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Abstract. Crustal thickness is an important factor affecting lithospheric structure and deep geodynamics.
In this paper, a deep learning neural network based on stacked sparse auto-encoder is proposed for the
inversion of crustal thickness in eastern Tibet and Western Yangtze craton. First, with the phase velocity
of Rayleigh surface wave as input and the theoretical crustal thickness as output, 12 deep-sSAE neural
networks are constructed, which are trained by 380,000 and tested by 120,000 theoretical models. We
then invert the observed phase velocities through these twelve neural networks. According to the test
error and misfit of other crustal thickness models, the optimal crustal thickness model is selected as the
crustal thickness of the study area. Compared with other ways detected crustal thickness such as seismic
wave reflection and receiver function, we adopt a new way for inversion of earth model parameters, and
realize that deep learning neural network based on data driven with the highly nonlinear mapping ability
can be widely used by geophysicists, and our result has good agreement with high-resolution crustal
thickness models. Compared with other methods, our experimental results based on deep learning neural
network and new Rayleigh wave phase velocity model reveal some details: there is a northward-dipping
moho gradient zone in Qiangtang block, and relatively shallow northwest-southeast orientation crust at
Songpan-Ganzi block. Crustal thickness around Xi’an and Ordos basin is shallow about 35km. Change
of crustal thickness in Sichuan-Yunnan block is sharp, where crustal thickness is 60km in northwest and
35km in southeast. We conclude that deep learning neural network is a promising, efficient and
believable geophysical inversion tool.

Keywords: Crustal thickness; Phase velocities; Surface wave; Stacked sparse auto-encoder; Deep
learning ; Neural network

1 Introduction

The Eastern Tibet and the western Yangtze craton are one of the key areas for understanding the collision
process between the Indo-European plate, and an important area for understanding the collision and
contact relationship between the Qinghai-Tibet Plateau and the Yangtze craton. In the field of
geosciences, because of the strong seismic activity, the nature of the two blocks is different, especially
the special topography. The altitude of the two blocks suddenly rises from about 500 meters in eastern
Tibet to 5000 meters in Western Yangtze craton. Many researches focus on understanding the crust and
upper mantle structure in this region, especially there have been heated debates on crustal thickness. The
discontinuity between the crust and the mantle is called Moho discontinuity, which varies greatly on a
small scale and is an important factor in geodynamics, including crustal evolution, tectonic activity,
gravity correction of crustal effect, seismic tomography and geothermal models. Many studies focus on
obtaining the depth of moho discontinuity called crustal thickness by various data and different methods.

Usually, the crustal thickness can be inverted by many kinds of data, such as inversion of deep seismic
sounding profiles in China mainland for crustal thickness (Zeng et al., 1995), inversion of satellite gravity
data for global crustal and lithospheric thickness (Fang et al., 1999), inversion of Bouguer gravity and
topography data to calculate the crustal thickness of China and its surrounding areas (Huang et al., 2006;
Guo et al., 2012), inversion receiver function is used to calculate the crustal thickness and Poisson's ratio
of China mainland(Chen et al.,2010;Zhu et al.,2012;Xu et al.,2007). Especially, one of the newest
models crustl.0 at 1°x1°(Laske et al.,2013;Stolket al., 2013) is based on refraction and reflection
seismology as well as receiver function studies. Besides these data related to crustal thickness mentioned
above, crust thickness has significant effects on fundamental mode surface waves (Meier et al.,2007,Grad
et al.,2009). Dispersion characteristic of surface wave provides a powerful tool to research structure of
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crust and upper mantle (Legendre, C. P. et al.,2015). So far phase and group velocity measurements of
fundamental mode surface waves are most commonly used to constrain shear-velocity structure in the
crust and upper mantle on a global scale (Zhou et al. 2006;Shapiro &Ritzwoller ,2002) or on regional
scale (Zhang et al.,2011;Yi et al.,2008), also the newly developed ambient noise surface wave
tomography has been used to constrain shear-velocity structure(Sun et al.,2010;Yaoet al.,2006;Zheng et
al.,2008;Zhou et al.,2012),while a few works to invert fundamental mode surface wave data for global
or regional crustal thickness and to present a global or regional crustal thickness model(Devile et
al.,1999;Meier et al.,2007; Das &Nolet 2001; Lebedev et al.,2013 ). Although the measurement period
and method of group velocity and phase velocity are different, also the detection depth and measurement
error are different, phase velocity is more sensitive to deeper structure, so it is easier to infer deep
structure from phase velocity measurements. We use phase velocity as input to infer the crustal thickness.

