocquet et al. (2010) reproducedemonstrated weight de-

generacy in low-order models, for example in the Lorenz
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Figure 1. Empirical statistics of the maximum of the weights for
one importance sampling step applied to the Gaussian linear model
of Appendix A1. The model parameters are p= 1, a= 1, h= 1,
q = 1, � = 1, the ensemble size is Ne = 128 and the system size
varies from N

x

= 8 (well balanced case) to N

x

= 128 (almost de-
generate case).

1996 (L96, Lorenz and Emanuel, 1998) model in the
standard configuration described in Appendix A3. They345

illustrateillustrated the empirical statistics of the maximum
of the weights for several values of the system size. When
the system size is small,(10 to 20 variables,) weights are bal-
anced and values close to 1 are infrequent. However, when
the system size grows — (more than 40 variables —) weights350

rapidly degenerate: values close to 1 become more frequent.
Ultimately, the frequency of the maximum of the weights
peaks to 1.

Similar results occurare produced when applying one im-
portance sampling step to the Gaussian linear model de-355

scribed in Appendix A1. For this model, we illustrate the
empirical statistics of the maximum of the weights in Fig. 1.
Snyder et al. (2008) also computed the required number of
particles in order to avoid degeneracy in simulations and
found that it scales exponentially with the size of the prob-360

lem.
This phenomenon, well known in the PF literature, is often

referred to as degeneracy, collapse or impoverishment and is
a symptom of the curse of dimensionality.

3.2 The equivalent state dimension365

At first sight, it seemsmight seem surprising that, although
MC methodmethods have a convergence rate independent
of the dimension, the curse of dimensionality applies to
PF methods. Yet, the correction step C

k

is an importance
sampling step between the prior and the analysis prob-370

ability densities. The higher the number of observation
componentsobservations N

y

, the more singular these densi-
ties are to each other: random particles from the prior density
have an exponentially small likelihood according to the anal-
ysis density. This is the main reason for the blow up of the375

number of particles required for a non-degenerate scenario
(Rebeschini and van Handel, 2015).

A quantitative description of the behavior of weights for
large values of N

y

can be found in Snyder et al. (2008). In
this study, the authors first define:380

⌧

2
= var[ln(p(y

k

|x
k

))] , (20)

with the hypothesis that the observation noise is additive and
each of its component is independent and identically dis-
tributed (iid). Then they derive the asymptotic relationship
for only one analysis step:385

E

2

4

1

max

i

w

i

k

3

5 ⇠
Ne!1

1+

p
2lnNe

⌧

, (21)

where E is the expectation over realisations of the prior en-
semble members.

This result means that, in order to avoid the collapse of
a PF method, the number of particles Ne must be of order390

exp

�

⌧

2
/2

�

. In simple cases, as the ones considered in the
previous sections, ⌧2 is proportional to N

y

. The dependence
of ⌧ on N

x

is indirect in the sense that the derivation of
Eq. (21) requires N

x

to be asymptotically large. In a sense,
one can think of ⌧2 as an equivalent state dimension.395

Snyder et al. (2008) then illustrate the validity of the
asymptotic relationship Eq. (21) using simulations of the
Gaussian linear model of Appendix A1 with a SIR algorithm,
for which:

⌧

2
=N
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h

2
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2
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2
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2
�

�
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�
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2
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2
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2
�

◆

. (22)400

Snyder et al. (2008) doesdo not illustrate the validity of
Eq. (21) in more general cases, mainly because the computa-
tion of ⌧ is non-trivial. The effect of resampling is not inves-
tigated either, thought it is clear from simulations that resam-
pling is not enough to avoid filter collapse. Finally, the effect405

of using proposal densities is the subject of another study by
Snyder et al. (2015).

3.3 Mitigating the collapse using proposals

One objective of using proposal densities in PF methods is to
reduce the variance of the importance weights as discussed in410

Sect. 2.4. If one uses the optimal importance proposal den-
sity p(x

k+1|xk

,y

k+1) to sample x

k

in the prediction and
sampling step S

Ne �P
k

, the correction step C

k+1 consists in
matching two identical densities, which leads to a weight up-
date Eq. (19) that does not depend on the realisation of x

k+1.415
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Yet, the OISIR algorithm still collapses even for low-order
models such as the L96 model with 40 variables (Bocquet
et al., 2010). In fact, the curse of dimensionality for any
proposal-density PF does not primaryprimarily come from
the correction step C

k

, but from the recursion in the PF and420

in. In particular it stems from the fact that the algorithm does
not correct the particles at earlier times to account for new
observations (Snyder et al., 2015). This was a key motiva-
tion in the development of the guided SIR algorithm of van
Leeuwen (2009), whose ideas were included in the practi-425

cal implementations of the EWPF algorithm (van Leeuwen,
2010; Ades and van Leeuwen, 2015) as a relaxation step,
with moderate success (Browne, 2016).

Snyder et al. (2015) illustrate the validity of Eq. (21) using
simulations of the Gaussian linear model of Appendix A1430

with an OISIR algorithm, for which:

⌧
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2
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2
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2
q

2
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, (23)

and they found a good accuracy of Eq. (21) in the limit
Ne⌧ exp

�

⌧

2
/2

�

. This shows that the use of the optimal im-
portance proposal reduces the number of particles required435

to avoid the collapse of a PF method. However, ultimately,
proposal-density PFs cannot counteract the curse of dimen-
sionality in this simple model and there is no reason to
think that they could in more elaboratedelaborate models (see
chapter 29 of MacKay, 2003).440

In a generic Gaussian linear model, the equivalent state di-
mension ⌧2 as in Eqs. (22) and (23) is directly proportional to
the system size N

x

— equal to N

y

in this case. For more elab-
orate models, the relationship between ⌧2 and N

x

is likely to
be more complex and may involve the effective number of445

degrees of freedom in the model.

3.4 Using localisation to avoid collapse

By considering the definition of ⌧2, Eq. (20), one can see that
the curse of dimensionality is a consequence of the fact that
the importance weights are influenced by all components of450

the observation vector y
k

. Yet, a particular state variable and
observation can be nearly independent, for example in spa-
tially extended models if they are distant to each other. In
this situation, the statistical properties of the ensemble at this
state variable (i.e. the marginal density) should not evolve455

during the analysis step. Yet, this is not the case in PF meth-
ods, because of the use of (relatively) low ensemble sizes;
even the ensemble mean can be significantly impacted. A
good illustration of this phenomenon can be found in Fig. 2
of Poterjoy (2016). In this case, the PF overestimates the in-460

formation available and equivalently underestimates the un-
certainty in the analysis density (Snyder et al., 2008). As a
consequence, spurious correlations appear between distant
state variables.

This would not be the case in a PF algorithm that would465

be able to perform local analyses, that is when the influence

of each observation is restricted to a spatial neighborhood of
its location. The equivalent state dimension ⌧2 would then be
defined using the maximum number of observations that in-
fluence a state variable, which could be kept relatively small470

even for high-dimensional systems.
In the EnKF literature, this idea is known as domain local-

isation or local analysis and was introduced to fix the same
kind of issues (Houtekamer and Mitchell, 2001; Hamill et al.,
2001; Evensen, 2003; Ott et al., 2004). Technical implemen-475

tations of domain localisation in EnKF methods is as easy as
implementing a global analysis and the local analyses can be
carried out in parallel (Hunt et al., 2007). TheBy contrast, the
application of localisation techniques in PF methods is dis-
cussed in Snyder et al. (2008); van Leeuwen (2009); Bocquet480

et al. (2010) with an emphasis on two major difficulties.
The first issue is that the variation of the weights across

local domains irredeemably breaks the structure of the global
particles. There is no trivial way of recovering this global
structure, i.e. gluing together the locally updated particles.485

Global particles are required for the prediction and sampling
step S

Ne �P
k

in all PF algorithms, where the model M
k

is
applied to each individual ensemble member.

Secondly, if not carefully constructed, this gluing together
could lead to balance problems and sharp gradients in the490

fields (van Leeuwen, 2009). In EnKF methods, these is-
sues are mitigated by using smooth functions to taper the
influence of the observation componentsobservations. The
smooth dependency of the analysis ensemble on the obser-
vation precision reduces imbalance (Greybush et al., 2011).495

Yet, in most PF algorithms, there is no such smooth depen-
dency. From now on, this issue will be called "imbalance"
or "discontinuity" issue. The word "discontinuity" does not
point to the discrete nature of the model field on the grid, but,
inspired by the mathematical notion of continuity, to large500

unphysical gaps appearing in the discrete model field.

3.5 Two types of localisation

From now on, we will assume that our DA problem has a
well-defined spatial structure:

– each component of x

k

, hereafter called state variable505

or grid point,state variable is attached to a location, the
grid point;

– each component of y

k

, hereafter called
observation siteobservation is attached to a loca-
tionas well, the observation site or simply the site (local510

observations are assumed local);

– there is a distance function between locations.

The goal is to be able to define notions such as "the distance
between an observation site and a grid point", "the distance
between two grid points" or "the center of a group of grid515

points". In realistic models, these concepts need to be related
to the underlying physical space.
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In the nextfollowing sections, we discuss algorithms that
address the two issues of local particle filtering (gluing and
imbalance) and lead to implementations of domain localisa-520

tion in PF methods. We divide the solutions into two cate-
gories.

In the first approach, independent analyses are performed
forat each grid point by using only the observation sites that
influence this grid point. This leads to algorithms that are525

easy to define, to implement and to parallelise. However,
there is no obvious relationship between grid pointsstate vari-
ables, which could be problematic with respect to the im-
balance issue. This approach is used for example by Rebes-
chini and van Handel (2015); Penny and Miyoshi (2016); Lee530

and Majda (2016); Chustagulprom et al. (2016). We will call
this approachIn this article, we call it state–domain (and later
state–block–domain) localisation.

In the second approach, an analysis is performed forat each
observation site. When assimilating anthe observation ofat535

a site, we partition the state space: nearby grid points are
updated while distant grid point remain unchanged. In this
formalism, observation sitesobservations need to be assimi-
lated sequentially, which makes the algorithms harder to de-
fine and to parallelise but may mitigate the imbalance issue.540

This approach is used for example by Poterjoy (2016). We
will call this approachIn this article, we call it sequential–

observation localisation.

4 State–domain localisation for particle filters

From now on, the time subscript k is systematically dropped545

for clarity and the conditioning with respect to prior quan-
tities is implicit. The superscript i 2 {1 . . .Ne} is the mem-
ber index, the subscript n 2 {1 . . .N

x

} is the state variable or
grid point index, the subscript q 2 {1 . . .N

y

} is the observa-
tion or observation site index, the subscript b 2 {1 . . .Nb} is550

the block index (the concept of block is defined in Sect. 4.2).

4.1 Introducing localisation in particle filters

Localisation is generally introduced in PF methods by allow-
ing the analysis weights to depend on the spatial position. In
the (global) PF, the marginal of the analysis density for each555

grid point n= 1 . . .N

x

state variable is

p(x

n

) =

Ne
X

i=1

w

i

�

x

i

n

, (24)

whose localised version is

p(x

n

) =

Ne
X

i=1

w

i

n

�

x

i

n

. (25)

The local weights wi

n

depend on the spatial position through560

the grid point index n.

With local analysis weights, the marginals of the analy-
sis density are uncoupled. This is the reason why localisa-
tion was introduced in the first place, but, as a drawback, the
full analysis density is not known. The most simplesimplest565

fix is to approximate the full density as the product of its
marginals:

p(x) =

N

x

Y

n=1

Ne
X

i=1

w

i

n

�

x

i

n

, (26)

which is a weighted sum of the N

N

x

e possible combinations
between all particles.570

In summary, in LPF methods, we keep the generic MC
structure described in Sect. 2.2. The prediction and sam-
pling step is not modified. The correction step is adjusted
to allow the analysis density to have the form given by
Eq. (26). In particular, one has to define the local analy-575

sis weights w

i

n

; this point will be discussed in Sect. 4.2.2.
Finally, the resampling step, that was optional in (global) PF
methods, becomes mandatory to reconstitute global particles,
which are required for the next assimilation cycle. Practical
algorithms to construct these Ne updated particles will be580

introduced in Sect. 4.4. Finally, global particles are required
for the next assimilation cycle and they are obtained as fol-
lows. A local resampling is first performed independently for

each grid point. The locally resampled particles are then as-
sembled into global particles. The local resampling step is585

discussed in detail in Sect. 4.4.

4.2 Extension to state–block–domain localisation

The principle of localisation in the PF, and in particular
Eq. (26), can be included into a more general state–block–
domain (SBD) localisation formalism. The state space is590

divided into local(local state) blocks with the additional
constraint that the weights should be constant over the
blocks. The resampling is thenthen has to be performed
independently for each blockindependently for each block.

In the block particle filter algorithm of Rebeschini and van595

Handel (2015), the local weight of a block is computed using
the observation sites that are located inside this block. How-
ever, in general nothing prevents one from using the obser-
vation sites inside a local domain potentially different from
the block. This is the case in the LPF of Penny and Miyoshi600

(2016), in which the local blocks have size 1 grid point while
the size of the local domains is controlled by a localisation
radius.

To summarise, LPF algorithms using the SBD localisa-
tion formalism, hereafter called LPFx algorithms1, are char-605

acterised by

– the geometry of the local (state) blocks over which the
weights are constant;

1The x exponent emphasises the fact that we perform one anal-
ysis per (local state) block.
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– the local domain of each block, which gathers all obser-
vation sites used to compute the local weight;610

– the local resampling algorithm.

Most LPFs (e.g. those described in Rebeschini and van
Handel, 2015; Penny and Miyoshi, 2016; Lee and Majda,
2016) in the literature can be seen to adopt this SBD for-
malism.615

4.2.1 The local state blocks

Using parallelepipedic local blocks is a standard geomet-
ric choice (Rebeschini and van Handel, 2015; Penny and
Miyoshi, 2016). It is easy to conceive and to implement and
it offers a potentially interesting degree of freedom: the block620

shape. Using biggerlarger blocks decreases the proportion of
block boundaries and hence the bias in the local analyses. On
the other hand, it also means less freedom to counteract the
curse of dimensionality.

In the clustered particle filter algorithms of Lee and Ma-625

jda (2016), the blocks are centered around the observation
sites. The potential gains of this method are unclear. More-
over, when the observation sites are regularly distributed over
the space — which is the case in the numerical examples of
Sects. 5 and 6 — there is no difference with the standard630

method.

4.2.2 The local domains

In the analyses of local EnKF methods, the general idea of
localisation is that the analysis at one grid point is computed
by using only the observation sites that lie inside a circle635

centered in this grid point. The radius of this circle is a free
parameter often called the localisation radius. The general
idea of domain localisation in the EnKF is that the analysis
at one grid point is computed using only the observation sites
that lie within a local region around this grid point, hereafter640

called the local domain. For instance in two dimensions a
common choice is to define the local domain of a grid point
as a disk, centered at this grid point, and whose radius is a
free parameter called the localisation radius. The same prin-
ciple can be applied to the SBD localisation formalism: the645

local domain of a block will be a circledisk whose center co-
incides with that of the block and whose radius will be a free
parameter.

The terminology adopted here (circledisk, radius...) fits
two-dimensional spatial spaces. Yet, most geophysical mod-650

els have a three-dimensional spatial structure, with typical
uneven vertical scales usually much shorter than horizontal
scales. For these models, the geometry of the local domains
should be adapted accordingly.

Increasing the localisation radius allows one to take more655

observation sites into account hence reducing the bias in the
local analysis. It is also a means to reduce the spatial inho-
mogeneity by making the weights smoother in space.

The smoothness of the local weights is an important
property. Indeed, spatial discontinuities in the weights can660

lead to spatial discontinuities in the updated particles. Still
pickingAgain lifting ideas from the local EnKF methods, the
smoothness of the weights can be improved by tapering the
influence of an observation site with respect to its distance
to the block center as follows. For the (global) PF, assuming665

that the observation sites are independent, the unnormalised
weights are computed according to

w

i

=

N

y

Y

q=1

p

�

y

q

|xi

�

. (27)

Following Poterjoy (2016), it becomes for aan LPF:

w

i

b

=

N

y

Y

q=1

⇢

↵+G

✓

d

q,b

r

◆

�

p

�

y

q

|xi

�

�↵
�

�

, (28)670

where ↵ is a constant that should be of the same order as
maxp(y|x)the maximum value of p(y|x), d

q,b

is the dis-
tance between the q-th observation site q and the center of
the b-th block b, r is the localisation radius and G is the taper
function: G(0) = 1 and G(x) = 0 if x is larger than 1, with675

a smooth transition. A popular choice for G is the Gaspari–

Cohn function (Gaspari and Cohn, 1999). If the observation
error is an iid Gaussian additive noise with variance �2, one
can use an alternative "Gaussian" formula for wi

b

directly in-
spired from local EnKF methods:680

lnw

i

b

=� 1

2�

2

N

y

X

q=1

G

✓

d

q,b

r

◆

�

y

q

�H
q

�

x

i

��2
. (29)

Equations (28) and (29) differ. Still they are equivalent in the
asymptotic limit r! 0 and �!1.

4.2.3 Algorithm summary

Algorithm 1 describes the analysis step for a generic LPFx.685

The algorithm parameters are: the ensemble size Ne, the ge-
ometry of the blocks and the localisation radius r used to
compute the local weights with Eq. (28) or (29). Nb is the
number of blocks and E|b is the restriction of the ensemble
matrix E to statethe b-th block b (i.e. the rows of E corre-690

sponding to state variablesgrid points that are located within
the b-th block b). E|b is a N

x

/Nb⇥Ne matrix.
In this algorithm, and in the rest of this article, the en-

semble matrix E and the particles xi (its columns) are used
interchangeably. Note that in most cases, steps 3, 5 and 6 can695

be merged into one step.
An illustration of the definition of local blocks and local

domains is displayed in Fig. 2.

