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Abstract.

We study soliton collisions in the Dyachenko-Zakharov equation for the envelope of gravity waves in deep water. The
numerical simulations of the soliton interactions revealed several fundamentally different effects when compared to analytical
two-soliton solutions of the nonlinear Schrodinger equation. The relative phase of the solitons is shown to be the key parameter
determining the dynamics of the interaction. We find that the maximum of the wave field can significantly exceed the sum of
the soliton amplitudes. The solitons lose up to a few percent of their energy during the collisions due to radiation of incoherent
waves and in addition exchange energy with each other. The level of the energy loss increases with certain synchronisation
of soliton phases. Each of the solitons can gain or lose the energy after collision resulting in the increase or decrease of the
amplitude. The magnitude of the space shifts that solitons acquire after collisions depends on the relative phase and can be

either positive or negative.

1 Introduction

The existence and interactions of coherent structures like solitons and breathers on the surface of a deep water are a remarkably
rich and fascinating subject for both experimental and theoretical studies. The exact mathematical model describing gravity
waves in the ocean is the Euler equation, yet it is often rather complicated to study it by analytic or numerical means. Instead
various reduced models for water waves have demonstrated good agreement with the experimental data and have been widely
adopted in fluid dynamics and geophysics communities.

The most prominent and widely used model for weakly nonlinear surface waves in deep water is the nonlinear Schroédinger
equation (NLS). It describes time evolution of the envelope of a quasi-monochromatic wave train (Zakharov (1968)) and is inte-
grable via the inverse scattering transform (IST) in 1D (Zakharov and Shabat (1972)). Other models for weakly nonlinear waves
include the Dysthe equation (Dysthe (1979)), and the compact Dyachenko—Zakharov equation (DZ) (Dyachenko and Zakharov
(2011)) neither of which is known to be integrable by the IST.

A term soliton was originally coined for a special solution of the NLS that describes a solitary envelope of a wave train
whose shape is independent of time, and a breather is a solitary wave group with an envelope oscillating in time. By means

of the IST one can find soliton solutions and track their evolution in time until their collision and beyond analytically. The
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collision of solitons is perfectly elastic, that is no loss of the energy occurs. Albeit not being integrable by the IST the Dysthe
equation is known to admit solitary solutions whose existence has been demonstrated by other approaches unrelated to the IST
(see Akylas (1989); Zakharov and Dyachenko (2010)).

Both the NLS and the Dysthe equations require that the steepness of the wave train is small and it is modulated weakly, in
other words there are sufficiently many carrier wave lengths on the characteristic wave length scale of the envelope modulation.
In terms of the the Fourier spectrum of the surface elevation this is equivalent to having a sufficiently narrow band concentrated
in the vicinity the carrier wave number. The DZ equation is formulated for the wave train itself and free from the narrow band
restriction (Dyachenko and Zakharov (2011, 2012)). The solitary type solutions to the DZ equation are commonly referred
to as the breather solutions, or simply breathers. The DZ breathers are found numerically and their interaction has been the
subject of the works Fedele and Dutykh (2012a, b); Dyachenko et al. (2013). The following work by Fedele (2014) investigated
the properties of the DZ equation for various values of wave steepness. In particular it was shown that the dynamics of the
DZ equation becomes of a modified Korteweg—de Vries (mKdV) equation type when the value of steepness is large enough
providing a possible mechanism of wave breaking.

In the work Zakharov et al. (2006) solitons of the NLS equation were found to be a fair model for propagating solitary wave
groups in the Euler equation at small steepness. The strongly nonlinear breather solutions of the Euler equation were found
numerically in Dyachenko and Zakharov (2008), and subsequent works Slunyaev (2009); Slunyaev et al. (2013, 2017) study
propagation and interaction of these breathers numerically and in water tank experiments.

The study of soliton (or breather) interactions in the reduced deep water models is an important step in understanding of the
surface waves dynamics and the fundamental properties of the Euler equation. In this work we focus on the DZ equation in the
form suggested by Dyachenko et al. (2017a) which describes the wave train envelope without any assumptions on its spectral
width. Hereafter we refer this equation to as the Dyachenko—Zakharov envelope equation, or the DZe equation. The envelope
form of the DZ equation allows a direct comparison with the more restricted but the more established integrable NLS equation.
In this work we always use the term “solitons” to describe the envelope solutions of the NLS equation, the Dysthe equation
and the DZe equation; we also refer to the solitary solutions of the DZ equation and the Euler equation as “breathers” when we
imply wave train itself rather than its envelope.