There are several inversion methods to get crustal thickness which can be broadly classified into two
classes: (1) model-driven method and (2) data-driven method. For the model-driven method, the
researchers mainly consider the physical relation between earth parameters space and data space to
calculate inversion function. Most model-driven methods deal with the inversion of crustal thickness as
a linear problem. More importantly, their results largely depend on the initial earth model. Compared
with model-driven method, another fully non-linear data-driven method is called neural network, which
is used to obtain crustal thickness (Devile et al.,1999; Meier et al.,2007). Data-driven, highly non-linear
mapping neural networks are widely used in geophysical inversion methods, which use actual seismic,
logging data and their attributes to predict the earth's parameters. Compared with model-driven inversion,
data-driven inversion does not need to consider the physical relationship between the parameters of the
earth model and data space, and can map and predict arbitrary non-linear relationship quickly and
accurately. Neural networks can be very useful in situations where the forward relation is known, but the
inverse mapping is unknown or difficult to establish by more conventional analytical or numerical
methods(de Wit et al.,2013). So the target of neural network inversion is to find the mapping from a set
of training data. Neural networks have been widely used in different geophysical applications well
summarized by van der Baan &Jutten (2000) such as in electrical impedance tomography(Lampinen, J.
&Vehtari, A ,2001), in seismic processing including trace editing, travel time picking, horizon tracking,
and velocity analysis. Devilee et al.(1999) were the first to use a neural network to invert surface wave
velocities for Eurasian crustal thickness in a fully non-linear and probabilistic manner. Meier et al.(2007)
further develop the methods of Devilee et al. (1999), then invert surface wave data for global crustal
thickness on a 2° x 2° grid globally using a neural network.

As seismology points out that there are many factors affect phase velocity, inverting phase velocity
for discontinuities within the earth forms a non-linear inverse problem (Meier et al.,2007). Because of
strong non-linear relations between crust thickness and surface wave dispersion, we cannot treat it with
a linear inverse problem as Montagner&Jobert (1988) stated. Although shallow neural network with less
number of hidden layers, can present nonlinear inverse function, it maybe cannot learn or approximate
the true inverse function well when the true inverse function is too complicated. In contrast, deep learning
neural network can overcome this defect since it has powerful representation abilities and can discover
intricate structures in large data sets, because it take use of the back-propagation algorithm to indicate
how a machine should change its internal parameters that are used to compute the representation in each
layer from the representation in the previous layer (LeCunet.al.,2015).

In this paper, in view of the advantages and characteristics of deep learning neural network, a new
fast inverse method based on data-driven, called deep stacked Sparse Auto-encoders (SSAE) neural
network is introduced to solve the nonlinear geophysical inverse problems. We focus on deep learning
neural networks to solve the non-linear inverse problem, and then apply them to retrieve the crustal
thickness for eastern Tibet and western Yangtze craton from newest and high-resolution phase velocity
maps. Based on normal mode theory we compute phase velocities for the sampled radially symmetric
earth models to generate 500,000 theoretical models. First, the theoretical phase velocity of Rayleigh
surface wave under random noise is used as input to enhance the robustness of the neural network, and
the corresponding theoretical crustal thickness is used as output. Twelve deep neural networks are
constructed trained by 380,000 and tested by 120,000 synthetic models. We then invert the observed
phase velocities through these twelve neural networks. According to test errors and misfits with other
crustal thickness models, the optimal crustal thickness model is selected as the crustal thickness of the
study area.

