

Interactive comment on “Brief communication: Electron pair donors and Earth’s energy generation” by Frederick Mayer

F. J. Mayer

fmayer@sysmatrix.net

Received and published: 30 March 2018

Author’s Comment:

Just after completing this Brief Communication, the author became aware of some significant new research that may represent the basis of the supercurrents (Cooper pairs) in the geophysics setting. Specifically, new research (1,2) indicates that slightly misaligned planes in graphene (in graphite) may produce the pairs. Furthermore, graphite is certainly a common geophysically significant component in some geophysical situations, e.g. (3). In addition, water is easily intercalated in graphitic structures (4) and, importantly, has attracted attention as a possible room-temperature superconductor. So, the two important components required for delivering the superconducting pairs

[Printer-friendly version](#)

[Discussion paper](#)

are therefore in position for producing tresinos and therefore energy generation and magnetotelluric measurements.

- (1) see "Unconventional superconductivity in graphene bilayers", the article by Johanna L. Miller in 22 March (2018) Physics Today Research & Technology.
- (2) "Magic-angle graphene superlattices: a new platform for unconventional superconductivity", Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi, Efthimios Kaxiras, and Pablo Jarillo-Herrero, arXiv:1803.02342v1 [cond-mat.mes-hall] 6 Mar (2018).
- (3) "Microscopic scale conductivity as explanation of magnetotelluric results from the Alps of Western Switzerland", Gabriella Losito, Pierre-André Schnegg, Candice Lambelot, Cecilia Viti, Antonello Trova, Geophysical Journal International, Volume 147, Issue 3, 1 December (2001), Pages 602–609.
- (4) "Theoretical study of graphite intercalated with water cyclic hexamers", R.M. Torres-Rojas, R. Baquero, Carbon, V107, October (2016), Pages 332–337

Interactive comment on Nonlin. Processes Geophys. Discuss., <https://doi.org/10.5194/npg-2018-13>, 2018.

[Printer-friendly version](#)

[Discussion paper](#)

