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This interesting paper considers the tangent linear covariance dynamics of the (nonlinear, 
diffusive) Burgers equation under stochastic initial conditions. The tangent linear covariance 
dynamics can be expressed as a series expansion in the distance between any two points in the 
spatial domain. To terminate the expansion at finite order requires a closure approximation due 
to the diffusion term in Burgers’ equation. The authors develop such an approximation through 
a careful examination of properties of the two-point correlation function. Their proposed 
approximation, appropriately termed a locally homogeneous Gaussian closure, terminates the 
series expansion at second order by approximating the fourth-order term in terms of the 
second-order one. This results in a system of three nonlinear, nonlinearly coupled, time-
dependent PDEs to be solved on the spatial domain, for the mean, the variance, and the 
second-order term of the correlation function expansion. The authors carry out numerical 
experiments to test their approach against a Monte Carlo approach used as a basis of 
comparison.  

The appeal of the approach considered in this paper, beyond increased scientific understanding 
of covariance evolution, is to dramatically reduce computational costs: one needs to solve only 
three PDEs instead of carrying out, for instance, the tens, hundreds, thousands or more 
integrations of the original (Burgers equation) dynamics with Monte Carlo approaches. The 
authors discuss the potential of their approach for the important applications of data 
assimilation and probabilistic forecasting. 

The experimental results shown in the paper are convincing but also somewhat unsettling. They 
show that, for small initial variance (1% standard deviation), the closure approach accurately 
reproduces the Monte Carlo results, thus validating in this case both the closure approximation 
and the tangent linear covariance dynamics. For much larger initial variance (10% standard 
deviation), however, the closure approach reproduces the Monte Carlo results only away from 
the region where the gradient of the mean state steepens. Through further numerical 
experiments, the authors demonstrate that it is likely that it is the use of the tangent linear 
covariance dynamics themselves, to which the closure approximation is applied, rather than the 
closure approximation per se, that causes the fairly substantial difference between results of 
their approach and the Monte Carlo simulations in the vicinity of sharp gradients. An obvious 
conclusion is that further research will be needed to investigate the limitations of tangent linear 
covariance dynamics vis-à-vis fully nonlinear covariance dynamics, such as those obtained from 
Monte Carlo methods. 



I did carefully check all the mathematical derivations in the paper, including those in the 
Appendix, and I found two, both of which could affect the experimental results. First, there is 
an error passing from Eq. (27b) to Eq. (28b): a coefficient 2 has crept into the third-from-last 
term on the right side of Eq. (28b) which does not belong there, and it is repeated in the final 
Eq. (29c). If this is just a typo, it simply needs to be corrected. But if this error has also made its 
way into the computer code, then the numerical experiments will need to be re-run. 

Second, the Gaussian initial covariance function, Eq. (30), is not appropriate for the geometry of 
the numerical experiments. Since the domain is periodic, the distance |x-y| should be replaced 
by a distance function that reflects this periodicity, such as the great-circle distance or chordal 
distance. As it stands, the covariance function has a slight first-derivative discontinuity at |x-y| 
= D/2, and this introduces spurious odd-order terms in the series expansion of the correlation 
function that have been neglected. Although this might be a small effect initially, since the 
initial correlation length L was taken to be small, the numerical experiments showed that the 
correlation length grows by nearly an order of magnitude. The numerical experiments will need 
to be repeated with an appropriate initial covariance model. 

Here are a few smaller issues, including typos: 

1. It is mentioned a few times that “operator splitting” (p.2 l.25) or “time splitting” (p.6 
l.26) is used in the derivation. Actually, the authors are simply carrying out the 
derivation term-by-term without any approximation introduced by doing so. The 
authors’ use of this terminology is not at all standard; usually it means that a time 
discretization error is introduced in a numerical method. I suggest removing the 
terminology altogether. 

2. P.7 l.13: I would change “Hilbert space” to the more general “function space” since no 
Hilbert space apparatus has been introduced in the paper. 

3. In the title itself, the apostrophe after Burgers should be removed: the possessive is 
not correct here. 

4. P.4 l.16: recipes  recipe 
5. P.6 l.12: te  the 
6. Eq. (25): One appearance of δx2 in the second term, and one in the third term, should 

be removed. 
7. P.10 l.8: express  expressed 
8. Eq. (29): The subscript x on the symbol V should be used consistently. 
9. P.13 l.33: 8.8 of  8.8 times 
10. P.14 l.9: 5.5 of  5.5 times 
11. P.14 l.12: 7.5 of  7.5 times 
12. P.18 l.13: variance field  normalized variance field 
13. P.18 l.21: third term  third order term 
14. P.19 l.1: fourth term  fourth order term 
15. P.19 l.8: third order term  fourth order term    