To the best of our knowledge, we are the first to introduce deep learning neural networks to learn and
invert crustal thickness, and our results show that crustal thickness is strong nonlinear with respect to
phase velocity. The merits of our methods include: First, since deep learning neural networks can
represent complex functions, it is possible to learn the crustal thickness inverse function precisely. Using
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deep learning neural network, we can learn the relationship between surface wave phase velocity and
model parameters on the basis of large data (i.e. 500,000 theoretical models in this study), and relax the
priori constraints on model parameters (the crustal thickness is limited to 20-100 km).Secondly, inverse
mapping based on neural network is of high efficiency because new observations can be inverted
instantaneously once well-trained deep learning neural networks with multiple hidden layers are
constructed. Thirdly, we can invert any combination of model parameters without resampling model
space (we will invert crustal thickness and shear wave velocity simultaneously in future work). Last but
not least, the results show that when the number of hidden layers reaches 6 and the test error is about
4.5e-6, the change of the number of neurons in each layer has little effect on the test error, which indicates
that the deep learning neural network has strong robustness to the neural network structure with
appropriate layers. In the following, we will first briefly introduce the deep learning neural network .

2 Deep Learning Neural Networks

In geophysics the real inverse function is usually a very complicated one between data space and model
space. The traditional linear inverse methods treat the real inverse function as linear one can resolve the
linear relation problems. However, they depend on physical relationships between the parameter space
and initial earth model. Neural network has its origins in attempts to find mathematical representations
of information processing in biological systems (Bishop ,1995). The deeper strength of Artificial Neural
Networks (ANNS5) is, the more capabilities learn to infer complex, non-linear, underlying relationships
without any a priori knowledge of the model(Bengio,2009). Shallow neural network has gained in
popularity in geophysics last decade and has been applied successfully to a variety of problems such as
well-log, interpretation of seismic data, geophysical inversion, etc. Although shallow neural network
can present nonlinear inverse function, it can only learn the relatively simple inverse function. In
contrast, Many research results indicate that deep learning neural network has powerful representation
ability and can apply a big geophysical observable data to learn and approximate the complicated
inverse function well( Lecun et al.,2015 Bengio et al.,2006; Liu et al.,2015).

Based on the analysis above, we design deep learning neural network to obtain crustal thickness for
eastern Tibet and western Yangtze craton. Compared with shallow neural networks, deep learning neural
network allows computational models that are composed of multiple processing layers to learn
representations of data with multiple levels of abstraction and can learn complex functions.The essence
of deep learning is building an artificial neural network with deep structures to simulate the analysis and
interpretation process of human brain for data such as image, speech, text, etc. However, many research
results suggest that gradient-based training of a deep neural network gets stuck in apparent local minima,
which leads to poor results in practice (Bengio, 2009). Fortunately, the greedy layer-wise training
algorithm proposed by Hinton et.al 2006 overcomes the optimization difficulty of deep networks
effectively. The training processing of deep neural networks is divided into two steps. First, unsupervised
learning methods are employed to pre-train each layer parameters with the output of the previous layer
as input, giving rise to initialize parameter values. After that, the gradient-based method is used to finely
tune the whole neural network parameter values with respect to a supervised learning criterion as usual.
The advantage of the unsupervised pre-training method at each layer can help guide the parameters of
that layer towards better regions in parameter space(Bengio,2009).There are multiple types of deep
learning neural network, such as convolutional neural networks, deep belief net and stacked Sparse Auto-
encoders(sSAE). sSAE works very well in learning useful high-level feature for better representation of
input raw data. Since sSAE learning algorithm can automatically learn even better feature representations
than the hand-engineered ones, sSSAE is used widely in many domains such as computer vision, audio
processing, and natural language processing[Hinton,2006; Deng,J et al.,2013]. Similar to these problems,
we need extract earth feature representation from dispersion of surface wave. Here we introduce Sparse
Auto-encoder briefly, and detailed description of the network training method is given by Liu et al.( Liu
et al ,2015).