4.3 Beating the curse of dimensionality

The feasibility of PF methods using SBD localisation is dis-700

cussed by Rebeschini and van Handel (2015) through the ex-
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Algorithm 1 Analysis step for a generic LPFx

Require: Prior (forecast) ensemble x

i, i= 1 . . .Ne

1: for b= 1 to Nb do
2: Compute the local weights wi

b

using Eq. (28) or (29)
3: Resample the local ensemble E|b with weights wi

b

as Er
|b

4: end for
5: ConcatenateAssemble the locally resampled ensembles Er

|b as
Er

6: Update the ensemble: E Er

7: return Updated (analysis) ensemble x

i, i= 1 . . .Ne.

block

center

grid points

domain

sites

Figure 2. Example of geometry in the SBD localisation formalism
for a two-dimensional space. The focus is on the block in the middle
which gathers 12 grid points. The local domain is circumscribed
by a circle around the block center with potential observation sites
outside the local block.

ample of their block particle filter algorithm. In this algo-
rithm, the distinction between blocks and local domains and
local blocks does not exist. The influence of each observation
site is not tapered and the resampling is performed indepen-705

dently for each block, regardless of the boundaries between
blocks.

The main mathematical result is that, under reason-
able hypotheses, the error on the analysis density for this
LPFalgorithm can be bounded by the sum of a bias and a710

variance term. The bias term is related to the block bound-
aries and decreasedecreases exponentially with the diameter
of the blocksblocks, in number of grid points. It is due to the
fact that the correction is not Bayesian any more since only a
subset of observation sitesobservations is used to update each715

block. The exponential decrease is a demonstration of the de-

cay of correlations property. The variance term is common to
all MC methods and scales with exp(K)/

p
Ne, where K is

the size of the blocks — in fact the size of the domain but here
they are the same — and not the space dimension any more.720

For global MC methods, K is the state dimension, whereas
here K is the number of grid points inside each block. This
implies that LPFLPFx algorithms can indeed beat the curse
of dimensionality with reasonably large ensembles.

4.4 The local resampling725

Resampling from the analysis density given by Eq. (26)
does not cause any theoretical or technical issue. One
just needs to apply any resampling algorithm (e.g. those
described in Sect. 2.3) locally to each block using the
local weights. Global particles are then obtained by730

concatenatingassembling the locally resampled particles. By
doing so, adjacent blocks are fully uncoupled — this is the
same remark as when we constructed the analysis density
Eq. (26) from its marginals Eq. (25). Once again, this is ben-
eficial, since uncoupling is what counteracts the curse of di-735

mensionality.
On the other hand, blind concatenatingassembling is likely

to lead to artificialunphysical discontinuities in the updated
particles, regardless of the spatial smoothness of the analysis
weights. More precisely, we want to buildone builds com-740

posite particles, that is when the i-th updated particle is the
concatenationcomposed of the j-th particle on one block and
of the k-th particle on an adjacent block with j 6= k — as
shown by Fig. 3 in one dimension. There is no guarantee
that the j-th and the k-th local particles are close and that745

their concatenationassembling them will represent a physical
state. Pathological situations can be easily conceived in the
case of a multimodal underlying density: artificial composite
particles mixing more than one mode are likely to be formed.

In order to minimise artificialmitigate the unphysical dis-750

continuities, the analysis weights must be spatially smooth,
as mentioned in Sect. 4.2.2. Moreover, the resampling
scheme must have some "regularity", in order to preserve part
of the spatial structure holdheld in the prior particles. This is
a challenge due to the stochastic nature of the resampling al-755

gorithms; potential solutions are presented hereafter.

4.4.1 Applying a smoothing by weights

A first solution is to smooth out the potential unphysical dis-
continuities by averaging in space the locally resampled en-
semble as follows. This method was introduced by Penny760

and Miyoshi (2016) in their LPF and called smoothing by

weights.
For each state block b, letLet Er

b

be the matrix of the en-
semble computed by applying the resampling method to the
global ensembleensemble, weighted by the local weights wi

b

765

of the b-th block. Er
b

is aan N

x

⇥Ne matrix different from
the N

x

/Nb⇥Ne matrix Er
|b implicitly defined by step 3
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top

particle i

particle j

bottom

composite particle i / j

discontinuity

Figure 3. Example of one-dimensional concatenation of particle i

on the left and particle j on the right. Top: the prior particles i and
j. Bottom: the composite particle, concatenation of i and j. In this
situation, a large and artificialunphysical discontinuity appears at
the boundary.

of Algorithm 1defined in Sect. 4.2.3. We then define the
smoothed ensemble matrix Es by

[Es
]

i

n

=

Nb
P

b=1
G

⇣

d

n,b

rs

⌘

[Er
b

]

i

n

Nb
P

b=1
G

⇣

d

n,b

rs

⌘

, (30)770

where d

n,b

is the distance between the n-th grid point n and
the center of the b-th block b, rs is the smoothing radius, a
free parameter potentially different from r and G is a taper
function, potentially different from the one used to compute
the local weights.775

For example, consider the SU sampling algorithm as
the resampling method, and let �

b

beIf the resampling is
performed using a "select and duplicate" algorithm (see
Sect. 2.3), for example the SU sampling algorithm, then de-
fine �

b

as the resampling map atfor the b-th block b, i.e. the780

map computed with the local weights w

i

b

such that �
b

(i) is
the index of the i-th resampledselected particle. E being the
prior ensemble matrix, Eq. (30) becomes

[Es
]

i

n

=

Nb
P

b=1
G

⇣

d

n,b

rs

⌘

[E]

�

b

(i)
n

Nb
P

b=1
G

⇣

d

n,b

rs

⌘

. (31)

Finally, the ensemble is updated as785

E ↵sE
s
+(1�↵s)E

r
, (32)

where Er beis the resampled ensemble matrix implicitly de-
fined by step 5 of Algorithm 1 ,and ↵s is the smoothing

strength, a free parameter in [0,1] that controls the inten-
sity of the smoothing. ↵s = 0 means that no smoothing is790

performed and ↵s = 1 means that the analysis ensemble is
totally replaced by the smoothed ensemble.

Algorithm 2 describes the analysis step for a generic LPFx

with smoothing by weights. The original LPF of Penny and
Miyoshi (2016) can be recovered if:795

– blocks have size 1 grid point (hence there is no distinc-
tion between grid points and blocks);

– the local weights are computed using Eq. (29);

– G is a top hat function;

– the resampling method is the SU sampling algorithm;800

– rs is set to be equal to r;

– ↵s is set to 0.5.

The method described here is an extensiona generalisation of
thistheir algorithm.

Note that when the resampling method is the SU sampling805

algorithm, the matrices Er
b

do not need to be explicitly com-
puted. One just has to store in memory the resampling maps
�

b

, b= 1 . . .Nb and then use Eq. (31) to obtain the smoothed
ensemble matrix Es.

The smoothing by weights step is an ad-hoc fix to reduce810

afterwards the artificialpotential unphysical discontinuities
after they have been introduced in the local resampling step.
Its necessity hints that there is room for improvement in the
design of the local resampling algorithms.

Algorithm 2 Analysis step for a generic LPFx with smooth-
ing by weights

Require: Prior ensemble x

i, i= 1 . . .Ne

1: for b= 1 to Nb do
2: Compute the local weights wi

b

using Eq. (28) or (29)
3: Resample the local ensemble E|b with weights wi

b

as Er
|b

4: Resample the global ensemble E with weights wi

b

as Er
b

5: end for
6: ConcatenateAssemble the locally resampled ensembles Er

|b as
Er

7: Compute the smoothed ensemble matrix Es using Eq. (30)
8: Update the ensemble matrix E using Eq. (32)
9: return Updated ensemble x

i, i= 1 . . .Ne.

4.4.2 Refining the sampling algorithms815

In this section, we study several properties of the local re-
sampling algorithm that might help dealing with the discon-
tinuity issue: balance, adjustment and random numbers.
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A "select and duplicate" sampling algorithm is said to be
balanced if, for i= 1 . . .Ne the number of copies of the i-820

th particle selected by the algorithm does not differ by more
than one unity from w

i

Ne. For example, this is the case of the
SU sampling but not the multinomial resampling algorithm.

In general, the order of the resampled particles does
not matter. Hence, once the updated particles have been825

selected, one can reorder the particle indices to maximise
the number of indexes i 2 {1 . . .Ne} such that the i-th
updated particle is a copy of the i-th original particle. If this
property is satisfied, we say that the resampling algorithm
is adjustment-minimising. A "select and duplicate" sampling830

algorithm is said to be adjustment-minimising if the indices
of the particles selected by the algorithm are reordered to
maximise the number of indices i 2 {1 . . .Ne} such that the
i-th updated particle is a copy of the i-th original particle.
The SU sampling and the multinomial resampling algorithms835

can be simply modified to yield adjustment-minimising re-
sampling algorithms.

While performing the resampling independently for each
block, one can use the same random number(s) in the local
resampling of each block.840

In the naive local ensemble Kalman particle filter
algorithm of Robert and Künsch (2017), the problem of
artificial discontinuities is taken care in the following way:

– the resampling algorithm is balanced;845

– the same random number(s) is (are) used over all blocks;

– the resampling algorithm is adjustment-minimising.

Using the same random number(s) for the resampling
of all blocks cancelsavoids a stochastic source of artificial
spatial discontinuitiesunphysical discontinuity. Choosing850

balanced and adjustment-minimising resampling algorithms
is an attempt to include some kind of continuity in the map
{local weights} 7! {locally updated particles} by minimis-
ing the occurrences of composite particles. However, these
properties cannot eliminate all sources of artificialunphysical855

discontinuity. Indeed, ultimately composite particles will be
built — if not then localisation would not be necessary —
and there is no mechanism to reduce the potentialunphysical
discontinuities in them. These properties have been first in-
troduced in the "naive" local ensemble Kalman particle filter860

of Robert and Künsch (2017).

4.4.3 Using optimal transport in ensemble space

As mentioned in Sect. 2.3, using the optimal transport (OT)
theory to design a resampling algorithm was first investigated
in the ETPF algorithm of Reich (2013).865

Applying the optimal ensemble coupling to the SBD lo-
calisation frameworks results in a local LET resampling
method, whose local transformation at each block T

b

solves

the discrete OT problem

min

T
b

2T
b

Ne
X

i,j=1

[T
b

]

i,j

c

i,j

b

, (33)870

where T
b

is the set of Ne⇥Ne transformations satisfying the
normalisation constraint Eq. (13) and the local first-order ac-
curacy constraint

Ne
X

j=1

[T
b

]

i,j

=New
i

b

, i= 1 . . .Ne. (34)

In the ETPF, the coefficients ci,j were chosen as the squared875

L

2 distance between the whole i-th and j-th particles i and j

as in Eq. (15). Since we perform a local resampling step, it
seems more appropriate to use a local criterion, such as

c

i,j

b

=

N

x

X

n=1

�

x

i

n

�x

j

n

�2
G
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d

n,b

rd

◆

, (35)

where d

n,b

is the distance between the grid point n and the880

center of block b, rd is a the distance radius, another free pa-
rameter and G is a taper function, potentially different from
the one used to compute the local weights.

To summarise, Algorithm 3 describes the analysis step for
a generic LPFx that uses optimal ensemble coupling as local885

resampling algorithm.

Algorithm 3 Analysis step for a generic LPFx using optimal
ensemble coupling for the local resampling

Require: Prior ensemble x

i, i= 1 . . .Ne

1: for b= 1 to Nb do
2: Compute the local weights wi

b

using Eq. (28) or (29)
3: Compute the local coefficients ci,j

b

with Eq. (35)
4: Solve the minimisation problem Eq. (33) for T

b

5: Transform local ensemble: Et
|b E|bTb

6: end for
7: ConcatenateAssemble the locally transformed ensemble Et

|b as
Et

8: Update the ensemble as E Et

9: return Updated ensemble x

i, i= 1 . . .Ne

Note that localisation was first included in the ETPF al-
gorithm by Chustagulprom et al. (2016), in a similar way as
the SBD localisation formalism. However,In this article, we
are interested in the optimal ensemble coupling for its con-890

tinuity properties, while the focus of Chustagulprom et al.
(2016) was to include the ETPF algorithm in a PF–EnKF hy-
bridisation context. They useused the local weights defined
by Eq. (29), but they only considerconsidered blocks of size
1 grid point and local coefficients given by895

c

i,j

n

=

�

x

i

n

�x

j

n

�2
, (36)
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in contrast to Eq. (35). On the other hand, in this study we are
interested in the optimal ensemble coupling for its continuity
properties.

On each local block, the linear transformation establishes a900

strong connection between the prior and the updated ensem-
bles. Moreover, there is no stochastic variation of the cou-
pling at each block. This means that the spatial coherence
can be (at least partially) transferred from the prior to the
updated ensemble.905

Using optimal ensemble coupling for the resampling
step in a LPFx algorithm is computationally more expensive
than the traditional SU sampling algorithm since it requires
to solve one optimisation problem for each local block.
The discrete OT problem Eq. (33) to solve is a particular910

case of the minimum-cost flow problem and can be solved
quite efficiently using the network simplex algorithm with
complexity of order N3

e (Pele and Werman, 2009). Moreover,
the computation of the local block transformations can be
carried out in parallel. For realistic DA applications, the915

number of particles should be small — no more than 100

or 200 — hence the additional computational cost of solving
the discrete OT problem should not be prohibitive.

4.4.4 Using optimal transport in state space

In Sect. 4.4.3, the discrete OT theory was used to compute920

a linear transformation between the prior and the updated
ensembles. Following these ideas, we would like to use OT
directly in state space. In more than one spatial dimension,
the continuous OT problem is highly non-trivial and numer-
ically very costlychallenging (Villani, 2009). Therefore, we925

will restrict ourselves to the case where blocks have size 1

grid point. Hence there is no distinction between blocks and
grid points.

At each grid pointFor each state variable n, we de-
fine the prior (marginal) pdf p

f
n

as the empirical den-930

sity of the unweighted prior ensemble
�

x

i

n

, i= 1 . . .Ne

 

and the analysis pdf p

a
n

as the empirical density of the
prior ensembleensemble, weighted by the analysis weights
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i

n

,w

i
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. We seek the map T

n

that solves the
following OT problem:935

min
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, (37)

where T f!a
n

is the set of maps T that transport pf
n

into p

a
n

:

p

f
n

= p

a
n

�T · Jac(T ) , (38)

with Jac(T ) being the absolute value of the determinant of
the Jacobian matrix of T .940

In one dimension, this transport map is also known asto
be the anamorphosis from p

f
n

to p

a
n

and its computation is
immediate:

T

n

= (c

a
n

)

�1 � cf
n

, (39)

where c

f
n

and c

a
n

are the cumulative density function (cdf)945

of p

f
n

and p

a
n

respectively. In practice,Since T

n

maps the
prior ensemble to an ensemble whose empirical density is
p

a
n

. Therefore, the images of the prior ensemble members by
T

n

are suitable candidates for updated ensemble members.
The computation of T

n

using Eq. (39) requires a continu-950

ous representation for the empirical densities pf
n

and p

a
n

. An
appealing approach to obtain the continuous representationit
is to use the kernel density estimation (KDE) theory (Sil-
verman, 1986; Musso et al., 2001). In this context, the prior
density can be written955
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while the updated density is
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K is the regularisation kernel, h is the bandwidth, a free pa-
rameter, �f

n

and �a
n

are the empirical standard deviation of960

respectively the unweighted ensemble
�
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, i= 1 . . .Ne

 

and
the weighted ensemble
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,w
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and ↵f
n

and
↵

a
n

are normalisation constants.
According to the KDE theory, when the underlying dis-

tribution is Gaussian, the optimal patternshape for K is the965

Epanechnikov kernel (quadratic functions). Yet, there is no
reason to think that this will also be the case for the prior
density. Besides, the Epanechnikov kernel, having a finite
support, generally leads to a poor representation of the distri-
bution tails and it is a potential source of indetermination in970

the definition of the cdfs. That is why it is more common to
use a Gaussian kernel for K. However, in this case, the com-
putational cost associated to the cdf of the kernel (the error
function) becomes significant. Hence, as an alternative, we
choose to use the Student’s t-distribution with two degrees975

of freedom. It looks closeis similar to a Gaussian,but it has
heavy tails and its cdf is fast to compute. It was also shown to
be a better representation of the prior density than a Gaussian
in an EnKF context (Bocquet et al., 2015).

To summarise, Algorithm 4 describes the analysis step for980

a generic LPFx that uses anamorphosis as local resampling
algorithm.

The local resampling algorithm using anamorphosis is,
together withas well as the algorithm using optimal ensem-
ble coupling, a deterministic transformation. This means that985

potentially large artificialunphysical discontinuities due to
different random realisations over the grid points are avoided.
As explained by Poterjoy (2016), in such an algorithm the up-
dated ensemble members have the same quantiles as the prior
ensemble members. The quantile property should be to some990

extent regular in space — for example if the spacespatial dis-
cretisation is fine enough — and this kind of regularity is
transferred in the updated ensemble.
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Algorithm 4 Analysis step for a generic LPFx using anamor-
phosis for the local resampling

Require: Prior ensemble x

i

, i= 1 . . .Ne

1: for n= 1 to N

x

do
2: Compute the local weights wi

n

using Eq. (28) or (29)
3: Compute the empirical standard deviations �f

n

and �

a
n

4: Compute c

f
n

and c

a
n

by integrating Eqs. (40) and (41)
5: for i= 1 to Ne do
6: Compute p

i = c

f
n

�
x

i

n

�

7: Solve c

a
n

�
x

i

n

�
= p

i for the updated local particle x

i

n

8: end for
9: end for

10: return Updated ensemble x

i, i= 1 . . .Ne.