The soliton interactions in the NLS equation depend drastically on their relative complex phases, e.g. the maximum amplifi-
cation of the amplitude in a collision is determined by the synchronization of the phases of the solitons. The phase synchroniza-
tion plays an important role in the formation of the waves of extreme amplitude, the rogue waves, and has been studied in the
water wave theory (Kharif et al. (2009)) as well as in other contexts like optical pulses in fibre (Antikainen et al. (2012)). In
the recent works Sun (2016) and Gelash (2018) phase synchronization in multisoliton ensembles has been studied analytically.
The role of the soliton phase parameters has been extensively studied for other integrable models including mKdV equation
for shallow water waves (Slunyaev and Pelinovsky (2016)).

In the present work we study soliton interactions in the DZe equation and its dependence on the phases of interacting solitons.
We demonstrate how the amplitude amplification, the energy exchange between the solitons, the energy loss to emission of

incoherent radiation and the space shift of the solitons after collisions reveal fundamental differences from the NLS equation.
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2 The envelope equations for deep water gravity waves

A one-dimensional potential flow of an ideal fluid of infinite depth in presence of gravity is a Hamiltonian system. The surface
elevation 7n)(z,t) and the velocity potential ¢ (x,t) at the surface are canonically conjugated variables (Zakharov (1968)).
Dyachenko and Zakharov (2011, 2012) suggested a canonical transformation from the physical real-valued Hamiltonian
variables 7)(x,t) and t(z,t) to the complex normal variable b(x,t). The DZ equation is found by taking a fourth order
expansion of the Hamiltonian in powers of |b(z,t)| and assuming that all waves are propagating in a single direction. Re-
cently Dyachenko et al. (2016a, 2017b) introduced the new canonical variable ¢(x, ), such that the DZ equation can be written

in z—space in the following “super” compact form:

0 0

e vine—iof (152 ) = oz (R(cPic). ®
Here g is the free—fall acceleration and the operators k and & are Fourier multipliers by the wavenumber |k| and the linear wave
frequency +/g|k| respectively. The operator 9, in the Fourier space is ik0(k), where 6(k) is the Heaviside step function. The

physical variables, 77 and v can be recovered aposteriori by the canonical transformation. The surface elevation 7(z,t) to the

order |c|? is the following:

»M»—A

L i fa N L[k de(x,t) — kA e(x,1)*])
N (k™ 3c(x,t) + k™ 3c(x,t) )+4\/§[1€ (z,t) — k™ 7c(2,t)*], )

where the operator k® is a Fourier multiplier by |k|, and star denotes a complex conjugate quantity.

n(w,t) =

The equation (1) has a breather solution:
c(x,t) = cpr(x — Vt)ei(f“_‘:’t), 3)
where £ is the carrier wavenumber, V = %\ /g/ k is the group velocity in the laboratory frame of reference and @ is a nonlinear

frequency close to 4/ gk. In Fourier space this solution has the following form:

1 (T . 1 (E o ,
cn(t) = cor(z — Vit ez(k—k).re—zwtdx _ /C . ei(k—k)ﬁe—z(w—kv-&-k\/)td _ e—z(Q+Vk)t7 4
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or= = / cor(€)e"FTMEge. 5)
In formula (4) instead of w we use the new frequency parameter €2:
. gk
Q=0—-kV=0——"—. (©6)
2

Breather solutions can be found numerically by Petviashvili method (Petviashvili (1976)) and the details are given in (Dyachenko et al.

(2017b)). The solution ¢y, can be found numerically by iterations:
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Here go,in) is the breather solution j, on the n-th iteration,

My =Q+VEk — wg. ®)

The symbol N L™ denotes the nonlinear part of the equation (1) on the n-th iteration in the z-space:

ot ™) ot /.
m = _Z[|pmp2 i ()12 (™)
N Ox <|90 | Ox )—Hax <k<|¢ | )ga )’ ©)

and N L;C") is the discrete Fourier transform of N L("). The breather solution is determined by two independent parameters: the

group velocity V' and the frequency 2. The value of the first parameter V' = %\/ g/ k defines the carrier wave number k (and

the carrier wave length A = 27/ k) of the solitary group. The second parameter €2 has the value close to %\/9721 (or g/4V, see
formula (6)) and implicitly defines the shape and the amplitude of the breather. The breather solutions found by Petviashvili
method (7) are determined up to an arbitrary phase factor e'?.