The structure of sSSAE is stacked by sparse auto-encoders to extract abstract features. A typical Sparse
Auto-Encoder (SAE) can be seen as a neural network with three layers, as shown in Figure 1, including
one input layer, one hidden layer, and one output layer. The input vector and the output vector are denoted
by v and V, respectively. The matrix W is associated with the connection between the input layer and the
hidden layer. Similarly, the matrix W connects the hidden layer to the output layer. The vector b and
b are the bias vectors associated with the units in the hidden layer and the output layer, respectively. The
SAE is trained to encode the input vector v into some representation so that the input can be reconstructed
from that representation. Let f(x) denote the activation function, and the activation vector of the hidden
layer then is calculated (with an encoder) as:
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z=(Wv+b), 1)
where z is the encoding result and some representation for the input v. The representation z, or code is
then mapped back (with a decoder) into a construction ¥ of the same shape as v. The mapping happens
through a similar transformation, e.g.:
D= f(Wz+b) )

SAE is an unsupervised learning algorithm which sets the target values to be equal to the inputs and
constrain output of hidden layer which are near to zero and most hidden layer are inactive, the cost
function is expressed as:

Jsparse (W, b) = J(W, b) + B X2, plog 2 + (1 = p)log; = (3)

Here J(W, b) is cost function without sparsity constraint,  controls the weight of the sparsity penalty
term,S, is the number of neurons in the hidden layer, and the index j is summing over the hidden units
in our network. P; is the average activation of hidden unit j, p is a sparsity parameter, typically a small
value close to zero.

Further, a stacked Sparse Auto-Encoder (sSAE) is a neural network consisting of multiple layers of
SAE in which SAE are stacked to form a deep neural network by feeding the representation of the SAE
found on the layer below as input to the current layer. Using unsupervised pre-training methods, each
layer is trained as sSAE by minimizing the error in reconstructing its input which is the output code of
the previous layer. After all layers are pre-trained, we add a logistic regression layer on top of the network,
and then train the entire network by minimizing prediction error as we would train a traditional neural
network. For example, a sSSAE with two hidden layers is shown in Figure 2. This sSAE is composed of
two SAEs. The first SAE consists of the input layer and the first hidden layer, and the representation or
code of the input v is h; = f(W;v + b,). The second SAE comprises of two hidden layers, and the code
ofhy is h, = f(W,h; + b,). Each SAE is added to a decoder layer as shown in Figure 1, and we can
then employ unsupervised pre-training methods to train each SAE by expression (1). Finally, the
matrixW,; ,W, bias vector b; and b, are initialized. We then apply supervised fine-tuning methods to train
entire network. Since our aim is calculating crustal thickness and this is a regression problem, we attach
a layer connected fully with last layer of the encoder part (the matrix Wg). After that, we train this network
as done in a traditional neural network.

Figure 1.An auto-encoder with one . Figure 2.Stacked Sparse Auto-Encoder
hidden laver.(Liu etal..2015) with two hidden layers

3 Inverting surface wave data for crustal thickness

As Meier et al. (2007) demonstrated that the neural network approach for solving inverse problems is
best summarized by three major steps as shown in Figure 3: (1) forward problem. In this stage we proceed
by randomly sampling the model space and solve the forward problem for all visited models based on
seismic wave normal mode theory. (2) designing a neural network structure. In this stage taking phase
velocities with random noise as input and theoretical crustal thickness as output we train the deep learning
neural networks and the optimized neural network is obtained. (3) inverse problem. Base on trained
networks we invert crustal thickness from observed phase velocities.

In what follows we introduce how to train a sSSAE deep learning neural networks to model surface
wave dispersion based on synthetic seismogram, and then invert dispersion curves based on the trained
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networks. Finally we compare our crustal model with other crustal thickness models, and discuss the
geodynamic implications of our model .
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Figure 3. Crustal thickness inversion based on sSAE neural network composed of two parts:
Forward Problem and Inverse Problem.