When defining the prior and the corrected densities with
Eqs. (40) and (41), we introduce some regularisation whose995

magnitude is controlled through the bandwidth parameter h.
Regularisation is necessary to obtain continuous pdfs. Yet,
it introduces an additional bias in the analysis step. Typical
values of h should be around 1, with larger ensemble sizes
Ne requiring smaller values for h. More generally, regulari-1000

sation is widely used in PF algorithms as a fix to avoid (or
at least limit the impact of) weight degeneracy, though its
implementation (see Sect. 5.2) is usually different from the
method used in this section.

The refinements of the resampling algorithms suggested1005

in Sect. 4.4.2 were designed to minimise the number of
artificialunphysical discontinuities in the local resampling
step. The goal of the smoothing by weights step is to reduce
the impact of themitigate potential unphysical discontinuities
after they have been introduced. On the other hand, the local1010

resampling algorithms based on OT are designed to reduce
themitigate the unphysical discontinuities themselves. The
main difference between the algorithm based on optimal en-
semble coupling and the one based on anamorphosis is that
the first one is formulated in the ensemble space whereas1015

the second one is formulated in the state space. That is to
say in the first case we build an ensemble transformation T

b

whereas in the second case we build a state transformation
T

n

.
Due to computational considerations, the optimisation1020

problem Eq. (37) was only considered in one dimension.
Hence, contrary to the local resampling algorithm based on
optimal ensemble coupling, the one based on anamorphosis
is purely one-dimensional and can only be used with blocks
of size 1 grid point.1025

The design of the resampling algorithm based on anamor-
phosis has been inspired from the kernel density distribution
mapping (KDDM) step of the LPF algorithm of Poterjoy
(2016) which will be introduced in Sect. 7.3. However, the
use of OT has different purposes. In our algorithm, we use1030

the anamorphosis transformation to sample particles from the
analysis density, whereas the KDDM step of Poterjoy (2016)
is designed to correct the posterior particles — they have al-

ready been transformed — with consistent high-order statis-
tical moments.1035

4.5 Summary for the LPFx algorithms

4.5.1 Highlights

In this section, we have constructed a generic SBD locali-
sation framework, which we have used to define the LPFxs,
our first category of LPF methods. The LPFx algorithms are1040

characterised by: the geometry of the blocks and domains
(i.e. the definition of the local weights) and the resampling
algorithm. As shown by Rebeschini and van Handel (2015),
the LPFx algorithms have potential to beat the curse of di-
mensionality. However, unphysical discontinuities are likely1045

to arise after the assembling of locally resampled particles
(van Leeuwen, 2009). In this section, we have proposed to
mitigate these discontinuities by improving the design of the
local resampling step. We distinguished four approaches:

1. A smoothing by weights step can be applied after the1050

local resampling step in order to reduce potential un-
physical discontinuities. Our method is a generalisa-
tion of the original smoothing designed by Penny and
Miyoshi (2016) that includes spatial tapering, a smooth-
ing strength and that is suited to the use of state blocks.1055

2. Simple properties of the local resampling algorithms
can be used in order to minimise the occurences of un-
physical discontinuity as shown by Robert and Künsch
(2017).

3. Using the principles of discrete OT, we have proposed1060

a resampling algorithm based on a local version of the
ETPF of Reich (2013). This algorithm is similar to the
PF part of the PF–EnKF hybrid derived by Chustagul-
prom et al. (2016) but it includes a more general trans-
port cost and it is suited to the use of blocks and any1065

resampling algorithm. By construction, the distance be-
tween the prior and the analysis local ensembles is min-
imised.

4. Combining the continuous OT problem with the KDE
theory, we have derived a new local resampling algo-1070

rithm based on anamorphosis. We have shown how it
helps mitigate the unphysical discontinuities.

In Sect. 4.5.2, we discuss the numerical complexity and
in Sect. 4.5.4 the asymptotic limits of the proposed LPFx

algorithms. In Sect. 4.5.3, we propose guidelines that should1075

inform our choice of the key parameters when implementing
these algorithms.
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4.5.2 Numerical complexity

We define the auxiliary quantities N

`

b (R), N

`

x

(R) and
N

`

y

(R) by1080

N

`

x

(R) = max

b2{1...Nb}
Card{n 2 {1 . . .N

x

}\d
n,b

R} , (42)

N

`

b (R) = max

n2{1...N
x

}
Card{b 2 {1 . . .Nb}\dn,b R} , (43)

N

`

y

(R) = max

q2{1...Nb}
Card{q 2 {1 . . .N

y

}\d
q,b

R} . (44)

N

`

y

(R) is the maximum number of observation sites in a
local domain of radius R. N `

b (R) and N

`

x

(R) are the cor-1085

responding quantities for the neighborhood grid points and
blocks. In a d-dimensional spatial space, these quantities are
at most proportional to R

d.
The complexity of the LPFx analysis is the sum of the

complexity of computing all local weights and the com-1090

plexity of the resampling. Using Eq. (28) or (29), we con-
clude that the complexity of computing the local weights is
O
�

NeTH +NbNeN
`

y

(r)

�

, which depends on the localisa-
tion radius r and on the complexity TH of applying the ob-
servation operator H to a vector. In the following paragraphs1095

we detail the complity of each resampling algorithm.
When using the multinomial resampling of the SU sam-

pling algorithm for the local resampling, the total complexity
of the resampling step is O (N

x

Ne).
When using optimal ensemble coupling, the resampling1100

step is computationally more expensive because it requires
to solve one optimisation problem for each block. The min-
imisation coefficients Eq. (35) are computed with com-
plexity O

�

N

2
eN

`

x

(rd)
�

, which depends on the distance ra-
dius rd. The discrete OT problem Eq. (33) is a particu-1105

lar case of the minimum-cost flow problem and can be
solved quite efficiently using the network simplex algo-
rithm with complexity O

�

N

3
e

�

(Pele and Werman, 2009).
Applying the transformation to the block has complexity
O
�

N

x

N

�1
b N

2
e

�

. Finally, the total complexity of the resam-1110

pling step is O
�

NbN
2
eN

`

x

(rd)+NbN
3
e +N

x

N

2
e

�

.
When using optimal transport in state space, every one-

dimensional anamorphosis is computed with complexity
O (N

p

) where N
p

is the one-dimensional resolution for each
state variable. Therefore the total complexity of the resam-1115

pling step is O (N

x

NeNp

).
When using the smoothing by weights step with the

multinomial resampling or the SU sampling algorithm, the
smoothed ensemble Eq. (31) is computed with complexity
O
�

N

x

NeN
`

b (rs)
�

, which depends on the smoothing radius1120

rs and the updated ensemble Eq. (32) is computed with com-
plexity O (N

x

Ne). Therefore, the total complexity of the re-
sampling and the smoothing steps is O

�

N

x

NeN
`

b (rs)
�

.
For comparison, the more costly operation in the lo-

cal analysis of a local EnKF algorithm is to compute1125

the singular value decomposition of a N

`

y

(r)⇥Ne matrix,
which has complexity O

�

N

`

y

(r)N

2
e

�

assuming that Ne 

N

`

y

(r). The total complexity for a local EnKF algorithm de-
pends on the specific implementation but should be at least
O
�

NbN
`

y

(r)N

2
e

�

.1130

In this complexity analysis, the influence of the parameters
r, rd and rs is explicitly shown because a practitioner must be
aware of the numerical cost of increasing these parameters.
Since the resampling is performed independently for each
block, this algorithmic step (which is the most costly step in1135

practice) can be carried out in parallel, allowing a theoretical
gain up to a factor Nb.

4.5.3 Parameter choice and asymptotic limitChoice of
key parameters

The localisation radius r controls the impact of the curse1140

of dimensionality. Therefore, relevant values for r should be
relatively small — smaller than what would be required for
an EnKF using domain localisation for example — to avoid
experiencing immediate weight degeneracy. For realistic
models with two or more spatial dimensions, the number of1145

potential observation sites in the local domain grows as r

2

or more. Therefore, optimal values for the localisation radius
should be really small, maybe too small for the method to
follow the truth trajectory. If this is the case, then localisation
alone would not be enough to make the PF operational. The1150

localisation radius r controls the number of observation sites
in the local domains N

`

y

(r) and the impact of the curse of
dimensionality. To avoid immediate weight degeneracy, r

should therefore be relatively small — smaller than what
would be required for an EnKF using domain localisation1155

for example. This is especially true for realistic models with
two or more spatial dimensions in which N

`

y

(r) grows as r2
or more. In this case, it can happen that the localisation ra-
dius r have to be too small for the method to follow the truth
trajectory (either because too much information is ignored,1160

or because there is too much spatial variation in the local
weights) which would mean that localisation alone would not
be enough to make PF methods operational.

For a local EnKF algorithm, gathering grid points into
local state blocks is an approximation that reduces the nu-1165

merical cost of the analysis steps by reducing the number of
local analyses to perform. For aan LPFx algorithm, the lo-
cal analyses should in general be much faster because there
is no matrix inversion to performfaster (see the complexity
analysis in Sect. 4.5.2). In this case, using bigger statelarger1170

blocks is a way to decrease the proportion of block borders,
which are potential spots for artificialunphysical discontinu-
ities. However, increasing the size of the local state blocks
reduces the number of degrees of freedom to counteract the
curse of dimensionality. It also introduces an additional bias1175

in the local weight update, Eq. (28) or (29), since the local
weights are computed relatively to the block centers. This is-
sue was identified by Rebeschini and van Handel (2015) as a
source of spatial inhomogeneity of the error. In any case, the
local stateFor these reasons, the blocks should be small (no1180
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more than a few grid points)only big ensemble could benefit
from the use of larger state blocks. Only large ensembles
could potentially benefit from larger blocks.

More discussion regarding the choice of the localisation
radius r and the number of blocks Nb, but also regarding1185

the choice of other parameters (the smoothing radius rs, the
smoothing strength ↵s, the distance radius rd and the regu-
larisation bandwidth h) can be found in Sect. 5.

4.5.4 Asymptotic limit

The analysis step of LPFxs using the multinomial1190

resampling or the SU sampling as resampling algorithm
is equivalent to a PF analysis step in the asymptotic limit
r!1 if the same random number(s) is (are) used for the
resampling of all state blocks or if there is only one state
block. The analysis step of LPFxs using optimal ensemble1195

coupling is equivalent to the ETPF analysis step in the
asymptotic limit r!1 and rd!1 for the localisation
and the distance radius, respectively. Finally, even in the
asymptotic limit h! 0 and r!1, we could not find a
proof that the analysis step of LPFxs using anamorphosis is1200

asymptotically unbiased.
An essential property of PF algorithms is that they are

asymptotically Bayesian: as stated in Sect. 2.2, under reason-
able assumptions the empirical analysis density converges to
the true analysis density for the weak topology on the set of1205

probability measures over RN

x in the limit Ne!1. In this
section, we study under which conditions the LPFx analysis
can be equivalent to a (global) PF analysis and therefore be
asymptotically Bayesian.

In the limit of very large localisation radius, r!1, the1210

local weights Eq. (28) and (29) are equal to the (global)
weights of the (global) PF. However, this does not imply that
the LPFx analysis is equivalent to a PF analysis because the
resampling is performed independently for each block. Yet
we can distinguish the following cases in the limit r!1:1215

– When using independent multinomial resampling or SU
sampling for the local resampling, if one uses the same
random number for all blocks (this property is always
true if Nb = 1), then the LPFx analysis is equivalent to
the analysis of the PF.1220

– When using the smoothing by weigths step with the
multinomial resampling or the SU sampling, if one
uses the same random number for all blocks then the
smoothed ensemble Eq. (31) is equal to the (locally) re-
sampled ensemble and the smoothing has no effect: we1225

are back to the first case.

– When using optimal ensemble coupling for the local
resampling, in the limit rd!1, the LPFx analysis is
equivalent to the analysis of the (global) ETPF.

For other cases, we cannot give a firm conclusion:1230

– When using independent multinomial resampling or SU
sampling for the local resampling with different random
number for all blocks, then the updated particles are dis-
tributed according to the product of the marginal analy-
sis density Eq. (26), which is in general different from1235

the analysis density even in the limit r!1.

– For the same reason, when using anamorphosis for the
local resampling, we could not find a proof that the
LPFx analysis is asymptotically Bayesian, even in the
limit h! 0 and r!1.1240

– When using the smoothing by weigths step with the
multinomial resampling or the SU sampling, in the limit
r!1 and rs!1 the smoothed ensemble Eq. (31)
can be different from the updated ensemble of the global
PF because the resampling is performed independently1245

for each block.

5 Numerical illustration of LPFx algorithms with the
Lorenz-96 model

5.1 Model specifications

In this section, we illustrate the performance of LPFxs with1250

twin simulations of the L96 model in the standard (mildly
nonlinear) configuration described in Appendix A3. For this
series of experiments, as for all experiments in this paper,
the synthetic truth is computed without model error. This is
usually a stringent constraint for the PF methods for which1255

accounting for model error is a means for regularisation. But
on the other hand it allows for a fair comparison with the
EnKF and it overcomesavoids the issue of defining a realistic
model noise.

The distance between the truth and the analysis is mea-1260

sured with the average analysis root mean square error, here-
after simply called the RMSE. To ensure the convergence of
the statistical indicators, the runs are at least 5⇥ 10

4
�t long

with an additional 103�t spin-up period. An advantage of
using PF methods is that it should asymptotically yield sharp1265

though reliable ensembles, properties which cannot a priori.
This may not be entirely reflected in the RMSE. However,
not only does the RMSE offersoffer a clear ranking of the
algorithms but it is an indicator that measures the adequacy
to the primary goal of data assimilation, i.e. mean state es-1270

timation. Moreover, for a sufficiently cycled DA problem, it
seems likely that good RMSE scores can only be achieved
with ensembles of good quality in the light of most other
indicators. Nonetheless, in addition to the RMSE, rank his-
tograms meant to assess the quality of the ensembles are1275

computed and reported in Appendix D for a selection of ex-
periments.

For the localisation, we assume that the grid points are po-
sitioned on an axis with a regular spacing of 1 unit of length
and periodic boundary conditions consistent with the system1280
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Figure 4. RMSE as a function of the ensemble size Ne for the
ETKF and the LETKF.

size. Therefore, the local domain centered on the n-th grid
point n is composed of the points {n�brc, . . . ,n+ brc},
where brc is the integer part of the localisation radius and the
Nb local blocks consist of N

x

/Nb consecutive grid points.
This filtering problem has been widely used to asses the1285

performance of DA algorithms. In this configuration, nonlin-
earities in the model are rather weakmild and representative
of synoptic scale meteorology and the error distributions are
close to Gaussian. A typical EnKF implementation (e.g. the
ensemble transform Kalman filter, ETKF in short) with an1290

ensemble of 20 members does not require localisation and
yield an RMSE around 0.18� 0.19. With optimally tuned
localisation and a ensemble of only 10 members the mean
RMSE is around 0.20. As a reference, the evolution of the
RMSE as a function of the ensemble size Ne is shown in1295

Fig. 4 for the ensemble transform Kalman filter (ETKF)
and its local version (LETKF). For each value of Ne, the
multiplicative inflation parameter and the localisation radius
(for the LETKF) are optimally tuned to yield the lowest
RMSE. In most of the following figures related to the L961300

test series, we draw a baseline at 0.2, roughly the RMSE of
the LETKF with Ne = 10 particles. Note that slightly lower
RMSE scores can be achieved with larger ensembles.

5.2 Perfect model and regularisation

The application of PF algorithms to this chaotic model with-1305

out error leads to a fast collapse. Even with stochastic models
that account for some model error, PF algorithms experience
weight degeneracy when the model noise is too low. There-
fore, PF practitioners commonly include some additional jit-
ter to mitigate the collapse (e.g. Pham, 2001). As described1310

by Musso et al. (2001), jitter can be added in two different
ways.

5.2.1 Pre-regularisation

Firstly, the prediction and sampling step, Eq. (7), can be per-
formed using a stochastic extension of the model:1315

x

i

k+1�M
�

x

i

k

�

=w

k

⇠N
�

0, q2I
�

, (45)

where M is the model associated to the integration scheme
of the ordinary differential equations (ODEs) and q is a tun-
able parameter. This jitter is meant to compensate for the de-
terministic nature of the given model. In this case, the truth1320

could be seen as a trajectory of the perturbed model Eq. (45)
with a realisation of the noise that is identically zero. In the
literature, this method is called pre–regularisation (Le Gland
et al., 1998) because the jitter is added before the correction
step.1325

5.2.2 Post-regularisation

Secondly, a regularisation step can be added after a full anal-
ysis cycle:

x

i

k+1 x

i

k+1 +u, u⇠N
�

0, s2I
�

, (46)

where s is a tunable parameter. As opposed to the first1330

method, it can be seen as a jitter before integration: the
noise is integrated by the model before the next analysis
step, while smoothing potential unrealisticunphysical dis-
continuities. SomehowIn some ways this method is similar to
ensembleadditive inflation in EnKF algorithms that is meant1335

to compensate for the finite size Ne of the ensemble. It is
called post–regularisation (Musso and Oudjane, 1998; Oud-
jane and Musso, 1999) because the jitter is added after the
correction step.