Recently Dyachenko et al. (2017a) derived the envelope version of the super compact equation (1) using the envelope func-

tion C'(z,t):
clx,t) = Oz, t)e!For=wrot) (10)

where kg is an arbitrary characteristic wavenumber and wy, = /gko is the corresponding linear frequency. The Dyachenko-
Zakharov envelope (DZe) equation written in the reference frame moving with the group velocity Vy = g—‘,‘; lko = ‘;%g has the

following form:

oC . ow
e + [wk0+k — Wy — ko Whko k:| 9k0+kc+zk09ko+k [|C| C]
R 0 oC
ko [c—|0|2+2|0|2— ~ik(cric| -

=0. Y

0 oC
bz [ICPIC 4IPS

The DZe equation (11) is Hamiltonian, and the Hamiltonian is
/C*VdeL+ /\0\2 {ko|C|2 —(cc* —-c*c’) - kCQ} (12)

where the operator V. has the following form in k—space:

Vi [onoss —wno — k] 13
k — k() Tk . (13)

Note that the equation (11) was derived without any assumptions on the spectral width of the wave packet and it has the same
range of applicability as the equation (1). The solutions (3) written in terms of the envelope function C'(x,t) has the following

soliton form:

Chyr(2,t) = cpr (T — Vt)ei(’;_kO)x_i(‘b_”"O)t. (14)
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The DZe equation (11) reduces to the Dysthe equation and further to the NLS equation as the Fourier spectrum of ¢(z,t)
becomes increasingly localized at k.
In this work we study only the model (11) itself and the NLS equation which can be extracted from (11) as:
0C | iy, 9°C
ot 8kZ 0x?

Soliton solutions of equations (11) and (15) will be compared in the next sections.

+ikg [|C]?C] = 0. (15)

3 Soliton solutions of the NLS equation and the DZe equation

L;Jko

We consider solitons in the frame moving with the velocity Vp = g—‘g\ ko = g -

The one-soliton solution of the NLS equa-

tion (15) moving in the frame with velocity U can be written as:

20 k2 A2 222 2.2
Cs(x,t) = Cysech Coky ((x—xo)—Ut)} exp [—i kOU(m—mo)—i-i v kot—i%t—l—wg , (16)
Wko Wkq Wko 2

where Cj is the soliton amplitude, z is the soliton location at £ = 0, ¢ is an arbitrary soliton phase. The shape and width of
NLS soliton for a fixed wavenumber £ (and velocity Vp) is defined by a single independent parameter C.

In this work we focus on the interactions of the NLS solitons and the DZe solitons of equal amplitude Cj and various
velocities V' = Vj + U. To describe soliton collisions using the NLS model analytically we hold the carrier wave number kg
fixed and vary the relative velocity U. Thus in our studies all the NLS solitons have the same modulus |C;(x)|.

The dynamics of DZe solitons collisions can be investigated only by numerical simulations. We study interactions of the DZe
solitons of the same amplitudes Cy and different velocities V' = V[ 4+ U, like in the case of the NLS solitons. The amplitude
of the DZe soliton Cj is not an independent parameter of the solution. To find the DZe soliton having the given velocity V'
and amplitude Cy we vary parameter ) (6) in the Petviashvili method. The shape of the soliton solutions of DZe equation
found in this way differ from each other. More precisely, these solitons have different characteristic widths (see the curves 1,2
and 3 in figure 1). When V' =V}, the soliton solution (14) of the DZe equation almost coincides with the NLS soliton (16) —
see the curves 3 and 4 in figure 1. The soliton solution (14) with V' >V} is the envelope of the wave group having the carrier
wave number k < ko while in the case V' <V}, the carrier wave number k > ko. The characteristic steepness of the wave group
of amplitude Cj is proportional to K3/ 4Cy (see formula (2)). Thus the wave group with V' < Vj is steeper (and have higher
nonlinearity) than the wave groups with V' =V and V' > V4. The steeper waves need stronger dispersion to balance the solitary

wave group, and hence the soliton represented by the curve 2 is shorter than solitons represented by the curves 3 and 1.