3.1 data preparation

We closely follow the model parametrization methodology outlined in de Wit et al. (2014), which is
based on the Preliminary Reference Earth Model(PREM, Dziewonski and Anderson,1981)and is
parameterized on a discrete set of 185 grid points used by Mineos package(Masters et al., 2014). In
addition, these models we have got show no correlations between physical parameters such as velocity,
density, n and attenuation profiles. As the model parametrization method mentioned above, we generate
500,000 synthetic models based on the 1-D reference models PREM, which are randomly drawn from
the prior model distribution, also prior ranges for the various parameters in our model are given in tables
A.2—-A.4. of de Wit et al.(2014).We use the Mineos package to compute phase velocity for fundamental
mode Rayleigh waves for all 500,000 synthetic 1-D earth models. As for observation data used in stage
of inversion below, phase velocities are more sensitive to the deep structure than group velocity. Based
on Rayleigh wave phase velocity from ambient noise(Xie et.al,2013) shown in Figure 4 averaged from
10 to 35mHz, we take these as input for our neural networks.

3.2 training sSSAE deep learning neural network

It is well known that the artificial neural network can approximate any nonlinear function to solve
the nonlinear inverse problem by using a corresponding set of input-output pairs.These examples
are presented to a network in a so-called training process, during which the free parameters of a
network are modified to approximate the function of interests (de Wit et al. 2014). Here adopting
SSAE deep learning neural network, detailed methods presented in section 2 above, we pre-train
the neural network taking theoretical phase velocity of Rayleigh wave with random noise as inputs
and theoretical crustal thickness as outputs to attain the initial weights and bias for neural network.
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And then we take theoretical phase velocity of Rayleigh wave with random noise as input, and
crustal thickness as output to fine-tune neural network as done in a traditional neural network.

9%'E 100°E 104°E

5
%
Q
* o
Z.’
£
(5]
7]
- J
&= o o
Q o
o
o
[e]
12 3 4 s 6 7 8 9 10
36 37 38 39 40 . - §.cib
phase velocity C(kmvs) Proportions of training data sets to test data sets
Figure 4.Average phase velocity of western Figure 5. The relationship between proportions of
Yangtze craton(Xie et al.,2013) from 10 to training data sets to test data sets and test errors.
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Figure 6 and Figure 7.

How to find a satisfactory structure of neural network is a difficult problem because neural network
training is sensitive to the random initialization of the network parameters. Therefore, as de Wit et al.
(2014) pointed out that it is common practice to train several neural networks with different initializations,
and subsequently choose the network which performs best on a given synthetic test data set, and the
network which performed best on the test set is used to draw inferences from the observed data (de Wit
et al. 2014). After trying many times, we find the proportion of training data set to test one is 3:1 is
reasonable (Figure 5). The final test error depends not only on the number of input neurons, hidden layer
and intermediate neurons, but also on the number of trainings, batch size and other optional parameters.
In addition, the type of activation function, learning rate, zero masked fraction, and non-sparsity penalty
value will affect final test errors. We give twelve cases and their corresponding test errors in table 1.

3.3 inverting crust thickness

Based on our all twelve neural networks, we invert Rayleigh phase velocities (10~35.0 mHz) to attain
twelve crustal thickness models for eastern Tibet and western Yangtze craton. Considering not only the
test errors of SSAE networks, but also misfits and correlation coefficients of our twelve models with
crustal thickness models from other researches, we choose the network structure indicated by > in Table
1. We find the best fit crustal thickness model from sSAE (Figure 6).We compare our model with crustal
thickness model from receiver function(Zhu et al.,2012),and the other two global crustal thickness
models, CRUST2.0 from Bassin et al. (2000) based on refraction and reflection seismics as well as
receiver function studies and the CUB2 model from Shapiro&Ritzwoller (2002)( Figure 7) who inverted
a similar data set for crustal thickness using a Monte Carlo approach. The correlation coefficients and
scatter plots of our model versus ZJS, our model versus CRUST2.0 and our model versus CUB2 (Figure
8) indicate that overall agreement between the three models. However, the agreements of our model with
CUB2 and CRUST2.0 are better than with ZJS, since model ZJS attained from Zhu et.,al(2012) has
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relatively sparse stations with poor data coverage and lower resolution. In addition, taking the Monte
Carlo method (Hansen, 2013) using four processors only for 1000 iterations, it takes three weeks to invert
the Xie (2013) data set to the crust thickness of the same region. As Shapiro, N. M,(2002) pointed out
that the major disadvantage of this method is computational expense. Maybe the result is high resolution

5 after many more iterations using Monte Carlo method. However, when we take use of sSSAE, using only
one processor, a six-layer network for 380,000 training samples, and 120,000 test samples for network
training takes five hours, while a well-trained neural network inversion takes only a few seconds to
complete.