5.2.3 Numerical complexity and asymptotic limit1340

Both regularisation steps have numerical complexity
O (N

x

NeTr), with Tr being the complexity of drawing one
random number according to the univariate standard normal
law N (0,1).

The exact LPF is recovered in the limit q! 0 and s! 0.1345

5.2.4 Standard S(IR)xR algorithm

With optimally tuned jitter for the standard L96 model,
the bootstrap PF algorithm requires about 200 particles
to give on average more informationsinformation than the
truthobservations.2 With 10

3 particles, theits RMSE is1350

around 0.6 and with 10

4 it is around 0.4.
2We have proven in this case that the RMSE, when computed

between the observations y
k

and truth x

k

, has an expected value of
0.98.
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We define the standard S(IR)xR algorithm — sam-
pling, importance, resampling, regularisation, the x exponent
meaning that steps in parentheses are performed locally onfor
each state block — as the LPFx algorithm (see Algorithm 1)1355

with the following characteristics:

– grid points are gathered into Nb blocks of N
x

/Nb con-
nected grid points;

– jitter is added after the integration using Eq. (45) with a
standard deviation controlled by q;1360

– the local weights are computed using the Gaussian ta-
pering of observation site influence given by Eq. (29),
where G is the piecewise rational function of Gaspari
and Cohn (1999);

– the local resampling is performed independently for1365

each block with the adjustment-minimising SU sam-
pling algorithm;

– jitter is added at the end of each assimilation cycle using
Eq. (46) with a standard deviation controlled by s.

The standard deviation of the jitter after integration (q) and1370

before integration (s) shall be called "integration jitter" and
"regularisation jitter", respectively. The S(IR)xR algorithm
has five parameters: (Ne,Nb, r,q,s). All algorithms tested in
this section are variants of this standard algorithm and are
named S(I⇤⇤)x⇤R⇤S(↵�)x�� with the conventions detailed1375

in Table 1. Table 2 lists all LPFx algorithms tested in this
section and reports their characteristics according to the con-
vention of Table 1.

5.3 Tuning the localisation radius

We first check that, in this standard configuration, local-1380

isation is working by testing the S(IR)xR algorithm with
Nb = 40 blocks of size 1 grid point. We take Ne = 10 par-
ticles, q = 0 (perfect model) and several values for the regu-
larisation jitter s. The evolution of the RMSE as a function
of the localisation radius r is shown in Fig. 5. With SBD lo-1385

calisation, the LPF yields an RMSE around 0.45 in a regime
where the bootstrap PF algorithm is degenerate. The compro-
mise between bias (small values of r, too much information
is droppedignored or there is too much spatial variation in the
local weights) and variance (large values of r, the weights are1390

degenerate) reaches an optimum around r = 3 grid points.
As expected, the local domains are veryquite small (5 ob-
servation sites) in order to efficiently counteract the curse of
dimensionality.

5.4 Tuning the jitter1395

To evaluate the efficiency of the jitter, we experiment with the
S(IR)xR algorithm with Ne = 10 particles, Nb = 40 blocks
of size 1 grid point and a localisation radius r = 3 grid points.
The evolution of the RMSE as a function of the integration

Table 1. Nomenclature conventions for the S(↵�)x�� algorithms.
Capital letters refer to the main algorithmic ingredients: "I" for im-
portance, "R" for reampling or regularisation, "T" for transport, "S"
for smoothing. Subscripts are used to distinguish the methods in
two different ways. Lower case subscripts refer to explicit concepts
used in the method: "ng" for non-Gaussian, "su" for stochastic uni-
versal, "s" for state space and "c" for colour; while upper case sub-
scripts refer to the work that inspired the method: "PM" for Penny
and Miyoshi (2016) and "R" for Reich (2013). For simplicity, some
subscripts are omitted: "g" for Gaussian, "amsu" for adjustment-
minimising stochastic universal and "w" for white. Finally note that
we used the subscript "d" (for deterministic) to indicate that the
same random numbers are used for the resampling over all blocks.

↵ Local importance weights (Sect. 4.2.2)

Ing Eq. (28) [non-Gaussian]
I Eq. (29) [Gaussian]

� Local resampling algorithm (Sect. 4.4)

Rsu SU sampling algorithm
Rd adjustment-minimising SU sampling algorithm with

the same random numbers over all blocks
R adjustment-minimising SU sampling algorithm

TR optimal transport in ensemble space
Ts optimal transport in state space

� Smoothing-by-weights (Sect. 4.4.1)

SPM enabled
– disabled

� Regularisation method (Sects. 5.2 and 5.8)

R white noise method
Rc coloured noise method

jitter q is shown in Fig. 6 and as a function of the regularisa-1400

tion jitter s in Fig. 7.
From these results, we can identify two regimes:

– with low regularisation jitter (s < 0.15), the filter sta-
bility is ensured by the integration jitter, with optimal
values around q = 1.25;1405

– with low integration jitter (q < 0.5), the stability is en-
sured by the regularisation jitter, with optimal values
around s= 0.26.

As expected, adding jitter before integration (i.e. with s)
yields significantly better results. This indicates that the1410

model integration indeed smoothes the jitter out and removes
artificialunphysical discontinuities for the correction step.
We observed the same tendency for most LPFs tested in this
studyarticle.

In the rest of this section, we take zero integration jitter1415

(q = 0) and the localisation radius r and the regularisation
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Figure 5. RMSE as a function of the localisation radius r for the
S(IR)xR algorithm with Ne = 10 particles, Nb = 40 blocks of size
1 grid point and no integration jitter (q = 0). For each r, several
values for the regularisation jitter s are tested as shown by the
colorcolour scale.
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Figure 6. RMSE as a function of the integration jitter q for the
S(IR)xR algorithm with Ne = 10 particles, Nb = 40 blocks of size
1 grid point and a localisation radius r = 3 grid points. For each q,
several values for the regularisation jitter s are tested as shown by
the colorcolour scale.

jitter s are systematically tuned to yield the lowest RMSE
score.

5.5 Increasing the size of the local blocks

To illustrate the influence of the size of the local blocks,1420

we compare the RMSEs obtained by the S(IR)xR algorithm
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Figure 7. RMSE as a function of the regularisation jitter s for the
S(IR)xR algorithm with Ne = 10 particles, Nb = 40 blocks of size
1 grid point and a localisation radius r = 3 grid points. For each s,
several values for the integration jitter q are tested as shown by the
colorcolour scale.

with various fixed number of blocks Nb. The evolution of
the RMSE as a function of the ensemble size Ne is shown in
Fig. 8. For small ensemble sizes, using larger blocks is ineffi-
cient, because of the need for degrees of freedom to counter-1425

act the curse of dimensionality. Only very biglarge ensembles
benefit from the use ofusing large blocks as a consequence
of the reduction of proportion of block boundaries, potential
spots for artificialunphysical discontinuities.

From now on, unless specified otherwise, we systemati-1430

cally test our algorithms with Nb = 40, 20, 10 blocks of re-
spectively 1, 2, 4 grid points and we keep the best RMSE
score.

5.6 Choice of the local weights

To illustrate the influence of the definition of the local1435

weights, we compare the RMSEs of the S(IR)xR and the
S(IngR)xR algorithms. These two variants only differ by their
definition of the local importance weights: the S(IR)xR al-
gorithm uses the Gaussian tapering of observation influence
defined by Eq. (29) while the S(IngR)xR algorithm uses the1440

non-Gaussian tapering given by Eq. (28).
Figure 9 shows the evolution of the RMSE as a function

of the ensemble size Ne. The Gaussian version of the defini-
tion of the weights always yields better results. This is prob-
ably a consequence of the approximate Gaussianity of this1445

configurationfact that, in this configuration nonlinearities are
weakmild and the error distributions are close to Gaussian.
In the following, we always use Eq. (29) to define the local
weights.
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Figure 8. RMSE as a function of the ensemble size Ne for the
S(IR)xR algorithm with respectively Nb = 40,20,10 blocks of size
1,2,4 grid points.
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Figure 9. RMSE as a function of the ensemble size Ne for the
S(IR)xR and the S(IngR)xR algorithms with respectively Nb =
40,10 blocks of size 1,4 grid points. The scores are displayed in
units of the RMSE of the S(IR)xR algorithm with Nb = 40 blocks
of size 1 grid point.

5.7 Refining the stochastic universal sampling1450

Here, the sampling algorithms proposed in Sect. 4.4.2 are
tested.In this section, we test the refinements of the sampling
algorithms proposed in Sect. 4.4.2. To do this we compare,
the RMSEs of the S(IR)xR algorithms with those of:

– the S(IRd)xR algorithm, for which the same random1455

numbers are used for the resampling of each block;

– the S(IRsu)xR algorithm, which uses the SU sampling
algorithm without the adjustment-minimising property.
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S(IR)xR, the S(IRd)xR and the the S(IRsu)xR algorithms with re-
spectively Nb = 40,10 blocks of size 1,4 grid points. The scores
are displayed in units of the RMSE of the S(IR)xR algorithm with
Nb = 40 blocks of size 1 grid point.

Figure 10 shows the evolution of the RMSE as a func-
tion of the ensemble size Ne. The higher RMSEs of1460

the S(IRsu)xR algorithm, especially for large ensembles,
showThe S(IRsu)xR, the only algorithm that does not sat-
isfy the adjustment-minimising property, yields higher RM-
SEs. This shows that the adjustment-minimising property
is indeed an efficient way of reducing the number of1465

artificialunphysical discontinuities introduced during the re-
sampling step.

However, using the same random number for the resam-
pling of each block does not produce significantly lower
RMSEs. This method is insufficient to reduce the num-1470

ber of artificialunphysical discontinuities introduced when
concatenatingassembling the locally updated particles. This
is probably a consequence of the fact that the SU sampling al-
gorithm only uses one random number to compute the resam-
pling map. It is also a hint at the probably low influence of1475

the specific realisation of this random number on long-term
statistical properties.It also suggests that the specific realisa-
tion of this random number has a weak influence on long-
term statistical properties.

In the following, when using the SU sampling algorithm,1480

we always choose its adjustment-minimising form but we do
not enforce the same random numbers over different blocks.

5.8 Colourising the regularisation

5.8.1 Colourisation for global PFs

According to Eqs. (45) and (46), the regularisation jitters1485

are white noises. In realistic models, different state variables
may take their values in disjoint intervals (e.g., the tempera-
ture takes values around 300 K and the wind speed can take
its values between �10 and 10 m s

�1) which makes these
jittering methods inadequate.1490

It is hence a common procedure in ensemble DA to
scale the regularisation jitter with statistical properties of
the ensemble. In a (global) PF context, practitioners often
"colourise" the Gaussian regularisation jitter with the em-
pirical covariances of the ensemble as described by Musso1495

et al. (2001). The regularisation jitter being added after the
resampling step, in order to mitigate the effect of resampling
noise, the jitter is scaled with the weighted ensemble before
resampling.Since the regularisation jitter is added after the
resampling step, it is scaled with the weighted ensemble be-1500

fore resampling in order to mitigate the effect of resampling
noise.

More precisely, the regularisation jitter has zero mean and
N
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n

is the
ensemble mean atfor the n-th state variable n:

x

n

=

1

N

e

Ne
X

i=1

x

i

n

. (48)

In practice, the N

x

⇥Ne anomaly matrix X is defined by

[X]

n,i

=

v

u

u

u

u

t

ˆ

hw

i

1�
Ne
P

i=1
(w

i

)

2

�

x

i

n

�x

n

�

, (49)1510

and the regularisation is added as

E E+XZ, (50)

withwhere E is the ensemble matrix and Z beingis a Ne⇥Ne

random matrix whose coefficients are distributed according
to a normal law such that XZ is a sample from the Gaus-1515

sian distribution with zero mean and covariance matrix ⌃. In
this case, the regularisation fits in the LET framework with a
random transformation matrix.

Colourisation could as well be added as well to the inte-
gration jitter. However in this case, scaling the noise with the1520

ensemble is less justified than for the regularisation jitter. In-
deed, the integration noise is inherent to the perturbed model
that is used to evolve each ensemble member independently.
Hence PF practitioners often take a time–independent Gaus-
sian integration noise whose covariance matrix does not de-1525

pend on the ensemble but includes some off-diagonal terms
based on the distance between state variablesgrid points (e.g.,
Ades and van Leeuwen, 2015). However, as we mentioned in
Sect. 5.4, we do not use integration jitter for the rest of this
sectionarticle.1530
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5.8.2 Colourisation for LPFs

The 40 variables of the L96 model in its standard configura-
tion are statistically homogeneous with short-range correla-
tions. This is the main reason of the efficiency of the white
noise jitter in the S(IR)xR algorithm and its variants tested1535

so far. We still want to investigate the potential gains of us-
ing coloredcoloured jitters in LPFxs.

In the analysis step of LPFxs, there is a unique weight for
each state variable nalgorithms, at each grid point there is
a different set a local weights w

i

n

, therefore it is not possi-1540

ble to compute the covariance of the regularisation jitter with
Eq. (47). We propose two different ways of circumventing
this obstacle.

A first approach could be to scale the regularisation with
the locally resampled ensemble, since in this case all weights1545

are equal. This is the approach followed by Reich (2013)
and Chustagulprom et al. (2016) under the name "particle
rejuvenation". However, this approach systematically leads
to higher RMSEs for the S(IR)xR algorithm (not shown
here). This can be potentially explained by two factors.1550

FirstlyFirstly, the resampling could introduce noise in the
computation of the anomaly matrix X. Secondly, the fact that
the resampling is performed independently for each block
perturbs the propagation of multivariate properties (such as
sample covariance) over different blocks.1555

In a second approach, the anomaly matrix X is defined by
the weighted ensemble before resampling, i.e. using the local
weights wi

n

, as followingfollows:
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In this case, the Gaussian regularisation jitter has covariance1560

matrix:
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which is an extensiona generalisation of Eq. (47). This
method can as well be seen as a generalisation of the adap-
tative inflation used by Penny and Miyoshi (2016). For their1565

adaptative inflation, Penny and Miyoshi (2016) only com-
puted the diagonal of the matrix X and fixed the bandwidth
parameter ˆh to 1. Our approach yields lowest RMSEs in all
tested cases, which is most probably due to the tuning of the
bandwidth parameter ˆh.1570

5.8.3 Numerical complexity and asymptotic limit

The coloured regularisation step has complexity O
�

N

x

N

2
e

�

.
It is slightly more costly than using the white noise regulari-
sation step due to the matrix product Eq. (50).

The exact LPF is recovered in the limit ˆh! 0.1575

5.8.4 Illustrations

We then experiment with the S(IR)xRc algorithm, in
which the regularisation jitter is colourised as described by
Eqs. (50) and (51). In this algorithm, the parameter s (regu-
larisation jitter standard deviation) is replaced by the band-1580

width parameter ˆh, hereafter simply called regularisation jit-
ter. The evolution of the RMSE as a function of ˆ

h for the
S(IR)xRc algorithm (not shown here) is very similar to the
evolution of the RMSE as a function of s for the S(IR)xR
algorithm. In the following, when using the coloured regu-1585

larisation jitter method, ˆh is systematically tuned to yield the
lowest RMSE score.

Figure 11 shows the evolution of the RMSE as a function
of the ensemble size Ne for the S(IR)xR and the S(IR)xRc

algorithms. These two variants only differ by the regulari-1590

sation method. The S(IR)xR algorithm uses white regular-
isation jitter while the S(IR)xRc algorithm uses coloured
regularisation jitter. For small ensembles, the S(IR)xRc al-
gorithm yields higher RMSEs, but for big ensembles, the
RMSEs are slightly better when the regularisation jitter is1595

colourised.whereas it shows slightly better RMSEs for larger
ensembles. Depending on the block size, the transition be-
tween both regimes happens around Ne = 32 to 64 particles.
The higher RMSEs of the S(IR)xRc algorithm for small en-
sembles may have two potential explanations. Firstly, even1600

if the L96 model in its standard configuration is charac-
terised by short-range correlations, the covariance matrix
⌃ is a high-dimensional object that is poorly represented
with a weighted ensemble. Secondly, despite the relative
Gaussianity of this configuration, the analysis distribution for1605

small ensemble may be too different from a Gaussian for the
coloured regularisation jitter method to yield better results
even though in this mildly nonlinear configuration the densi-
ties are close to Gaussian.

5.9 Applying a smoothing by weights1610

In this section, we look for the potential benefits of adding
a smoothing by weights step as presented in Sect. 4.4.1,
by testing the S(IR)xSPMR and the S(IR)xSPMRc algo-
rithms. These algorithms only differ from the S(IR)xR and
the S(IR)xRc algorithms by the fact that they add a smooth-1615

ing by weights step as specified in Algorithm 2.
Alongside with the smoothing by weights step come two

additional tuning parameters: the smoothing strength ↵s and
the smoothing radius rs. We first investigate the influence
of theses parameters. Figure 12 shows the evolution of the1620

RMSE as a function of the smoothing radius rs for the
S(IR)xSPMR with Ne = 10 particles, Nb = 40 blocks of size
1 grid point for several values of the smoothing strength ↵s.
As before, the localisation radius r and the regularisation jit-
ter s are optimally tuned.1625

At a fixed smoothing strength ↵s > 0, starting from rs = 1

grid point (no smoothing), the RMSE decreases when rs in-
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Figure 11. RMSE as a function of the ensemble size Ne for
the S(IR)xR and the S(IR)xRc algorithms with respectively Nb =
40,10 blocks of size 1,4 grid points. The scores are displayed in
units of the RMSE of the S(IR)xR algorithm with Nb = 40 blocks
of size 1 grid point.

creases. It reaches a minimum and then increases again. In
this example, the optimal smoothing radius rs was foundlies
between 5 and 6 grid points for a smoothing strength ↵s = 1,1630

with corresponding optimal localisation radius r between 2

and 3 grid points and optimal regularisation jitter s around
0.45 (not shown here). For comparison, the optimal tuning
parameters for the S(IR)xR algorithm in the same configura-
tion were r between 4 and 5 grid points and s around 0.2.1635

Based on extensive tests of the S(IR)xSPMR and the
S(IR)xSPMRc algorithms with Ne ranging from 8 to 128 par-
ticles (not shown here), we foundconclude that:

– in general ↵s = 1 is optimal, or at least only slightly
suboptimal;1640

– optimal values for r and s are larger with the smoothing
by weights step than without it;

– optimal values for r and rs are not related and must be
tuned separately.