4 The interactions of the solitons

We fix a carrier wave number kg for the DZe (11) and for the NLS model (15), i.e. consider the dynamics of solitons in a
frame moving with the velocity Vy = % lko = g%g We study interactions of two solitons having (in the laboratory reference
frame) close unidirectional velocities V' = Vy + Uy and V' = V;; — Uy. We compare four cases of two—soliton interactions that

correspond to four values of the maximum wave steepness (4 (and amplitudes C correspondingly):
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Figure 1. Comparison of DZe solitons and NLS soliton having amplitude Cp = 1.11-10"* \/@ko /ko. The curves show the absolute value
of the envelope function |C/(z)| for the DZe solitons with parameters: U = 0.04Vj, Q1 = 4.86 - 10" wy, (dashed curve 1); U = —0.04 V%,
Q2 =5.28-10"1 W, (dash-doted curve 2); U =0, Q2o = 5.06- 107! W, (solid curve 3). The dots 4 show the absolute value of the envelope
function for the NLS soliton with U = 0.

11~ 0.05 (amplitude Co = 3.16 - 1072 Y0,

p = 0.1 (amplitude Cp = 7.12-1072 J;’()To)’

B~ 0.15 (amplitude CO =8.85- 10—2 \/]L:DTD)»

pu~ 0.2 (amplitude Cp = 1.11- 1071 20,
The steepness p is determined as the maximum of the derivative of the surface elevation:
j=max | (),

ko .
see formula (2)), that is
why we measure the wave field amplitude C'(z) in the units \/kOTO For each case the size of the computational domain was

x/Ao € [0,100] where \g = 27 /kq. The relative velocity was Uy = 0.04V, and at the initial time the solitons are located at

and 7(x) is recovered from the transformation (2). The dimensionless wave steepness p ~ Cq

x =25\ and & = 75)\. For the sake of brevity we label the soliton that was initially located at 25 Ay and the other soliton by
the indices 1 and 2 respectively. The total simulation time is 50 Ao /Uy = 25007}, where Ty = 27 /wy, is the time period for

the base wave number kg.

The NLS equation is a completely integrable model and exact multisoliton solution is available (see the work Zakharov and Shabat

(1972)). We use this analytic solution to study the collision of solitons for the NLS case. In figure 2 we present an example
of interacting solitons and illustrate how their collision leads to a space shift in the positions of the solitons as well as the
formation of a nonlinear wave profile with a peak amplitude 2C}. In the NLS model the space shift dx is determined by the

soliton amplitudes and velocities and it does not depend on the phase. Each soliton acquires a positive shift in the direction
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of its propagation (as we mentioned above we consider the system of reference moving with velocity V5 where the solitons

propagate in different directions) and is calculated from the formula (see Novikov et al. (1984)):

Wi Wi C() 2
-2 ()

In the case illustrated in the figure 2 §x is 1.55 \y. In addition to the space shift (17) the solitons acquired a phase shift d¢ that

is calculated using similar expression:

(1 VTG
5¢—<1rg(1 i 5 Ty ) (18)

As one can see from (16) the dependence of the soliton phase at its center on time is:
20%k3  C2k?
0 4 ~0% ) ‘.
W 2

19)

¢m=%—(

Thus for the two solitons of equal amplitudes Cy and the relative velocities +-Uy the phase difference is time invariant: A¢(t) =
®o2 — o1, Where @1 and ¢ are the initial phases of the soliton 1 and 2 respectively. For this case the space and the phase

shifts given by equations (17) and (18) are mutually compensated.
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Figure 2. Collision of NLS solitons with amplitudes Cp = 1.11-107", /Wio /Ko, velocities U = £0.04 Vp and phase difference A¢ = 0.
The curves show the absolute value of the envelope function |C'(z)| at the moment of time: ¢ = 0 (solid curve 1); at the moment of maximum
amplitude amplification during the collision process (dashed curve 2) and the moment of time ¢ = 50 ?}—8 = 25007} (dotted curve 3), i.e.

after soliton collision.