Tablel deep learning neural network structures taking in this article

10
parameters Error CUB2 CRUST2.0 Z]JS

SSAE Structure =70l D E F | x10° G H G H G H
[2150101] Layer || 03 |10 | led 262 | 729 | 09 | 768 | 0.80 | 9.12 | 071
[2150 10 1] Layer || 03 |10 | 1e3 | 795 | 752 | 077 | 800 | 0.76 | 842 | 0.73
[2150101] Layer 1| 03 | 10 | 1e2 | 2783 | 729 | 078 | 732 | 079 | 7.98 | 0.2
[2150 10 1] Layer || 03 | 100 | 1e3 | 28.83 | 744 | 078 | 7.13 | 0.80 | 7.89 | 0.1
[2150 10 1] Layer | | 03 | 100 | le2 | 1129 | 734 | 079 | 661 | 082 | 7.79 | 0.68
[2150101] Layer || 0.0 | 100 | 1e2 | 1128 | 733 | 0.79 | 661 | 0.81 | 7.79 | 0.68
[21102 1] Layer || 0.0l | 100 | 1e2 | 1573 | 7.08 | 0.79 | 6.67 | 0.82 | 7.91 | 0.68
[2110050201] | Layer I | 05 | 100 | le2 | 835 | 737 | 079 | 664 | 082 | 7.53 | 0.68
52]1 200502010 yoverr o5 | 100 |12 | 762 | 732 | 079 | 669 | 081 | 759 | 0.68
[21200 100 50 20

105 17" Layerl |05 |100 |12 | 722 | 675 | 080 | 670 | 082 | 800 | 0.69
[120152?]0 1005020 ) yover1 {05 | 100 | 50 458 | 779 | 079 | 845 | 084 | 107 | 065
gzll]so 40302010 | yover1 {05 | 100 | 50 604 | 762 | 078 | 835 | 083 | 103 | 0.66

In this article, we fixed the following three parameters in every situation: A-type of activation
function(sigmoid); B-learning rate(1); C-zero masked fraction(0.5).
Various parameters: D-non-sparsity penalty, which is zero except for layer 1 in every sASE structure; E-
15 number of epochs; F-size of batch.
G-RMS misfit of our result with other model; H-correlation coefficient of our result with other model.
% - selected sSAE neural network structure

104°E 108°E
)
Sino-Korean Blotk
¢ r;fmg...

30 40 5‘() ()I(l 7'() 80 30 40 . 50 60 70
crustal thickness(km) crustal thickness(km)

Figure 7.Crustal thickness of model CUB2 from

Figure 6.Crustal thickness of western Yangtze Shapiro&Ritzwoller (2002). Note: Color scale is

20 craton from this paper. not exactly the same with figure 6.
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4 Discussion

On the one hand, our results show that deep learning neural networks can effectively invert crustal
thickness because they have the ability to represent complex inverse functions :

A deep neural network can offer improvement over a shallow neural network as shown in Table
1.Test errors of deep learning neural network may be affected by the number of hidden layer in networks ,
The test error of deep learning neural network may be affected by the number of hidden layers in the
network, which indicates that the more hidden layers, the smaller the test error. When the number of
hidden layer in networks adds from three to six, we can attain from Table 1, test error decreases from
2.6e-4 to 6.0e-6. In addition, the robustness of deep learning neural networks is strong. When the number
of hidden layers in network reaches six, the change of the number of neurons in each layer has little
influence on test errors, about 5.5e-6.