In the following, when using the smoothing by weights,1645

we take ↵s = 1 and rs is tuned to yield the lowest RMSE
score — alongside with the tuning of the localisation radius
r and the regularisation jitter s or ˆ

h. Figure 13 shows the
evolution of the RMSE as a function of the ensemble size Ne

for the S(IR)xSPMR and the S(IR)xSPMRc algorithms. The1650

S(IR)xSPMR algorithm yields systematically lower RMSEs
than the standard S(IR)xR. However, as the ensemble size Ne

grows, the gain in RMSE score becomes very small. With
Ne = 512 particles, there is almost no difference between
both scores. In this case, the optimal smoothing radius rs is1655

around 5 grid points, much smaller than the optimal localisa-
tion radius r around 15 grid points, such that the smoothing
by weights step does not modify much the analysis ensemble.
The S(IR)xSPMRc algorithm also yields lower RMSEs than
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Figure 12. RMSE as a function of the smoothing radius rs for
the S(IR)xSPMR algorithms with Ne = 16 particles and Nb = 40
blocks of size 1 grid point for several values of the smoothing
strength ↵s. The scores are displayed in units of the RMSE of the
S(IR)xR algorithm with Ne = 16 particles and Nb = 40 blocks of
size 1 grid point.
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Figure 13. RMSE as a function of the ensemble size Ne for
S(IR)xR, the S(IR)xRc, the S(IR)xSPMR and the S(IR)xSPMR al-
gorithms.

the S(IR)xRc algorithm. Yet, in this case, the gain in RMSE1660

is still significant for large ensembles and with Ne = 512 par-
ticles, the RMSEs are even comparable to those of the EnKF.

From these results, we conclude that the smooth-
ing by weights step is an efficient way of reduce
afterwardsmitigating the artificialunphysical dis-1665

continuities introducedthat were introduced when
concatenatingassembling the locally updated particles,
especially when combined with the coloured noise regulari-
sation jitter method.
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5.10 Using optimal transport in ensemble space1670

In this section, we evaluate the efficiency of using the optimal
transport in ensemble space as a way to reducemitigate the
artificialunphysical discontinuities of the local resampling
step by experimenting the S(ITR)xR and the S(ITR)xRc al-
gorithms. These algorithms only differ from the S(IR)xR and1675

the S(IR)xRc algorithms by the fact that they use optimal en-
semble coupling for the local resampling as described by Al-
gorithm 3.

For each block, the local linear transformation is computed
by solving the minimisation problem Eq. (33), which can be1680

seen as a particular case of the minimum–cost flow problem.
Therefore, we chosechoose to compute its numerical solu-
tion with the graph library LEMON (Dezső et al., 2011).
As described in Sect.4.4.3, this method is characterised by
an additional tuning parameter: the distance radius rd. We1685

have investigated the influence of the parameters Nb and
rd by performing extensive tests of the S(ITR)xR and the
S(ITR)xRc algorithms with Ne ranging from 8 to 128 parti-
cles (not shown here) and draw the following conclusions.

Optimal values for the distance radius rd were found to1690

beare much smaller than the localisation radius, most of the
time even smaller than 2 grid points. Using rd = 1 grid point
yields RMSEs that are only very slightly suboptimal. In this
case, the local coefficients c

i,j

b

computed by Eq. (35) are
equal to those defined by Eq. (36). Moreover, in all situations1695

we found that using Nb = 20 blocks of size 2 grid points sys-
tematically yields higher RMSEs than using Nb = 40 blocks
of size 1 grid point.

In the following, when using the optimal ensemble cou-
pling algorithm, we take rd = 1 grid point and Nb = 401700

blocks of size 1 grid point. Figure 14 shows the evolution
of the RMSE as a function of the ensemble size Ne for the
S(ITR)xR and the S(ITR)xRc algorithms. Using optimal en-
semble coupling for the local resampling step always yields
significantly lower RMSEs than using the SU sampling al-1705

gorithm. Yet in this case, using the coloured noise regular-
isation jitter method does not improve the RMSEs for very
large ensembles.

We have also performed extensive tests with Ne rang-
ing from 8 to 128 particles on the S(ITR)xSPMR and the1710

S(ITR)xSPMRc algorithms in which the optimal ensemble
coupling resampling method is combined with the smoothing
by weights method (not shown here). Our implementations
of these algorithms are numerically more costly. For small
ensembles (Ne  32 particles), we have obtained RMSEs1715

barely smaller than those obtained with the S(ITR)xR and the
S(ITR)xRc algorithms. the RMSEs of the S(ITR)xSPMR and
the S(ITR)xSPMRc algorithms are barely smaller than those
of the S(ITR)xR and the S(ITR)xRc algorithms. With larger
ensembles, we could not find a configuration where using the1720

smoothing by weights yields better RMSEs.
The facts that neither the use of larger blocks, nor the

smoothing by weights does significantly improve the RMSE
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Figure 14. RMSE as a function of the ensemble size Ne for the
S(IR)xR, the S(IR)xRc, the S(ITR)xR and the S(ITR)xRc algo-
rithms.

score when using optimal ensemble coupling indicate that
this local resampling method is indeed an efficient way1725

of reducingmitigating the artificialunphysical discontinuities
inherent to the concatenation ofassembling the locally up-
dated particles.

5.11 Using continuous optimal transport

In this section, we test the efficiency of using the opti-1730

mal transport in state space as a way to reducemitigate the
artificialunphysical discontinuities of the local resampling
step by experimenting the S(ITs)xR and the S(ITs)xRc algo-
rithms. These algorithms only differ from the S(IR)xR and
the S(IR)xRc algorithms by the fact that they use anamor-1735

phosis for the local resampling as described by Algorithm 4.
As mentioned in Sect. 4.4.4, the local resampling algo-

rithm based on anamorphosis uses blocks of size 1 grid point.
Hence, when using the S(ITs)xR and the S(ITs)xRc algo-
rithms, we take Nb = 40 blocks of size 1 grid point. The1740

definition of the state transformation map T is based on the
prior and corrected densities given by Eqs. (40) and (41) us-
ing the Student’s t-distribution with two degrees of freedom
for the regularisation kernel K. It is characterised by an ad-
ditional tuning parameter: h, hereafter called regularisation1745

bandwidth — different from the regularisation jitter ˆ

h. We
have investigated the influence of the regularisation band-
width h by performing extensive tests of the S(ITs)xR and
the S(ITs)xRc algorithms with Ne ranging from 8 to 128 par-
ticles (not shown here). For small ensembles (Ne  16 par-1750

ticles), optimal values for h were foundlie between 2 and 3,
the RMSE score obtained with h= 1 being very slightly sub-
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optimal. For larger ensembles, we did not find any significant
difference between h= 1 and larger values.

In the following, when using the anamorphosis resampling1755

algorithm, we take the standard value h= 1. Figure 15 shows
the evolution of the RMSE as a function of the ensemble size
Ne for the S(ITs)xR and the S(ITs)xRc algorithms. These
algorithms yield RMSEs even lower than the algorithms us-
ing optimal ensemble coupling. However in this case, using1760

the coloured noise regularisation jitter method always yields
significantly higher RMSEs than using the white noise regu-
larisation method. It is probably a consequence of the fact
that some coloured regularisation is already introduced in
the nonlinear transformation process through the kernel rep-1765

resentation of the densities with Eqs. (40) and (41). It may
also be a consequence of the fact that the algorithms using
anamorphosis for the local resampling step cannot be written
as a local LET algorithm, contrary to the algorithms using the
SU sampling or the optimal ensemble coupling algorithms.1770

We have also performed extensive tests with Ne rang-
ing from 8 to 128 particles on the S(ITs)xSPMR algorithm,
in which the anamorphosis resampling method is combined
with the smoothing by weights method (not shown here).
As for the S(ITR)xSPMR and the S(ITR)xSPMRc algorithms,1775

our implementation is significantly numerically more costly
and we found that adding the smoothing by weights step only
yields minor RMSE improvements.

These latter remarks, alongside with significantly lower
RMSE for the S(ITs)xR algorithm than for the S(IR)xR in-1780

dicate that the local resampling method based on anamor-
phosis is, as well as the method based on optimal en-
semble coupling, an efficient way of reducingmitigating
the artificialunphysical discontinuities inherent to the
concatenation ofassembling the locally updated particles.1785

5.12 Summary

As a summaryTo summarise, Fig. 16 shows the evolution of
the RMSE as a function of the ensemble size Ne for the main
LPFxs tested in this section. For small ensembles (Ne  32

particles), the algorithms using OT-based resampling meth-1790

ods clearly yield lower RMSEs than the other algorithms. For
large ensemble (Ne � 128 particles), combining the smooth-
ing by weights with the coloured noise regularisation jitter
methods yields equally good scores as the algorithms using
OT. For Ne = 512 particles (the largest ensemble size tested1795

in this studywith the L96 model), the best RMSE scores ob-
tained with LPFxs become comparable to those of the EnKF.

In this standard, mildly nonlinear configuration where er-
ror distributions are close to Gaussian, the EnKF performs
very well and the LPFx algorithms tested in this section do1800

not clearly yield lower RMSE scores than the ETKF and the
LETKF. Our objective is not to design LPF algorithms that
beat the EnKF in all situations, but rather to incrementally
improve the PF. However, specific configurations in which
the EnKF fails and the PF succeeds can easily be conceived1805
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Figure 15. RMSE as a function of the ensemble size Ne for the
S(IR)xR, the S(IR)xRc, the S(ITs)xR and the S(ITs)xRc algorithms.
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Figure 16. RMSE as a function of the ensemble size Ne for the
main LPFxs tested in this section.

by increasing nonlinearities. Such a configuration is studied
in Appendix C.

As a complement to this RMSE test series, rank his-
tograms for several LPFs are computed, reported and dis-
cussed in Appendix D.1810
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6 Numerical illustration of the LPFx algorithms with a
barotropic vorticity model

6.1 Model specifications

In this section, we illustrate the performance of LPFxs with
twin simulations of the barotropic vorticity (BV) model in1815

the coarse resolution (CR) configuration described in Ap-
pendix A4.1. Using this configuration yields a DA prob-
lem of size N

x

= 1024 and N

y

= 256. As mentioned in Ap-
pendix A4.1, the spatial resolution is enough to capture the
dynamicdynamics of a few vortices and the model integra-1820

tion is not too expensive, such that we can perform extensive
tests with small to moderate ensemble sizes.

As with the L96 model, the distance between the truth and
the analysis is measured with the average analysis RMSE.
The runs are 9⇥ 10

3
�t long with an additional 103�t spin-1825

up period, more than enough to ensure the convergence of
the statistical indicators.

For the localisation, we use the underlying physical space
with the Euclidean distance. The geometry of the local blocks
and domain are constructed as described by Fig. 2. Specifi-1830

cally, local blocks are rectangles and local domains are disks,
with the difference that the doubly periodic boundary condi-
tions are taken into account.

6.2 Scores for the EnKF and the PF

As a reference, we first compute the RMSEs of the EnKF1835

with this model. Figure 17 shows the evolution of the RMSE
as a function of the ensemble size Ne for the (global) ETKF
and the local ETKF (LETKF).ETKF and the LETKF. For
each value of Ne, the inflation parameter and the localisation
radius (only for the LETKF) are optimally tuned to yield the1840

lowest RMSE.
The ETKF requires at least Ne = 12 ensemble members

to avoid divergence. The best RMSEs are approximately
20 times smaller than the observation standard deviation
(0.3� = 0.3). Even with only Ne = 8 ensemble members, the1845

LETKF yields RMSEs at least 10 times smaller than the ob-
servation standard deviation, showing that in this case local-
isation is working as expected. In this configuration, the ob-
servation sites are uniformly distributed over the spatial do-
main. This constrains the posterior pdfs to be close to Gaus-1850

sian, which explains the success of the EnKF in this DA prob-
lem.

With Ne  1024 particles, we could not find a
setcombination of tuning parameters with which the
bootstrap filter or the ETPF yield RMSEs significantly lower1855

than 1. In the following figures related to this BV test series,
we draw a baseline at �/20, which is roughly the RMSE
of the ETKF and the LETKF with Ne = 12 particles. Note
that slightly lower RMSE scores can be achieved with larger
ensembles.1860
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Figure 17. RMSE as a function of the ensemble size Ne for the
ETKF and the LETKF. The scores are displayed in units of the ob-
servation standard deviation �.

6.3 Scores for the LPFx algorithms

In this section, we test the LPFxsLPFx algorihtms with Ne

ranging from 8 to 128 particles. For clarity, the naming
conventions of the algorithms are the same as in Sect. 5.The
nomenclature for the algorithms is the same as in Sect. 5. In1865

particular, all algorithms tested in this Section are in the list
reported in Table 2.

For each ensemble size Ne we use similar parameter tun-
ing methods as for the L96 model as follows:

– we take zero integration jitter: q = 0;1870

– the localisation radius r is systematically tuned to yield
the lowest RMSE score;

– the regularisation jitter s (or ˆh when using the coloured
noise regularisation jitter method) is systematically
tuned as well;1875

– for the algorithms using the SU sampling algorithm (i.e.
the S(IR)x ⇤ ⇤ variants) we test four values for the num-
ber of local blocks Nb, and we keep the best RMSE
score:

– 1024 blocks of shape 1⇥ 1 grid point;1880

– 256 blocks of shape 2⇥ 2 grid points;

– 64 blocks of shape 4⇥ 4 grid points;

– 16 blocks of shape 8⇥ 8 grid points;

– for the algorithms using optimal ensemble coupling or
anamorphosis (i.e. the S(IT⇤)x⇤ variants) we only test1885

blocks of shape 1⇥ 1 grid point;
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Figure 18. RMSE as a function of the ensemble size Ne for the
main LPFxs. The scores are displayed in units of the observation
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– when using the smoothing by weights method, we take
the smoothing strength ↵s = 1 and the smoothing radius
rs is optimally tuned to yield the lowest RMSE score;

– when using the optimal ensemble coupling for the lo-1890

cal resampling step, the distance radius rd is optimally
tuned to yield the lowest RMSE score;

– when using the anamorphosis for the local resampling
step, we take the regularisation bandwidth h= 1.

Figure 18 shows the evolution of the RMSE as a function1895

of the ensemble size Ne for the main LPFxs. Most of the
conclusions drawn with the L96 model remain true with the
BV model. The best RMSE scores are obtained with algo-
rithms using OT-based resampling methods. Combining the
smoothing by weights with the coloured noise regularisation1900

jitter methods yields almost equally good scores as the algo-
rithms using OT. Yet, some differences can be pointed out.

With such a large model, we expected the coloured noise
regularisation jitter method to be much more effective than
the white noise method because the colourisation reduces1905

the potential spatial discontinuities ofin the jitter. We ob-
serve indeed that the S(IR)xRc and the S(IR)xSPMRc al-
gorithms yield significantly lower RMSEs than the S(IR)xR
and the S(IR)xSPMR algorithms. Yet, the S(ITR)xRc and the
S(ITs)xRc algorithms are clearly outperformed by both the1910

S(ITR)xR and the S(ITs)xR algorithms in terms of RMSEs.
This hints at the factsuggests that there is room for improve-
ment in the design of regularisation jitter methods for PF al-
gorithms.

Due to relatively high computation times, we restricted our1915

study to reasonable ensemble sizes, Ne  128 particles. In
this configuration, the RMSE scores of LPFxs are not yet
comparable with those of the EnKF (shown in Fig. 17).

Finally, it should be noted that for the S(ITR)xR and the
S(ITR)xRc algorithms with Ne � 32 particles, optimal val-1920

ues for the distance radius rd were foundlie between 3 and 6

grid points (not shown here) contrary to the results obtained
with the L96 model, for which rd = 1 grid point could be
considered optimal. More generally for all LPFxs, the op-
timal values for the localisation radius r (not shown here)1925

are significantly larger (in number of grid points) for the BV
model than for the L96 model.

7 Sequential–observation localisation for particle
filters

In the SBD localisation formalism, each block of grid points1930

is updated using the local domain of observation sites that
shouldmay influence these grid points. In the sequential–
observation (SO) localisation formalism, we use a different
approach. Observations sites are assimilated sequentially and
assimilating onethe observation at a site should only update1935

nearby grid points. LPF algorithms using the SO localisation
formalism will be called LPFy algorithms3.

In this section, we set q 2 {1 . . .N
y

} and we describe how
the site y

q

should be assimilated.to assimilate the observation
y

q

. In Sect. 7.1, we introduce the state space partitioning. The1940

resulting decompositions of the conditional density are dis-
cussed in Sect. 7.2. Finally, practical algorithms using these
principles are derived in Sects. 7.3 and 7.4.

These algorithms are designed to assimilate one observa-
tion site at a time. Hence, a full assimilation cycle requires1945

N

y

sequential iterations of these algorithms, during which
the ensemble is gradually updated: the updated ensemble af-
ter assimilating site y

q

will be the prior ensemble to assimi-
late site y

q+1.