The maximal amplitude 2CY is achieved when the phase difference between the colliding NLS solitons is equal to zero:
A¢ = 0 (see e.g. Antikainen et al. (2012)). The value of the maximum amplitude amplification depends on the relative phase
of the interacting solitons A¢. We use the normalized definition of the maximum amplitude amplification function A(A¢)
given by:

max (|C(x,t)])

A(Ad) = ‘“2—00 . (20)
A
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In other words we find maximum amplitude of the wave field formed during the whole collision process and normalise it to the
sum of the soliton amplitudes.

In the NLS model the amplitude amplification function decreases when the |[A¢| grows (see figure 3). In a more general
case of the collision of NLS solitons of unequal amplitudes the phase difference A¢ is time dependent. In such a case we
must choose a time ¢, when A¢ is defined. We choose t. = 25 A\o/Uy = 1250 T which is the time when either of the solitons
reaches the center of the domain in the absence of the other. In this case the amplitude amplification A(A¢) is similar to the
amplitude amplification presented in the figure 3 with the exception that the maximum is shifted from A¢ = 0. This is caused
by unequal values of the soliton space shifts dz; and dz2, and phase shifts §¢; and d¢- that are not compensated anymore.
The shift of the maximum is established from the analytical expressions for the space and phase shifts acquired by the NLS

solitons of unequal amplitudes (Novikov et al. (1984)).
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Figure 3. The maximum amplification A of the wave field amplitude of colliding NLS solitons depending on the relative phase A¢. The
values of the wave steepnesses (and amplitudes) of the solitons are the following: ;v ~ 0.2, Co =1.11-107! \/Wko /Ko (solid curve 1);
1~ 0.15, Co = 8.85- 107 , ik, /ko (dashed curve 2); u~ 0.1, Co = 7.12- 102 , /g, /ko (dash-dotted curve 3); p~ 0.05 Co = 3.16 -
1072 | fwry /ko (solid curve 4 with dots).

The numerical simulations of the soliton interactions in the DZe equation were carried out in a periodic domain = €
(0,100 A\o]. In order to study the influence of the relative phase on the value of the maximum amplification A(A¢), a se-
quence of simulations was performed with various values of the initial phase ¢¢;. By using the formulas (14) and (6), we find

the dependence of the DZe soliton phase at its center on time:
¢(t) =g — (Q+k0V—wk0)t. 21)

The relative phase of the solitons having different parameters €21, {22 and velocities V' =V + Uy is given by the following

expression

Ap(t) = do2 — po1 — (2 — Q1)t + 2keUst, (22)



and is not time invariant. Thus, we define the phase difference of the solitons at the moment of time ¢. = 25\o /Uy = 12507
as:

25\ (Qg — Ql)

Ao = (¢o2 — do1) — T,

+ 50ko Ao, (23)
In addition the solitons acquire space and phase shifts which cannot be simply accounted in A¢.
5 4.1 Soliton collisions: amplitude amplification and energy loss

Our numerical simulations show that the dependences A(A¢) in the DZe equation and in the NLS equation are similar when
soliton amplitudes are small (¢ ~ 0.05). In this case the maximum of the amplitude amplification function for the DZe model
is observed at A¢ = 0 (i.e. similar to the NLS case) — compare the solid curves with dots (curves 4) in figures 3 and 4. At larger
values of the wave steepness the position of maximum of A(A¢) is shifted from A¢ = 0 more significantly — see the figure
10 4. We believe that the shift of the maximum of A(A¢) can be compensated by choosing more precise definition of the soliton

phase difference (23), that is a subject for further studies.
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Figure 4. The maximum amplification A of the wave field amplitude of colliding DZe solitons depending on the relative phase A¢. The
values of the wave steepnesses (and amplitudes) of the solitons are the following: ;v ~ 0.2, Co =1.11-10"", /Wi /Ko (solid curve 1);

1= 0.15, Co = 8.85- 1072, /g, /ko (dashed curve 2); 1 ~ 0.1, Co = 7.12- 102, /w, /ko (dash-dotted curve 3); p =2 0.05 Cp = 3.16 -
1072 | /Wiy /Ko (solid curve 4 with dots).