In addition, we conclude that different training parameters have different effects on training results.
We think that the size of batch is more important than epochs, as shown in Table 1.The size of batch
decreases from 1e4 to 1e3 and test errors decrease from 2.6e-4 to 7.9¢-5, however, epochs increase from

10 to 100, corresponding test errors change a little. The neural network structure indicated by 3 in table
1 reveals misfits of our model with model CUB2, CRUST2.0 and ZJS are relatively low with 6.75,6.70
and 8.0, and corresponding correlation coefficients are relatively high with 0.8, 0.82 and 0.69
respectively, however, test error is 7.22e-6 and is not minimum. This tells us that test error may not be
the only criterion determining which neural network is best,because over-fitting may lead to small test

errors.
Compared with works of Meier et al.(2007), in order to enhance robustness of neural networks,
random noise is added to synthetic phase velocity as input in training progress. However, we have not
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considered about the uncertainty of crustal thickness which should be revealed by deep mixture density
network in a probabilistic manner in our future work.

On the other hand, we can attain the crustal thickness and resultant geodynamic implications in
research region from our result. We find the relatively good agreement of our result (Figure 6) with
CUB2(Fig.7),CRUST2.0 (Figure 8) and other recent researches(Qian, H. et al.,2018;Xu et al., 2016;
Wang et al.,2015). All these models indicate that crustal thickness is deeper in the west of Longmen
mountain than in the east of Longmen mountain. Which all showed an approximately 45-km-thick
crust below the Sichuan basin, thickening beneath the Longmenshan and the high Tibetan plateau to
about 60~80 km. Since we take use of regional high resolutional phase velocity model, our result
reveals more details. In order to prove that these anomalies are persistent, only accidents, or inversion
artifacts, we verify from two aspects: one is because our model gives a point estimate without
uncertainty information, we propose the relative error between the phase velocity calculated based on
our model and the phase velocity observed in the same region (Xie, 2013) to verify the uncertainty and
non-uniqueness of the inversion results (Figure 9 and Figure 10). The relative error calculation formula
is shown in Equation 4.

RE = |Phacgi—Phaops| (4)
Phaops

RE- Realative Error of average phase velocity;

Phac.-calculated average phase velocity based on our model;

Phagis-observed average phase velocity from Xie(2013);

The relative error between East and West is significantly different(Figure 9). The reason is that in
our research area, as shown in Figure 1b of Xie(2013), the stations in the east are much denser than in
the west, and the Rayleigh wave measurements has higher resolution in the east. Therefore, compared
with the west, the training data in the east is more dense, resulting in higher prediction accuracy of the
neural network in the east and lower prediction accuracy in the west. Using the same parameters but for
a traditional shallow neural network with three layers (one input layer, one intermediate layer and one
output layer), we train this shallow neural network and obtain a relative error with the observed average
phase velocity. The histogram error of the relative error of the shallow network is larger than that of our
deep learning network (Figure 10). We can conclude that our model is more reliable in the eastern part
of Longmen Mountain, especially in Chengdu, Qinling-Dabei fold belt, Xi'an and Ordos basins, and
Sichuan-Yunnan block, so the crust thickness anomaly in these areas is worth explaining. Another
reference to the results of other studies conducted by Wang (2010) in the same area, who attained the
crustal thickness estimated by the H-k stacking method based on the broad band tele-seismic data
recorded at 132 seismic stations in Longmen  mountains and adjacent
regions(26°~35°N,98°~109°E)(Figurel1).

100 ¥

Figure 11. Contour map of crustal thickness estimated by h-k stacking analysis based on the
receiver function(Wang ,2010, Small black solid circles indicate seismic station used by wang(2010)).