7.1 Partitioning the state space1950

Following Robert and Künsch (2017) the state space RN

x is
divided into three regions:

1. the first region U covers all grid points that directly in-
fluence y

q

— if H is linear, it is all columns of H that
have non-zero entries on row q;1955

2. the second region V gathers all grid points that are
deemed correlated to those in U ;

3. the third region W contains all remaining grid points.

The meaning of "correlated" is to be understood as a prior
hypothesis, where we define a valid tapering matrix C that1960

3The y exponent emphasises the fact that we perform one anal-
ysis per observation.
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U / observation site

V

W

L

G

Figure 19. Example of the UVW partition for a two-dimensional
space. The site of observation site y

q

lies in the middle. The local
partsregions U and V are circumscribed by the thick green and blue
circles and respectively contain 1 and 20 grid points. The global
region W contains all remaining grid points. In the case of the LG

partition, the local region L gathers all 21 grid points in U and V .

represents the decay of correlations. Non-zero elements of
C should be located near the main diagonal and reflect the
intensity of the correlation. A popular choice for C is the
one obtained using the Gaspari–Cohn function:

[C]

m,n

=G

✓

d

m,n

r

◆

, (53)1965

where d

m,n

is the distance between the m-th and n-th grid
points m and n and r is the localisation radius, a free pa-
rameter similar to the localisation radius defined in the SBD
localisation formalism (see Sect. 4.2.2).

The UVW partition of the state space is an extensiona1970

generalisation of the original LG partition introduced by
Bengtsson et al. (2003) in which U and V are gathered into
one region L, the local domain of y

q

, and W is called G

(for global). Figure 19 illustrates this UVW partition. We
emphasise that both the LG and the UVW state partitions1975

depends on the site of observation site y

q

. They are funda-
mentally different from the state(local state) block decompo-
sition of Sect. 4.2.1 and therefore they shall simply be called
"partition" to avoid confusion.

7.2 The conditional density1980

For any region A of the physical space, let x
A

be the restric-
tion of vector x to A, i.e. the state variables of x thatwhose
grid points are located within A.

7.2.1 With the LG partition

Without loss of generality, the conditional density is decom-1985

posed into:

p(x|y
q

) = p(x

L

,x

G

|y
q

) = p(x

L

|x
G

,y

q

)p(x

G

|y
q

) . (54)

In a localisation context, it seems reasonable to assume that
x

G

and y

q

are independent, that is:

p(x

G

|y
q

) = p(x

G

) , (55)1990

and the conditional pdf of the L region can be written:

p(x

L

|x
G

,y

q

) =

p(y

q

|x
G

,x

L

)p(x

G

,x

L

)

p(x

G

,y

q

)

,

=

p(y

q

|x
L

)p(x

G

,x

L

)

p(x

G

,y

q

)

. (56)

This yields an assimilation method for y
q

described by Algo-
rithm 5.1995

Algorithm 5 Single analysis step for a generic LPFy algo-
rithm using the LG partition

Require: Prior ensemble xi, i= 1 . . .Ne and observation site y
q

y

q

1: Build the LG partition as described in Sect. 7.1
2: for i= 1 to Ne do
3: Do not update x

i

G

4: Update x

i

L

conditionally to y

q

and x

i

G

as stated by Eq. (56)
5: end for
6: return Updated ensemble x

i, i= 1 . . .Ne

7.2.2 With the UV W partition

With the UVW partition, the conditional density is factored
as

p(x|y
q

) = p(x

U

,x

V

,x

W

|y
q

) ,

=

p(x

U

,x

V

,x

W

,y

q

)

p(y

q

)

,2000

=

p(y

q

|x)p(x
V

|x
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,x

W

)p(x
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)

p(y
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p(y
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)p(x
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)p(x
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)

p(y
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)

. (57)

If one assumes that the U and W regions are not only un-
correlated but also independent, then one can make the addi-
tional factorisation:2005

p(x

U

,x

W

) = p(x

U

)p(x

W

) . (58)
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Finally, the conditional density is

p(x|y
q

) = p(x

U

|y
q

)p(x

V

|x
U

,x

W

)p(x

W

) . (59)

The assimilation method for y
q

is now described by Algo-
rithm 6.2010

Algorithm 6 Single analysis step for a generic LPFy algo-
rithm using the UVW partition

Require: Prior ensemble xi, i= 1 . . .Ne and observation site y
q

y

q

1: Build the UVW partition as described in Sect. 7.1
2: for i= 1 to Ne do
3: Do not update x

i

W

4: Update x

i

U

conditionally to y

q

5: Update x

i

V

conditionally to x

i

W

and (the updated) x

i

U

as
stated by Eq. (57)

6: end for
7: return Updated ensemble x

i, i= 1 . . .Ne

7.2.3 The partition and the particle filter

TheSo far, the SO formalism islooks elegant. The resulting
assimilation schemes avoid the discontinuity issue inherent
to the SBD formalism by using conditional updates of the
ensemble.2015

However, this kind of update seems hopeless in a pure PF
context. Indeed the factors p(x

G

,x

L

) and p(x

V

|x
U

,x

W

) in
Eqs. (56) and (57) will be non-zero only if the updated parti-
cles are copies of the prior particles, which spoils the entire
purpose of localising the assimilation. Hence potential solu-2020

tions need to make approximations of the conditional density.

7.2.4 The multivariate rank histogram filter

Similar principles were used to design the multivariate rank
histogram filter (MRHF) of Metref et al. (2014), with the
main difference that the state space is entirely partitioned as2025

follows. Assuming that y
q

only depends on x1, the condi-
tional density can be written:

p(x|y
q

) = p(x1|yq)p(x2|x1) . . .p(xn+1|xn

, . . . ,x1) . . .

(60)

In the MRHF analysis, the state variables are up-
dated sequentially according to the conditional density2030

p(x

n+1|xn

, . . . ,x1). Zero factors in p(x

n+1|xn

, . . . ,x1) are
avoided by using a kernel representation for the condition-

ing on x

n

, . . . ,x1, in a similar way as in Eqs. (40) and (41)
with top hat functions for the regularisation kernel K. The
resulting one-dimensional density along x

n+1 is represented2035

using histograms and the ensemble members are transformed
using the same anamorphosis procedure as the one described
in Sect. 4.4.4.

The MRHF could be used as a potential implementation
of the SO localisation formalism. However, assimilating one2040

observation site requires the computation of N

x

different
anamorphosis transformations.

7.2.5 Implementing the SO formalism

In the following sections, we introduce two different algo-
rithms that implement the SO formalism (with the UVW2045

partition) to assimilate one observation. Both algorithms are
based on an "importance, resampling, propagation" scheme
as follows. Global unnormalised importance weights are first
computed as

w

i

= p

�

y

q

|xi

�

. (61)2050

Using these weights, we compute a resampling in the U re-
gion (essentially at the observation site). The update is then
propagated to the V region using a dedicated propagation al-
gorithm.

7.3 Poterjoy’s local particle filterA hybrid algorithm2055

for the propagation

The LPF algorithm of Poterjoy (2016) (hereafter Poterjoy’s
LPF) is a hybrid scheme that mixes a (global) PF update
and the prior in order to implement the UVW localisation
formalism as described in this section. The first algorithm2060

that we introduce to implement the SO formalism using the
"importance, resampling, propagation" scheme is the LPF of
Poterjoy (2016) (hereafter Poterjoy’s LPF). In this algorithm,
the update is propagated using a hybrid scheme that mixes a
(global) PF udpate with the prior ensemble.2065

7.3.1 Step 1: particle filter resamplingimportance and
resampling

The global unnormalised importance weights are given by
[NB: Eq. (61) was here before] Using theses weights,Using
the global unnormalised importance weights Eq. (61), we2070

compute a resampling map �, using for example the SU sam-
pling algorithm.

7.3.2 Step 2: update and propagation

The resampling map � is used to update the ensemble at the
observation site (i.e. in the U region)in the U region and the2075

update is propagated to all grid points n as

x

i

n

= x

n

+!

a
n

⇣

x

�(i)
n

�x

n

⌘

+!

f
n

�

x

i

n

�x

n

�

, (62)

where x

n

is the ensemble mean at the n-th grid point n, !a

is the weight of the PF update and !f is the weight of the
prior. If the resampling algorithm is adjustment-minimising,2080

the number of updates that need to be propagated is minimal.
Finally, the !⇤ (either !f or !a) weights are chosen such
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that the updated ensemble yields correct order-1 and order-2
statistics at the first and second orders.

At the observation site, !a
= 1 and !f

= 0, such that the2085

update on the U region is the PF update and is Bayesian. Far
from the observation site, !a

= 0 and !f
= 1, such that there

is no update on the W region. Hence, the i-th updated par-
ticle is a composite particle between the i-th prior particle
(in W ) and the hypothetical i-th updated particle (in U ) that2090

would be obtained with a PF update. In between (in V ) dis-
continuities are avoided by using a smooth transition for the
!

⇤ weights, which involves the localisation radius r. A sin-
gle analysis step according to Poterjoy’s LPF is summarised
by Algorithm 7.2095

The formulas for the !⇤ weights are summarised in Ap-
pendix B. Their detailed derivation can be found in Poter-
joy (2016), where !a and !f are called r1 and r2. Poterjoy
(2016) included in his algorithm a weight inflation parameter
that can be ignored to understand how the algorithm works.2100

Moreover, the N
y

sequential assimilations are followed by an
optional KDDM step. As explained in Sect. 4.4.4, we found
the KDDM step to be better suited for the local resampling
step of LPFx algorithms. Therefore, we did not includehave
not included it in our presentation of Poterjoy’s LPF.2105

Algorithm 7 Single analysis step for Poterjoy’s LPF algo-
rithm

Require: Prior ensemble xi, i= 1 . . .Ne and observation site y
q

y

q

1: Compute the analysis weights using Eq. (61)
2: Compute the resampling map �

3: for n= 1 to N

x

do
4: Compute the weights !f

n

and !

a
n

5: for i= 1 to Ne do
6: Update x

i

n

using Eq. (62)
7: end for
8: end for
9: return Updated ensemble x

i, i= 1 . . .Ne

7.4 An algorithm inspired from the EnKPFA second
order algorithm for the propagation

The ensemble Kalman particle filter (EnKPF) is a Gaussian
mixture hybrid ensemble filter designed by Robert and
Künsch (2017), in which the update is propagated from2110

the observation site to all grid points using order-2
moments. The same ideas can be used to yield a LPF
algorithm, hereafter called LEFRK, implementing the UVW

localisation formalism as follows. The terminology "LEF"
for local ensemble filter is favored over "LPF" to emphasise2115

the order-2 truncation inherent to this algorithm. The sec-
ond algorithm that we introduce to implement the SO formal-
ism using the "importance, resampling, propagation" scheme
is based on the ensemble Kalman particle filter (EnKPF), a
Gaussian mixture hybrid ensemble filter designed by Robert2120

and Künsch (2017). In this algorithm, the updated is propa-
gated using second order moments.

7.4.1 Preliminary: the covariance matrix

Since the update is propagated using order-2second order
moments, one first needneeds to compute the covariance ma-2125

trix of the prior ensemble:

⌃f
= cov(x) . (63)

In a localisation context, it seems reasonable to use a ta-
pered representation of the covariance, in such a way that
the covariance matrix ⌃ of use will be. Therefore, we use2130

the covariance matrix ⌃ defined by

⌃=C �⌃f
, (64)

where C is the valid tapering matrix mentioned in section
7.1 (defined using the localisation radius r) and � means the
Schur product for matrices.2135

7.4.2 Step 1: update in the U regionimportance and
resampling

Each ensemble member is weighted by the global
unnormalised importance weights Eq. (61). Using these
weightsUsing the global unnormalised importance weights2140

Eq. (61), we resample the ensemble in the U region and com-
pute the update �x

i

U

. For this resampling step, any resam-
pling algorithm can be used:

– an adjustment-minimising resampling algorithm can be
used to minimise the number of updates �x

i

U

that need2145

to be propagated;

– the resampling algorithms based on OT in ensemble
space or in state space, as derived in Sects. 4.4.3 and
4.4.4 can be used; as infor the LPFx methods, we expect
them to create strong correlations between the prior and2150

the updated ensembles.

7.4.3 Step 2: propagate the update to the V

regionpropagation

For each particle i the update of V , �x

i

V

, depends on the
update on U , �x

i

U

, through the linear regression:2155

�x

i

V

=⌃
V U

⌃�1
U

�x

i

U

, (65)

where ⌃
V U

and ⌃
U

are submatrices of ⌃. The full deriva-
tion of Eq. (65) is available in Robert and Künsch (2017).
Note that ⌃ is a N

x

⇥N

x

matrix but only the submatrices
⌃

V U

and ⌃
U

need to be computed.2160

Finally, the LEFRK algorithm is summarised by
Algorithm 8A single analysis step according to this
second order algorithm is summarised by Algorithm 8 in a
generic context, with any resampling algorithm.
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Algorithm 8 Single analysis step for a generic LEFRK

algorithmLPFy using the second order propagation algorithm

Require: Prior ensemble x

i, i= 1 . . .Ne, observation site y

q

y

q

1: Build the UVW partition as described in Sect. 7.1
2: Compute the prior covariance submatrices ⌃

V U

and ⌃
U

3: Compute the analysis weights using Eq. (61)
4: Resample the ensemble on region U

5: Compute the associated updates �x

i

U

, i= 1 . . .Ne

6: for i= 1 to Ne do
7: Compute the update �x

i

V

using Eq. (65)
8: Apply the update �x

i

V

on region V

9: end for
10: return Updated ensemble x

i, i= 1 . . .Ne

7.5 Pros and cons of the LPFy algorithmsSummary for2165

the LPFy algorithms

7.5.1 Highlights

Both algorithms derived in this section include some spatial
smoothness in the construction of the updated particles. In
Poterjoy’s LPF, the smoothness comes from the definition2170

of the !⇤ weights, whereas in the LEFRK algorithm, it is
a consequence of the use of correlations to propagate the
update. Thus, we expect the discontinuity issues to be less
critical with both algorithms than with LPFxs, which is why
the partition was introduced in the first place. In this section,2175

we have introduced a generic SO localisation framework,
which we have used to define the LPFys, our second category
of LPF methods. We have presented two algorithms, both
based on an "importance, resampling, propagation" scheme:

1. The first algorithm is the LPF of Poterjoy (2016). It uses2180

a hybrid scheme between a (global) PF update and the
prior ensemble to propagate the update from the obser-
vation site to all grid points.

2. The second algorithm was inspired by the EnKPF of
Robert and Künsch (2017). It uses tapered second order2185

moments to propagate the update.

Both algorithms derived in this section include some spatial
smoothness in the construction of the updated particles. In
Poterjoy’s LPF, the smoothness comes from the definition
of the !⇤ weights. In the second order propagation scheme,2190

the smoothness comes from the prior correlations. Therefore,
we expect the unphysical discontinuities to be less critical
with these algorithms than with the LPFx algorithms, which
is why the partition was introduced in the first place.

7.5.2 Numerical complexity2195

Let N
U

and N

V

be the maximum number of grid points in
U and V respectively and let N

UV

=N

U

+N

V

. The com-
plexity of assimilating one observation using Poterjoy’s LPF
is:

– O (Ne) to compute the analysis weights Eq. (61) and the2200

resampling map �;

– O (NeNUV

) to compute the !⇤ weights and to propa-
gate the update to the U and V regions.

The complexity of assimilating one observation using the
second order propagation algorithm is the sum of the com-2205

plexity of computing the update on the U region, on the V

region and of applying these updates to the ensemble. The
complexity of computing the update on the U region is:

– O (NeNU

) when using the adjustment-minimising SU
sampling algorithm;2210

– O
�

N

2
eN

`

x

(rd)+N

3
e +N

2
eNU

�

when using the optimal
ensemble coupling derived in Sect. 4.4.3 with a distance
radius rd;

– O (N

U

NeNp

) when using the anamorphosis derived in
Sect. 4.4.4 with a fixed one-dimensional resolution of2215

N

p

points.

Using Eq. (65), the complexity of computing the update on
the V region is:

– O
�

N

3
U

�

to compute ⌃�1
U

;

– O
�

NeN
2
U

+NeNV

N

U

�

to apply ⌃
V U

⌃�1
U

to all2220

�x

i

U

, i= 1 . . .Ne.

Finally, the complexity of applying the update on the U and
V region is O (NeNUV

).
However, the LPFys are by construction non parallel:

observation sites are assimilated sequentially.With LPFy al-2225

gorithms, observations are assimilated sequentially, which
means that these algorithms are to be applied N

y

times per
assimilation cycle. This also means that the LPFy algorithms
are by construction non parallel. This issue was discussed
by Robert and Künsch (2017): some level of parallelisation2230

could be introduced in the algorithms, but only between ob-
servation sites for which the domains U and V regions are
disjoint. That is to say, one can assimilate in parallel several
observation sitesthe observation at several sites as long as
their domain of influence (in which an update is needed) do2235

not overlap. This would require a preliminary geometric step
to determine in which order observation sites are to be as-
similated. This step would need to be performed again when-
ever the localisation radius r is changed. Moreover, when r

is large enough, all U and V domainsregions may overlap,2240

and parallelisation is not possible.