We found that the maximum value of amplitude amplification A(A¢) increases with the initial amplitude (and steepness)
of the solitons and exceeds A = 1 by almost 20% for maximum value of the wave steepness studied in this work (u = 0.2) —
see again the figure 4. The envelope profiles of colliding solitons are shown in the figures 5 and 6 for the values of the relative

15 phase A¢ corresponding to the minimum and maximum amplification A(A¢).



020 8
0.15
0.10 A A
N\ I\
oo J\ J\
020 ®)
0.15
0.10
0.05 v
0.00 /A N
0 25 A' ‘ ‘l ‘l
020 [0.004 fd A WIINLER YW YN EC)
0.15 VY VPV 1
0.10 0.000 : A
' i \
0.00
0 20 40 60 80 100
X, Ag

ICO), B,/ ko

Figure 5. Collision of DZe solitons having the wave steepness 1, &~ 0.2 and the phase difference A¢ =~ 0.7. Snapshots show the absolute value
of the envelope function |C'(x)| at the initial moment of simulation ¢ = 0 (snapshot (a)); at the moment of maximum amplitude amplification
t = 1214.35Tp (snapshot (b)) and at the final moment of simulation ¢ = 25007p (snapshot (c)). Zoom of the final amplitude profile is shown

in the inset of the snapshot (c).
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Figure 6. Collision of DZe solitons having the wave steepness 1 =~ 0.2 and the phase difference A¢ ~ —2.5. Snapshots show the absolute
value of the envelope function |C(x)| at the initial moment of simulation ¢ =0 (snapshot (a)); at the moment of maximum amplitude
amplification ¢ = 1193.66 Ty (snapshot (b)) and at the final moment of simulation ¢ = 250075 (snapshot (c)). Zoom of the final amplitude

profile is shown in the inset of the snapshot (c).

The interactions of solitons (or breathers) in the DZ model are inelastic (Dyachenko et al. (2013)), which is manifested by
radiation of incoherent waves as can be seen from the figures 5 and 6. We have observed that level of the radiation is strongly

dependent on the relative phase — compare the lower pictures in the figures 5 and 6.
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We quantitatively study the dependence of soliton energy losses AFEj,ss on the relative phase A¢. The total Hamiltonian of
the wave field in the laboratory frame of reference is defined by the following expression:

Who ;4 Who 24)

H = :
e 2 2ko

Here, the Hamiltonian # in the framework moving with the group velocity V = ;}% is defined by formula (12). NV and P are

the number of waves and the horizontal momentum in the laboratory frame of reference:

[ G2
N = dk
ko +k ’
—ko
P - / (O 2k, (25)

ko
Note, that the number of waves and the horizontal momentum are additional integrals of motion of the DZe equation (11).
We denote the total energy of our system (i.e. the value of the Hamiltonian (24) at the whole spatial interval [0,100)¢]) as F,
while the initial energies of the first and second soliton as £ and Es. The values of energy change of each of the solitons
after collision we denote as 0 /1 and d El>. As mentioned above we mark the parameters of soliton initially located at 25\ by
the index 1 and the parameters of soliton initially located at 75\ by the index 2. To estimate 1 and 6 F» we cut out each
soliton after collision by a window function and then calculate the value of the Hamiltonian (24) for each part of the wave
field. The window function was chosen so that being applied to a soliton propagating in the absence of another soliton allows
us to estimate the value of the soliton energy with accuracy 0.01%. We define the total energy losses caused by the radiation
of incoherent waves relatively to the total energy of the system:

0F + 0FEs

AEloss = - E

(26)

The figure 7 shows the energy losses as a function of the relative phase for the steepness of the colliding solitons p ~ 0.2.
We have found that the value of the energy losses can reach ~ 3% at certain value of A¢. As one can see from the figures 4

and 7, the positions of maximum amplitude amplification and maximum of energy losses are strongly correlated.
4.2 Soliton collisions: space shifts and energy interchange

In this paragraph we describe the individual changes of DZe solitons after collision. We measure the energy changes of the

soliton 1 and soliton 2 relative to their individual energies:

OB OB
AE, = B AE, = B 27)

‘We have found that solitons of the DZe equation exchange energy with each other. Each of the solitons can gain or lose the
energy after collision in dependence on the relative phase A¢ — see the figure 8. As one can see the maximum energy gain

of the first soliton is achieved at A¢ ~ 1.5, while the maximum energy gain of the second soliton is achieved at A¢ ~ 0. It