Our result reveals similar details with Wang(2010): the crustal thickness of the eastern Tibet plateau
is complex and varies greatly. The average crust thickness is about above 60km, especially about 70-
75km at Qiangtang block, under which there is a northward-dipping moho gradient zone. There is
relatively shallow crust at Songpa-Ganzi block and is characteristic of decreasing in northwest-southeast
orientation. Our model still shows some changes in the thickness of the crust in this area. For example,
the thickness of the crust around Chengdu is relatively thin, especially in the northeastern part of Chengdu,
about 50 km thick under the Qinlin-Dabei fold belt, and the thickness of the crust in the northeast to
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Sichuan basin is about 45~48 km. In addition, crustal thickness around Xi’an and Ordos basin is about
35km. On the contrary, change of crustal thickness in Sichuan-Yunnan block varies greatly, with a
thickness of about 60 km in the northwest and about 35 km in the southeast. From a geological viewpoint,
the eastern Tibet and the western Yangtze craton has a very complex structure and tectonics, where
several tectonic blocks, including the Yangtze Platform, the Songpan-Ganzi Fold System, the Qiangtang
Block, and the Indochina Block, are interacting with each other. It is a site of important processes
associated with the India-Asia collision and abutment against the stable Yangtze Platform, including
strong compressional deformation with crust shortening and thickening, the plateau surface has been
elevated to 4-5 km, and the Tibetan crust has doubled in thickness since the collision (Chen et
al.,1996;Flesch et al., 2005;Wang,2010), east-west crustal extension, and strong earthquakes often occur
on the active faults inside and on the edge of the plateau and are the most active seismic areas within the
mainland. Based on the analysis of the distribution of the epicenters during 1970-2015, the results show
that a large earthquake occurred in the brittle upper crust of the Longmenshan fault zone in Sichuan and
Yunnan, and the crustal thickness changed sharply by about 10 km. Ms 8.0 Wenchuan earthquake in

2008 and Ms 7.0 Lushan earthquake in 2013 were caused by the reactions associated with the Songpan-

Ganzi Fold System and the Qiangtang Block obliquely colliding with the Yangtze Platform. The reason
may be that main fault cut off moho discontinuity where materials exchange between crust and mantle,
and accumulated press triggers a series of earthquakes frequently.

5 Conclusion and remarks

Taking use of sSSAE deep learning network, we present crustal thickness map of eastern Tibet and
western Yangtze craton(Figure 7). The data sets consist of phase velocities of Rayleigh waves from
Xie(2013) at discrete frequency of 10.0, 12.5, 15.0, 17.5, 20.0, 22.5, 25.0, 27.5, 30.0,
32.5,35.0mHz.We conclude that:

(1) Neural network structure is essential for inversion results, determined by the following
parameters: the number of hidden layers, the number of neurons per layer,number of epoch, batch size,
type of activation function, learning rate and non-sparsity penalty. We find that the number of parameters
in hidden layers and the size of batch, are crucial for training neural networks. After many tests, the
number of hidden layers was set to 6 ,the number of neurons was 200, 100, 50, 20, 10 and 5. The number
of periods and the batch size were both set to 100, the activation function was sigmoid, and the learning
rate was 1, higher resolution and more reliable crustal thickness model was attained.

(2) By training the deep network with six hidden layers and the traditional shallow network with
only one hidden layer, the relative error between the phase velocity predicted by the deep network and
the observed average phase velocity is smaller than that between the phase velocity predicted by the
traditional shallow network and observed average phase velocity, indicating that the inversion result
based on the deep network is more reliable than that of the traditional shallow network.

(3) Using only one processor, a six-layer sSSAE network for 380,000 training samples, and 120,000
test samples for network training takes five hours, while a well-trained neural network inversion takes
only a few seconds to complete. To complete the same inversion task, it takes three weeks to use the
Monte Carlo method for four processors. We demonstrate that SSAE deep network inversion is more
efficient than Monte Carlo inversion.

(4) Compared our model with current knowledge about crustal structure as represented by

ZJS,CRUST2.0, CUB2, the overall agreement with these three models is very good, and agreement is
generally better with CUB2 and CRUST2.0 which are attained from relatively dense stations with rich

data coverage and higher resolution. Our result reveals more details in Chengdu, Qinling-Dabei fold belt,
Xi'an and Ordos basins, and Sichuan-Yunnan block.

Acknowledgements. Our work was supported by the National Natural Science Foundation of China (Grant No.
41774095) the National Natural Science Foundation of China ( Grant No. 91755215).The authors are grateful to Xie
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