7.5.3 Asymptotic limit

The analysis step of Poterjoy’s LPF is equivalent to a PF
analysis step in the asymptotic limit r!1. This is not
the case for the LEFRK algorithm. By definition of the !⇤

2245
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weights, the single analysis step for Poterjoy’s LPF is equiv-
alent to the analysis step of the (global) PF for a single ob-
servation in the limit r!1. This is not the case for the
algorithm based on the second order propagation scheme.
Indeed, using order-2second order moments to propagate2250

the update introduces a bias in the analysis. On the other
hand, order-2second order methods are in general less sen-
sitive to the curse of dimensionality. Therefore, we expect
the LEFRKthis algorithm to be able to handle larger values
for the localisation radius r than the LPFxs.2255

7.6 Gathering observation sites into blocks

The LPFys can be extended to the case where observation
sites are compounded into small blocks as follows:

– the unnormalised importance weights Eq. (61) are mod-
ified such that they account for all observation sites in-2260

side the block;

– any distance that neededneeds to be computed
relativelyrelative to the site of observation site y

q

(for
example for the !⇤ weights for Poterjoy’s LPF) is now
computed relatively to the block center;2265

– in the LEFRK algorithm based on the second order prop-
agation scheme, the UVW partition is modified: the U

region now covershas to cover all grid points that di-
rectly influence all observation sitesevery site inside the
block.2270

Gathering observation sites into blocks reduces the num-
ber of sequential assimilations from N

y

to the num-
ber of observation sites blocks, hence reducing the
computationcomputational time per cycle. However, it intro-
duces an additional bias in the analysis. Therefore, we do not2275

use this method in the numerical examples of Sects. 8 and 9.

8 Numerical illustration of the LPFy algorithms

8.1 Experimental setup

In this section, we illustrate the performance of the LPFy al-
gorithms using twin simulations ofwith the L96 and the BV2280

models. The model specifications for this test series are the
same as for the LPFx test series: the L96 model is used in
the standard configuration described in Appendix A3 and the
BV model is used in the CR configuration described in Ap-
pendix A4.1. In a manner consistent with Sects. 5 and 6, the2285

LPFy algorithms are named S(I⇤P⇤)yR⇤S(I↵P
�

)y� — sam-
pling, importance, resampling, propagation, regularisation,
the y exponent meaning that steps in parentheses are per-
formed locally for each observation site — with the conven-
tions detailed in Table 3. Table 4 lists all LPFy algorithms2290

tested in this section and reports their characteristics accord-
ing to the convention of Table 3.

Table 3. Nomenclature conventions for the S(I↵P
�

)y� algorithms.
Capital letters refer to the main algorithmic ingredients: "I" for im-
portance, "R" for resampling or regularisation, "T" for transport,
"P" for propagation. Subscripts are used to distinguish the methods
in two different ways. Lower case subscripts refer to explicit con-
cepts used in the method: "s" for state space, "c" for color; while
upper case subscripts refer to the work that inspired the method:
"P" for Poterjoy (2016) and "RK" for Robert and Künsch (2017).
For simplicity, some subscripts are omitted: "amsu" for adjustment-
minimising stochastic universal and "w" for white.

↵ Local resampling algorithm

R adjustment-minimising SU sampling algorithm
TR optimal transport in ensemble space (Sect. 4.4.3)
Ts optimal transport in state space (Sect. 4.4.4)

� Propagation method

P Poterjoy’s LPF (Algorithm 7)
RK LEFRKSecond order propagation (Algorithm 8)

� Regularisation method (Sects. 5.2 and 5.8)

R white noise method
Rc coloured noise method

8.1.1 Regularisation jitter

For the same reasons as with LPFxs, jittering the LPFys is
necessary not to experienceto avoid a fast collapse. As we2295

eventually did for the LPFxs, the model is not perturbed
(no integration jitter) and regularisation noise is added at the
end of each assimilation cycle, either using the white noise
method described by Eq. (46) or using the coloured noise
method described in Sect. 5.8. With this latter method, the2300

local weights required for the computation of the covari-
ance matrix of the regularisation noise are computed with
Eq. (29).

8.1.2 The S(IRPP)yR algorithm and its variant

With the regularisation method described in Sect. 8.1.1, the2305

S(IRPP)yR has 3 parameters:

– the ensemble size Ne;

– the localisation radius r used to compute the !⇤ weights
(step 4 of Algorithm 7) as defined by Eqs. (B1) to (B4);

– the standard deviation s of the regularisation jitter, here-2310

after simply called "regularisation jitter" to be consistent
with the LPFxs.

For each value of the ensemble size Ne, the localisation ra-
dius r and the regularisation jitter s are systematically tuned
to yield the lowest RMSE score.2315

As mentioned in Sect. 7.3.2, the original algorithm de-
signed by Poterjoy (2016) included another tuning param-
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Table 4. List of all LPFy algorithms tested in this article. For each algorithm, the main characteristics are reported with appropriate references.

Algorithm Resampling algorithm Subsection Propagation algorithm Regularisation method
(Sect. 4.4) (Sects. 7.3 and 7.4) (Sects. 5.2 and 5.8)

Algorithm 7 Algorithm 8 Eq. (46) Eq. (50)
[Poterjoy’s LPF] [Second order] [white] [colour]

S(IRPP)yR adjustment-minimising SU sampling 4.4.2 X X
S(IRPP)yRc adjustment-minimising SU sampling 4.4.2 X X
S(IRPRK)yR adjustment-minimising SU sampling 4.4.2 X X
S(IRPRK)yRc adjustment-minimising SU sampling 4.4.2 X X
S(ITRPRK)yR optimal ensemble coupling 4.4.3 X X
S(ITRPRK)yRc optimal ensemble coupling 4.4.3 X X
S(ITsPRK)yR anamorphosis 4.4.4 X X
S(ITsPRK)yRc anamorphosis 4.4.4 X X

eter, the weightsweight inflation, which serves the same pur-
pose as the regularisation jitter. Based on extensive tests in
the L96 model with 8 to 128 particles (not shown here),2320

we have found that using weightsweight inflation instead of
regularisation jitter always yields higher RMSEs. Therefore,
we did not includehave not included weight inflation in the
S(IRPP)yR algorithm.

In the S(IRPP)yRc algorithm, the regularisation jitter pa-2325

rameter s is replaced by ˆ

h according to the coloured noise
regularisation jitter method. The parameter tuning method is
unchanged.

8.1.3 The S(IRPRK)yR algorithm and its variants

With the regularisation method described in Sect. 8.1.1, the2330

S(IRPRK)yR has 3 parameters:

– the ensemble size Ne;

– the localisation radius r used to define the valid tapering
matrix C required for the computation of the prior co-
variance submatrices (step 2 of Algorithm 8) as defined2335

by Eq. (64);

– the regularisation jitter s.

For each value of the ensemble size Ne, the localisation ra-
dius r and the regularisation jitter s are systematically tuned
to yield the lowest RMSE score.2340

When using optimal ensemble coupling for the local re-
sampling (step 4 of Algorithm 8), the local minimisation co-
efficients are computed using Eq. (35). This gives an addi-
tional tuning parameter, the distance radius rd, which is also
systematically tuned to yield the lowest RMSE score. When2345

using anamorphosis for the local resampling step, the cdfs of
the state variables in the region U are computed in the same
way as for LPFx algorithms, with a regularisation bandwidth
h= 1. Finally, when using the coloured noise regularisation
jitter method, the parameter s is replaced by ˆ

h and the tuning2350

method stays the same.

8.2 RMSE scores for the L96 model

The evolution of the RMSE as a function of the ensemble
size Ne for the main LPFy algorithms with the L96 model is
shown in Fig. 20. The RMSEs obtained with the S(IRPP)yR2355

algorithm are comparable to those obtained with the S(IR)xR
algorithm. When using the LEFRKsecond order propagation
method, the RMSEs are, as expected, significantly lower.
Thanks to the order-2 truncation, the algorithms areThe al-
gorithm is less sensitive to the curse of dimensionality than2360

the LPFx algorithms: optimal values of the localisation ra-
dius r are significantly larger and less regularisation jitter
s is required. As forSimilarly to the LPFxs, combining the
LEFRKsecond order propagation method with OT-based re-
sampling methodsalgorithms (optimal ensemble coupling or2365

anamorphosis) yields important gains in RMSE scores as a
consequence of the minimisation of the update in the region
U that needs to be propagated to the region V . With a reason-
able number of particles (e.g. 64 for the S(ITsPRK)yR algo-
rithm), the scores are evensignificantly lower than those ob-2370

tained with the reference EnKF implementation (the ETKF).
Finally, we observe that using the coloured noise regulari-
sation jitter method improves the RMSEs for large ensem-
bles when the local resampling step is performed with the SU
sampling algorithm, in a similar way as for the LPFxs. How-2375

ever when the local resampling step is performed with opti-
mal ensemble coupling or with anamorphosis, the coloured
noise regularisation jitter method barely improves the RM-
SEs.

8.3 RMSE scores for the BV model2380

The evolution of the RMSE as a function of the ensem-
ble size Ne for the main LPFy algorithms with the BV
model is shown in Fig. 21. Most of the conclusions drawn
with the L96 model remain true with the BV model.
HoweverHowever, in this case, as the ensemble size Ne2385

growsgrows, the RMSE decreases significantly more slowly
for the S(IRPP)yR and the S(IRPP)yRc algorithms than for
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Figure 20. RMSE as a function of the ensemble size Ne for the
main LPFys.
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Figure 21. RMSE as a function of the ensemble size Ne for the
main LPFys. The scores are displayed in units of the observation
standard deviation �.

the other algorithms. Finally, with an ensemble size Ne �
64 particles, the S(ITsPRK)yR and the S(ITsPRK)yRc algo-
rithms yield RMSEs almost equivalent to those of the refer-2390

ence LETKF implementation.

9 Numerical illustration with a high-dimensional
barotropic vorticity model

9.1 Experimental setup

In this section, we illustrate the performance of a selection of2395

LPFxs and LPFys using twin simulations of the BV model
in the high resolution (HR) configuration described in Ap-
pendix A4.2. Using this configuration yields a higher dimen-
sional DA problem (N

x

= 65536 and N

y

= 4096) for which
the analysis step is too costly to perform exhaustive tests.2400

ThereforeTherefore, in this section, we take Ne = 32 ensem-
ble members and we monitor the time evolution of the anal-
ysis RMSE during 501 assimilation steps.

As with the CR configuration, all geometrical considera-
tions (local blocks and domains, UVW partition...) use the2405

Euclidean distance of the underlying physical space.

9.2 Algorithm specifications

For this test series, the selection of algorithms is listed in Ta-
ble 5. Approximate optimal values for the tuning parameters
are found using several twin experiments with a few hundred2410

assimilation cycles (not shown here). Each algorithm uses
the same initial ensemble obtained as follows:

x

i

0 = x0 +0.5⇥u+u

i

, i= 1 . . .Ne, (66)

with u and the u

i are random vectors whose coefficients are
distributed according to a normal law. Such an ensemble is2415

not very close to the truth (in terms of RMSE) and its spread
is large enough to reflect the lack of initial information. The
LPFs use zero integration jitter and Nb =N

x

blocks of size
1 grid point. Approximate optimal values for the localisation
radius r and the regularisation jitter (s or ˆh depending on the2420

potential colourisation of the noise) are found using several
twin experiments with a few hundred assimilation cycles (not
shown here). The localisation radius r and the multiplica-
tive inflation for the LETKF are found in a similar manner.
When using OT in state space, we only test a few values for2425

the regularisation bandwidth h. When using the smoothing
by weights, we take the smoothing strength ↵s = 1 and the
smoothing radius rs is set to be equal to the localisation ra-
dius r.

9.3 RMSE time series2430

Figure 22 shows the evolution of the instantaneous analysis
RMSE for the selected algorithms. Approximate optimal val-
ues for the tuning parameters, alongside with average anal-
ysis RMSE computed over the final 300 assimilation steps
and wall-clock computation times are reported in Table 5.2435

In terms of RMSE scores, the ranking of the methods is un-
changed and most of the conclusions for this test series are
the same as with the CR configuration.

Thanks to the widespreaduniformly distributed observa-
tion network, the posterior pdfs are close to Gaussian and2440
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therefore the LETKF algorithm can efficiently reconstruct
a good approximation of the true state. As expected with
this high-dimensional DA problem, the algorithms using
an order-2a second order truncation (the LETKF and the
S(I⇤PRK)yR algorithms) are more robust. Optimal values of2445

the localisation radius are qualitatively large, which allows
for a better reconstruction of the system dynamics.

For the S(IR)xR and the S(IRPP)xR algorithms, the opti-
mal localisation radius r needs to be very small to counteract
the curse of dimensionality. With such small values for r, the2450

local domain of each grid point contains only 4 to 13 obser-
vation sites. This is empirically barely enough to reconstruct
the true state with an RMSE score lower than the observation
standard deviation �. As usualin the previous test series, us-
ing OT-based local resampling methods or the smoothing by2455

weights step yields significantly lower RMSEs. The RMSEs
of the S(ITs)xR algorithmand the S(IR)xSPMRc algorithms,
though not as good as thosethat of the LETKF algorithm,
show that the true state is reconstructed with an acceptable
accuracy. The RMSEs of the S(ITsPRK)yR and the LETKF2460

algorithms are almost comparable. Depending on the algo-
rithm, the conditioning to the initial ensemble more or less
quickly vanishes.

Without parallelisation, we observe that the N

x

local
analyses of the LPFxs are almost always faster than both2465

the N

x

local analyses of the LETKF and the N

y

sequen-
tial assimilations of the LPFys (Poterjoy’s LPF and the
LEFRK algorithm). The LEFRKsecond order propagation al-
gorithm is slower because of the linear algebra involved in
the propagation method. Poterjoy’s propagation algorithm2470

is slower because of the computation ofcomputing the !⇤

weights is numerically expensive. The LETKF is slower be-
cause of the matrices inversion in the ensemble space. Fi-
nally the S(IR)xSPMRc algorithm is even slower because, in
this two-dimensional model, the smoothing by weights step2475

is numerically very expensive.
The difference between the LPFxs and the LPFys is even

more visible on our 24-core platform. The LPFys are not par-
allel, that is why they are more than 70 times slower than the
fastest LPFxs.2480

10 Conclusions

The curse of dimensionality is a rather well-understood phe-
nomenon in the statistical literature and it is the reason for
the failure of the application of PF methodswhy PF meth-
ods fail when applied to high-dimensional DA problems.2485

We have recalled the main results related to weight degen-
eracy of PFs, and why the use of localisation can be used
as a fix. Yet, implementing localisation in PF analysis raises
two major issues: the gluing of locally updated particles and
potential physical imbalance in the updated particles. Ade-2490

quate solutions to these issues are not obvious, witness the
few but unsimilardissimilar LPF algorithms developed in the

geophysical literature. In this article, we have reviewed the
ideas related to localisation and particle filtering. Moreover,
we have proposed a theoretical classification of LPFs into2495

two categories. In this article we have proposed a theoretical
classification of LPF algorithms into two categories. For each
category, we have presented the challenges of local particle
filtering and we have reviewed the ideas that lead to practical
implementation of LPFs. Some of them, already in the lit-2500

erature, have been detailed and sometimes generalised while
others are new in this field and yield improvements in the
design of LPF methods.

With the LPFx methods, the analysis is localised by allow-
ing the analysis weights to vary over the state variablesgrid2505

points. We have shown that this leads toyields an analysis
pdf from which only the marginals are known. The local re-
sampling step is mandatory to reconstruct global particles,
that are obtained as the concatenation ofby assembling the
locally updated particles. The quality of the updated ensem-2510

ble directly depends on the regularity of the local resampling.
This is related to the potentialunphysical discontinuities in
the concatenatedassembled particles. Therefore we have pre-
sented practical methods to improve the design of thisthe lo-
cal resampling step by reducing the unphysical discontinu-2515

ities.
In the LPFy methods, localisation is introduced more gen-

erally in the conditional density for one observation site by
the means of a state partition. The goal of the partition is to
build a framework for local particle filtering without the dis-2520

continuity issue inherent to LPFxs. However, this framework
is irreconcilable with algorithms based on pure "importance,
resampling" methods. We have shown how two hybrid meth-
ods could yet be used as an implementation of this frame-
work. Besides, we have emphasised the fact that with these2525

methods, observation sitesobservations are by construction
assimilated sequentially, which is a great disadvantage when
the number of observation sitesobservations in the DA prob-
lem is high.

With localisation, a bias is introduced in the LPF analyses.2530

We have shown that, depending on the localisation parametri-
sation, some methods can yield an analysis step equivalent to
that of global PF methods which are known to be asymptoti-
cally Bayesian.

We have implemented and systematically tested the LPF2535

algorithms with twin simulations of the L96 model and the
BV model. A few observations could be made from these
experiments. With these models, implementing localisation
is simple and works as expected: the LPFs yield acceptable
RMSE scores even with small ensembles, in regimes where2540

global PF algorithms are degenerate. Despite the fact that it
was explicitly designed to avoid discontinuity issues, there is
no clear advantage of using Poterjoy’s LPF over the S(IR)xR
algorithm. In particular, with the BV model, the scores of the
S(IR)xR algorithm are slightly better than those of Poterjoy’s2545

LPF at a lower computational cost. As expected, using the
LEFRK propagation method yields the most efficient DA
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Table 5. Characteristics of the algorithms tested with the BV model in the HR configuration (Fig. 22). The LPFxs use zero integration
jitter (q = 0) and Nb =N

x

blocks of size 1 grid point. The LPFys also use zero integration jitter (q = 0). For the LETKF, the optimal
multiplicative inflation is reported in the regularisation jitter column. For the S(IR)xSPMRc algorithm, the optimal regularisation jitter
bandwidth ĥ is reported in the regularisation jitter column as well. The average RMSE is computed over the final 300 assimilation steps
and given in units of the observation standard deviation �. The wall-clock computation time is the average time spent per analysis step. The
simulations are performed on a single core of a double Intel Xeon E5-2680 platform (for a total of 24 cores). For comparison, the average
time spent per forecast (�t= 0.5) for the 32-member ensemble is 0.94 s. The ⇤ asterisk indicates that the local analyses can be carried out
in parallel, allowing a theoretical gain in computation time of up to a factor 65536. For these algorithms, the wall-clock computation time of
the average time spent per analysis step for the parallelised runs on this 24-core platform, as well as the acceleration factor, are reported in
the last column.