11
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Figure 7. The total energy losses A 55 (in percent — see formula (26)) of DZe solitons after their collision depending on the relative phase

Ad¢. The wave steepness of the solitons p = 0.2.

is interesting to note that the energy exchange between the solitons is absent at the values of the relative phase close to the
maximum (i.e. at A¢ ~ 0.7, see the figure 4) and to the minimum (i.e. at A¢ ~ 0.7 — 7, see the figure 4) of the wave field
amplification. More precisely, at the point A¢ ~ 0.7 we observe the intersection of the curves AF;(A¢) and AE>(A¢) —
see the figure 8. In the intersection point AF; = AFy = AE’ and thus AE),ss = —AFE’ (see formulas (26) and (27)), i.e. the
energy changes of each soliton are caused only by the radiation. The same situation is observed at the point A¢ ~ 0.7 — 7, but

now the soliton energy loses are almost absent at all.
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Figure 8. The individual energy change (in percent — see formula (27)) of DZe solitons after their collision depending on the relative phase
A¢. The dashed curve 1 shows dependence of the energy change for the first soliton AE1(A¢) while the dash-dotted curve 2 corresponds

to dependence of the energy change for the second soliton AE1(A¢). The wave steepness of the solitons p ~ 0.2.
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The energy exchange and energy losses result in the increase or decrease of the soliton amplitudes, that is demonstrated by
the figures 9(a) and 9(b). For each soliton we additionally simulate its propagation in the absence of the another soliton (i.e.
in the absence of the interaction). In the figures 9(a) and 9(b) we show the envelope profiles of the solitons after collision in
comparison with non-interacting solitons at the same moment of time (¢ = 250077). The figure 9(a) corresponds to the relative

phase A¢ ~ 1.5 and the figure 9(b) — to the relative phase A¢ ~ 0.
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Figure 9. Comparison of the DZe solitons after mutual collision and the same solitons propagated without interaction. The wave steepness
of the solitons ;1 ~ 0.2 and the considered moment of time ¢t = 25007%. The pictures (a) and (b) correspond to the relative phase of the
colliding solitons A¢ = 1.5 and A¢ == 0 respectively. The solid curves 3 show modulus of the wave field amplitude |C(x)| after collision of
the first soliton having U = 0.04 V; with the second soliton having U = —0.04 V. The dashed curves 1 show the first soliton propagated in

the absence of second soliton. The dash-dotted curves 2 show the second soliton propagated in the absence of the first soliton.

In addition, the figures 9(a) and 9(b) demonstrate that the space positions of solitons after the interaction also depend on
the relative phase A¢. We calculate the space shifts of the solitons dx; and dxs in the direction of soliton propagation (as
we mentioned above we consider the system of reference moving with velocity Vy where the solitons propagate in different
directions) as difference in space positions between interacting and free propagating soliton at the same time ¢ = 2500 7.
We demonstrate the dependence of dx; and dxo on the relative phase A¢ in figure 10 for the values of the wave steepness
1= 0.05,0.1,0.15,0.2. In contrast to the NLS model the space shifts of solitons of the DZe equation can be either positive
or negative at high values of p — see the figure 10 (c,d). The curves dz1 2(A¢) become almost straight in the limit of small
steepness (at . ~ 0.05 ) — see the figure 10 (a). We also show in the figure 10 the corresponding values of space shifts calculated

using the NLS formula (17) for each value of p. Even at small steepness we observe a difference between soliton space shifts
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in the DZe and NLS equations that we explain by the mention above difference between two-soliton wave groups in these two

models.
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Figure 10. Space shifts of the DZe solitons depending on the relative phase A¢ for different wave steepnesses (and amplitudes): 1 ~ 0.05,
Co=3.16 107"\ /wr, /ko (picture (a)); pn ~ 0.1, Co = 7.12- 1072, /g, /ko (picture (b)); pu ~ 0.15, Co = 8.85- 1072  fw, /ko (picture
©); pp~02 Co=111-10""1 /Wko /ko (picture (d)). The dotted lines show the space shifts calculated in the frame of the NLS model via
the analytical formula (17).