Algorithm Loc. radius r Reg. jitter s Other parameters Average RMSE 1-core wall-clock 24-core wall-clock
[in units of L] [in units of �] time [in s] time [in s]

S(IRPP)yR 0.03 0.70 – 0.90 122.18 –
S(IR)xR 0.02 0.55 – 0.78 7.58⇤ 0.54 (⇥14.04)
S(IRPRK)yR 0.07 0.25 – 0.46 52.97 –
S(IR)xSPMRc 0.05 1.0 ↵s = 1, rs = r 0.38 226.20⇤ 12.50 (⇥18.10)
S(ITs)xR 0.08 0.11 h= 3 0.33 13.94⇤ 0.86 (⇥16.21)
S(ITsPRK)yR 0.20 0.01 h= 1 0.13 64.79 –
LETKF 0.35 1.04 – 0.10 103.90⇤ 5.09 (⇥20.41)
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Figure 22. Instantaneous analysis RMSE for the selection of algorithms detailed in Table 5. The scores are displayed in units of the observa-
tion standard deviation �.

method in terms of RMSE scores. This is a consequence of
the fact that order-2 truncated methods are in general less
sensitive to the curse of dimensionality. In terms of RMSEs,2550

there is no clear advantage of using Poterjoy’s propagation
method (designed to avoid unphysical discontinuities) over
the (simpler) LPFx algorithms, which have a lower compu-
tational cost. As expected, algorithms based on the second
order propagation method are less sensitive to the curse of2555

dimensionality and yields the lowest RMSE scores. We have
shown that using OT-based local resampling methods always
yields important gains in RMSE scores. For the LPFxs, it is
a consequence of the minimisation of themitigating the un-
physical discontinuities introduced in the local resampling2560

step. For the LPFys, it is a consequence of the minimisation
of the update at the observation site that needs to be propa-
gated to nearby grid points.

Finally, the successful application of the LPFs to DA prob-
lems with a perfect model is largely due to the use of regu-2565

larisation jitter. Using regularisation jitter introduces an ad-
ditional bias in the analysis alongside with an extra tuning
parameter. For our numerical experiments, we have intro-
duced two jittering methods: either using regularisation noise
with fixed statistical properties (white noise) or by scaling2570

the noise with the ensemble anomalies (coloured noise). We
have discussed the relative performance of each method and
concluded that there is room for improvement in the design
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of regularisation jitter methods for PFs. Ideally, the methods
should be adaptative but this point is beyond the scope of2575

this article. The conclusions could have been different when
applying the LPFs to DA problems with stochastic models.
However, the definition of a realistic model noise is non-
trivial. Besides, the magnitude of such a model noise may
be too small for the LPFs to perform well. That is why the2580

use of regularisation jitter can be justified even with stochas-
tic models.
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Appendix A: Numerical models

A1 The Gaussian linear model2590

The Gaussian linear model is the simplest model with size
N

x

whose prior distribution is

x0 ⇠N
�

0,p2I
�

, (A1)

whose transition distribution is

x

k+1� ax

k

=w

k

⇠N
�

0, q2I
�

, (A2)2595

and whose observation distribution is

y

k

�hx

k

= v

k

⇠N
�

0,�2I
�

, (A3)

where N (v,⌃) is the normal distribution with mean v and
covariance matrix ⌃.

A2 Generic model with Gaussian additive noise2600

The Gaussian linear model can be generalised to include non-
linearity in the model M and in the observation operator H.
In this case, the transition distribution is:

x

k+1�M(x

k

) =w

k

⇠N (0,Q) , (A4)

and the observation distribution is:2605

y

k

�H (x

k

) = v

k

⇠N (0,R) , (A5)

where Q and R are the covariance matrices of the additive
model and observation errors.

A3 The Lorenz 1996 model

The Lorenz 1996 model (Lorenz and Emanuel, 1998) is2610

a low-order one-dimensional discrete chaotic model whose
evolution is given by the following set of ODEs:

dx

n

dt

= (x

n+1�x

n�2)xn�1�xn

+F, n= 1 . . .N

x

, (A6)

where the indices are to be understood with periodic bound-
ary conditions: x�1 = x

N

x

�1, x0 = x

N

x

, x1 = x

N

x

+1 and2615

where the system size N

x

can take arbitrary values. These
ODEs are integrated using a fourth-order Runge–Kutta
method with a time step of 0.05 time unit.

In the standard configuration, N
x

= 40 and F = 8 which
yields a chaotic dynamics with a doubling time around 0.422620

time unit. The observations are given by

y

k

= x

k

+v

k

, v

k

⇠N (0,I) , (A7)

and the time interval between consecutive observations is
�t= 0.05 time unit, which represents 6 h of real time and
corresponds to a model autocorrelation around 0.967.2625

A4 The barotropic vorticity model

The barotropic vorticity model describes the evolution of the
vorticity field of a two-dimensional incompressible homoge-
neous fluid in the x1�x2 planplane. The time evolution of
the unknown vorticity field q is governed by the scalar equa-2630

tion

@q

@t

+J( , q) =�⇠q+ ⌫�q+F, (A8)

and q is related to the stream function  through

� = q. (A9)

In these equations, J( , q) is the advection of the vorticity2635

by the stream, defined as

J( , q) =

@ 

@x1

@q

@x2
� @ 

@x2

@q

@x1
, (A10)

⇠ 2 R+ is the friction coefficient, ⌫ 2 R+ is the diffusion co-
efficient and F is the forcing term, that may depend on x1,
x2 and t. The system is characterised by homogeneous two-2640

dimensional turbulence. The friction extracts energy at large
scale, the diffusion dissipates vorticity at small scale and the
forcing injects energy in the system. The number of degrees
of freedom in this model can be roughly considered to be
proportional to the number of verticesvortices (Snyder, 2012,2645

personal communication).
The equations are solved with P

2 grid points regularly dis-
tributed over the simulation domain [0,L]

2 with doubly pe-
riodic boundary conditions. Our time integration method is
based on a semi-Lagrangian solver with a constant time step2650

�t as follows:

1. At time t, solve Eq. (A9) for  .

2. At time t, compute the advection velocity with order-2
centered finite differences of the field  .

3. The advection of q during t and t+�t is computed by ap-2655

plying a semi-Lagrangian method to the left-hand side
of Eq. (A8). The solver cannot be more precise than
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order-1 in time, since the value of  is not updated
during this step. Therefore, our semi-Lagrangian solver
uses the order-1 forward Euler time integration method.2660

The interpolation method used is the cubic convolution
interpolation algorithm, which yields an order-3 pre-
cision with respect to the spatial discretisation. In this
step, the right-hand side of Eq. (A8) is ignored.

4. Integrate q from t to t+ �t by solving Eq. (A8) with2665

an implicit order-1 time integration scheme, in which
the advection term is the one computed in the previous
step.

For the numerical experiments of this studyarticle, the spa-
tial discretisation is fine enough such that the spatial interpo-2670

lation error in the semi-Lagrangian step is negligible when
compared to the time integration error. As a consequence,
the overall integration method is order-1 in time. For the DA
experiments with this model, we define and use two configu-
rations.2675

A4.1 Coarse resolution configuration

The coarse resolution configuration is based on the following
set of physical parameters:

L= 1, (A11)

⇠ = 10

�2
, (A12)2680

⌫ = 5⇥ 10

�5
, (A13)

the deterministic forcing is given by

F (x1,x2) = 0.25sin(4⇡x1)sin(4⇡x2) , (A14)

and the space-time discretisation is

�t= 0.1, (A15)2685

�x=

L

P

=

1

32

, (A16)

which yields N

x

= (�x/L)

2
= 1024. The spacespatial dis-

cretisation is enough to allow a reasonable description of a
few (typically five to ten) vortices inside the domain. The
timetemporal discretisation is empirically enough to ensure2690

the stability of the integration method and allows a fast com-
putation of the trajectory. The physical parameters are chosen
to yield a proper time evolution of the vorticity q.

The initial true vorticity field for the DA twin experiments
is the vorticity obtained after a run of 100 time units start-2695

ing from a random, spatially correlated field. The system is
partially observed on a regular square mesh with one obser-
vation site every 2 grid points in each direction, i.e. N

y

= 256

observation sites for N
x

= 1024 state variablesgrid points. At
every cycle k, the observation at site (q1, q2) 2 {1 . . .P/2}22700

is given by

y

q1,q2 = x2q1�1,2q2�1 + v

q1,q2 , (A17)

v

q1,q2 ⇠N
�

0,�

2
�

, (A18)

with � = 0.3, about one tenth of the typical vorticity vari-
ability. The time interval between consecutive observations2705

is �t= 0.5 time unit, which was chosen to match approxi-
mately the model autocorrelation of 0.967 of the L96 model
in the standard configuration.

We have checked that the vorticity flow remains stationary
over the total simulation time of our DA twin experiments2710

chosen to be 10

4
�t. Due to the forcing F , the flow remains

uniformally and stationarily turbulent during the whole sim-
ulation. Compared to other experiments with the barotropic
vorticity model (e.g. van Leeuwen and Ades, 2013; Ades and
van Leeuwen, 2015; Browne, 2016), �t is smaller and � is2715

biggerlarger, but the number of verticesvortices is approxi-
mately the same with much fewer details.

A4.2 High resolution configuration

For the high resolution configuration, the physical parame-
ters are2720

L= 1, (A19)

⇠ = 5⇥ 10

�5
, (A20)

⌫ = 10

�6
; (A21)

the deterministic forcing is given by

F (x1,x2) = 0.75sin(12⇡x1)sin(12⇡x2) , (A22)2725

and the space-time discretisation is

�t= 0.1, (A23)

�x=

L

P

=

1

256

, (A24)

which yields N

x

= (�x/L)

2
= 65536. Compared to the

coarse resolution configuration, this set of parameters yields2730

a vorticity field with more verticesvortices (typically sev-
eral dozens). The associated DA problem has therefore many
more apparent or effective degrees of freedom. The initial
true vorticity field for the DA twin experiments is the vor-
ticity obtained after a run of 100 time units starting from a2735

random, spatially correlated field. The system is partially ob-
served on a regular square mesh with one observation site
every 4 grid points in each direction, i.e. N

y

= 4096 obser-
vation sites for N

x

= 65536 state variablesgrid points. At ev-
ery cycle k, the observation at site (q1, q2) 2 {1 . . .P/4}2 is2740

given by

y

q1,q2 = x4q1�1,4q2�1 + v

q1,q2 , (A25)

v

q1,q2 ⇠N
�

0,�

2
�

, (A26)

and we keep the values �t= 0.5 time units and � = 0.3 from
the coarse resolution configuration. We have checked that2745

the vorticity flow remains stationary over the total simulation
time of our DA twin experiments chosen to be 500�t. Due to
the forcing F , the flow remains uniformally and stationarily
turbulent during the whole simulation.
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Appendix B: Update formulae of Poterjoy’s LPF2750

Following Poterjoy (2016), we derived the following formu-
las for the !⇤ weights required in the propagation step of
Poterjoy’s LPF described in Sect. 7.3.2:
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where W and c

n

are ancillary variables, ↵ is the constant
used for the computation of the local weights (see Eq. (28)),
G is the tapering function, d

q,n

is the distance between the2760

q-th observation site q and the n-th grid point n, r is the lo-
calisation radius, x

n

is the mean and �
n

the standard devia-
tion of the weighted ensemble

��

x

i

n

,w

i

�

, i= 1 . . .Ne

 

. The
particles are then updated using Eq. (62).

In Poterjoy (2016), the pdfs are implicitly normalised,2765

such that the constant ↵ is 1. Therefore, our update Eqs. (B1)
to (B4) are equivalent to the update Eqs. (A10), (A11), (A5)
and (A3) derived by Poterjoy (2016). Note that there is a typ-
ing mistake such thatwhich renders one update equation in
Algorithm 1 of Poterjoy (2016) is incorrect (last equation on2770

page 66).

Appendix C: Nonlinear test series with the L96 model

As a complement to the mildly nonlinear test series of
Sects. 5, 6, 8 and 9, we provide here a strongly nonlinear
test series. We consider the L96 model in the standard con-2775

figuration described in Appendix A3 with the only difference
that the N

y

=N

x

observations at each assimilation cycle are
now given by

8n 2 {1 . . .N
x

} , y

n

= ln |x
n

|+v

n

, v

n

⇠N (0,1) . (C1)

This strongly nonlinear configuration has been used e.g. by2780

Poterjoy (2016).
Similarly to the mildly nonlinear test series, the distance

between the truth and the analysis is measured with the av-
erage analysis RMSE. The runs are 9⇥ 10

3
�t long with an

additional 103�t spin-up period. Optimal values for the tun-2785

ing parameters of each algorithms are found using the same
method as for the mildly nonlinear test series. Figure C1
shows the evolution of the RMSE as a function of the en-
semble size Ne for the LETKF and for the main LPFx and
LPFy algorithms.2790
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Figure C1. RMSE as a function of the ensemble size Ne for the
LETKF and the main LPFs with the L96 model in the strongly non-
linear configuration. Note that the ultimate increase of the RMSE
of the LETKF with the ensemble size could have been avoided by
using random rotations in ensemble space.

As expected in this strongly nonlinear test series, the EnKF
fails at accurately reconstructing the true state. By contrast,
all LPFs yield at some point an RMSE under � = 1 (the ob-
servation standard deviation). Regarding the ranking of the
methods, most conclusions from the mildly nonlinear case2795

remain true. The best RMSE scores are obtained with algo-
rithms using OT-based resampling methods. Combining the
smoothing by weights with the coloured noise regularisation
jitter methods yields almost equally good scores as the LPFx

algorithms using OT. Finally, using the second order prop-2800

agation method yields the lowest RMSEs despite the non-
Gaussian error distributions that result from nonlinearities.

Appendix D: Rank histograms for the L96 model

As a complement to the RMSE test series, we compute2805

rank histograms of the ensembles (Anderson, 1996; Hamill,
2001). For this experiment, the DA problem is the same as
the one in Sects. 5 and 8: the L96 model is used in its stan-
dard configuration.

Several algorithms are selected with characteristics de-2810

tailed in Table D1. The histograms are obtained separately
for each state variable by computing the rank of the truth in
the unperturbed analysis ensemble (i.e. the analysis ensem-
ble before the regularisation step for the LPFs). To ensure the
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convergence of the statistical indicators, the runs are 10

5
�t2815

long with a 103�t spin-up period. The mean histograms (av-
eraged over the state variables) are reported in Fig. D1.

The histogram of the EnKF is quite flat in the mid-
dle, its edges reflect a small over dispersionoverdispersion.
The histogram of the tuned S(IR)xR algorithm is charac-2820

terised by a large hump, showing that the ensemble is over
dispersiveoverdispersive. At the same time, the high frequen-
cies at the edges show that the algorithm yields a poor rep-
resentation of the distribution tails (as most PF methods).
The over dispersionoverdispersion of the ensemble is a con-2825

sequence of the fact that the parameters have been tuned to
yield the best RMSE score, regardless of the flatness of the
rank histogram. With a different set of parameter, the untuned
S(IR)xR algorithm yields a rank histogram much flatter. In
this case, the regularisation jitter is lower (which explains the2830

fact that the ensemble is less over dispersiveoverdispersive)
and the localisation radius smaller (to avoid the filter diver-
gence). Of course, the RMSE score for the untuned S(IR)xR
algorithm is higher than for its tuned version. Similar con-
clusions can be found with the histograms of the tuned and2835

untuned S(ITs)xR algorithm. Note that in this case the his-
tograms are significantly flatter than with the S(IR)xR algo-
rithm. Finally, the histogram of the (tuned) S(ITsPRK)yR is
remarkably flat.

In summary, the rank histograms of the LPFs are in2840

general rather flat. The ensemble are more or less over
dispersiveoverdispersive, this is a consequence of the use of
regularisation jitter, necessary to avoid the filter divergence.
As most PF methods, the LPFs yield a poor representation of
the distribution tails.2845
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Table D1. Rank histograms computed with the L96 model in the standard configuration (see Appendix D). All LPFs use zero integration
jitter (q = 0). The localisation radii are given in number of grid points. For the ETKF, the optimal multiplicative inflation is reported in the
regularisation jitter column. The ⇤ asterisk in the RMSE column indicates that the algorithm parameters have been tuned to yield the lowest
RMSE score. The first column indicates the corresponding panel in Fig. D1.

Panel Algorithm Ens. size Ne Loc. radius r Reg. jitter s Other parameters RMSE

(a) ETKF 20 1 1.02 — 0.188⇤

(b) S(IR)xR 128 8 10.0⇥ 10�2
Nb = 10 0.289⇤

(c) S(ITs)xR 128 20 4.5⇥ 10�2
h= 1 0.215⇤

(d) S(ITsPRK)yR 128 80 1.0⇥ 10�2
h= 1 0.180⇤

(e) S(IR)xR 128 5 8.0⇥ 10�2
Nb = 40 0.500

(f) S(ITs)xR 128 10 3.0⇥ 10�2
h= 1 0.228
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Figure D1. Rank histograms for the selection of algorithms detailed in Table D1. The frequency is normalised by Ne +1 (the number of
bins).
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