5 Conclusions

In this work we have studied how the relative phase of solitons in the DZe model affects the key properties of their interac-
tion. All results presented here for solitons of the DZe equation are valid also for breathers of the DZ equation since these
two models are physically identical. In the first works devoting to numerical simulations of breather interactions in the DZ
equation (Fedele and Dutykh (2012a, b); Dyachenko et al. (2013)) the phase dependent effects were not studied and the wave
steepness was taken to be small. For the chosen in the mentioned works breather phases and steepnesses a single collision
of breathers does not lead to visible radiation of incoherent waves. However the minor energy radiation was registered after
multiple breather collisions (Dyachenko et al. (2013)). Thus the breather interactions are not pure elastic that demonstrates
nonintegrability of this model. The analytical proof of the nonintegrability of the DZ equation was also given in the work
of Dyachenko et al. (2013). Here we have studied the influence of the relative phase of the colliding solitons on the level of

the radiation. We have found that the total energy loss due to the radiation is enhanced at a certain synchronisation of the
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relative phase between solitons. In this case the incoherent radiation becomes clearly visible even after a single collision — see
the figure 5. We explain the latter in the following way. The maximum amplitude amplification is accompanied also by the
formation of the wave profile of high steepness. We have found that the maximum steepness reaches the value p ~ 0.7 during
the collision process and thus the deviation of wave dynamics from the integrable model becomes to be significant.

Interactions of the breathers in the DZ equation at a certain phase synchronisation can lead to the formation of extreme
amplitude waves. It is well known, that the maximum value of wave field as a result of soliton interactions in the NLS model
is equal to the sum of the soliton amplitudes. In this work we have found, that in the DZe equation the maximum amplification
can be higher than the sum of amplitudes of the solitons. Interestingly, at large values of the wave field steepness this effect is
enhanced, that can be a valuable complement in extreme amplitude waves studies.

We also have studied the phenomena of the energy exchange between the colliding solitons. This energy exchange is caused
by inelasticity of the soliton interactions. The universal long term consequences of this process was studied in different noninte-
grable models (Krylov and Iankov (1980); Dyachenko et al. (1989)). It was shown that the numerous collisions and interactions
with waves of radiation leads to formation of the powerful single solitary type wave (see the review by Zakharov and Kuznetsov
(2012)). Here we have found that dynamics of a single collision is not universal: the direction of energy swap is determined by
the soliton phases.

Furthermore, we have studied space shifts that solitons acquire after the collision. Soliton of the NLS equation always
acquire a positive constant shift §z to its space position after interaction with other soliton moving with different velocity. The
value of dz is defined only by the amplitudes and velocities of the colliding solitons. The interaction of solitons in the DZe
equation also leads to the appearance of the space shifts. We show that the character of this effect is not universal (dx can be
positive or negative) and is determined in addition by the soliton phases.

The interactions of solitary-type wave structures in the nonintegrable models are needing further research. The complexity
of the studies caused by the absence of exact N-soliton solution formulas, and also the inelasticity of the interaction that is
able to destroy the initially coherent wave groups. However, as we have demonstrated here the total energy loss for interactions
describing by the equation (1) does not exceed a few percent of energy of the solitons and we expect that observation of
several subsequent soliton collisions is possible. The study of the influence of the relative phase of the colliding solitons in the
fully nonlinear model is of fundamental interest. As was shown by Dyachenko et al. (2016b), the DZ equation quantitatively
describes strongly nonlinear phenomena at the surface of deep fluid. Thus we believe that the effects reported here for the
solitons of the DZe equation can be also observed for the fully nonlinear Euler equations.

Pairwise collisions of solitons (or breathers) is an important elementary process that can be observed in the wave dynamics
of arbitrary disturbed fluid surface. For example, the recent numerical simulations of the DZe equation demonstrate that an
ensemble of interacting solitons can appear as a result of modulation instability driven by random perturbations of an unsta-
ble plane wave (Dyachenko et al. (2017a)). Another important field of studies is the turbulence of rarified soliton gas where
pairwise collision processes play the key role in the formation of wave field statistics (see the recent works of Pelinovsky et al.

(2013); Shurgalina and Pelinovsky (2016)). We believe that results presented here can serve as a starting point in analytical
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description of such processes. Moreover, the reported dependence of soliton interaction dynamics on the relative phase is to be

verified in laboratory experiments.
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